Distribution of participants according to the results of blood tests and stool.
\r\n\tThe biological activities of the bioactive compounds are based on the lead or the privileged scaffold present in the structure. The different scaffolds present in natural bioactive compounds are indole, purine, chromone, coumarin, benzothiphene, lactone, etc. These privileged scaffolds modify into multiple molecules for having different bioactivity. Some of the bioactive compounds in large quantity have an adverse effect on health. Recently, bioactive compounds are widely used in green chemistry, nanotechnology, and metal chelation.
\r\n\tThe book provides a reference for a wide range including chemistry, analytical techniques, medicinal chemistry, pharmacology, nanotechnology, etc.
Intestinal parasitosis and malaria remain the most important diseases in sub-Saharan Africa [1, 2]. With hundreds of millions of sick people every year and about three million deaths per year, intestinal parasites and malaria remain the most important diseases in sub-Saharan Africa and mainly affect children and pregnant women [3, 4].
In pregnant women, these parasitic infections cause maternity accidents such as premature births, maternal-fetal death, and malformations [5, 6, 7].
In Côte d’Ivoire, malaria is the main cause of morbidity (40%) and mortality (10%) in the general population. Children under 5 years and pregnant women are the most affected. In addition to malaria, Côte d’Ivoire is facing other diseases such as intestinal parasitosis.
Long rural the tropical countries are confronted with the urban growth, with the biggest upheavals of the lifestyles of its history. Urbanization rate increased from 27.3% in 1975 to 49% in 2000 according to the United Nations estimates [8]. This represents an increase of about 1.3 billion people. Cities on the African continent are currently experiencing the strongest growth. The urbanization rate, which was only 13.2% in 1950, exceeded 37% in 2000, i.e., 270 million more urban dwellers [9]. This was the case for the city of Abidjan, the economic capital of Côte d’Ivoire, and more precisely in the municipality of Abobo. The urbanization of this town, which began in the 1970s, is so fast that nowadays Abobo already has more than one million inhabitants. However, infrastructure development has not kept pace with these rapid changes. In this context, precarious housing areas focus on pathologies linked to promiscuity, insalubrity, lack of drinking water supply, and/or poverty; these diseases are intestinal parasitosis and malaria [10, 11]. Moreover, it must be noted that few studies have been carried out on these parasites and particularly on pregnant women in this municipality. As part of a research project on the impact of infectious and parasitic diseases on the physical and mental development of children, pregnant women were followed up. The work consisted of evaluating the prevalence, parasite load of malaria, and digestive parasites and then determining risk factors of these parasitic infections in pregnant women in Abobo district in Abidjan.
Our prospective study, which took place from May 2010 to June 2012 at the General Hospital of Abobo (GHA) in Abidjan, involved 331 pregnant women recruited in the last quarter of pregnancy; these future mothers all provided informed consent before being included in the study. They were aged 18–46 years. The mothers were recruited during antenatal clinic visits by gynecologists. Detailed explanations of the study were given by them in local languages if necessary.
The fact sheets on the socioeconomic status and study of risk factors have been met by community health workers (CHWs) in an interview with the mother following the signing of informed consent. It includes information on factors favoring the transmission of these parasites, namely, age, type of neighborhood, level of education, occupation, type of toilet, and use or not of impregnated mosquito nets.
A blood sample of 5 ml was taken from patients by nurses, in a labeled EDTA tube (patient ID number) by venipuncture in the antecubital fossa, after disinfection of the sampling region by ethyl alcohol. Blood samples were stained in a solution of 10% Giemsa and microscopic reading of immersion oil at a magnification of 100. In the positive case, the parasitic identification was carried out on thin film, and parasite densities were evaluated from the thick drop of 200 or 500 leukocytes. Individual values obtained for parasitemia were finally reduced to microliter (1 μl) of blood on the basis of 8000 leucocytes by taking the product of the number of parasites obtained by 40 or 16, respectively, for 200 or 500 erythrocytes [12, 13].
A box for the stool sample was given to the mothers, and they were asked to return the next morning at the hospital with the boxes containing feces. The stools collected in the morning were labeled with the patient ID and were the subject of a direct microscopic examination between slide and cover glass. In addition, 1–1.5 g of stool was placed into a falcon tube containing 10 ml of sodium acetate–acetic acid formalin (SAF) solution, broken and homogenize with a wooden spatula and vigorously shaken. Within 1 month of stool collection, the SAF-fixed samples were subjected to an ether concentration method [14]; the SAF-fixed stool samples were re-suspended and filtered through medical gauze placed in a plastic funnel into a centrifuge tube. The first centrifugation is made at 2000 towers/min for 1 min. After centrifugation, the supernatant was discarded, and 7 ml of 0.9% NaCl plus 2–3 ml of ether was added to the remaining pellet. After shaking for 10–30 s, the tube and its content were centrifuged for 4–5 min at the same speed. Finally, from the four layers formed, the three top layers were discarded. The bottom layer, including the sediment, was examined under a microscope. With regard to the parasite load, the exact number of eggs of each species of helminth was marked; the presence of a species of protozoan was mentioned by a positive (+) sign. The number of + ranges from 1 to 3 depending on the intensity of the parasite. Indeed, 1+ corresponds to 1–5 parasites per analyzed microscopic slide, 2+ 1 parasite per microscopic field, and 3+ more than 1 parasite per microscopic field.
MS Excel software was used for entering data collected (parasitological data and those fact sheets) and perform figures.
Descriptive analysis was done to describe the data as counts, percentages, averages, using tables and figures. Statistical tests were carried out with the Stata software 11.0.
The chi-square test (χ2) allowed us to appreciate the link between the occurrence of malaria and/or helminth infections and exposure factors (age, use of non-treated nets, socioeconomic conditions). The value of the probability (p) showed the degree of significance of the links at the 0.05 level. The Fisher exact test was used for small numbers (more than 5% of the theoretical frequencies less than 5).
The study conditions have been reviewed and approved by the National Ethics and Research Committee of Côte d’Ivoire (N ° 4169/MSHP). Detailed explanations of the study were given to mothers in local languages, if necessary. The participation was voluntary. When the mother consented, she signed or affixed a fingerprint on the informed consent sheet.
The study included 331 pregnant women from 13 neighborhoods in Abobo commune. The average age was 28.9 years old. The largest group of women was between 28 and 32 years old (31.7%) (Figure 1).
Distribution of population according to age.
After the blood and stool examinations, 157 (47.4%) women presented no parasite. Four (4) women (1.2%) presented plasmodium, 161 (48.6%) digestive parasites, and nine (9) (2.7%) both parasites (Table 1).
Blood tests | Coprological analyzes | Total | |
---|---|---|---|
Negative digestive parasite | Positive digestive parasite | ||
Negative thick drop/blood smear | 157 (47.4%) | 161 (48.6%) | 318 (96.1%) |
Positive thick drop/blood smear | 4 (1.2%) | 9 (2.7%) | 13 (3.9%) |
Total | 161 (48.6%) | 170 (51.4%) | 331 (100%) |
Distribution of participants according to the results of blood tests and stool.
In total 13 women presented a positive thick smear of Plasmodium sp., with a parasite rate of 3.9%. Parasite mean of Plasmodium falciparum is 3089.2 trophozoїtes/μl of blood with a minimum of 360 trophozoїtes/μl and maximum of 13,400 trophozoїtes/μl. The highest prevalence (12.5%, 2/16) was recorded with the age group of 38 years and older and the lowest (1.2%, 1/83) with that of 23–27 years. The differences in prevalence observed between age groups are not statistically significant (χ2 = 5.11, p = 0.276). Infestation of P. falciparum is not age-related. Women not using treated nets are much more infested (6% 12/200) than those using insecticide (0.8%, 1/131). The parasitic porting is influenced by the use of treated mosquito nets (χ2 = 0.012, p = 0.018). Women not using bed nets are the most vulnerable to malaria (Table 2).
Using of treated mosquito nets | χ2 | p | ||
---|---|---|---|---|
Oui | Non | |||
Number of participants | 131 | 200 | ||
Infected | 1 | 12 | ||
Prevalence (%) | 0.8 | 3.9 | 0.012 | 0.018 |
Prevalence of malaria according to the use or non-use of insecticide-treated bed nets.
After stool examinations, eight (8) species of intestinal protozoa belonging to six (6) different kinds were diagnosed in Abobo. These are Entamoeba histolytica/dispar, Giardia lamblia, Endolimax nana, Entamoeba coli, Iodamoeba butschlii, Chilomastix mesnili, Entamoeba hartmanni, and Blastocystis hominis. The term “Entamoeba histolytica/dispar” was used because the method used for stool examinations did not allow to distinguish the species Entamoeba histolytica and Entamoeba dispar.
In addition to these protozoa, three species of helminths were observed: Schistosoma mansoni, Trichuris trichiura, and Ascaris lumbricoides. Of the 331 women screened, 170 were carriers of digestive parasites, with an overall prevalence of 51.4%. The prevalence of species of digestive parasites (pathogenic and nonpathogenic protozoa of digestive and intestinal helminths) is presented in Table 3. With protozoa, the highest prevalence was observed with Entamoeba coli (31.4%, 104/331) and Endolimax nana (16.9%, 56/331). Concerning intestinal helminths, in the three species, Schistosoma mansoni was the most abundant with a prevalence of 2.7%. In terms of parasite load protozoa, the trend observed in our study was 2+, namely, 1 parasite per microscope field, the latter being described as frequent infestation. As regards the helminths, the average worm burden was 7.8 eggs/gram of feces. The most infested age group is that of 23–27 years (59%, 49/83), while the least infested was that of 18–22 years (45.1%, 23/51). Age had no significant association with gastrointestinal parasites (χ2 = 3.77, p = 0.438). These parasites infest all age groups. No significant binding was recorded between the digestive parasites and level of schooling (χ2 = 6.88, p = 0.76), occupation (χ2 = 2.66, p = 0.103) (Table 5), and the type of toilets (χ2 = 1.57, p = 0.456). The occurrence of intestinal parasites is not related to the socioeconomic conditions.
Parasites species | Infected | Prevalence (%) |
---|---|---|
Protozoa | ||
Entamoeba coli | 104 | 31.4 |
Endolimax nana | 56 | 16.9 |
Blastocystis hominis | 38 | 11.3 |
Entamoeba histolytica/dispar | 23 | 7 |
Iodamoeba butschlii | 15 | 4.5 |
Entamoeba hartmanni | 12 | 3.6 |
Chilomastix mesnili | 11 | 3.3 |
Giardia lamblia | 9 | 2.7 |
Helminths | ||
Schistosoma mansoni | 9 | 2.7 |
Trichuris trichiura | 4 | 1.2 |
Ascaris lumbricoїdes | 1 | 0.3 |
Prevalence of intestinal parasites species.
We examined 331 pregnant women of which 13 showed positive thick smear, with a parasite rate of 3.9%. Menan et al. [15] had reported in 1996 had a higher prevalence of 18.8% among the population of Abidjan. Our low rate could be explained by the fact that pregnant women receive intermittent preventive treatment (IPT) with sulfadoxine-pyrimethamine (SP) against malaria during pregnancy.
P. falciparum has been the only species identified during our work with a specific index of 100%. During these works in Côte d’Ivoire [16, 17], all cases of infection were also due to P. falciparum. By cons, it was highlighted at Taї southwestern Côte d’Ivoire the coexistence of P. falciparum, P. malariae, and P. ovale with specific rates of 84, 14, and 2% [18]. These studies highlight the prevalence of P. falciparum in Côte d’Ivoire (80–97% of infections) [19, 20].
The minimum parasitemia is 360 tpz/μl and the maximum 13,400 tpz/μl of blood. The average parasite density was 3089.2 tpz/μl of blood during the study. Our low parasite density could be explained by the fact that we have a gradual reduction in parasite densities with age [19]. Furthermore, it was suggested that the gradual decline in parasite densities with age is associated with the acquisition of immunity [21].
Our study revealed that the incidence of malaria is not related to age of the pregnant woman. This observation is similar to that of Menan et al. [15] in 1996 at the Abidjan population.
It appears from our study that there is a link between malaria and the use or non-treated nets. Women using treated nets are much less infested than those not using bed nets. Furthermore, the use of treated nets is a means of prevention against malaria [22].
During our study, slightly more than half of pregnant women were carriers of digestive parasites (pathogenic and nonpathogenic protozoa and intestinal helminths), with a rate of 51.4%. This rate is similar to that reported in pregnant women from Abidjan and its suburbs (53.6%) [23]. This demonstrates that the digestive parasites remain in pregnant women in Abidjan and maintain their level of infestation. The most common species of protozoa in our study area are nonpathogenic species E. coli (31.4%) and E. nana (16.9%). This same predominance was observed in 1993 among pregnant women in Abidjan [23]. The both pathogenic species of digestive protozoans (E. histolytica/dispar, G. lamblia) have a cumulative rate of 9.7%, which is substantially equal to that commonly found in children of school age (9.1%) [24], which demonstrated that this pathogenic protozoa infest either the mothers or the children in our study area.
Overall, helminths are not often found in our study. The predominant species is Schistosoma mansoni (2.7%), followed by Trichuris trichiura (1.2%) and Ascaris lumbricoides (0.3%). The prevalence of Schistosoma mansoni (2.72%) is in the prevalence interval (0.1–7.5%) indicated in Ivorian urban areas [25]. Prevalence close to that obtained in this study, namely, 3.1 and 3.9%, has been reported in Abidjan [26, 27]. This rate is higher than that observed (0.8%) among school age children in Abidjan [28]. This prevalence is low compared to those found in Moapé (Adzopé) (75%) [29] and Azaguié (Agboville) (88%) [30]. It must be emphasized that Agboville and Adzopé are schistosomiasis endemic areas [29, 31]. Trichuris trichiura was found at a rate of 1.2%. This rate is superimposed on that of Raso et al. [30] in 2005 in Man (1.3%). A much higher rate than ours was obtained in Agboville (15%), in a study in schools [32]. Furthermore, it is clear that the prevalence of trichuriasis is significantly higher than in the forest zone savanna [25, 33]. However, our very low prevalence could be explained by the analysis technique (method of concentration by formalin-ether) used. The prevalence of Ascaris lumbricoides was 0.3%. In a survey in Toumodi, no cases of roundworm porting have been reported [34]. A prevalence of 31.2% of roundworm porting was noted in Bondoukou; they felt it was the most common parasite in north-western Côte d’Ivoire [35].
This situation of frequent infestation (one parasite per field) to protozoa may be explained by the fact that the clean Abobo has many shortcomings, namely, unhealthiness linked to the failure of systems’ sewage and promoting fecal peril.
Regarding helminths, the low-average parasite burden (7.8 eggs/g of stool) could be the fact that we used direct examination and SAF technique for stool examination. These techniques are very sensitive for the detection of helminth species compared to the Kato-Katz technique. Furthermore, the technique of concentration by formalin-ether remains one of the most suited for the identification of intestinal protozoa techniques.
Our study reveals that the parasite carriage is not related to age. However, the age group most affected is that of 23–27 years (59%). This is consistent with that of N’Guemby and Le Bigot [36] in Libreville in Gabon which have found a high prevalence among participants from 21 to 31 years in 1981. This finding could be justified by the fact that this age range is very involved in the household.
Our study showed that there is no significant link between the species of digestive parasites and socioeconomic conditions (level of education, occupation, type of toilet). This same observation was made in adults residing in Bangkok, Thailand [37].
We noted a decrease in the rate of malaria in pregnant women compared with previous studies; the rate of digestive parasites remains high. These results appear in connection with the effectiveness of the policy against malaria despite the poor hygiene of these populations.
Intestinal parasitosis and malaria diseases, among others, remain the largest problem in sub-Saharan Africa; they mainly affect children (under 5 years) and pregnant women. Our study objective was to identify species of malarial and digestive parasites and to estimate the prevalence and intensity of infestation of these parasites and clarify the risk factors for these infections in pregnant women from the commune of Abobo. Our study was conducted at the General Hospital of Abobo (HGA) in Abidjan. This is a prospective study (2010–2012). Overall, 331 pregnant women in the last trimester of gestation, antenatal clinic goers, were recruited. They were aged 18–46 years. Blood samples were examined by thick film techniques and blood smears; stool samples were collected for direct examination, and method of concentration is formalin-ether. Intermittent treatment against malaria with sulfadoxine-pyrimethamine has contributed significantly to the reduction of malaria among pregnant women. The rate of digestive parasites remains high, indicating poor hygiene practice in these women.
We thank the Deutsche Forschungsgemeinschaft Germany (DFG) for the financing of this project. We are grateful to the director and the staff of Hôpital Général d’Abobo (Abidjan, Côte d’Ivoire) and community health workers (CHW) for their support and for facilitating the implementation of our study. We thank the pregnant women (mothers) for their enthusiastic participation.
There is no conflict of interest.
Transparent electrodes (TEs) are key components for many industrial devices. TEs indeed do concern applications related to energy field such as photovoltaics or efficient lighting (light emitting diode, LED, or organic-LED, OLED), smart windows or supercapacitors and are therefore associated to rapidly increasing industrial needs. For photovoltaics, the need of TEs concerns, for instance, the front electrode that should be transparent for the sunlight while collecting the photo-generated carriers. For efficient lighting, this is the opposite physical phenomenon: injecting carriers (electrons and holes) by applying a voltage through transparent electrodes to let the generated light exit the LED or OLED device. But TEs are also used in many other applications such as transparent heaters, touch screens, sensors or radio-frequency (RF) devices.
\nThe main TEs investigated in the last decades have been transparent conductive oxides (TCO) [1, 2, 3, 4] with the most well-known and used one in the industrial area being indium tin oxide (ITO). And aluminium-doped zinc oxide (AZO) [2] and fluorine-doped tin oxide (FTO) [5] have been also the subject of many studies. While TCO can exhibit good or even very good physical properties, the recent industrial needs have prompted a search of new materials to replace TCO for several applications [6]. Indeed indium, for instance, can be scarce, its deposition often requires vacuum, and TCO by nature are brittle and therefore not compatible with flexible applications. Materials such as carbon nanotubes [7], graphene [8], conducting polymers [9, 10], metallic grids [11] and metallic nanowire networks [12, 13] have been mainly studied for this purpose, and some of them exhibit already promising properties for several applications. In particular, several studies have lately demonstrated that metallic nanowire (MNW) percolating networks can exhibit high electrical conductivity, high optical transparency and high flexibility [12, 14, 15]. The main investigated are silver nanowire (AgNW) and copper nanowire (CuNW). The very high aspect ratio of the nanowires (i.e. length divided by the diameter) allows these networks to achieve very good performances, similar to ITO, however by using much less raw material [12]. Such quantity are often expressed in terms of the so-called areal mass density (amd), defined as the required mass of metal (for MNW networks) or indium (for ITO thin layers) per square metre. Their ranges are between 40 and 200 mg.m−2 for AgNW or CuNW networks and roughly 750–1050 mg.m−2 for ITO thin layers [12]. With rather similar price per unit mass for both In and Ag, replacing ITO by AgNW networks appears to be a cost-effective alternative. Moreover MNW-based TEs exhibit two additional assets: they can be fabricated via solution-based methods, and they present outstanding flexibility (and even good stretchability). These two assets constitute clearly key points for an efficient industrial integration. Another advantage of MNW networks is their high optical transparency in the near-infrared spectrum, especially when compared with TCO: this is of importance for transparent solar cell applications. For those reasons, printed AgNW network-based electrodes have shown a potential as transparent and flexible electrodes in many displays such as solar cells [16, 17, 18, 19], OLEDs [20], displays [21], supercapacitors [22], transparent heaters [23, 24, 25], radio-frequency antennas [26], antibacterial films [27] or smart windows [28].
\nIn this contribution, we focus on TEs made of AgNWs or CuNWs and will first briefly discuss the role of the nanowire dimensions (both length and diameter) and network density on the physical properties. The network stability will be discussed followed by methods to enhance it, which appears to be a crucial issue for an efficient integration of this technology. Finally, we will briefly discuss the integration of MNW network-based transparent electrodes for energy applications.
\nThe main physical properties of metallic nanowire networks are optical properties (transparency and haziness), electrical resistance and mechanical properties (or more precisely the electromechanical properties mainly in bending or stretching modes). These properties depend on several parameters, including MNW dimensions (diameter and length), junction resistance and network density. We will briefly describe this dependence below. Figure 1 shows single MNW and MNW network observed by electron microscopy at different scales.
\nElectronic microscopy observation of silver nanowires and the associated network. (a) Transmission electron microscopy image of AgNW; (b, c) scanning electron microscopy images of random AgNW network fabricated by spray on glass substrates observed at two different magnifications.
MNW dimensions can influence the properties of MNW networks. MNW diameter, DNW, can be first compared with the mean free path of electrons, 𝛬, in the bulk metal: if DNW is comparable or even smaller than 𝛬, then surface scattering is increased (for bulk Ag 𝛬 is close to 50 nm). This was derived and observed experimentally by Bid et al. at the individual MNW level [29] and shown to be in good agreement with experiments on AgNW networks by Lagrange et al. [30]. Too small MNW diameter leads to large electrical resistance and to instability at lower temperature [30], while too large MNW diameter increases shadowing effects and then reduces the optical transparency; therefore a trade-off should be found. Also one should keep in mind that large DNW values lead to larger haziness. The influence of MNW length was, for instance, studied by Bergin et al. [31] or by Marus et al. [32]: generally speaking increasing MNW length results in an improvement of their optoelectronic performance. It is also worth noticing that the MNW length distribution can also play a role, as shown by Langley et al. [33], who showed that the critical density of MNW associated to the percolation threshold decreases when the MNW distribution is increased.
\nThe junctions between MNW play also a key role. Recently Ponzoni showed that the relative contribution to electrical conductivity between nanowires and junctions could be very close [34], in good agreement with Bellew et al. who reported junction resistance measurements of individual silver nanowire junctions [35]. Bellew et al. were able to demonstrate, based on experimental data and modelling, that the junction contribution to the network’s overall resistance could be reduced even beyond that of the nanowires themselves. It was shown experimentally by several methods that junctions’ resistance could be reduced: for instance, Langley et al. showed that a thermal annealing can drastically reduce network resistance thanks to a local sintering of the junctions [36]; and Garnett et al. used light-induced plasmonic nano-welding to optimize junction resistance of MNW networks thanks to an efficient localized heating compatible with low-thermal-budget substrates such as polymeric substrates [37].
\nThe network density is a key parameter and influences both the optical transmittance and the electrical resistance. Instead of considering the network density (expressed as the number of MNW per unit area), one often prefers to consider the areal mass density, amd, expressed in mass per unit area (mg/m2). Optical transmittance is observed to decrease linearly with amd as shown by Bergin et al. [31] or by Lagrange et al. [30]. This can be simply explained by shadowing effects [30]. Conversely electrical resistance drastically decreases when amd is increased; therefore an inherent trade-off between high transparency (observed for low amd values) and low resistance (large amd values) has to be considered. Figure 2a illustrates the influence of amd value on the electrical resistance. Experiments performed on AgNW networks associated to different networks amd values show the existence of a critical value of amd, amdc, below which no finite resistance can be measured (see Figure 2b). This limit is associated to the stick percolation, and Monte Carlo simulations show that the amdc value is given by amdc = 5.64 < MMNW>/L2 where <MMNW > is the average mass of the MNW and L is the MNW length [33, 38]. Above amdc the measured electrical resistance is decreasing rapidly following a power law, as shown by Figure 2a: there is a rather good agreement observed between experimental data (symbols) and percolation theory (line) [30]. Some differences between real-world networks and Monte Carlo simulations were investigated lately by Langley et al. [33]. The real-world imperfections of a network concern the MNW length distribution, the non-isotropic MNW orientation and the MNW curvature: the influence of these three parameters on the onset network percolation was studied by Langley et al. [33]. For much larger amd value, another transition does exist between the percolative regime and the so-called bulk regime [24]; while this transition is much less known or investigated than stick percolation, such a transition occurs close to amd values that are considered in most applications.
\nEffect of the network density, expressed here as the areal mass density (amd), on the electrical properties of percolating AgNW networks: (a) Minimum electrical resistance measured experimentally during thermal ramp versus the network areal mass density [36]; (b) illustration of the three regimes associated with different values of amd. Below a critical value, amdc, no finite electrical resistance can be measured. Just above very large resistance values are measured, while they decrease as a power law for larger amd values; the onset corresponds to the stick percolation. Another transition, less known and studied, exists between the percolative regime and the bulk regime; for the latter the electrical resistivity does not depend anymore on the network density [24].
Another way of looking at the influence of amd value on electrical properties of MNW networks is proposed in Figure 3 where the electrical conductance is plotted versus relative amd. Below the critical amd value, amdc, the experimental resistance is infinite. Just above Sannicolo et al. demonstrated that a discontinuous activation of efficient percolating pathways takes place [39]: experimentally, for sparse networks abrupt drops of electrical resistance are observed. Such an original phenomenon was called ‘geometrically quantized percolation’ and was observed by lock-in thermography which evidenced the existence of individual hotter pathways through the network [39]. For larger amd values, one observes the percolative regime for which the electrical resistance is proportional to (amd-amdc)-γ where γ = 4/3, as shown by Lagrange et al. [30]. The previous expression has been used to fit the data of Figure 3, and a good agreement is observed for a large range of amd values, while percolation theory should be only valid for amd values slightly above amdc. For very large values of amd, the electrical resistivity does not depend upon amd value, and a metallic bulk behaviour should be then observed.
\nElectrical conductance of AgNW network versus the relative areal mass density of the network; this shows the different electrical regimes (see Figure 2 and the text for more details). The red symbols correspond to experimental data, while the blue dash line corresponds to the percolation theory.
The stability of metallic nanowire networks appears as a crucial issue, specifically when such TEs undergo thermal and electrical stress [29, 30]. This concerns nearly all applications, and the stability is related to electrical and thermal stability but also long-term ageing and chemical degradation. Such instability can stem from different physical mechanisms such as diffusion of metallic atoms, electromigration processes during electrical stress or oxidation of silver or copper if networks are in contact with either humid atmosphere and/or in high temperature conditions and/or under electrical stress.
\nOne of the first investigations of the instability of AgNW networks was reported by Khaligh and Goldthorpe [40]: they showed that when AgNW-based TEs undergo similar electrical currents than those encountered in organic solar cells, the TEs can quickly fail within 2 days. They reported that such failure is associated with local Joule heating which deteriorates AgNW network and eventually leads to the network failure. Similar observations were also reported by Chen et al. [41]. Such stability issues are even more pronounced for CuNWs since oxidation (even at low temperature) of CuNWs can occur [42, 43, 44].
\nFigure 4 exhibits the electrical failure observations. Figure 4a shows the typical time dependence of the AgNW network electrical resistance during an electrical ramp with the electrical breakdown observed for voltage larger than 9 volts. At first a slight increase of the resistance is observed: thanks to the Joule effect, the network temperature is slightly increased, and since its behaviour corresponds to a metal, its electrical resistance thus increases. For voltage larger than 9 volts, the network electrical resistance drastically increases: this is associated to the electrical breakdown of the network [45].
\nElectrical failure observations. (a) Time dependence of the electrical resistance of a AgNW network during an electrical ramp of 0.5 V min−1; the electrical breakdown is observed for voltage larger than 9 volts. (b) Corresponding thermal maps captured in situ with an IR camera at specific times during the experiment depicted in (a) (the electrodes at opposite sides of the specimen are vertical); (c) schematic representation of the mechanisms involved in the crack explaining the crack propagation; (d) scanning electron microscopy observation of the AgNW network location where the crack took place during electrical breakdown.
Figure 4b exhibits in situ thermal maps of the same specimen considered in Figure 4a with identical corresponding numbers during the voltage ramp. During the degradation phase (i.e. between (2) and (4)), the heat distribution appears to narrow to a vertical central part of the network parallel to the contact electrodes. At step 4, the accelerated increase in resistance can be associated to the occurrence of a ‘thermal’ crack which is clearly detectable at the bottom at step 5. A schematic representation of the involved mechanism is shown Figure 4c: the propagation mechanism of the crack is related to the displacement of the local current stress peak, which keeps being constricted to the top extremity of the deteriorated area, leading to a runaway-like destruction phenomenon. Finally as shown by Figure 4d, AgNWs located close to the crack do appear fully or partially spheroidized, as a result of a drastic local heating and/or electromigration.
\nTo mitigate such instability problems, several studies showed that coating of MNW networks with either inorganic nanoparticles or thin films can drastically improve MNW network stability and integration into real devices. One can cite Morgenstern et al. [46] who showed that solution-processed AgNW films coated with ZnO nanoparticles enhance performance of such TEs when integrated in organic solar cells. The observed efficient protection against AgNW oxidation or degradation leads to a photocurrent for the organic solar cell which appears to be enhanced when compared with ITO use [46]. And, Göbelt et al. showed that a thin aluminium-doped zinc oxide layer deposited by atomic layer deposition (ALD) on AgNW leads to similar photovoltaic performances [47], however by using a much lower silver amount. Some other studies also recently reported that the coating with very thin film layers of titanium dioxide (TiO2) [48] and zinc oxide (ZnO) [49] clearly enhances the stability. It is worth noticing that new depositing approaches have been assessed lately, and one of the most promising appears to be the atmospheric pressure spatial atomic layer deposition (AP-SALD) [50, 51]. While maintaining the advantages of ALD (viz., low-temperature deposition, thickness control, high-quality materials, and conformity), it can be much faster (up to 2 orders of magnitude faster) than ALD. Another clear asset is its compatibility with roll-to-roll and open air technology. Lately, our team used AP-SALD [52] to fabricate nanocomposite-based TEs in which AgNWs are protected by a conformal thin oxide layer (ZnO). The AP-SALD method was used to deposit thin layers of 15–30 nm ZnO around the AgNWs with the goal of enhancing the network stability [52]. The ZnO coating improved the adhesion of the AgNW networks to the glass substrate, which is known to be poor for bare AgNW networks. Figure 5 illustrates the positive effects of a coating on MNW-based TE by showing the evolution of the electrical resistance of bare or ZNO-coated AgNW networks during a voltage ramp of 0.1 V/min. A clear enhancement of electrical stability is observed, reducing the degradation of such TEs. As shown by Figure 5 and by Khan et al. [52], the thicker the deposited ZnO layer, the better the stability. This stability enhancement can be explained as follows: the ZnO oxide coating can (at least partially) hinder silver atomic diffusion through the oxide coating [52], avoiding the spheroidization and/or electromigration of AgNWs. A compromise in terms of oxide coating thickness has to be considered depending on the target application since the thicker the ZnO coating, the lower the optical transparency.
\nElectrical failure observations and stability enhancement thanks to coating of MNWs. Variation of electrical resistance for bare and ZnO-coated AgNW networks when subjected to voltage ramps of 0.1 V/min. The bare AgNW network shows failure at around 9 V, whereas the stability of ZnO-coated AgNW networks increases with the increasing ZnO coating thickness to 14 and 18 volts for, respectively, 15 and 30 nm of ZnO coating.
Another example of stability enhancement was reported by Shi et al. [53] who demonstrated that transfer of CVD grown graphene onto CuNW films drastically enhances the stability of the hybrid films over long time scale (up to 180 days), while different ageing conditions were also investigated. Graphene is shown to play a key role for preventing oxygen species permeation which drastically decreases oxidation rate. This allows to obtain stable CuNW networks associated with both high optical-electrical performance and excellent stability [53].
\nIn summary to avoid any degradation or oxidation, metallic nanowires are nowadays often coated by a protective layer for an improved integration. This protective (nanoparticles or thin inorganic) layer could be either metallic [54], based on graphene, polymeric or a transparent oxide [52]. This leads in general to a much enhanced thermal and electrical stability along with a better adhesion, although this is at the expense of optical transmittance decrease. One can also observe that conformal thin oxide coating deposited either by ALD or by spatial ALD appears to be an efficient protecting coating while keeping rather high network transmittance [52].
\nAmong others, photovoltaic systems, light-emitting diodes (LED) or smart windows constitute sustainable green energy technologies which have been intensively studied lately for energy saving and/or for an alternative to fossil fuel energy. Generally speaking the main goals associated with these technologies concern cost reduction, efficiency improvement and use of abundant materials. For photovoltaic and efficient lighting (LED or OLED), the light should either enter a solar cell or exit the LED requiring the use of an efficient transparent electrode for, respectively, collecting or injecting the carriers. Several investigations have shown that MNW network-based transparent electrodes can be efficiently integrated in such energy devices thanks to their electrical and optical properties. Their excellent flexibility constitutes a clear asset for flexible devices and/or when fast (and then low-cost) technologies such as roll-to-roll are used for the industrial fabrication. And the possibility to coat MNWs allows to tune the work function and band alignments and can therefore lead to better integration possibilities.
\nFor solar cells, MNW networks have been mainly tested in organic solar cells. One of the first demonstrations was reported by Leem et al. [55]: these authors used AgNW network as electrode in P3HT/PCBM organic solar cells, and it showed an efficiency of 2.5% which was equivalent to ITO-based devices. And Yang et al. showed that by using fully solution-processed polymer, bulk heterojunction (BHJ) solar cells with anodes composed of AgNWs were successfully fabricated with performances slightly lower than when ITO is used [56]. Interestingly they showed that the BHJ solar cells were highly flexible since the fabricated solar cells exhibited recoverable efficiency even under large bending deformation up to 120°.
\nAgNW and CuNW can also be efficiently integrated in OLED devices. AgNW networks were the first to be integrated in OLED devices: The obtained electrode was shown to be suitable for the fabrication of high-performance polymer-based LED [57]. A very recent study by Lian et al. reported the use of CuNW-based composite film for OLED integration [58]. A good electrical conductivity (22 Ω/sq), high transmittance (88%), low surface roughness and good adherence to the substrate were observed. The good adherence originates from the presence of the polymethyl methacrylate (PMMA) coating on CuNWs. The fabricated CuNW/PMMA composite film appears to be stable since it can resist air, water and ethanol exposure without electrical deterioration. With this CuNW/PMMA composite film as anode for the OLED, the device performances appear even better than those with using ITO anode [58].
\nSeveral articles clearly also showed that MNW network-based transparent electrodes can be efficiently integrated within electrochromic devices. Thanks to the chrono-amperometry curves and the corresponding in situ transmittance curve at 1100 nm for a WO3/AgNW film, it was clearly demonstrated that good performances can be obtained when the fabricated electrochromic device uses AgNW network [59]. Such fabricated films exhibit excellent cycling stability as well as distinct modulation of near-infrared light compared with ITO-based electrochromic devices.
\nAnother energy application which appears promising for MNW integration in energy area concerns supercapacitor. Yuksel et al. [22] fabricated nanocomposite electrochromic supercapacitor electrodes: AgNW network electrodes and a green to transmissive electrochromic polymer (PDOPEQ). These authors showed that the obtained supercapacitors have a changing colour from vibrant green to transparent with very good characteristics (i.e. specific capacitance of 61.5 F/g at a current density of 0.1 A/g, capacity retention upon 20,000 galvanostatic charge-discharge cycles). Such characteristics appear very promising for use of MNW-based transparent electrodes in electrochromic supercapacitors [22].
\nAs discussed MNW networks exhibit strong potential to act as efficient transparent electrodes for many applications. Indeed, MNW exhibits high transparency and low electrical resistance levels, which are associated with excellent bendability and good stretchability. This contribution reports briefly the influence of main parameters on the MNW network-based TE, the prevailing parameters being MNW chemical nature and dimensions as well as network density. Still, for approaching an efficient integration into industrial devices such as organic solar cells, efficient light production or smart windows, several other requirements have to be considered. One of the most important ones concerns their stability which appears to be a crucial issue: it can involve either electrical, thermal and mechanical aspects or ageing and chemical degradation. The origin of failure in MNW networks was discussed in this contribution with the following stages: optimization, degradation and breakdown of the MNW network. The breakdown occurs via a localized mechanism thanks to the creation and propagation of a crack. To prevent such instability, encapsulation of MNW network is performed by thin oxide layers: this leads to a drastic enhancement of the MNW networks stability. Moreover such approach shows improved adhesion and much better thermal and electrical stability. Finally this contribution shows that the scientific community has worked in several directions and has demonstrated that MNW network-based transparent electrodes can be integrated in industrial devices such as organic photovoltaic, light-emitting diode, in smart windows or supercapacitors. The prospects concern the replacement of AgNW by cheaper MNW such as CuNW while the stability might be a stronger issue than for AgNW, a better optimization of the many parameters (MNW chemistry and dimensions, coating, etc.) for a given application and to make MNW deposition and optimization fast and low-cost enough to be compatible with industrial challenges (for instance, compatible with the very fast roll-to-roll technology).
\nThe authors warmly thank Y. Bréchet, C. Celle, D.P. Langley, T. Sannicolo, S. Aghazadehchors and J.-P. Simonato for fruitful discussions. This work was performed within the framework of the Centre of Excellence of Multifunctional Architectured Materials ‘CEMAM’ n° AN-10-LABX-44-01. This work was funded by the Agence Nationale de Recherche (ANR, France) via the programme ANR-16-CE05-0021 (Despatch), ANR-18-CE09-0041 (Meaning), ANR-18-CE09-0036 (Panassé) and ANR-15-CE05-0019 (Indeed). This work was as well supported by Région Auvergne Rhône-Alpes through the project Pack Ambition Recherche 2018 Eternité. The Carnot Energies du Futur is acknowledged through the project FREE.
\nThe authors declare no conflict of interest.
Authors are listed below with their open access chapters linked via author name:
",metaTitle:"IntechOpen authors on the Global Highly Cited Researchers 2018 list",metaDescription:null,metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"New for 2018 (alphabetically by surname).
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nJocelyn Chanussot (chapter to be published soon...)
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nYuekun Lai
\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\nPrevious years (alphabetically by surname)
\\n\\nAbdul Latif Ahmad 2016-18
\\n\\nKhalil Amine 2017, 2018
\\n\\nEwan Birney 2015-18
\\n\\nFrede Blaabjerg 2015-18
\\n\\nGang Chen 2016-18
\\n\\nJunhong Chen 2017, 2018
\\n\\nZhigang Chen 2016, 2018
\\n\\nMyung-Haing Cho 2016, 2018
\\n\\nMark Connors 2015-18
\\n\\nCyrus Cooper 2017, 2018
\\n\\nLiming Dai 2015-18
\\n\\nWeihua Deng 2017, 2018
\\n\\nVincenzo Fogliano 2017, 2018
\\n\\nRon de Graaf 2014-18
\\n\\nHarald Haas 2017, 2018
\\n\\nFrancisco Herrera 2017, 2018
\\n\\nJaakko Kangasjärvi 2015-18
\\n\\nHamid Reza Karimi 2016-18
\\n\\nJunji Kido 2014-18
\\n\\nJose Luiszamorano 2015-18
\\n\\nYiqi Luo 2016-18
\\n\\nJoachim Maier 2014-18
\\n\\nAndrea Natale 2017, 2018
\\n\\nAlberto Mantovani 2014-18
\\n\\nMarjan Mernik 2017, 2018
\\n\\nSandra Orchard 2014, 2016-18
\\n\\nMohamed Oukka 2016-18
\\n\\nBiswajeet Pradhan 2016-18
\\n\\nDirk Raes 2017, 2018
\\n\\nUlrike Ravens-Sieberer 2016-18
\\n\\nYexiang Tong 2017, 2018
\\n\\nJim Van Os 2015-18
\\n\\nLong Wang 2017, 2018
\\n\\nFei Wei 2016-18
\\n\\nIoannis Xenarios 2017, 2018
\\n\\nQi Xie 2016-18
\\n\\nXin-She Yang 2017, 2018
\\n\\nYulong Yin 2015, 2017, 2018
\\n"}]'},components:[{type:"htmlEditorComponent",content:'New for 2018 (alphabetically by surname).
\n\n\n\n\n\n\n\n\n\nJocelyn Chanussot (chapter to be published soon...)
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nYuekun Lai
\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\nPrevious years (alphabetically by surname)
\n\nAbdul Latif Ahmad 2016-18
\n\nKhalil Amine 2017, 2018
\n\nEwan Birney 2015-18
\n\nFrede Blaabjerg 2015-18
\n\nGang Chen 2016-18
\n\nJunhong Chen 2017, 2018
\n\nZhigang Chen 2016, 2018
\n\nMyung-Haing Cho 2016, 2018
\n\nMark Connors 2015-18
\n\nCyrus Cooper 2017, 2018
\n\nLiming Dai 2015-18
\n\nWeihua Deng 2017, 2018
\n\nVincenzo Fogliano 2017, 2018
\n\nRon de Graaf 2014-18
\n\nHarald Haas 2017, 2018
\n\nFrancisco Herrera 2017, 2018
\n\nJaakko Kangasjärvi 2015-18
\n\nHamid Reza Karimi 2016-18
\n\nJunji Kido 2014-18
\n\nJose Luiszamorano 2015-18
\n\nYiqi Luo 2016-18
\n\nJoachim Maier 2014-18
\n\nAndrea Natale 2017, 2018
\n\nAlberto Mantovani 2014-18
\n\nMarjan Mernik 2017, 2018
\n\nSandra Orchard 2014, 2016-18
\n\nMohamed Oukka 2016-18
\n\nBiswajeet Pradhan 2016-18
\n\nDirk Raes 2017, 2018
\n\nUlrike Ravens-Sieberer 2016-18
\n\nYexiang Tong 2017, 2018
\n\nJim Van Os 2015-18
\n\nLong Wang 2017, 2018
\n\nFei Wei 2016-18
\n\nIoannis Xenarios 2017, 2018
\n\nQi Xie 2016-18
\n\nXin-She Yang 2017, 2018
\n\nYulong Yin 2015, 2017, 2018
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5319},{group:"region",caption:"Middle and South America",value:2,count:4828},{group:"region",caption:"Africa",value:3,count:1471},{group:"region",caption:"Asia",value:4,count:9370},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14788}],offset:12,limit:12,total:108345},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"521"},books:[{type:"book",id:"8321",title:"Digital Forensic Science",subtitle:null,isOpenForSubmission:!0,hash:"15540cde4d2e598046f7a520f6c4b107",slug:null,bookSignature:"Dr. B Suresh Shetty, Dr. Pavanchand Shetty and Dr. Adithi Shetty",coverURL:"https://cdn.intechopen.com/books/images_new/8321.jpg",editedByType:null,editors:[{id:"70242",title:"Dr.",name:"B Suresh",surname:"Shetty",slug:"b-suresh-shetty",fullName:"B Suresh Shetty"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:34},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:33},{group:"topic",caption:"Business, Management and Economics",value:7,count:10},{group:"topic",caption:"Chemistry",value:8,count:30},{group:"topic",caption:"Computer and Information Science",value:9,count:25},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:71},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:38},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:136},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:13},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Genesiology",value:300,count:1},{group:"topic",caption:"Machine Learning and Data Mining",value:521,count:1},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:1},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,isOpenForSubmission:!1,hash:"76361b4061e830906267933c1c670027",slug:"antioxidants",bookSignature:"Emad Shalaby",coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4398},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7698",title:"Educational Psychology",subtitle:"Between Certitudes and Uncertainties",isOpenForSubmission:!1,hash:"740943e2d029253e777150e98ebe2f0d",slug:"educational-psychology-between-certitudes-and-uncertainties",bookSignature:"Victori?a Trif",coverURL:"https://cdn.intechopen.com/books/images_new/7698.jpg",editedByType:"Edited by",editors:[{id:"201656",title:"Ph.D.",name:"Victorița",middleName:null,surname:"Trif",slug:"victorita-trif",fullName:"Victorița Trif"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8747",title:"Asphalt and Asphalt Mixtures",subtitle:null,isOpenForSubmission:!1,hash:"6083f7c9881029f1e033a1e512af7e20",slug:"asphalt-and-asphalt-mixtures",bookSignature:"Haitao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/8747.jpg",editedByType:"Edited by",editors:[{id:"260604",title:"Prof.",name:"Haitao",middleName:null,surname:"Zhang",slug:"haitao-zhang",fullName:"Haitao Zhang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8516",title:"Metacognition in Learning",subtitle:null,isOpenForSubmission:!1,hash:"5fa6eaad7b509b8b7ec5124d79e5f605",slug:"metacognition-in-learning",bookSignature:"Nosisi Feza",coverURL:"https://cdn.intechopen.com/books/images_new/8516.jpg",editedByType:"Edited by",editors:[{id:"261665",title:"Prof.",name:"Nosisi",middleName:"N.",surname:"Feza",slug:"nosisi-feza",fullName:"Nosisi Feza"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7000",title:"Legume Crops",subtitle:"Characterization and Breeding for Improved Food Security",isOpenForSubmission:!1,hash:"4d0f73bf883bbb984cc2feef1259a9a7",slug:"legume-crops-characterization-and-breeding-for-improved-food-security",bookSignature:"Mohamed Ahmed El-Esawi",coverURL:"https://cdn.intechopen.com/books/images_new/7000.jpg",editedByType:"Edited by",editors:[{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,isOpenForSubmission:!1,hash:"327e750e83634800ace02fe62607c21e",slug:"oral-health-by-using-probiotic-products",bookSignature:"Razzagh Mahmoudi",coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",editedByType:"Edited by",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8347",title:"Computer Architecture in Industrial, Biomechanical and Biomedical Engineering",subtitle:null,isOpenForSubmission:!1,hash:"3d7024a8d7d8afed093c9c79ec31f15a",slug:"computer-architecture-in-industrial-biomechanical-and-biomedical-engineering",bookSignature:"Lulu Wang and Liandong Yu",coverURL:"https://cdn.intechopen.com/books/images_new/8347.jpg",editedByType:"Edited by",editors:[{id:"257388",title:"Dr.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7583",title:"Advanced Computational Fluid Dynamics for Emerging Engineering Processes",subtitle:"Eulerian vs. Lagrangian",isOpenForSubmission:!1,hash:"896509fa2e7e659811bffd0f9779ca9d",slug:"advanced-computational-fluid-dynamics-for-emerging-engineering-processes-eulerian-vs-lagrangian",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7583.jpg",editedByType:"Edited by",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7839",title:"Malaria",subtitle:null,isOpenForSubmission:!1,hash:"91cde4582ead884cb0f355a19b67cd56",slug:"malaria",bookSignature:"Fyson H. Kasenga",coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",editedByType:"Edited by",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7093",title:"Pneumothorax",subtitle:null,isOpenForSubmission:!1,hash:"0b1fdb8bb0448f48c2f234753898f3f8",slug:"pneumothorax",bookSignature:"Khalid Amer",coverURL:"https://cdn.intechopen.com/books/images_new/7093.jpg",editedByType:"Edited by",editors:[{id:"63412",title:"Dr.",name:"Khalid",middleName:null,surname:"Amer",slug:"khalid-amer",fullName:"Khalid Amer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"866",title:"Water Pollution",slug:"water-pollution",parent:{title:"Environmental Pollution",slug:"environmental-pollution"},numberOfBooks:2,numberOfAuthorsAndEditors:82,numberOfWosCitations:27,numberOfCrossrefCitations:29,numberOfDimensionsCitations:74,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"water-pollution",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8874",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",subtitle:null,isOpenForSubmission:!1,hash:"cd61e407dc2dc5a74ffe354b294f71a8",slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",bookSignature:"Xiaohui Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8874.jpg",editedByType:"Edited by",editors:[{id:"282118",title:"Dr.",name:"Xiaohui",middleName:null,surname:"Lei",slug:"xiaohui-lei",fullName:"Xiaohui Lei"}],productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}},{type:"book",id:"1998",title:"Water Quality",subtitle:"Monitoring and Assessment",isOpenForSubmission:!1,hash:"fd1b9d4bb120268c760014c263f7ef9f",slug:"water-quality-monitoring-and-assessment",bookSignature:"Kostas Voudouris and Dimitra Voutsa",coverURL:"https://cdn.intechopen.com/books/images_new/1998.jpg",editedByType:"Edited by",editors:[{id:"36891",title:"Dr.",name:"Kostas",middleName:null,surname:"Voudouris",slug:"kostas-voudouris",fullName:"Kostas Voudouris"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"35047",doi:"10.5772/32173",title:"Analysis of Water Quality Data for Scientists",slug:"analysis-of-water-quality-data-for-researchers",totalDownloads:2379,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"József Kovács, Péter Tanos, János Korponai, Ilona Kovácsné Székely, Károly Gondár, Katalin Gondár-Sőregi and István Gábor Hatvani",authors:[{id:"90455",title:"MSc.",name:"Istvan Gabor",middleName:null,surname:"Hatvani",slug:"istvan-gabor-hatvani",fullName:"Istvan Gabor Hatvani"},{id:"100217",title:"Dr.",name:"József",middleName:null,surname:"Kovács",slug:"jozsef-kovacs",fullName:"József Kovács"},{id:"100222",title:"M.Sc.",name:"Péter",middleName:null,surname:"Tanos",slug:"peter-tanos",fullName:"Péter Tanos"},{id:"100224",title:"Dr.",name:"János",middleName:null,surname:"Korponai",slug:"janos-korponai",fullName:"János Korponai"},{id:"100225",title:"Dr.",name:"Ilona",middleName:null,surname:"Kovácsné Székely",slug:"ilona-kovacsne-szekely",fullName:"Ilona Kovácsné Székely"},{id:"100226",title:"MSc.",name:"Katalin",middleName:null,surname:"Gondárné Sőregi",slug:"katalin-gondarne-soregi",fullName:"Katalin Gondárné Sőregi"},{id:"100227",title:"MSc.",name:"Károly",middleName:null,surname:"Gondár",slug:"karoly-gondar",fullName:"Károly Gondár"}]},{id:"35057",doi:"10.5772/33720",title:"Surface Water Quality Monitoring in Nigeria: Situational Analysis and Future Management Strategy",slug:"surface-water-quality-monitoring-in-nigeria-situational-analysis-and-future-management-strategy",totalDownloads:12273,totalCrossrefCites:5,totalDimensionsCites:12,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"A.M. Taiwo, O.O. Olujimi, O. Bamgbose and T.A. Arowolo",authors:[{id:"96826",title:"Prof.",name:"Toyin",middleName:null,surname:"Arowolo",slug:"toyin-arowolo",fullName:"Toyin Arowolo"},{id:"138905",title:"Mr.",name:"Adewale Mathew",middleName:null,surname:"Taiwo",slug:"adewale-mathew-taiwo",fullName:"Adewale Mathew Taiwo"},{id:"138908",title:"Mr.",name:"Olanrewaju Olusoji",middleName:null,surname:"Olujimi",slug:"olanrewaju-olusoji-olujimi",fullName:"Olanrewaju Olusoji Olujimi"},{id:"138915",title:"Prof.",name:"Olukayode",middleName:null,surname:"Bamgbose",slug:"olukayode-bamgbose",fullName:"Olukayode Bamgbose"}]},{id:"35050",doi:"10.5772/35228",title:"Statistical Tools for Analyzing Water Quality Data",slug:"statistical-tools-for-analyzing-water-quality-data",totalDownloads:6391,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Liya Fu and You-GanWang",authors:[{id:"103455",title:"Dr.",name:"Liya",middleName:null,surname:"Fu",slug:"liya-fu",fullName:"Liya Fu"},{id:"103459",title:"Prof.",name:"You-Gan",middleName:null,surname:"Wang",slug:"you-gan-wang",fullName:"You-Gan Wang"}]}],mostDownloadedChaptersLast30Days:[{id:"35057",title:"Surface Water Quality Monitoring in Nigeria: Situational Analysis and Future Management Strategy",slug:"surface-water-quality-monitoring-in-nigeria-situational-analysis-and-future-management-strategy",totalDownloads:12273,totalCrossrefCites:5,totalDimensionsCites:12,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"A.M. Taiwo, O.O. Olujimi, O. Bamgbose and T.A. Arowolo",authors:[{id:"96826",title:"Prof.",name:"Toyin",middleName:null,surname:"Arowolo",slug:"toyin-arowolo",fullName:"Toyin Arowolo"},{id:"138905",title:"Mr.",name:"Adewale Mathew",middleName:null,surname:"Taiwo",slug:"adewale-mathew-taiwo",fullName:"Adewale Mathew Taiwo"},{id:"138908",title:"Mr.",name:"Olanrewaju Olusoji",middleName:null,surname:"Olujimi",slug:"olanrewaju-olusoji-olujimi",fullName:"Olanrewaju Olusoji Olujimi"},{id:"138915",title:"Prof.",name:"Olukayode",middleName:null,surname:"Bamgbose",slug:"olukayode-bamgbose",fullName:"Olukayode Bamgbose"}]},{id:"64626",title:"Emergency Operations of Sudden Water Pollution Accidents",slug:"emergency-operations-of-sudden-water-pollution-accidents",totalDownloads:293,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"emergency-operation-technologies-for-sudden-water-pollution-accidents-in-the-middle-route-of-south-to-north-water-diversion-project",title:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project",fullTitle:"Emergency Operation Technologies for Sudden Water Pollution Accidents in the Middle Route of South-to-North Water Diversion Project"},signatures:"Jin Quan, Lingzhong Kong, Xiaohui Lei and Mingna Wang",authors:[{id:"280923",title:"Dr.",name:"Lingzhong",middleName:null,surname:"Kong",slug:"lingzhong-kong",fullName:"Lingzhong Kong"}]},{id:"35052",title:"Monitoring and Modelling of Water Quality",slug:"monitoring-and-modelling-of-water-quality",totalDownloads:3462,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Katarzyna Samborska, Rafal Ulanczyk and Katarzyna Korszun",authors:[{id:"106748",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Samborska",slug:"katarzyna-samborska",fullName:"Katarzyna Samborska"},{id:"111027",title:"Dr.",name:"Rafal",middleName:null,surname:"Ulanczyk",slug:"rafal-ulanczyk",fullName:"Rafal Ulanczyk"},{id:"133480",title:"MSc.",name:"Katarzyna",middleName:null,surname:"Korszun",slug:"katarzyna-korszun",fullName:"Katarzyna Korszun"}]},{id:"35067",title:"Water Quality Degradation Trends in Kenya over the Last Decade",slug:"water-quality-degradation-trends-in-kenya-over-the-last-decade",totalDownloads:7141,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Shadrack Mulei Kithiia",authors:[{id:"89768",title:"Dr.",name:"Shadrack Mulei",middleName:null,surname:"Kithiia",slug:"shadrack-mulei-kithiia",fullName:"Shadrack Mulei Kithiia"}]},{id:"35048",title:"Detecting and Estimating Trends of Water Quality Parameters",slug:"detecting-and-estimating-trends-of-water-quality-parameters",totalDownloads:5836,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Janina Mozejko",authors:[{id:"93798",title:"Dr.",name:"Janina",middleName:null,surname:"Mozejko",slug:"janina-mozejko",fullName:"Janina Mozejko"}]},{id:"35050",title:"Statistical Tools for Analyzing Water Quality Data",slug:"statistical-tools-for-analyzing-water-quality-data",totalDownloads:6391,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Liya Fu and You-GanWang",authors:[{id:"103455",title:"Dr.",name:"Liya",middleName:null,surname:"Fu",slug:"liya-fu",fullName:"Liya Fu"},{id:"103459",title:"Prof.",name:"You-Gan",middleName:null,surname:"Wang",slug:"you-gan-wang",fullName:"You-Gan Wang"}]},{id:"35059",title:"Mining and Water Pollution",slug:"mining-and-water-pollution",totalDownloads:2996,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Hlanganani Tutu",authors:[{id:"93222",title:"Prof.",name:"Hlanganani",middleName:null,surname:"Tutu",slug:"hlanganani-tutu",fullName:"Hlanganani Tutu"}]},{id:"35060",title:"The Influence of Lignite Mining on Water Quality",slug:"the-influence-of-lignite-mining-on-water-quality",totalDownloads:2159,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Jachimko Jachimko Barbara",authors:[{id:"93109",title:"Dr.",name:"Barbara",middleName:null,surname:"Jachimko",slug:"barbara-jachimko",fullName:"Barbara Jachimko"}]},{id:"35062",title:"Study of the Factors Influencing the Shallow Groundwater Quality in Two Settlements with Different Characteristics",slug:"study-of-the-factors-influencing-the-shallow-groundwater-quality-in-two-settlements-with-different-c",totalDownloads:1778,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"Gyorgy Szabo, Tímea Vince and Eva Bessenyei",authors:[{id:"96310",title:"Dr.",name:"György",middleName:null,surname:"Szabó",slug:"gyorgy-szabo",fullName:"György Szabó"},{id:"98231",title:"MSc.",name:"Tímea",middleName:null,surname:"Vince",slug:"timea-vince",fullName:"Tímea Vince"},{id:"98234",title:"MSc.",name:"Éva",middleName:null,surname:"Bessenyei",slug:"eva-bessenyei",fullName:"Éva Bessenyei"}]},{id:"35068",title:"Water Pollution of Oued Medjerda in Algerian Souk Ahras Region",slug:"water-pollution-of-oued-medjerda-in-algerian-souk-ahras-region-",totalDownloads:1540,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"water-quality-monitoring-and-assessment",title:"Water Quality",fullTitle:"Water Quality Monitoring and Assessment"},signatures:"A. Nait Merzoug and H. Merazig",authors:[{id:"99937",title:"Mrs.",name:"Nait Merzoug",middleName:null,surname:"Assia",slug:"nait-merzoug-assia",fullName:"Nait Merzoug Assia"},{id:"100612",title:"Prof.",name:"Merazig",middleName:null,surname:"Hocine",slug:"merazig-hocine",fullName:"Merazig Hocine"}]}],onlineFirstChaptersFilter:{topicSlug:"water-pollution",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10080",title:"Vortex Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"ea97962e99b3e0ebc9b46b48ba5bea14",slug:null,bookSignature:"Dr. Zambri Harun",coverURL:"https://cdn.intechopen.com/books/images_new/10080.jpg",editedByType:null,editors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8771",title:"Raman Scattering",subtitle:null,isOpenForSubmission:!0,hash:"1354b3097eaa5b27d9d4bd29d3150b27",slug:null,bookSignature:"Dr. Samir Kumar and Dr. Prabhat Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/8771.jpg",editedByType:null,editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10073",title:"Recent Advances in Nanophotonics-Fundamentals and Applications",subtitle:null,isOpenForSubmission:!0,hash:"aceca7dfc807140870a89d42c5537d7c",slug:null,bookSignature:"Dr. Mojtaba Kahrizi and Ms. Parsoua Abedini Sohi",coverURL:"https://cdn.intechopen.com/books/images_new/10073.jpg",editedByType:null,editors:[{id:"113045",title:"Dr.",name:"Mojtaba",middleName:null,surname:"Kahrizi",slug:"mojtaba-kahrizi",fullName:"Mojtaba Kahrizi"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9284",title:"Computational Aeroacoustics",subtitle:null,isOpenForSubmission:!0,hash:"7019c5e5985faef7dc384c87dca5c8ef",slug:null,bookSignature:"Prof. Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/9284.jpg",editedByType:null,editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"profile.detail",path:"/profiles/74019/lars-thomassen",hash:"",query:{},params:{id:"74019",slug:"lars-thomassen"},fullPath:"/profiles/74019/lars-thomassen",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()