Free-ranging wild animal’s species reported positive to Trypanosoma cruzi infection in the Amazon Basin.
\r\n\t
",isbn:"978-1-83969-150-8",printIsbn:"978-1-83969-149-2",pdfIsbn:"978-1-83969-151-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"7409b2acd5150a93004300800918b736",bookSignature:"Prof. Karmen Pažek",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10548.jpg",keywords:"Lean Manufacturing, Agriculture, Production and Process, Costs Reduction, Lean Principles, Industry, Tools, Implementation, Sustainability, Modeling, Environment, Planning",numberOfDownloads:7,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 20th 2020",dateEndSecondStepPublish:"November 17th 2020",dateEndThirdStepPublish:"January 16th 2021",dateEndFourthStepPublish:"April 6th 2021",dateEndFifthStepPublish:"June 5th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Pažek is Head of the undergraduate study program Agricultural economics and rural development and Vice-dean for education. She is the author or co-author of 61 scientific papers, 6 scientific books, and 24 book chapters.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"179642",title:"Prof.",name:"Karmen",middleName:null,surname:"Pažek",slug:"karmen-pazek",fullName:"Karmen Pažek",profilePictureURL:"https://mts.intechopen.com/storage/users/179642/images/system/179642.jpg",biography:"Karmen Pažek achieved her Ph.D. at University of Maribor, Faculty of Agriculture in 2006. She is active as Full Professor for Farm management in the Department for Agriculture Economics and Rural Development on Faculty of Agriculture and Life Sciences, University of Maribor. Her research includes development of decision support tools and systems for farm management (simulation modeling, multi-criteria decision analysis, option models, investment analysis) and economics of agricultural production. She is involved in teaching activities as thesis supervisor at postgraduate study programs and involved in national and international research projects. She is author or coauthor of 61 scientific papers (including 34 papers in journals with impact factor), 6 scientific books and 24 book chapters. Currently she is Head of the undergraduate study program Agricultural economics and rural development and Vice dean for education. \r\n\r\nAcademic activities\r\nResearch:\r\n-\tFarm management\r\n-\tDecision support, simulation, forecasting, multi criteria decision making in the area of agriculture with emphasis on field crops, farm tourism and fruit producon\r\n\r\nCurrent Research work:\r\n- Financial parameters assessment based on perfect and in-perfect information in agrifood \r\n systems \r\n- Option modeling of agrifood projects\r\n-\tEfficiency assessment in farm tourism \r\n-\tEfficiency of sugar beet production systems \r\n\r\nTeaching:\r\nUndergraduate Programmes and Courses\r\n-\tFarm management I and II\r\n-\tIntroduction to decision theory\r\n-\tOrganic fam management\r\n-\tManagement od supplementary activities\r\n-\tEconomics and management of rural tourism\r\n-\tSelected issues in agricultural entrepreneurship\r\n\r\nMaster Programmes and Courses\r\n\r\n-\tResearch methods in farm management\r\n-\tDecision theory\r\n-\tProject planning and quality management\r\n-\tOrganic fam management\r\n\r\n \r\nPhD Programme and Course\r\n\r\n-\tProject management (transferable skills)\r\n-\tSelected issues in farm management",institutionString:"University of Maribor",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Maribor",institutionURL:null,country:{name:"Slovenia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"74769",title:"Development of Integrated Lean Six Sigma-Baldrige Framework for Manufacturing Waste Minimization: A Case of NAS Foods Plc",slug:"development-of-integrated-lean-six-sigma-baldrige-framework-for-manufacturing-waste-minimization-a-c",totalDownloads:7,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247865",firstName:"Jasna",lastName:"Bozic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247865/images/7225_n.jpg",email:"jasna.b@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66968",title:"Amazonian Reservoir Hosts of Trypanosoma cruzi",doi:"10.5772/intechopen.86158",slug:"amazonian-reservoir-hosts-of-em-trypanosoma-cruzi-em-",body:'\nThe Amazon basin comprises multiple South American countries: Brazil (63.9%), Peru (15.6%), Bolivia (11.7%), Colombia (5.6%), Ecuador (2.1%), Venezuela (0.9%) and Guyana (0.2%). It covers over 1.3 billion hectares with 60% of total forest area (Figure 1) [1]. Population density in the Amazon basin is low and more than 70% live in urban areas. However, this region is in transition due to both climate change as well as anthropogenic activities such as the expansion of agriculture, road paving and logging that lead to accelerated population growth [1, 2].
\nThe Amazon Basin location in South America. Source: FAO, 2015.
The environmental conditions of the Amazon basin are favorable for the transmission of multiple vector-borne diseases. Well-known endemic diseases such as malaria and Leishmaniasis show the highest incidence in the Americas, and recent data shows the circulation of multiple arboviruses [3], with an increasing incidence of Dengue fever over time. Trypanosomatids exist in nature since millions of years ago, and Chagas disease has been identified in 4000–9000 year-old human mummies from Chile and Peru [4, 5]. Over time, the spread of Chagas disease in the Americas expanded from a wild and peridomiciliary cycle to a domestic cycle. This occurred through the domiciliation and domestication of triatomines, the primary vectors of T. cruzi. Thus, it was suggested that triatomines evolved from non-blood sucking insects and became mandatory hematophagous insects after undergoing morphological modifications [6, 7]. Likewise, trypanosomes also evolved and adapted to this new opportunity [6]. The evolution of T. cruzi was influenced by factors related to its dependence on the host and its environment and the reliance on vertebrates as a blood source. Trypanosoma cruzi can spread geographically by both triatomines flying into different areas and passive carriage in vertebrate hosts moving across broad areas [8].
\nThe deforestation of the Amazon basin, 3.6 million hectares of forest lost per year between 2000 and 2010, has become an important factor in the domestication of triatomines due to the scarcity of blood sources among wildlife. Triatomines and other disease vectors have looked for new blood sources and reached areas closer to human dwellings. Social inequality and poor public health systems exacerbate the impact of these factors, especially in rural areas, and further contribute to the transmission of Chagas disease and the emergence of new pathogens.
\nTrypanosomiasis is an ancient enzootic parasitosis in nature, maintained by wild animals and infected vectors. In the wild, it is presumably transmitted primarily by the oral route through predation of infected vectors or mammals, or by contamination of animal nests or shelters with metacyclic forms of the parasite released in the feces of infected triatomines or from scent glands of marsupials i.e. Didelphis marsupialis (Figure 2) [9, 10]
\nT. cruzi transmission scenarios in the Amazon Basin. Photo credits: Dr. Pedro Mayor.
Besides the wild enzooty, other scenarios for the transmission of T. cruzi in the Amazon have been proposed (Figure 2). For instance, antropozoonosis, through the accidental transmission of T. cruzi from infected vectors or wild animals to humans. This occurs commonly with the invasion of infected vectors and marsupials in human dwellings or when humans invade the forest for different activities such as hunting, fishing, logging, tourism, etc. [11]. The invasion of vectors in human dwellings may occur during deforestation or when their blood sources such as wild mammals are scarce due to deforestation itself, over hunting or during the wet season. Thus, vectors fly from the trees at night attracted by the lights and invade the houses in search of blood meals [11, 12]. Nymphs and adults of triatomines infected with T. cruzi have been found on palm trees in backyards and inside the houses in Amazonian villages. Blood meals from birds, opossum, rodents, humans, dogs and horses have been found in the gut of triatomines captured in such settings [12].
\nTrypanosoma cruzi may have different transmission features between areas of different degrees of disturbance. One study carried out in the Brazilian Amazon found that areas with low and intermediate degree of disturbance had higher prevalence of wild mammals with parasitemia detected by hemoculture than in areas with greater environmental disturbance caused by human occupation and agriculture. Areas with intermediate degrees of disturbance also had the highest prevalence of positive domestic mammals detected by IFAT [13]. In contrast, seroprevalence did not differ between areas with difference disturbance levels; one explanation for this finding may be the difference on the ability of reservoirs to infect vectors between geographic areas despite the comparable exposure to the parasite.
\nOccupational transmission scenarios are well documented among palm tree gatherers, an economically important activity. Palm trees provide shelter for different wild mammals, amphibians and insects. Gatherers of the piassava palm (Leopoldinia piassaba) are reportedly bitten by wild triatomines during their camping months in the forest, possibly due to the lack of other blood sources such as wild mammals [14]. Palm gatherers are therefore at higher risk to become infected compared to individuals not involved in this activity [15].
\nThe last scenario is the oral transmission of Chagas disease, often leading to outbreaks of acute Chagas disease (ACD). The Amazon basin is the region where most of such outbreaks have been reported. Actually, Carlos Chagas himself first described ACD in 1909 when a 2-year-old girl from Lassance, Minas Gerais presented with fever, hepatosplenomegaly and Romaña’s sign [8]. ACD outbreaks have occurred in both preserved and human disturbed areas [13], but with exposure of humans to the sylvatic cycle as a common factor. Most ACD outbreaks and cases are related to the consumption of food contaminated with trypomastigote forms as reported with the ingestion of fruits from palm trees such as acaí, bacaba, or the ingestion of wild meat [16]. In fact, ACD cases may have increased in the last decade [16]. It was reported an increase of notified suspected cases in Pará state in Brazil from 2010 to 2016, that may be related to the increase of production to acaí juice during those years, but also related to the increase in its consumption since the majority of patients indicated a daily consumption of this juice [16]. Consistently with these findings, juice contaminated with T. cruzi was able to experimentally infect mice [17, 18], despite the juice being previously frozen or refrigerated.
\nIn Brazil, T. cruzi infection got more attention only after 1969 when ACD cases were reported in Belém, State of Pará [12]. However, sporadic human infections have been reported before this date in the Amazon basin. In a serological study by indirect inmunoflourescence test in a county of 15 villages in the Brazilian Amazon found 0.83% (212/25, 451) of prevalence for T. cruzi infection. Children ≤ 10 years had positive serological results indicating recent transmission and acute infection [12]. In Peru, the first ACD case was reported in 1919 in the southeastern Amazonian department of Madre de Dios. Only a few ACD cases have been reported since, although multiple cases have been reported in recent years in Amazonian regions such as Pasco and Loreto [19]. In Ecuador, Chagas disease was first diagnosed in 1929 in Guayas, a coastal province. The first human cases in the Amazon region of Ecuador were yet reported in 1991 in Napo and Sucumbíos provinces [20]. Some studies later demonstrated the exposure and active transmission of T. cruzi in more Amazonian provinces such as Orellana, Pastaza, Morona Santiago [20]. Similar to Brazil, ACD cases were also reported in children ranging from 1 to 5 years old in the Ecuadorian Amazon region [21]. In Colombia, the T. cruzi haplotype Ia has been isolated among ACD cases from the Amazonian departments of Caquetá and Putumayo, including children and servicemen who were in contact with the forest [22].
\nIndigenous communities in the Amazon basin are also affected by T. cruzi infection. During 2006 to 2010, six ACD cases were reported among children from the Aguaruna, Huambisa and Kandoshi communities in the Peruvian Amazon basin. ACD was attributed to either the biting of infected triatomines found inside the dwellings or oral transmission by drinking “masato” (a fermented beverage made with yuca) or “chapo” (a ripe banana beverage) since no traveling outside the community or blood transfusion was recorded [19]. ACD cases in indigenous communities in Ecuador Amazon region have been reported since 1987; a seroepidemiological study found a 6.0% (61/1011) of positive individuals from 15 of the 18 studied communities. Likewise, the prevalence increased with age, individuals older than 50 showed 18.8% of seroprevalence [21].
\nThe first T. cruzi infection in Amazonian wildlife was reported in 1924 among squirrel monkeys (Saimiri sciureus) [23]. In mammalian hosts, T. cruzi infection could develop depending on factors such as the host health status, the transmission route, the parasite population and co-infection with other parasites. However, reservoir hosts should support the maintenance and dispersion of the parasite in nature [9], and therefore be capable of infecting vectors. Vectors can become infected depending on the parasitemia in the host’s blood, which varies among host species and individuals [9]. This is corroborated by previous studies that showed differences in T. cruzi infection rates between species of the same genus. For instance, experimental T. cruzi infection in the rodent Thrychomys fosteri was more severe with high and long-lasting parasitemia compared to Thrychomys laurentius [24].
\nTrypanosoma cruzi can infect different mammal species from all forest strata and canopy levels. Table 1 lists wild animal species reported positive to T. cruzi infection in the Amazon basin. A higher proportion of positive blood culture and serology by immunofluorescence antibody test (IFAT) was observed in mammals from the Amazon compared to specimens from other biomes (Atlantic forest, Caatinga, Cerrado, Pampa and Pantanal) [9]. This study also suggested that 8% of positive animals would be sufficient to maintain the T. cruzi cycle in any biome. Different mammalian orders seem to participate in the transmission cycle of T. cruzi, but Primates, Didelphimorphia, Chiroptera and Carnivora apparently are the primary taxa due to their high parasitemias and Discrete Typing Units (DTUs) diversity [9].
\nOrder/Genus | \nSpecie | \nMethods | \n\n | References | \n||
---|---|---|---|---|---|---|
H | \nI | \nP | \nDTU | \n|||
Artiodactyla | \n||||||
Sus | \nSus scrofa | \n\n | x | \n\n | \n | [9] | \n
Cingulata | \n||||||
Cyclopes | \nCyclopes didactylus | \nx | \n\n | \n | Zymodeme 1 | \n[46] | \n
Dasypus | \nDasypus novemcinctus | \nx | \n\n | x | \nTcIV | \n[9, 28, 46, 47] | \n
Tamandua | \nTamandua tetradactyla | \nx | \n\n | x | \nTcI | \n[9, 48] | \n
Didelphimorphia | \n||||||
Caluromys | \nCaluromys philander | \n\n | x | \n\n | \n | [9] | \n
Caluromys sp. | \nx | \nx | \nx | \nTcI | \n[9, 46, 47] | \n|
Didelphis | \nDidelphis marsupialis | \nx | \nx | \nx | \nTcI, TcII, TcI+ T. rangeli, TcI+ TcII, TcI+ TcIII | \n[9, 13, 46, 47, 49] | \n
Didelphis albiventris | \nx | \n\n | x | \n\n | [49] | \n|
Didelphis sp. | \n\n | x | \n\n | \n | [9] | \n|
Gracilinanus | \nGracilinanus sp. | \nx | \nx | \nx | \nTcI | \n[9, 49] | \n
Marmosa | \nMarmosa murina | \nx | \nx | \nx | \nTcI | \n[9, 13] | \n
Marmosa cinerea | \nx | \n\n | \n | \n | [47] | \n|
Marmosa sp. | \n\n | x | \n\n | \n | [9] | \n|
Marmosops | \nMarmosops parvidens | \n\n | x | \n\n | \n | [9] | \n
Marmosops sp. | \nx | \nx | \nx | \nTcI | \n[9] | \n|
Metachirus | \nMetachirus nudicaudatus | \nx | \n\n | \n | Zymodeme 1 | \n[46] | \n
Micoureus | \nMicoureus demerarae | \nx | \nx | \nx | \nTcI | \n[9, 13] | \n
Monodelphis | \nMonodelphis domestica | \n\n | x | \n\n | \n | [9] | \n
Monodelphis brevicaudata | \nx | \n\n | \n | Zymodeme 3 | \n[46] | \n|
Monodelphis sp. | \nx | \nx | \nx | \nTcI, TcI + TcIV | \n[9] | \n|
Philander | \nPhilander opossum | \nx | \nx | \nx | \nTcI, TcI+ TcII | \n[9, 13, 46, 47, 49] | \n
Philander sp. | \nx | \nx | \nx | \nTcI, TcI+ TcIII/TcIV, TcI + T. Rangeli | \n[9] | \n|
Primates | \n||||||
Alouatta | \nAlouatta belzubul | \nx | \nx | \nx | \nTcI+ TcIV | \n[9] | \n
Alouatta caraya | \nx | \nx | \nx | \nTcI+ TcIV | \n[9] | \n|
Cebuella | \nCebuella pygmaea | \nx | \n\n | \n | \n | [50] | \n
Callicebus | \nCallicebus cupreus | \n\n | \n | x | \n\n | [33] | \n
Cebus | \nCebus albifrons | \n\n | \n | x | \n\n | [33] | \n
Cebus apella | \n\n | \n | x | \n\n | [33] | \n|
Lagothrix | \nLagothrix poeppigii | \n\n | \n | x | \n\n | [33] | \n
Saguinus | \nSaguinus midas niger | \nx | \n\n | \n | Zymodeme 1 | \n[46] | \n
Saguinus bicolor | \nx | \n\n | x | \nTcI, TcI + T.rangeli | \n[32] | \n|
Saimiri | \nSaimiri boliviensis | \n\n | \n | x | \n\n | [33] | \n
Saimiri sciureus | \nx | \n\n | x | \n\n | [30, 33] | \n|
Saimiri ustus | \nx | \n\n | \n | \n | [30] | \n|
Sanguinus | \nSanguinus imperator imperator | \nx | \n\n | \n | \n | [50] | \n
Sanguinus fuscicollis weddelli | \nx | \n\n | \n | \n | [50] | \n|
Sapajus | \nSapajus libidinosus | \nx | \nx | \nx | \nTcI, TcI + T.rangeli | \n[9] | \n
Sapajus macrocephalus | \n\n | \n | x | \n\n | [33] | \n|
Rodentia | \n||||||
Cuniculus | \nCuniculus paca | \nx | \n\n | x | \n\n | [28, 47] | \n
Akodon | \nAkodon lindberghi | \nx | \n\n | x | \nTcI | \n[9] | \n
Cerradomys | \nCerradomys sp. | \n\n | x | \n\n | \n | [9] | \n
Coendou | \nCoendou prehensilis | \nx | \nx | \nx | \nTcI + T.rangeli | \n[9] | \n
Coendou sp. | \nx | \n\n | \n | Zymodeme 1 | \n[46, 47] | \n|
Dasyprocta | \nDasyprocta prymnolopha | \n\n | x | \n\n | \n | [9] | \n
Dasyprocta sp. | \nx | \n\n | x | \n\n | [28, 47] | \n|
Echymys | \nEchymys chrysurus | \nx | \n\n | \n | Zymodeme 1 | \n[46] | \n
Rodentia | \n||||||
Holochilus | \nHolochilus sp. | \n\n | x | \n\n | \n | [9] | \n
Hylaeamys | \nHylaeamys megacephalus | \nx | \nx | \nx | \nTcI | \n[9] | \n
Nectomys | \nNectomys squamipes | \n\n | \n | \n | \n | [51] | \n
Oryzomys | \nOryzomys capito | \nx | \n\n | \n | \n | [47] | \n
Oryzomys sp. | \n\n | x | \n\n | \n | [9] | \n|
Oxymycterus | \nOxymycterus sp. | \n\n | x | \n\n | \n | [9] | \n
Proechimys roberti | \n\n | x | \n\n | \n | [9] | \n|
Proechimys | \nProechimys gr. cuvieri | \nx | \nx | \nx | \nTcI | \n[9] | \n
Proechimys gr. guianensis | \nx | \nx | \n\n | \n | [9, 47] | \n|
Proechimys sp. | \nx | \nx | \nx | \nTcI+ TcIII/TcIV | \n[9] | \n|
Rattus | \nRattus rattus | \nx | \n\n | \n | Zymodeme 1 | \n[46] | \n
Sciurus | \nSciurus sp. | \nx | \n\n | \n | Zymodeme 1 | \n[46] | \n
Carnivora | \n||||||
Nasua | \nNasua nasua | \nx | \n\n | x | \n\n | [28, 47] | \n
Tayra | \nTayra barbara | \n\n | \n | \n | \n | [48] | \n
Chiroptera | \n||||||
Anoura | \nAnoura caudifer | \nx | \n\n | x | \nTcI | \n[9] | \n
Artibeus | \nArtibeus lituratus | \nx | \n\n | x | \nTcI, TcIV | \n[9] | \n
Artibeus cf. fimbriatus | \nx | \n\n | x | \nTcI | \n[9] | \n|
Artibeus planirostris | \nx | \n\n | x | \nTcI | \n[9] | \n|
Carollia | \nCarollia perspicillata | \nx | \n\n | x | \nTcI | \n[9] | \n
Carollia cf. beikeith | \nx | \n\n | x | \nTcI | \n[9] | \n|
Carollia brevicauda | \nx | \n\n | x | \nTcI | \n[9] | \n|
Choeroniscus | \nChoeroniscus minor | \n\n | \n | \n | \n | [52] | \n
Chiroptera | \n||||||
Dermanura | \nDermanura cinereus | \nx | \n\n | x | \nTcI | \n[9] | \n
Desmodus | \nDesmodus rotundus | \n\n | \n | x | \n\n | [35] | \n
Diaemus | \nDiaemus youngi | \n\n | \n | x | \n\n | [35] | \n
Glossophaga | \nGlossophaga soricina | \nx | \n\n | x | \nTcI, TcIV | \n[9, 52] | \n
Lasiurus | \nLasiurus blossevillii | \nx | \n\n | x | \nTcI | \n[9] | \n
Lonchophylla | \nLonchophylla thomasi | \nx | \n\n | x | \nTcI | \n[9] | \n
Lonchophylla mordax | \n\n | \n | \n | \n | [52] | \n|
Molossus | \nMolossus major | \n\n | \n | \n | \n | [52] | \n
Molossus ater | \n\n | \n | \n | \n | [52] | \n|
Mycronycteris | \nMycronycteris megalotis | \n\n | \n | \n | \n | [52] | \n
Noctilio | \nNoctilio labialis | \n\n | \n | \n | \n | [52] | \n
Phyllostomus | \nPhyllostomus discolor | \nx | \n\n | x | \nTcI | \n[9] | \n
Phyllostomus hastatus | \nx | \n\n | x | \nTcIV | \n[9, 35, 52] | \n|
Phylostomus alongatus | \n\n | \n | \n | \n | [52] | \n|
Plathyrhinus | \nPlathyrhinus infuscus | \nx | \n\n | x | \nTcI | \n[9] | \n
Saccopterix | \nSaccopterix bilineata | \n\n | \n | \n | \n | [52] | \n
Tonatia | \nTonatia saurophila | \nx | \n\n | x | \nTcI | \n[9] | \n
Trachops | \nTrachops cirrhosus | \nx | \n\n | x | \nTcI | \n[9, 35] | \n
Uroderma | \nUroderma bilobatum | \nx | \n\n | x | \nTcI | \n[9] | \n
Vampyressa | \nVampyressa sp. | \nx | \n\n | x | \nTcI | \n[9] | \n
Free-ranging wild animal’s species reported positive to Trypanosoma cruzi infection in the Amazon Basin.
H = hemoculture, I = IFAT, P=PCR.
TcI, TcIII and TcIV are the reported DTUs circulating in the Amazon basin [25]. A very low prevalence of TcIII and TcIV (0.8%) infection was found in 714 T. cruzi isolates from five different biomes in Brazil. TcIV was more prevalent than TcIII, and no specific association between genotypes and animal species or geographical distribution was suggested [26]. However, these findings may be biased by the methodology used in this study or the temporal distribution of these DTUs in nature.
\nThe main taxa for the transmission of T. cruzi in the Amazon basin are reported below:
\nThis order includes the hosts most frequently infected by T. cruzi in all biomes of Brazil, presenting high rates of positive hemoculture [9, 26]. Didelphimorphia species in the Amazon basin seems to be predominantly infected by TcIII and/or TcIV across different biomes. This order includes the most frequent hosts infected by TcIII, TcIV or mixed trypanosome/genotypes compared to other mammalian taxa [26].
\nIt is suggested that marsupials could act as generalist species due to the diversity of Trypanosoma spp. found simultaneously infecting a single host [9]. For instance, a mixed, triple infection with Trypanosoma cascavelli (reported in reptiles), Trypanosoma dionisii (reported in bats) and Trypanosoma sp. was reported in Monodelphis americana [27]. Other species such as Philander opossum show a high prevalence of T. cruzi positive hemoculture implying its ability to infect vectors. Philander opossum was also the most abundant species present across different areas of the Amazon basin regardless of the season and the degree of land disturbance [13].
\nDidelphis marsupialis is the specie from this order most commonly reported with T. cruzi infection. However, it has been suggested that its presence in a specific area may not be directly related to the endemicity of T. cruzi. Low prevalence of the parasite was found in an area despite their great abundance of this mammal, and it may not be a critical specie for the maintenance of the T. cruzi sylvatic cycle in the Amazon basin [13]. Trypanosoma cruzi infection of D. marsupialis could take place orally by ingestion of small mammals or triatomines. However, host-to-host infection could also occur through direct contact with infective metacyclic trypomastigotes released by the scent glands of infected marsupials. Scent glands have demonstrated being suitable for epimastigotes and their differentiation into infective metacyclic forms [10]. Didelphis can also adapt to peridomestic areas, and T. cruzi-infected specimens have been found in backyards of houses from different villages in the Brazilian Amazon [12].
\nHistopathological lesions observed in infected marsupials resemble those presented by Chagas disease patients. Myocarditis with mononuclear infiltrates, cell lysis and inflammatory infiltrates in skeletal muscles, esophagus and small and large intestines are other lesions found in natural infection [12].
\nCarnivores are likely to be infected by the oral route, and those whose diet includes insects or flesh present the highest infection rates [9]. The most reported carnivore infected with T. cruzi is the coati (Nasua nasua) [28]. Coatis are terrestrial but construct their nests in the high canopy level of large trees, which then serve as habitat for triatomines and other insects. Two-thirds of 34 Triatoma and Rhodnius triatomines found in 24 coati nests in the Pantanal state in Brazil were positive to T. cruzi. The 62.5% (8/8) of 8 nests infested with triatomines were T. cruzi-positive. The triatomines blood meal sources identified by precipitation of the stomach contents included coati and also rodents, birds and marsupials. Moreover, rodents and birds were observed visiting these nests [29].
\nDifferent species of trypanosomatids have been reported in wild non-human primates from the Amazon. The T. cruzi prevalence rates reported in the Brazilian Amazon range from 10.3% (17/165) using parasitological methods in captured free-ranging non-human primates to 45.5% (45/99) by IFAT in captive and semi-captive primates [30, 31]. However, the T. cruzi prevalence in wild non-human primates of the Amazon basin seems to be lower than the prevalence of T. rangeli, with the latter showing lasting parasitemias [32]. Several studies corroborate this observation, such as 35.2% versus 10.3% in 165 wild squirrel monkeys captured in the Brazilian Amazon [30], and 75.0% versus 10.4% cultures among 96 tamarins captured in the Amazonas state in Brazil [32]. In a study conducted in the Peruvian Amazon, free-ranging non-human primates had a high prevalence of trypanosomatids (64.3% vs. 27.9%) and T. cruzi (8.7% vs. 3.3%) by PCR, compared to captive primates, suggesting that parasite transmission occurs more actively in the sylvatic cycle. Pitheciidae had the highest trypanosomatid prevalence (20/22, 90.9%) and Cebidae had the highest T. cruzi prevalence (15/117, 12.8%) [33]. The difference in the prevalence is not well understood but may be related to the route of infection. While T. cruzi might be transmitted through either contact with infective forms in the triatomine feces or orally, T. rangeli may be primarily transmitted during biting by infected triatomines [32].
\nThere is scarce evidence regarding the physiopathology of T. cruzi natural infection in free-ranging non-human primates. Electrocardiography abnormalities were found in a few T. cruzi-infected tamarins aged 7 months to 4 years old from an Atlantic Forest reserve in Brazil with infection time spanning 6 months to almost 5 years. It was estimated that infected individuals were 18 times more likely to show detectable electrocardiogram (ECG) abnormalities than those uninfected. Likewise, infected non-human primates were prone to have higher levels of cardiac injury markers such as MBi, a cardiac lesion marker and total protein in serum. Although these findings did not suggest a general health problem, left ventricular hypertrophy was present in some of the infected tamarins similar to the chronic form of Chagas disease in humans [34]. These studies probably underestimate the clinical burden since non-human primates with severe cardiac lesions probably do not survive in the wild and are therefore not included. Despite this limitation, it is important to consider the impact of the physiopathology of natural infection, particularly for at risk species. For instance, T. cruzi infection has been reported in Saguinus bicolor, a critical endangered monkey in the Amazon basin [32].
\nIt was suggested that bats could be bio-accumulator hosts and dispersers of trypanosomatids because of their ability to fly and the great diversity of Trypanosoma species found in bats specially compared to other animal taxon [9]. Out of 1219 Brazilian bats from 76 genera and 94 species, 14% were positive to Trypanosoma sp. by hemoculture and 5% of them were T. cruzi positive in single or mixed infections. Although bat is able to be infected with other DTUs most bats were infected with TcI, and TcII was not detected. The highest infection rate was found in the Amazon basin compared to other biomes, suggesting that unaltered areas nurture a high parasite diversity [9]. In the Peruvian Amazon, a 4.1% T. cruzi infection prevalence in bats was reported, in both hematophagous (2.7%; 2/73) and non-hematophagous species (6.2%; 3/48) [35]. Interestingly, T. cruzi DNA was detected in the salivary glands of Diaemus youngi, an hematophagous bat [35]. This highlights the importance of studying the transmission mechanisms of T. cruzi in bats and their public health implications for the Amazon basin.
\nTrypanosoma cruzi hosts encompass more than 100 wild and domestic mammalian species, which in turn belong to eight different taxonomic orders distributed in all phytogeography regions of the Neotropics [36]. Since subsistence hunting of wild mammals for consumption is one of the main sources of animal protein in the Amazon Basin, wild meat constitute a potential source for human infection.
\nIn the Amazon region, wild meat represents an important component of household food security, income and a key social and cultural driver. Wild meat is still a key element in Amazon peoples’ diet and accounts for a high percentage of daily protein intake. It is estimated that the wild meat consumption rate in rural settlements of the Amazon Basin is 172 g per person per day [37]. A study found that 39% of households in Latin America harvested and consumed wild meat, and dependence was highest among the poorest households [38]. Estimates of the annual wild meat harvest in the Northern Peruvian Amazon are 113,000 animals (1680 tons), and 89,224 tons of meat per year in the Brazilian Amazon [39, 40]. Furthermore, hunting pressure has increased in recent years due to various causes, such as the growth of human populations, access to remaining forests, commercialization of wild meat, increasing use of efficient modern hunting techniques and erosion of traditional hunting institutions due to rapid cultural changes [41].
\nNotwithstanding its positive nutritional contributions, some serious health concerns may be associated with wild meat consumption in the Amazon basin. Emerging infectious diseases worldwide are increasing over time and are dominated by zoonoses (60%), of which the majority (72%) originates in wildlife [42]. A study conducted in the Peruvian Amazon estimated an annually consumption of 45 animals infected with T. cruzi, translating to 0.75 infected animals typically consumed by a large extended family, suggesting recurrent infection opportunities [28].
\nA few studies from Argentina and Brazil report Chagas disease transmission through consumption of raw, poorly cooked meat, blood or contact with carcasses of wildlife among children [43]. However, some of these studies did not rule out the possibility of vectorial transmission and others have not found proof of exposure to infected triatomines. What it is certainly known is that frequently hunted animals in the Amazon have been reported as T. cruzi reservoirs [28, 33], and carnivores might tend to have higher infection rates than non-carnivores suggesting accumulation through wild meat intake. Thus, the consumption of wild meat may be an important risk for human T. cruzi infection in the Amazon Basin, which may happen particularly during cleaning of wild meat or contamination of cooking utensils [13]. Other associated risk factors in rural Amazon societies are poor hygienic conditions, unavailability of clean water, inadequate medical care and insufficient knowledge about local diseases [44]. Nevertheless, further studies addressing the relationship between wild meat consumption and Chagas disease are required to better understand the risk of infection in Amazonian communities. Prompt diagnosis, notification of cases and epidemiological studies to assess the risk factors that trigger ACD outbreaks are greatly needed.
\nDomestic animals should be included in epidemiological studies since they are good sentinels of disease transmission in a geographic area. In the Amazon, several studies report T. cruzi-positive domestic animals such as pigs and dogs [45]. TcI is the primary DTU reported infecting dogs in the Brazilian Amazon [13]. Although a higher prevalence of T. cruzi was found in pigs compared to dogs in some anthropogenic disturbed areas, dogs present longer parasitemias. Extended parasitemia suggests that dogs are better able to infect vectors, thereby acting as T. cruzi reservoirs. These domestic animals may become infected by different routes, mainly the biting of the infected triatomines since bugs and dogs converge near human dwellings [13]. Other routes of transmission would be the ingestion of the infected bugs or food contaminated with triatomine feces and predation of infected small mammals.
\nThis work was supported by the training grant 2D43 TW007393 awarded to Andrés G. Lescano by the Fogarty International Center of the U.S. National Institute of Health, and by ERANet17/HLH-0271.
\nThe authors declare that they have no conflicts of interest regarding the publication of this chapter.
\n\n
The name of Calophyllum inophyllum is Kallos that is taken from the Greek word, which means beautiful and meaningful Phullon leaves. C. inophyllum has many name designations that vary by region country. In the UK, the tree is known as a beautiful leaf (translation from Greek), Indian laurel (because it comes from India), Alexandrian laurel, and beach Calophyllum (because the trees usually grow on the waterfront). Moreover, the tree is also called as tamanu (Tahiti), fetau (Samoa), damanu (Fiji Island), te itai (Kiribati Island), nyamplung (Indonesia), Penaga Laut (Malaysia), kamani (Hawaii), foraha (Madagascar), and puna (island of Lakshadweep) [1].
According to Ong [2], the distribution map of C. inophyllum in the world is quite extensive. This species is commonly found in areas with a tropical climate. In the world, this species is found in countries such as Australia, Cambodia, the Cook Islands, Fiji, French Polynesia, India, Indonesia, Japan, Kiribati, Laos, Madagascar, Malaysia, the Marshall Islands, Myanmar, New Caledonia, Norfolk Island, Papua New Guinea, the Philippines, Reunion, Samoa, Solomon Islands, Sri Lanka, Taiwan, Province of China, Thailand, Tonga, Vanuatu, and Vietnam. As for exotic species (endemic to a region), it can be found in the state of Djibouti, Eritrea, Ethiopia, Kenya, Nigeria, Somalia, Tanzania, Uganda, and the USA.
C. inophyllum plant spreads almost evenly throughout Indonesia, such as in the island of Sumatra (West Sumatra, Riau, Kepulauan Riau, Lampung, and Bangka Belitung), Java (Banten, West Java, Central Java, Yogyakarta, East Java), Bali Island, East Nusa Tenggara and West Nusa Tenggara, Kalimantan (West Kalimantan, Central Kalimantan, and South Kalimantan), Sulawesi (North Sulawesi, Gorontalo, Central Sulawesi, South Sulawesi, and Southeast Sulawesi), Maluku and North Maluku Islands, and Papua [3]. C. inophyllum plant has a taxonomy as follows [4]:
Kingdom: Plantae
Subkingdom: Tracheobionta
Super division: Spermatophyta
Division: Magnoliophyta
Class: Magnoliopsida
Subclass: Dilleniidae
Order: Theales
Family: Clusiaceae
C. inophyllumis a plant that is grown in the earthy sand and coastal areas with a hot weather [5]. It can also grow well at an altitude of 0–800 meters above sea level such as in forests, mountains, and swamps [6]. C. inophyllum is a versatile crop; all parts of this plant, such as leaves, root, and fruit (Figure 1), can be useful for humans. The benefit of its tree, bark, and seed is as plant conservation, source of timber and non-timber forest products (NTFPs), and vegetable oil, respectively [7]. In pharmaceuticals, it is known to function as an antibacterial, anticancer, antineoplastic, anti-inflammatory, antiplatelet, antipsychotics, antiviral, photoprotective, molluscicidal, and piscicidal agent [1]. Table 1 shows the benefits of C. inophyllum crops obtained from previous works.
Parts of C. inophyllum crop.
Part of crops | Medicinal function | ||
---|---|---|---|
Iskandari and Anna [8] | Su et al. [9] | Ling et al. [1] | |
Leaves | Inhibit the growth of larvae of Culex quinquefasciatus and Aedes aegypti, an inhibitor of the HIV virus | Treat skin rashes, swelling of the legs, caring for burns, eye irritation, dysentery, migraine, and vertigo | Treat skin diseases, arthritis, sciatica, eye irritation |
Root | Antibacterial | Treat dysentery, gonorrhea, indigestion, wounds, ulcers, and others | Treating internal hemorrhage |
Fruit/ seed | Inhibit the growth of larvae of Culex quinquefasciatus, antimicrobial compounds, and toxic agents | Treating stomach pain, itching, arthritis, burns, gonorrhea, arthritis, ulcers, and ringworm | Treat wounds, leprosy, neurological diseases, burns |
Benefits and uses of C. inophyllum crops.
Because all parts of this plant can be useful in treating various diseases, some researchers have conducted further research on the phytochemical content of this plant. According to Ling et al. [1], the compounds which are contained in these plants include inophynone; canophyllol; canophyllic acid; calophyllolide; inophyllolide; inophyllum B, C, P, and E; jacareubin; (+)-calanolide A; inocalophyllins A and B; calophynone; calophyllumin C; inophyllin A; and others. Su et al. [9] mentioned that according to Filho et al. [10], in various parts of the tree, C. inophyllum contains phytochemicals, including xanthones, coumarins, chromanones (flavonoids, biflavonoids), triterpenes, tripenoids, and steroids. Coumarins in C. inophyllum contain two components, namely, calanolides A and B. From these studies it was found that coumarin compounds in C. inophyllum may be effective in treating cancer and inhibiting the HIV virus.
According to Lim [11], at least nine components have been isolated from the leaves of C. inophyllum, including 2-hydroxyxanthone; 4-hydroxyxanthone; 1,5-dihydroxyxanthone; 1,7-dihydroxyxanthone; 1,3,5-trihydroxy-2-methoxyxanthone; 6-6-deoxyjacaerubin; flavonoids, amentoflavone; kaempferol-3-O-α-L-rhamnoside; and quercetin-3-O-α-L-rhamnoside.
Of the three studies on the leaves above, there are some differences as well as questions obtained from the leaves of C. inophyllum content analysis. Some of the same compounds that have been isolated from C. inophyllum plants are quite diverse, including derivatives of xanthones [12, 13], coumarins [9], flavonoids [13], benzodipyranones [14], triterpenoids [12, 15], and steroids [9].
Xanthones are polyphenol components in nature with molecular formula C13H8O2. They consist of bonding of two benzene rings connected by a carbonyl group and one oxygen. These conjugated ring systems inhibit the free rotation carbon bond. Xanthones have a basic framework consisting of 13 carbon atoms that make up the composition of C6-C1-C6 (Figure 2).
Possible position oxygenation xanthone compound.
Xanthones are compounds with the basic framework of two phenyls connected by bridges carbonyl and oxygen (ether). Their biosynthesis is not known clearly but allegedly still in close contact with the biosynthesis of flavonoids and stilbenoid. It can be seen from the type of oxygenation and two types of aromatic rings which are derived from the shikimate (shikimic acid) and the acetate-malonate pathways.
Xanthones compound that was isolated from C. inophyllum plants, there are prenylated and some are not prenylated. Most xanthone compounds isolated from these plants showed a characteristic, one of which is a hydroxy group at C1. The possible oxygenation position is shown in Figure 2.
Xanthones are known to have a variety of bioactive properties, notably the ability of antioxidants as can be seen in Figure 3. Mangosteen xanthones were isolated from Garcinia mangostana found against free radicals and prevent oxidative damage of low-density lipoprotein [16]. Moreover, isolated xanthones from mangosteen also can inhibit HL60 leukemia cells [17]. Also, α-mangosteen extracted from G. mangostana L. has antibacterial activity against vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) [18].
Molecular structure of xanthones.
Various xanthone compounds can be isolated from C. inophyllum leaves, such as caloxanthone A, caloxanthone B, caloxanthone C, maclura xanthones, inoxanthone, calophynic acid, 3,4-dihydroxy xanthones [4, 12, 19], brasilixanthone B, buchanaxanthone [20], inophyxanthone A, pancixanthone A, gerontoxanthone B, jacareubin, pyranojacaereubin, 2-hydroxy xanthone, 4-hydroxyxanthone, 1,3,5-trihydroxy-2-methoxyxanthone, and xanthones [21, 22].
Coumarin (benzopyrones) compound is one of the members of benzopyrone components. In the coumarin structure, there is a benzene ring which is tied with pyrone ring [23] as can be seen in Figure 4. They can be divided into four main types: simple coumarins, pyranocoumarins, furanocoumarins, and pyrone-substituted coumarins. All the reactions of coumarins focus on activation of C3,4—the double bond of the α,β-unsaturated lactone—and form a heterocyclic system [24].
Molecular structure of coumarins.
Coumarins are commonly used in the agrochemical, perfume, and medical industries. They have high antitumor and antibacterial activities. Antitumor activity of 7-hydroxycoumarins against several tumor cell lines has been identified. Coumarins and their derivatives have activity as barrier against cellular proliferation in various carcinoma cell lines [25]. Besides that, they also have anticoagulant, antioxidant, antimicrobial, antiviral, anti-inflammatory, antimalarial, and analgesic activities [26].
The biosynthesis of coumarin compounds is derived from the shikimic acid pathway or still in line with the phenyl group propanoid. The skeleton benzopyran-2-on of coumarin is originating from the acid-cinnamic acid via ortho-hydrolysis. Ortho-coumaric acid produced after undergoing cis-trans isomerization undergoes condensation [27]. Characteristic of these compounds is their lactone group formed from the acid on the tip of propane with a hydroxy group on the phenyl group. Oxygenation coumarin compounds in the aromatic ring are also typical and are intermittent. The structure of the coumarin derivatives can be divided into four categories based on the group bound to the C4 : 4-metilcoumarin, 4-fenilcoumarin, and 4-(n-propyl)coumarin.
Benzodipyranones are derivative of chromone. These compounds have a skeleton similar to stilbene with two additional prenyl groups. Some benzodipyranone compounds have been isolated from the C. inophyllum leaves, such as (2S, 3R) and (2R, 3R)-2,3-dihydro-5-hydroxy-2,3,8,8-tetramethyl-6-(1-phenylethenyl)-4H, 8H-benzo [1,2-b: 3,4-b ‘] dipyran-4-one [14], inophynone, and isoinophynone [20, 28].
Terpenes are naturally derived component in the biosynthesis of isoprene C5 with molecular formula C5H8 (CH2〓C (CH3)-CH〓CH2) (Figure 5). They commonly expressed in the formula (C5H8)n with n states the amount of isoprene which are there, so the amount of carbon is a multiple of 5. They are classified in hemiterpenes, monoterpenes (consisting of 2 units of C5 or 10 carbon atoms), sesquiterpenes (consisting of 3 units of C5 or 15 carbon atoms), diterpenes (consisting of 4 units of C5 or 20 carbon atoms), sesterterpenes, triterpenes (consisting of 6 units of C5 or 30 carbon atoms), tetraterpenes (consisting of 8 units of C5 or 40 carbon atoms), and polyterpenes.
Molecular structure of isoprene.
Moreover, terpenoids are isoprenoid structural components which contain oxygen in its structure and can react with ketone, aldehyde, or alcohol. Chemically, they are generally soluble in fat and contained within the plant cell cytoplasm. Usually, they can be extracted with petroleum ether, ether, or chloroform and can be separated by chromatography on silica gel [29].
Terpenes are widely used as a medicine and flavor enhancers. They are commonly used in the rubber industry. They have a low molecular weight, such as essential oils that are used as natural food additives and fragrances in the perfume industry. They are also used in anticancer drug Taxol which is a diterpene. Taxol is used in the treatment of breast, ovarian, and lung cancer. One example is imberbic acid, a triterpenoid that has activity against Mycobacterium fortuitum and S. aureus [30].
Triterpenoids are a class of terpenoid compounds which consist of 30 carbon atoms or 6 units of isoprene. In plant tissue, they can be found in their native form but are also often found in the form glycoside. They are divided into cyclic and acyclic structures. The important acyclic triterpenoid is only the squalene that is considered only as an intermediate in the biosynthesis of steroids. The most widespread of triterpenoids are the pentacyclic triterpenoids. The frameworks most often found on a class of compound triterpenoids are ursam, lupan, oleanan, and friedelin [31].
Friedelin has the molecular formula C30H50O and a molecular weight of 426,7174 g/mol (Figure 6). Friedelin has a melting point of 259–260°C. The structure mass spectrometry of friedelin is 426 (M+), 411, 302, 273, 246, 231, 218, 205, 191, 179, 163, 149, 137, 125, 123, 109, 95, 81, 69, and 55. The IR spectra of friedelin in KBr was obtained using vmax at 1720 cm−1. The form of friedelin is white crystalline-amorphous solid. Friedelin has an anti-fungal activity and has antinociceptive effects in rodents [32]. Friedelin was developed on a TLC plate by using a solvent system of 10% ethyl acetate and 90% hexane. Friedelin gave a dark spot on a TLC when exposed under UV light and iodine vapor chamber. Friedelin gave an Rf value of 0.75 with the use of a relatively nonpolar solvent system [33].
Molecular structure of friedelin.
Several studies have been conducted on the benefits of friedelin. Friedelin has hepatoprotective activity [34]. It has an activity against Bacillus Calmette-Guerin (BCG) that causes tuberculosis [35]. It and some types of friedelin compound are widely used for the treatment of cancer of the bladder [36], convulsion, inflammation [37], topical ulcers, rheumatic inflammation, fever, and dysentery [38]. It is also found to have antifeedant activity in some insects [39].
Moreover, some compound triterpenoids have been isolated from the C. inophyllum leaves, such as 3β, 23-epoxy-friedelane-28-OIC acid, 3-oxofriedelin-28-OIC acid, epifriedelanol, oleanolic acid [40], 3,4-secofriedelane-3,28-dioic [41], β-amyrin [20], friedelin, canophyllal, canophyllol, and canophyllic acid [4, 20, 41].
Sterols are steroids which have a hydroxy group at C3 position as can be seen in Figure 7. They are found in free form or in association with glucose to form glycosides (sterolin) or as fatty acid esters (FASE). They are the natural compound that is generally composed of 27 carbon atoms [31]. They are terpenoids in which their basic framework consists of the system perhydrophenanthrene cyclopentane ring. They are a class of secondary metabolic compounds which are widely used as a drug. Steroid hormones are generally derived from natural steroid compounds, especially in plants [42]. Some steroid compounds have been isolated from the C. inophyllum leaves such as campesterol [20]. Campesterol also has analgesic activity.
Molecular structure of cholesterol.
Flavonoids are the largest group of phenolic compounds found in nature, especially in tissues of higher crops. They are the product of secondary metabolites that occur from the cells and accumulate on the body crop as a toxic substance [43]. They are commonly known as flavonoids, which are water-soluble polyphenol component. They have a basic framework consisting of 15 carbon atoms where a chain of benzene (C6) is bound to a chain of propane (C3), thus forming a bond arrangement C6-C3-C6 which is particularly called phenylbenzopyran (Figure 8). This arrangement can produce three structures, namely, 1,3-diarilpropana (flavonoids), 1,2-diarilpropana (isoflavonoids), and 2,2-diarilpropana (neoflavonoid) [44]. Moreover, flavonoids are classified into various categories based on differences in molecular structure, such as chalcones, flavanols, catechins, flavonoes, isoflavone, dihydroflavonol, and anthocyanidins [45, 46].
Molecular structure of flavone.
According to Markham [47], flavonoids are polar compounds because they have a hydroxyl group which does not bind to sugar, so the flavonoid is quite soluble in polar solvents such as ethanol, methanol, butanol, or water. Because of the presence of sugar bound, flavonoids become more soluble in water. Conversely, the less polar aglycone, such as isoflavones, flavanones, flavones, and flavonols, which is methoxylated tends to be more soluble in solvents, such as ether and chloroform.
The largest group of flavonoids is flavones. Flavonoids have a 2-phenyl Croman order in which the ortho-position of the A ring and the carbon atom attached to the ring B of 1.3 diarilpropana is connected by bridging oxygen to form a new heterocyclic ring [47].
Flavonoids have a variety of biological functions including pharmaceutical use and their function in plants. Examples of pigments in flowers, they provide color and attract insects for pollination. Flavonoids which are contained in the leaves have to prevent fungal infections and protect leaves from UV radiation [45]. In the aspect of pharmacology, flavonoids interact with cytochrome P450 and are used to treat heart disease. They are also known to have antioxidant activity and anti-free radicals that are useful in anticancer and antiaging. Furthermore, they also have antileukemic activity, vitamin C, 5-lipoxygenase, cyclooxygenase inhibitors, protein kinase C, tyrosine kinase, and genetic toxicity [27].
Several flavonoid compounds that have been isolated from the C. inophyllum leaves are bioflavonoids, neoflavonoid [48], amentoflavone [20, 40], and quercetin-3-O-α-L-rhamnoside [8, 48].
Some of the compounds of fatty acid that has been found in the C. inophyllum leaves are tetradecanoic acid (myristic acid, C14H28O2), n-hexadecanoic acid (palmitic acid, C16H32O2), oleic acid (C18H34O2), and octadecanoic acid (stearic acid, C18H36O2) [49].
Some ester compounds that have been found in the C. inophyllum leaves are 1,2-benzenedicarboxylic acid (diisooctyl ester/phthalic acid, bis(6-methylheptyl) ester), 9,12-octadecenoic acid methyl ester, 16-octadecanoic acid methyl ester, heptadecanoic acid, and 16-methyl ester [49, 50].
In chemistry, there are two types of tannins, namely, (1) condensed tannins or flavolan and (2) hydrolyzed tannins.
The condensed tannins are widespread in angiosperm plants, especially in woody plants. Another name of condensed tannins is proanthocyanidin because when they reacted with hot acid, some of the carbon-carbon connecting bond units disconnect and free monomer anthocyanidins. Most proanthocyanidin is procyanidin because when reacted with acids will produce cyanidin. Proanthocyanidin can be detected directly by dipping the plant tissue into 2 M HCl boil for half an hour that will produce a red color which can be extracted with amyl or butyl alcohol. When dry tissues are used, the result of tannins somewhat diminished because of the occurrence of sticking tannins in place within the cell.
The hydrolyzed tannins are contained in dicotyledonous plants. They mainly consist of two classes; the simplest is galloylglucose. In this compound, glucose is surrounded by five or more galloyl ester groups. The second type is the core molecules of a compound gallic acid dimer, namely, hexahydroxidifenate acid that binds to glucose. Hydrolyzed tannins can be detected by determining the gallic acid or ellagic acid in ether or ethyl acetate extracts.
Some chemical compounds that have been found in the C. inophyllum leaves are azulene (C15H18), squalene (C30H50), 3-trifluoroacetyl pentadecane (pentadecyl trifluoroacetate), 1-monolinolein glycerol trimethylsilyl ether, cyclohexane, benzene, androstane [49], inophylloidic acid [12, 20, 52], shikimic acid [40], calaustralin, brasiliensic acid [12], adenanthin, carbazole, diphenyl methane, 2-phenazinamine, 5-aminomethyl-dibenzosuberane [50], phytol, phenol, and 3,7,11,15-tetramethyl-2-hexadecene-1-ol [49, 50]. The summary of phytochemicals in C. inophyllum leaves is presented in Table 2.
No. | Phytochemicals | Chemical structure | References |
---|---|---|---|
1. | Triterpenoids | ||
3β, 23-Epoxy-friedelan-28-oic acid | C30H48O3 | [41] | |
Friedelin | C30H50O | [4, 20, 28, 32, 41] | |
3-Oxofriedelin-28-oic acid | [40, 41] | ||
Canophyllal | C30H48O2 | [20, 41] | |
Canophyllol | C30H50O2 | [20, 41] | |
Canophyllic acid (27-hydroxyacetate canophyllic acid) | C30H50O3 | [4, 20, 41] | |
3,4-Secofriedelane-3,28-dioic acid | C30H50O4 | [19] | |
Inophynone | C24H24O4 | [20, 28] | |
Isoinophynone | C24H24O4 | [20, 28] | |
β-Amyrin | C30H50O | [20] | |
Epifriedelanol | C30H52O | [41] | |
3-Oxo-27-hydroxyacetate friedelan-28-oic acid | [19] | ||
Oleanolic acid | C30H48O3 | [41] | |
Squalene | C30H50 | [50] | |
2. | Steroids | ||
Cholesterol | C27H46O | [28] | |
Campesterol | C28H48O | [20] | |
3. | Flavonoids | ||
Biflavonoids | C30H20O10 | [49] | |
Neoflavonoids | C20H18O8 | [49] | |
Quercetin-3-O-α-L-rhamnoside (4H-1-benzopyran-4-one,2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy) | C15H10O7 | [22, 49] | |
Amentoflavone | C30H18O10 | [20, 22, 40] | |
4. | Coumarins | ||
Inophyllum C | C25H23O5 | [12, 40, 42] | |
Inophyllum E | C25H22O5 | [12, 40] | |
Inophyllum B | C25H24O5 | [4, 42] | |
Inophyllum P | C25H24O5 | [4, 42] | |
Calophyllic acid | C25H24O6 | [4, 20, 40] | |
Isocalophyllic acid | C25H24O6 | [20, 40] | |
Inophyllum G-1 | C25H24O5 | [4, 42] | |
Inophyllum G-2 | C25H24O5 | [4, 42] | |
Calocoumarin-A | [20] | ||
Calocoumarin-B | [20] | ||
Calocoumarin-C | [20] | ||
Apetalolide | C26H24O5 | [20] | |
4-Phenylcoumarins | [20] | ||
Pyranocoumarins | C20H18O4 | [42] | |
Calophyllolides (calophyllolide 2a, 3a, 3b, 6) | C26H24O5 | [4, 12, 42] | |
5. | Xanthones | ||
Caloxanthone A | C23H22O6 | [4, 12] | |
Caloxanthone B | [4, 12] | ||
Caloxanthone C | [4] | ||
Brasilixanthone-B | C23H20O6 | [20] | |
Buchanaxanthone | C14H10O5 | [20] | |
Inoxanthone | C23H22O5 | [12] | |
Maclura xanthone | C23H22O6 | [12] | |
Calophynic acid | C35H44O6 | [12] | |
3,4-Dihydroxyxanthone | C13H8O4 | [12, 19] | |
Inophyxanthone A | [21] | ||
Pancixanthone A | C18H16O5 | [21] | |
Gerontoxanthone B | C23H22O6 | [21] | |
Jacareubin (6-deoxyjacareubin) | C18H14O6 | [21, 22] | |
Pyranojacaereubin | C23H20O6 | [21] | |
2-Hydroxyxanthone | C13H8O3 | [22] | |
4-Hydroxyxanthone | C13H8O3 | [22] | |
1,3,5-Trihidroxy-2-methoxyxanthone | [22] | ||
Xanthone | C13H8O2 | [21] | |
6. | Oxygenated hydrocarbons (fatty acids) | ||
Tetradecanoic acid (myristic acid) | C14H28O2 | [50] | |
n-Hexadecanoic acid (palmitic acid) | C16H32O2 | [50] | |
Oleic acid | C18H34O2 | [50] | |
Octadecanoic acid (stearic acid) | C18H36O2 | [50] | |
7. | Esters | ||
1,2-Benzenedicarboxylic acid (diisooctyl ester) (phthalic acid, bis(6-methylheptyl) ester) (diisooctyl phthalate) | C24H38O4 | [50] | |
Methyl linoleic (9,12-octadecanoic acid methyl ester) | C19H34O2 | [50, 51] | |
Methyl oleate (16-octadecanoic acid methyl ester) | C19H36O2 | [51] | |
Methyl isostearate (heptadecanoic acid, 16-methyl, methyl ester) | C19H38O2 | [51] | |
8. | Alkenes (unsaturated compounds): | ||
Azulene, 1,4-dimethyl-7-(1-methylethyl)- | C15H18 | [50] | |
9. | Ethers | ||
3-Trifluoroacetoxypentadecane (pentadecyl trifluoroacetate) (trifluoroacetic, pentadecyl ester) | C17H31F3O2 | [50] | |
1-Monolinoleoglycerol trimethylsilyl ether | C27H54O4Si2 | [50] | |
10. | Alicyclic compounds | ||
Cyclohexene, 3-(1,5-dimethyl-4-hexenyl)-6-methylene-,[S-(R*,S*)] | C15H24 | [50] | |
11. | Aromatic hydrocarbon: | ||
Benzene (1-methyldodecyl) | C19H32 | [50] | |
12. | Androstan-1α-ol-17-one,23 isopropylidenedioxy-4β-methyl- | C23H36O4 | [50] |
13. | Proanthocyanidin (condensed tannin) | C31H28O12 | [20, 49] |
14. | Benzodipyranone (chromone) derivatives: | ||
a. (2S,3R)-2,3-Dihydro-5-hidroxy-2,3,8,8-tetramethyl-6-(1-phenylethenyl)-4H,8H-benzo [1,2-b:3,4-b’] dipyran-4-one | [14] | ||
b. (2R,3R)-2,3-Dihydro-5-hidroxy-2,3,8,8-tetramethyl-6-(1-phenylethenyl)-4H,8H-benzo [1,2-b:3,4-b’] dipyran-4-one | [14] | ||
15. | Asam inophylloidic | C32H46O6 | [12, 20] |
16. | Calaustralin | C25H25O5 | [12] |
17. | Shikimic acid | C7H10O5 | [40] |
18. | Brasiliensic acid | C32H46O6 | [12] |
19. | Adenanthin (7,8,12-tri-0-acetyl-3-desoxy-ingol3-one) | C26H34O9 | [51] |
20. | Carbazole | C12H9N | [51] |
21. | Diphenyl methane (1’-biphenyl, 2-methyl) | C13H12 | [51] |
22. | 2-Phenazinamine (1,1’-biphenyl, 4-azido) | C12H9N3 | [51] |
23. | 5-Aminomethyl-dibenzosuberane (2-naphtalenecarbonitrile, 6-pentyl-) | C16H17N | [51] |
24. | Phytol | C20H40O | [50, 51] |
25 | 3,7,11,15-Tetramethyl-2-hexadecen-1-ol | C20H40O | [50] |
26. | Phenol (2,4-bis(1-phenylethyl)-phenol) | C22H22O | [50] |
Phytochemicals contained in the C. inophyllum leaves.
Polarity is one of the characteristics of chemical bonding, where two different atoms within the same molecule have a different electronegativity. As a result, the electrons in the bond are not shared equally by the two atoms. This causes the electric field (pole) to be asymmetric. Covalent bonding of molecules can be described as polar or nonpolar.
The polar compound is a compound formed by a single atom which has electronegativity substantially greater than the other. The more electronegative the atom, the pull of the bonding electrons is greater. The result is a bond with an uneven electron dense distribution. The nonpolar compound is a compound formed by atoms with the same or nearly the same electronegativity and forms covalent bonds, where both atoms apply traction which equals or nearly equals to the bonding electrons. Generally, the carbon-carbon and carbon-hydrogen bonds are the most common types of nonpolar bond [53].
To identify polar and nonpolar compounds from the C. inophyllum leaves, the first idea is separating their compounds based on the solvent used (solvent polarity index). Methanol and water are polar solvent with a polarity index of 5.1 and 9, respectively. For n-hexane or petroleum ether is nonpolar solvent with a polarity index of 0 [54]. It can be expected that polar compounds which are contained in the C. inophyllum leaves can be dissolved in a polar solvent and vice versa. Relative polarities of several solvents can be seen in Table 3.
Relative polarity | Formula | Group | Solvents |
---|---|---|---|
Nonpolar | R-H | Alkanes | Petroleum ethers, hexanes, ligroin |
Ar-H | Aromatics | Toluene | |
R-O-R | Ethers | Diethyl ether | |
R-X | Alkyl halides | Trichloromethane, chloroform | |
R-COOR | Esters | Ethyl acetate | |
R-CO-R | Aldehydes, ketones | Acetone, MEK | |
R-NH2 | Amines | Pyridine, triethylamine | |
R-OH | Alcohols | MeOH, EtOH, IPA, butanol | |
R-COHN2 | Amides | Dimethylformamide | |
R-COOH | Carboxylic acid | Ethanoic acid | |
Polar | H-O-H | Water |
Relative polarity of solvents [54].
Extraction is the separation process of material from a solid or some material from liquid with the help of the solvent. Extraction can be defined as a method of separating components of a mixture by using a suitable solvent. Solutes (dissolved substances) are separated in a manner distributed between two layers of solvents based on their solubility. Extraction is a separation of the compounds contained in the liquid material/solid using certain solvents at any given temperature.
In general, extraction techniques can be classified into two general categories:
Short-term extraction is extraction techniques typically used to separate a substance (liquid form), on the basis of differences in solubility of the two immiscible solvents.
Long-term extraction is an extraction technique normally used to separate the natural material (solid form) contained in plants or animals. It is a classic procedure to obtain the organic matter content of dry plant tissue by soaking with certain solvents (polar or nonpolar solvents) [29].
Percolation is an extraction technique that done repeatedly and performed at a room temperature. This is similar to maceration, but after soaking for a certain time, the solvent is removed and replaced with a new solvent. After filtration, the filtrate obtained is called percolate [55].
According to Mulyono [55], in terms of the extraction mechanism, known to some type of extraction, namely:
1. Single-stage extraction
Single-stage extraction is the extraction method using a single type of solvent, and extraction is only done once with a solvent.
2. Repeated extraction
Repeated extraction is the extraction method using a solvent, but the process is repeated with a number of solvents.
3. Stage extraction
Stage extraction is the extraction method using some type of solvent extraction, such as after extraction with the first solvent, followed by using other solvents, and so on.
Solvents are not or only partially soluble solids or liquids with continuous contact; the active agents move from a mixture of solids/liquid (raffinate) to the solvent (extract). After mixing the two phases, the separation process is done on the principle of gravity or centrifugal force [56].
Yunitasari [57] describes the effect of solvent on the various types of tray number from 6 to 10 for taking C. inophyllum oil with column extraction. From the experimental results, the authors explain that the more the number of trays, the less time is required for a solvent to extract the oil. The solvent used are between n-petroleum and n-hexane. From the experimental results, the authors explain that the maximum condition extraction was achieved by n-petroleum in the seventh tray. The amount of oil was decreasing by increasing number of tray. In the other hand, the amount of oil was increasing with number of tray while n-hexane was used.
The identification and uses of beneficial phytochemicals contained in C. inophyllum leaves were presented in this book chapter. It was found that all parts of C. inophyllum plant can be used for human needs. The information is limited to extraction and identification of mixture of phytochemical compounds that are obtained from plant extracts. The separation of individual phytochemical compounds still remains unknown. Therefore, further research on the determining of phytochemicals content in this plant is necessary.
The authors would like to convey their great appreciation for the Directorate General of Resources for Science, Technology, and Higher Education and Ministry of Research, Technology and Higher Education of the Republic Indonesia which funds the current project under the scheme No. (329/SP2H/LT/DRPM/IX/2016) called “The Education of Master Degree Leading to Doctoral Program for Excellent Graduates (PMDSU).”
We declare that we have no conflict of interest.
"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality. Throughout the world, we are seeing progress in attracting, retaining, and promoting women in STEMM. IntechOpen are certainly supporting this work globally by empowering all scientists and ensuring that women are encouraged and enabled to publish and take leading roles within the scientific community." Dr. Catrin Rutland, University of Nottingham, UK
",metaTitle:"Advantages of Publishing with IntechOpen",metaDescription:"We have more than a decade of experience in Open Access publishing. \n\n ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\\n\\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\\n\\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\\n\\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\\n\\nOur reach – Our books have more than 130 million downloads and more than 108,170 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\\n\\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\\n\\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\\n\\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\\n\\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We have more than a decade of experience in Open Access publishing. The advantages of publishing with IntechOpen include:
\n\nOur platform – IntechOpen is the world’s leading publisher of OA books, built by scientists, for scientists.
\n\nOur reputation – Everything we publish goes through a two-stage peer review process. We’re proud to count Nobel laureates among our esteemed authors. We meet European Commission standards for funding, and the research we’ve published has been funded by the Bill and Melinda Gates Foundation and the Wellcome Trust, among others. IntechOpen is a member of all relevant trade associations (including the STM Association and the Association of Learned and Professional Society Publishers) and has a selection of books indexed in Web of Science's Book Citation Index.
\n\nOur expertise – We’ve published more than 4,500 books by more than 118,000 authors and editors.
\n\nOur reach – Our books have more than 130 million downloads and more than 108,170 Web of Science citations. We increase citations via indexing in all the major databases, including the Book Citation Index at Web of Science and Google Scholar.
\n\nOur services – The support we offer our authors and editors is second to none. Each book in our program receives the following:
\n\nOur end-to-end publishing service frees our authors and editors to focus on what matters: research. We empower them to shape their fields and connect with the global scientific community.
\n\n"In developing countries until now, advancement in science has been very limited, because insufficient economic resources are dedicated to science and education. These limitations are more marked when the scientists are women. In order to develop science in the poorest countries and decrease the gender gap that exists in scientific fields, Open Access networks like IntechOpen are essential. Free access to scientific research could contribute to ameliorating difficult life conditions and breaking down barriers." Marquidia Pacheco, National Institute for Nuclear Research (ININ), Mexico
\n\nInterested? Contact Ana Pantar (book.idea@intechopen.com) for more information.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"105746",title:"Dr.",name:"A.W.M.M.",middleName:null,surname:"Koopman-van Gemert",slug:"a.w.m.m.-koopman-van-gemert",fullName:"A.W.M.M. Koopman-van Gemert",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105746/images/5803_n.jpg",biography:"Dr. Anna Wilhelmina Margaretha Maria Koopman-van Gemert MD, PhD, became anaesthesiologist-intensivist from the Radboud University Nijmegen (the Netherlands) in 1987. She worked for a couple of years also as a blood bank director in Nijmegen and introduced in the Netherlands the Cell Saver and blood transfusion alternatives. She performed research in perioperative autotransfusion and obtained the degree of PhD in 1993 publishing Peri-operative autotransfusion by means of a blood cell separator.\nBlood transfusion had her special interest being the president of the Haemovigilance Chamber TRIP and performing several tasks in local and national blood bank and anticoagulant-blood transfusion guidelines committees. Currently, she is working as an associate professor and up till recently was the dean at the Albert Schweitzer Hospital Dordrecht. She performed (inter)national tasks as vice-president of the Concilium Anaesthesia and related committees. \nShe performed research in several fields, with over 100 publications in (inter)national journals and numerous papers on scientific conferences. \nShe received several awards and is a member of Honour of the Dutch Society of Anaesthesia.",institutionString:null,institution:{name:"Albert Schweitzer Hospital",country:{name:"Gabon"}}},{id:"83089",title:"Prof.",name:"Aaron",middleName:null,surname:"Ojule",slug:"aaron-ojule",fullName:"Aaron Ojule",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Port Harcourt",country:{name:"Nigeria"}}},{id:"295748",title:"Mr.",name:"Abayomi",middleName:null,surname:"Modupe",slug:"abayomi-modupe",fullName:"Abayomi Modupe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:{name:"Landmark University",country:{name:"Nigeria"}}},{id:"94191",title:"Prof.",name:"Abbas",middleName:null,surname:"Moustafa",slug:"abbas-moustafa",fullName:"Abbas Moustafa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94191/images/96_n.jpg",biography:"Prof. Moustafa got his doctoral degree in earthquake engineering and structural safety from Indian Institute of Science in 2002. He is currently an associate professor at Department of Civil Engineering, Minia University, Egypt and the chairman of Department of Civil Engineering, High Institute of Engineering and Technology, Giza, Egypt. He is also a consultant engineer and head of structural group at Hamza Associates, Giza, Egypt. Dr. Moustafa was a senior research associate at Vanderbilt University and a JSPS fellow at Kyoto and Nagasaki Universities. He has more than 40 research papers published in international journals and conferences. He acts as an editorial board member and a reviewer for several regional and international journals. His research interest includes earthquake engineering, seismic design, nonlinear dynamics, random vibration, structural reliability, structural health monitoring and uncertainty modeling.",institutionString:null,institution:{name:"Minia University",country:{name:"Egypt"}}},{id:"84562",title:"Dr.",name:"Abbyssinia",middleName:null,surname:"Mushunje",slug:"abbyssinia-mushunje",fullName:"Abbyssinia Mushunje",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Fort Hare",country:{name:"South Africa"}}},{id:"202206",title:"Associate Prof.",name:"Abd Elmoniem",middleName:"Ahmed",surname:"Elzain",slug:"abd-elmoniem-elzain",fullName:"Abd Elmoniem Elzain",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Kassala University",country:{name:"Sudan"}}},{id:"98127",title:"Dr.",name:"Abdallah",middleName:null,surname:"Handoura",slug:"abdallah-handoura",fullName:"Abdallah Handoura",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Supérieure des Télécommunications",country:{name:"Morocco"}}},{id:"91404",title:"Prof.",name:"Abdecharif",middleName:null,surname:"Boumaza",slug:"abdecharif-boumaza",fullName:"Abdecharif Boumaza",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Abbès Laghrour University of Khenchela",country:{name:"Algeria"}}},{id:"105795",title:"Prof.",name:"Abdel Ghani",middleName:null,surname:"Aissaoui",slug:"abdel-ghani-aissaoui",fullName:"Abdel Ghani Aissaoui",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/105795/images/system/105795.jpeg",biography:"Abdel Ghani AISSAOUI is a Full Professor of electrical engineering at University of Bechar (ALGERIA). He was born in 1969 in Naama, Algeria. He received his BS degree in 1993, the MS degree in 1997, the PhD degree in 2007 from the Electrical Engineering Institute of Djilali Liabes University of Sidi Bel Abbes (ALGERIA). He is an active member of IRECOM (Interaction Réseaux Electriques - COnvertisseurs Machines) Laboratory and IEEE senior member. He is an editor member for many international journals (IJET, RSE, MER, IJECE, etc.), he serves as a reviewer in international journals (IJAC, ECPS, COMPEL, etc.). He serves as member in technical committee (TPC) and reviewer in international conferences (CHUSER 2011, SHUSER 2012, PECON 2012, SAI 2013, SCSE2013, SDM2014, SEB2014, PEMC2014, PEAM2014, SEB (2014, 2015), ICRERA (2015, 2016, 2017, 2018,-2019), etc.). His current research interest includes power electronics, control of electrical machines, artificial intelligence and Renewable energies.",institutionString:"University of Béchar",institution:{name:"University of Béchar",country:{name:"Algeria"}}},{id:"99749",title:"Dr.",name:"Abdel Hafid",middleName:null,surname:"Essadki",slug:"abdel-hafid-essadki",fullName:"Abdel Hafid Essadki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"École Nationale Supérieure de Technologie",country:{name:"Algeria"}}},{id:"101208",title:"Prof.",name:"Abdel Karim",middleName:"Mohamad",surname:"El Hemaly",slug:"abdel-karim-el-hemaly",fullName:"Abdel Karim El Hemaly",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/101208/images/733_n.jpg",biography:"OBGYN.net Editorial Advisor Urogynecology.\nAbdel Karim M. A. El-Hemaly, MRCOG, FRCS � Egypt.\n \nAbdel Karim M. A. El-Hemaly\nProfessor OB/GYN & Urogynecology\nFaculty of medicine, Al-Azhar University \nPersonal Information: \nMarried with two children\nWife: Professor Laila A. Moussa MD.\nSons: Mohamad A. M. El-Hemaly Jr. MD. Died March 25-2007\nMostafa A. M. El-Hemaly, Computer Scientist working at Microsoft Seatle, USA. \nQualifications: \n1.\tM.B.-Bch Cairo Univ. June 1963. \n2.\tDiploma Ob./Gyn. Cairo Univ. April 1966. \n3.\tDiploma Surgery Cairo Univ. Oct. 1966. \n4.\tMRCOG London Feb. 1975. \n5.\tF.R.C.S. Glasgow June 1976. \n6.\tPopulation Study Johns Hopkins 1981. \n7.\tGyn. Oncology Johns Hopkins 1983. \n8.\tAdvanced Laparoscopic Surgery, with Prof. Paulson, Alexandria, Virginia USA 1993. \nSocieties & Associations: \n1.\t Member of the Royal College of Ob./Gyn. London. \n2.\tFellow of the Royal College of Surgeons Glasgow UK. \n3.\tMember of the advisory board on urogyn. FIGO. \n4.\tMember of the New York Academy of Sciences. \n5.\tMember of the American Association for the Advancement of Science. \n6.\tFeatured in �Who is Who in the World� from the 16th edition to the 20th edition. \n7.\tFeatured in �Who is Who in Science and Engineering� in the 7th edition. \n8.\tMember of the Egyptian Fertility & Sterility Society. \n9.\tMember of the Egyptian Society of Ob./Gyn. \n10.\tMember of the Egyptian Society of Urogyn. \n\nScientific Publications & Communications:\n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Asim Kurjak, Ahmad G. Serour, Laila A. S. Mousa, Amr M. Zaied, Khalid Z. El Sheikha. \nImaging the Internal Urethral Sphincter and the Vagina in Normal Women and Women Suffering from Stress Urinary Incontinence and Vaginal Prolapse. Gynaecologia Et Perinatologia, Vol18, No 4; 169-286 October-December 2009.\n2- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nFecal Incontinence, A Novel Concept: The Role of the internal Anal sphincter (IAS) in defecation and fecal incontinence. Gynaecologia Et Perinatologia, Vol19, No 2; 79-85 April -June 2010.\n3- Abdel Karim M. El Hemaly*, Laila A. S. Mousa Ibrahim M. Kandil, Fatma S. El Sokkary, Ahmad G. Serour, Hossam Hussein.\nSurgical Treatment of Stress Urinary Incontinence, Fecal Incontinence and Vaginal Prolapse By A Novel Operation \n"Urethro-Ano-Vaginoplasty"\n Gynaecologia Et Perinatologia, Vol19, No 3; 129-188 July-September 2010.\n4- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n5- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n6- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n7-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n8-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n9-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n10-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n11-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n12- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n13-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n14- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n15-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n\n16-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n17- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis\n\n18-Maternal Mortality in Egypt, a cry for help and attention. The Second International Conference of the African Society of Organization & Gestosis, 1998, 3rd Annual International Conference of Ob/Gyn Department � Sohag Faculty of Medicine University. Feb. 11-13. Luxor, Egypt. \n19-Postmenopausal Osteprosis. The 2nd annual conference of Health Insurance Organization on Family Planning and its role in primary health care. Zagaziz, Egypt, February 26-27, 1997, Center of Complementary Services for Maternity and childhood care. \n20-Laparoscopic Assisted vaginal hysterectomy. 10th International Annual Congress Modern Trends in Reproductive Techniques 23-24 March 1995. Alexandria, Egypt. \n21-Immunological Studies in Pre-eclamptic Toxaemia. Proceedings of 10th Annual Ain Shams Medical Congress. Cairo, Egypt, March 6-10, 1987. \n22-Socio-demographic factorse affecting acceptability of the long-acting contraceptive injections in a rural Egyptian community. Journal of Biosocial Science 29:305, 1987. \n23-Plasma fibronectin levels hypertension during pregnancy. The Journal of the Egypt. Soc. of Ob./Gyn. 13:1, 17-21, Jan. 1987. \n24-Effect of smoking on pregnancy. Journal of Egypt. Soc. of Ob./Gyn. 12:3, 111-121, Sept 1986. \n25-Socio-demographic aspects of nausea and vomiting in early pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 35-42, Sept. 1986. \n26-Effect of intrapartum oxygen inhalation on maternofetal blood gases and pH. Journal of the Egypt. Soc. of Ob./Gyn. 12:3, 57-64, Sept. 1986. \n27-The effect of severe pre-eclampsia on serum transaminases. The Egypt. J. Med. Sci. 7(2): 479-485, 1986. \n28-A study of placental immunoreceptors in pre-eclampsia. The Egypt. J. Med. Sci. 7(2): 211-216, 1986. \n29-Serum human placental lactogen (hpl) in normal, toxaemic and diabetic pregnant women, during pregnancy and its relation to the outcome of pregnancy. Journal of the Egypt. Soc. of Ob./Gyn. 12:2, 11-23, May 1986. \n30-Pregnancy specific B1 Glycoprotein and free estriol in the serum of normal, toxaemic and diabetic pregnant women during pregnancy and after delivery. Journal of the Egypt. Soc. of Ob./Gyn. 12:1, 63-70, Jan. 1986. Also was accepted and presented at Xith World Congress of Gynecology and Obstetrics, Berlin (West), September 15-20, 1985. \n31-Pregnancy and labor in women over the age of forty years. Accepted and presented at Al-Azhar International Medical Conference, Cairo 28-31 Dec. 1985. \n32-Effect of Copper T intra-uterine device on cervico-vaginal flora. Int. J. Gynaecol. Obstet. 23:2, 153-156, April 1985. \n33-Factors affecting the occurrence of post-Caesarean section febrile morbidity. Population Sciences, 6, 139-149, 1985. \n34-Pre-eclamptic toxaemia and its relation to H.L.A. system. Population Sciences, 6, 131-139, 1985. \n35-The menstrual pattern and occurrence of pregnancy one year after discontinuation of Depo-medroxy progesterone acetate as a postpartum contraceptive. Population Sciences, 6, 105-111, 1985. \n36-The menstrual pattern and side effects of Depo-medroxy progesterone acetate as postpartum contraceptive. Population Sciences, 6, 97-105, 1985. \n37-Actinomyces in the vaginas of women with and without intrauterine contraceptive devices. Population Sciences, 6, 77-85, 1985. \n38-Comparative efficacy of ibuprofen and etamsylate in the treatment of I.U.D. menorrhagia. Population Sciences, 6, 63-77, 1985. \n39-Changes in cervical mucus copper and zinc in women using I.U.D.�s. Population Sciences, 6, 35-41, 1985. \n40-Histochemical study of the endometrium of infertile women. Egypt. J. Histol. 8(1) 63-66, 1985. \n41-Genital flora in pre- and post-menopausal women. Egypt. J. Med. Sci. 4(2), 165-172, 1983. \n42-Evaluation of the vaginal rugae and thickness in 8 different groups. Journal of the Egypt. Soc. of Ob./Gyn. 9:2, 101-114, May 1983. \n43-The effect of menopausal status and conjugated oestrogen therapy on serum cholesterol, triglycerides and electrophoretic lipoprotein patterns. Al-Azhar Medical Journal, 12:2, 113-119, April 1983. \n44-Laparoscopic ventrosuspension: A New Technique. Int. J. Gynaecol. Obstet., 20, 129-31, 1982. \n45-The laparoscope: A useful diagnostic tool in general surgery. Al-Azhar Medical Journal, 11:4, 397-401, Oct. 1982. \n46-The value of the laparoscope in the diagnosis of polycystic ovary. Al-Azhar Medical Journal, 11:2, 153-159, April 1982. \n47-An anaesthetic approach to the management of eclampsia. Ain Shams Medical Journal, accepted for publication 1981. \n48-Laparoscopy on patients with previous lower abdominal surgery. Fertility management edited by E. Osman and M. Wahba 1981. \n49-Heart diseases with pregnancy. Population Sciences, 11, 121-130, 1981. \n50-A study of the biosocial factors affecting perinatal mortality in an Egyptian maternity hospital. Population Sciences, 6, 71-90, 1981. \n51-Pregnancy Wastage. Journal of the Egypt. Soc. of Ob./Gyn. 11:3, 57-67, Sept. 1980. \n52-Analysis of maternal deaths in Egyptian maternity hospitals. Population Sciences, 1, 59-65, 1979. \nArticles published on OBGYN.net: \n1- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Laila A. S. Mousa and Mohamad A.K.M.El Hemaly.\nUrethro-vaginoplasty, an innovated operation for the treatment of: Stress Urinary Incontinence (SUI), Detursor Overactivity (DO), Mixed Urinary Incontinence and Anterior Vaginal Wall Descent. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/ urethro-vaginoplasty_01\n\n2- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamed M. Radwan.\n Urethro-raphy a new technique for surgical management of Stress Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/\nnew-tech-urethro\n\n3- Abdel Karim M. El Hemaly, Ibrahim M Kandil, Mohamad A. Rizk, Nabil Abdel Maksoud H., Mohamad M. Radwan, Khalid Z. El Shieka, Mohamad A. K. M. El Hemaly, and Ahmad T. El Saban.\nUrethro-raphy The New Operation for the treatment of stress urinary incontinence, SUI, detrusor instability, DI, and mixed-type of urinary incontinence; short and long term results. \nhttp://www.obgyn.net/urogyn/urogyn.asp?page=urogyn/articles/\nurethroraphy-09280\n\n4-Abdel Karim M. El Hemaly, Ibrahim M Kandil, and Bahaa E. El Mohamady. Menopause, and Voiding troubles. \nhttp://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly03/el-hemaly03-ss\n\n5-El Hemaly AKMA, Mousa L.A. Micturition and Urinary\tContinence. Int J Gynecol Obstet 1996; 42: 291-2. \n\n6-Abdel Karim M. El Hemaly.\n Urinary incontinence in gynecology, a review article.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/abs-urinary_incotinence_gyn_ehemaly \n\n7-El Hemaly AKMA. Nocturnal Enuresis: Pathogenesis and Treatment. \nInt Urogynecol J Pelvic Floor Dysfunct 1998;9: 129-31.\n \n8-El Hemaly AKMA, Mousa L.A.E. Stress Urinary Incontinence, a New Concept. Eur J Obstet Gynecol Reprod Biol 1996; 68: 129-35. \n\n9- El Hemaly AKMA, Kandil I. M. Stress Urinary Incontinence SUI facts and fiction. Is SUI a puzzle?! http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly/el-hemaly-ss\n\n10-Abdel Karim El Hemaly, Nabil Abdel Maksoud, Laila A. Mousa, Ibrahim M. Kandil, Asem Anwar, M.A.K El Hemaly and Bahaa E. El Mohamady. \nEvidence based Facts on the Pathogenesis and Management of SUI. http://www.obgyn.net/displayppt.asp?page=/English/pubs/features/presentations/El-Hemaly02/el-hemaly02-ss\n\n11- Abdel Karim M. El Hemaly*, Ibrahim M. Kandil, Mohamad A. Rizk and Mohamad A.K.M.El Hemaly.\n Urethro-plasty, a Novel Operation based on a New Concept, for the Treatment of Stress Urinary Incontinence, S.U.I., Detrusor Instability, D.I., and Mixed-type of Urinary Incontinence.\nhttp://www.obgyn.net/urogyn/urogyn.asp?page=/urogyn/articles/urethro-plasty_01\n\n12-Ibrahim M. Kandil, Abdel Karim M. El Hemaly, Mohamad M. Radwan: Ultrasonic Assessment of the Internal Urethral Sphincter in Stress Urinary Incontinence. The Internet Journal of Gynecology and Obstetrics. 2003. Volume 2 Number 1. \n\n13-Abdel Karim M. El Hemaly. Nocturnal Enureses: A Novel Concept on its pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecolgy/?page=articles/nocturnal_enuresis\n\n14- Abdel Karim M. El Hemaly. Nocturnal Enureses: An Update on the pathogenesis and Treatment.\nhttp://www.obgyn.net/urogynecology/?page=/ENHLIDH/PUBD/FEATURES/\nPresentations/ Nocturnal_Enuresis/nocturnal_enuresis",institutionString:null,institution:{name:"Al Azhar University",country:{name:"Egypt"}}},{id:"113313",title:"Dr.",name:"Abdel-Aal",middleName:null,surname:"Mantawy",slug:"abdel-aal-mantawy",fullName:"Abdel-Aal Mantawy",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ain Shams University",country:{name:"Egypt"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5161},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15610}],offset:12,limit:12,total:1683},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10542",title:"Molecular Epidemiology Study of Mycobacterium Tuberculosis Complex",subtitle:null,isOpenForSubmission:!0,hash:"29279e34f971687dc28de62534335ac4",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10542.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10552",title:"Montmorillonite",subtitle:null,isOpenForSubmission:!0,hash:"c4a279761f0bb046af95ecd32ab09e51",slug:null,bookSignature:"Prof. Faheem Uddin",coverURL:"https://cdn.intechopen.com/books/images_new/10552.jpg",editedByType:null,editors:[{id:"228107",title:"Prof.",name:"Faheem",surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!0,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10304",title:"Giant-Cell Arteritis",subtitle:null,isOpenForSubmission:!0,hash:"b144271ebc5d331aab73de18a7f9f4f5",slug:null,bookSignature:"Dr. Imtiaz A. Chaudhry",coverURL:"https://cdn.intechopen.com/books/images_new/10304.jpg",editedByType:null,editors:[{id:"66603",title:"Dr.",name:"Imtiaz",surname:"Chaudhry",slug:"imtiaz-chaudhry",fullName:"Imtiaz Chaudhry"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10539",title:"Ginseng in Medicine",subtitle:null,isOpenForSubmission:!0,hash:"5f388543a066b617d2c52bd4c027c272",slug:null,bookSignature:"Prof. Christophe Hano and Dr. Jen-Tsung Chen",coverURL:"https://cdn.intechopen.com/books/images_new/10539.jpg",editedByType:null,editors:[{id:"313856",title:"Prof.",name:"Christophe",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10482",title:"Human Teeth – Structure and Composition of Dental Hard Tissues and Developmental Dental Defects",subtitle:null,isOpenForSubmission:!0,hash:"82a91346a98d34805e30511d6504bd4c",slug:null,bookSignature:"Dr. Ana Gil De Bona and Dr. Hakan Karaaslan",coverURL:"https://cdn.intechopen.com/books/images_new/10482.jpg",editedByType:null,editors:[{id:"203919",title:"Dr.",name:"Ana",surname:"Gil De Bona",slug:"ana-gil-de-bona",fullName:"Ana Gil De Bona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9608",title:"Myasthenia Gravis",subtitle:null,isOpenForSubmission:!0,hash:"db6c84e3aa58f3873e1298add7042c44",slug:null,bookSignature:"Dr. Nizar Souayah",coverURL:"https://cdn.intechopen.com/books/images_new/9608.jpg",editedByType:null,editors:[{id:"162634",title:"Dr.",name:"Nizar",surname:"Souayah",slug:"nizar-souayah",fullName:"Nizar Souayah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10300",title:"Breast Cancer",subtitle:null,isOpenForSubmission:!0,hash:"bcf3738b16b0a4de6066853ab38b801c",slug:null,bookSignature:"Dr. Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/10300.jpg",editedByType:null,editors:[{id:"69697",title:"Dr.",name:"Mani T.",surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10260",title:"E-Service",subtitle:null,isOpenForSubmission:!0,hash:"11dab65781b3c4347022c56477311f46",slug:null,bookSignature:"Dr. Kyeong Kang",coverURL:"https://cdn.intechopen.com/books/images_new/10260.jpg",editedByType:null,editors:[{id:"2114",title:"Dr.",name:"Kyeong",surname:"Kang",slug:"kyeong-kang",fullName:"Kyeong Kang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9589",title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,isOpenForSubmission:!0,hash:"3e1efdb1fc8c403c402da09b242496c6",slug:null,bookSignature:"Dr. Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",editedByType:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10585",title:"Interleukin",subtitle:null,isOpenForSubmission:!0,hash:"6d4ebb087fdb199287bc765704246b60",slug:null,bookSignature:"Ph.D. Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/10585.jpg",editedByType:null,editors:[{id:"45803",title:"Ph.D.",name:"Payam",surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:17},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:14},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:60},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:159},popularBooks:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5126},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1040",title:"Immunoproteomics",slug:"immunoproteomics",parent:{title:"Immunology, Allergology and Rheumatology",slug:"immunology-allergology-and-rheumatology"},numberOfBooks:6,numberOfAuthorsAndEditors:177,numberOfWosCitations:168,numberOfCrossrefCitations:67,numberOfDimensionsCitations:230,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"immunoproteomics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7853",title:"Cytokines",subtitle:null,isOpenForSubmission:!1,hash:"8f4e8633673d74a52a8394aa6c7b68f2",slug:"cytokines",bookSignature:"Payam Behzadi",coverURL:"https://cdn.intechopen.com/books/images_new/7853.jpg",editedByType:"Edited by",editors:[{id:"45803",title:"Ph.D.",name:"Payam",middleName:null,surname:"Behzadi",slug:"payam-behzadi",fullName:"Payam Behzadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7140",title:"Human Leukocyte Antigen (HLA)",subtitle:null,isOpenForSubmission:!1,hash:"1dfb5e02db6bfe9eb05123da3c1552f3",slug:"human-leukocyte-antigen-hla-",bookSignature:"Batool Mutar Mahdi",coverURL:"https://cdn.intechopen.com/books/images_new/7140.jpg",editedByType:"Edited by",editors:[{id:"77656",title:"Dr.",name:"Batool Mutar",middleName:null,surname:"Mahdi",slug:"batool-mutar-mahdi",fullName:"Batool Mutar Mahdi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3824",title:"HLA and Associated Important Diseases",subtitle:null,isOpenForSubmission:!1,hash:"00746d26fc5889b954de0b35b9c60dd4",slug:"hla-and-associated-important-diseases",bookSignature:"Yongzhi Xi",coverURL:"https://cdn.intechopen.com/books/images_new/3824.jpg",editedByType:"Edited by",editors:[{id:"161075",title:"Distinguished Prof.",name:"Yongzhi",middleName:null,surname:"Xi",slug:"yongzhi-xi",fullName:"Yongzhi Xi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3318",title:"Acute Phase Proteins",subtitle:null,isOpenForSubmission:!1,hash:"fef15210e05f332c704e2ee4b69d2912",slug:"acute-phase-proteins",bookSignature:"Sabina Janciauskiene",coverURL:"https://cdn.intechopen.com/books/images_new/3318.jpg",editedByType:"Edited by",editors:[{id:"30473",title:"Prof.",name:"Sabina",middleName:null,surname:"Janciauskiene",slug:"sabina-janciauskiene",fullName:"Sabina Janciauskiene"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"534",title:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases",subtitle:null,isOpenForSubmission:!1,hash:"10bdb7d515216fe45c40522e1c5ac699",slug:"acute-phase-proteins-as-early-non-specific-biomarkers-of-human-and-veterinary-diseases",bookSignature:"Francisco Veas",coverURL:"https://cdn.intechopen.com/books/images_new/534.jpg",editedByType:"Edited by",editors:[{id:"38691",title:"Prof.",name:"Francisco",middleName:null,surname:"Veas",slug:"francisco-veas",fullName:"Francisco Veas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"234",title:"Acute Phase Proteins",subtitle:"Regulation and Functions of Acute Phase Proteins",isOpenForSubmission:!1,hash:"67e54ad18f99669c120f8db71ae779d4",slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",bookSignature:"Francisco Veas",coverURL:"https://cdn.intechopen.com/books/images_new/234.jpg",editedByType:"Edited by",editors:[{id:"38691",title:"Prof.",name:"Francisco",middleName:null,surname:"Veas",slug:"francisco-veas",fullName:"Francisco Veas"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:6,mostCitedChapters:[{id:"21681",doi:"10.5772/20747",title:"Inflammatory Response and Acute Phase Proteins in the Transition Period of High-Yielding Dairy Cows",slug:"inflammatory-response-and-acute-phase-proteins-in-the-transition-period-of-high-yielding-dairy-cows",totalDownloads:2799,totalCrossrefCites:7,totalDimensionsCites:29,book:{slug:"acute-phase-proteins-as-early-non-specific-biomarkers-of-human-and-veterinary-diseases",title:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases",fullTitle:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases"},signatures:"Erminio Trevisi, Massimo Amadori, Ivonne Archetti, Nicola Lacetera and Giuseppe Bertoni",authors:[{id:"40371",title:"Dr.",name:"Massimo",middleName:null,surname:"Amadori",slug:"massimo-amadori",fullName:"Massimo Amadori"},{id:"47776",title:"Prof.",name:"Erminio",middleName:null,surname:"Trevisi",slug:"erminio-trevisi",fullName:"Erminio Trevisi"},{id:"47777",title:"Dr.",name:"Ivonne",middleName:null,surname:"Archetti",slug:"ivonne-archetti",fullName:"Ivonne Archetti"},{id:"47778",title:"Prof.",name:"Nicola",middleName:null,surname:"Lacetera",slug:"nicola-lacetera",fullName:"Nicola Lacetera"},{id:"47779",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Bertoni",slug:"giuseppe-bertoni",fullName:"Giuseppe Bertoni"}]},{id:"21680",doi:"10.5772/19492",title:"Application of Acute Phase Proteins for Monitoring Inflammatory States in Cattle",slug:"application-of-acute-phase-proteins-for-monitoring-inflammatory-states-in-cattle",totalDownloads:2834,totalCrossrefCites:1,totalDimensionsCites:19,book:{slug:"acute-phase-proteins-as-early-non-specific-biomarkers-of-human-and-veterinary-diseases",title:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases",fullTitle:"Acute Phase Proteins as Early Non-Specific Biomarkers of Human and Veterinary Diseases"},signatures:"Burim N. Ametaj, Afshin Hosseini, John F. Odhiambo, Summera Iqbal, Sumeet Sharma, Qilan Deng, Tran H. Lam, Umar Farooq, Qendrim Zebeli and Suzanna M. Dunn",authors:[{id:"35129",title:"Prof.",name:"Burim",middleName:null,surname:"Ametaj",slug:"burim-ametaj",fullName:"Burim Ametaj"},{id:"49239",title:"Prof.",name:"Qendrim",middleName:null,surname:"Zebeli",slug:"qendrim-zebeli",fullName:"Qendrim Zebeli"},{id:"49242",title:"MSc",name:"Sarah",middleName:null,surname:"Terrill",slug:"sarah-terrill",fullName:"Sarah Terrill"}]},{id:"21456",doi:"10.5772/18241",title:"Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling",slug:"haptoglobin-and-hemopexin-in-heme-detoxification-and-iron-recycling",totalDownloads:3281,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Deborah Chiabrando, Francesca Vinchi, Veronica Fiorito and Emanuela Tolosano",authors:[{id:"30837",title:"Prof.",name:"Emanuela",middleName:null,surname:"Tolosano",slug:"emanuela-tolosano",fullName:"Emanuela Tolosano"},{id:"48270",title:"Dr.",name:"Deborah",middleName:null,surname:"Chiabrando",slug:"deborah-chiabrando",fullName:"Deborah Chiabrando"},{id:"48271",title:"Dr.",name:"Francesca",middleName:null,surname:"Vinchi",slug:"francesca-vinchi",fullName:"Francesca Vinchi"},{id:"48272",title:"Dr.",name:"Veronica",middleName:null,surname:"Fiorito",slug:"veronica-fiorito",fullName:"Veronica Fiorito"}]}],mostDownloadedChaptersLast30Days:[{id:"21460",title:"Neutrophil Gelatinase Associated Lipocalin: Structure, Function and Role in Human Pathogenesis",slug:"neutrophil-gelatinase-associated-lipocalin-structure-function-and-role-in-human-pathogenesis",totalDownloads:6403,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Subhankar Chakraborty, Sukhwinder Kaur, Zhimin Tong, Surinder K. Batra and Sushovan Guha",authors:[{id:"32460",title:"Dr.",name:"Sushovan",middleName:null,surname:"Guha",slug:"sushovan-guha",fullName:"Sushovan Guha"},{id:"49139",title:"Dr.",name:"Subhankar",middleName:null,surname:"Chakraborty",slug:"subhankar-chakraborty",fullName:"Subhankar Chakraborty"},{id:"49140",title:"Dr.",name:"Sukhwinder",middleName:null,surname:"Kaur",slug:"sukhwinder-kaur",fullName:"Sukhwinder Kaur"},{id:"49141",title:"Dr.",name:"Zhimin",middleName:null,surname:"Tong",slug:"zhimin-tong",fullName:"Zhimin Tong"},{id:"62274",title:"Dr.",name:"Surinder",middleName:null,surname:"Batra",slug:"surinder-batra",fullName:"Surinder Batra"}]},{id:"21446",title:"Acute Phase Proteins: Structure and Function Relationship",slug:"acute-phase-proteins-structure-and-function-relationship",totalDownloads:3486,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Sabina Janciauskiene, Tobias Welte and Ravi Mahadeva",authors:[{id:"30473",title:"Prof.",name:"Sabina",middleName:null,surname:"Janciauskiene",slug:"sabina-janciauskiene",fullName:"Sabina Janciauskiene"},{id:"47774",title:"Dr.",name:"Ravi",middleName:null,surname:"Mahadeva",slug:"ravi-mahadeva",fullName:"Ravi Mahadeva"},{id:"47775",title:"Prof.",name:"Tobias",middleName:null,surname:"Welte",slug:"tobias-welte",fullName:"Tobias Welte"}]},{id:"65210",title:"Introductory Chapter: Concept of Human Leukocyte Antigen (HLA)",slug:"introductory-chapter-concept-of-human-leukocyte-antigen-hla-",totalDownloads:1608,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"human-leukocyte-antigen-hla-",title:"Human Leukocyte Antigen (HLA)",fullTitle:"Human Leukocyte Antigen (HLA)"},signatures:"Batool Mutar Mahdi",authors:[{id:"77656",title:"Dr.",name:"Batool Mutar",middleName:null,surname:"Mahdi",slug:"batool-mutar-mahdi",fullName:"Batool Mutar Mahdi"}]},{id:"46267",title:"Human Leucocyte Antigen Matching Strategy",slug:"human-leucocyte-antigen-matching-strategy",totalDownloads:2344,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"hla-and-associated-important-diseases",title:"HLA and Associated Important Diseases",fullTitle:"HLA and Associated Important Diseases"},signatures:"Yuying Sun and Yongzhi Xi",authors:[{id:"161075",title:"Distinguished Prof.",name:"Yongzhi",middleName:null,surname:"Xi",slug:"yongzhi-xi",fullName:"Yongzhi Xi"}]},{id:"64706",title:"HLA Allele Frequencies in Pediatric and Adolescent Multiple Sclerosis Patients",slug:"hla-allele-frequencies-in-pediatric-and-adolescent-multiple-sclerosis-patients",totalDownloads:495,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"human-leukocyte-antigen-hla-",title:"Human Leukocyte Antigen (HLA)",fullTitle:"Human Leukocyte Antigen (HLA)"},signatures:"Maria Anagnostouli and Maria Gontika",authors:[{id:"253905",title:"Prof.",name:"Maria",middleName:null,surname:"Anagnostouli",slug:"maria-anagnostouli",fullName:"Maria Anagnostouli"}]},{id:"45165",title:"Inflammation and Acute Phase Proteins in Haemostasis",slug:"inflammation-and-acute-phase-proteins-in-haemostasis",totalDownloads:3421,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins"},signatures:"Simon J. Davidson",authors:[{id:"159716",title:"Dr",name:"Simon",middleName:null,surname:"Davidson",slug:"simon-davidson",fullName:"Simon Davidson"}]},{id:"45299",title:"Molecular Aspects of Human Alpha-1 Acid Glycoprotein — Structure and Function",slug:"molecular-aspects-of-human-alpha-1-acid-glycoprotein-structure-and-function",totalDownloads:2831,totalCrossrefCites:3,totalDimensionsCites:10,book:{slug:"acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins"},signatures:"Kazuaki Taguchi, Koji Nishi, Victor Tuan Giam Chuang, Toru\nMaruyama and Masaki Otagiri",authors:[{id:"158116",title:"Prof.",name:"Masaki",middleName:null,surname:"Otagiri",slug:"masaki-otagiri",fullName:"Masaki Otagiri"},{id:"158238",title:"Dr.",name:"Kazuaki",middleName:null,surname:"Taguchi",slug:"kazuaki-taguchi",fullName:"Kazuaki Taguchi"},{id:"165882",title:"Dr.",name:"Koji",middleName:null,surname:"Nishi",slug:"koji-nishi",fullName:"Koji Nishi"},{id:"165883",title:"Dr.",name:"Victor Tuan Giam",middleName:null,surname:"Chuang",slug:"victor-tuan-giam-chuang",fullName:"Victor Tuan Giam Chuang"},{id:"165884",title:"Prof.",name:"Toru",middleName:null,surname:"Maruyama",slug:"toru-maruyama",fullName:"Toru Maruyama"}]},{id:"21459",title:"Role of Fetuin-A in Injury and Infection",slug:"role-of-fetuin-a-in-injury-and-infection",totalDownloads:2078,totalCrossrefCites:1,totalDimensionsCites:13,book:{slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Haichao Wang, Wei Li, Shu Zhu, Ping Wang and Andrew E. Sama",authors:[{id:"30316",title:"Prof.",name:"Haichao",middleName:null,surname:"Wang",slug:"haichao-wang",fullName:"Haichao Wang"},{id:"85626",title:"Dr.",name:"Wei",middleName:null,surname:"Li",slug:"wei-li",fullName:"Wei Li"},{id:"85627",title:"Dr.",name:"Shu",middleName:null,surname:"Zhu",slug:"shu-zhu",fullName:"Shu Zhu"},{id:"85628",title:"Prof.",name:"Ping",middleName:null,surname:"Wang",slug:"ping-wang",fullName:"Ping Wang"},{id:"85629",title:"Prof.",name:"Andrew",middleName:null,surname:"Sama",slug:"andrew-sama",fullName:"Andrew Sama"}]},{id:"21448",title:"IL-22 Induces an Acute-Phase Response Associated to a Cohort of Acute Phase Proteins and Antimicrobial Peptides as Players of Homeostasis",slug:"il-22-induces-an-acute-phase-response-associated-to-a-cohort-of-acute-phase-proteins-and-antimicrobi",totalDownloads:2362,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Francisco Veas and Gregor Dubois",authors:[{id:"38691",title:"Prof.",name:"Francisco",middleName:null,surname:"Veas",slug:"francisco-veas",fullName:"Francisco Veas"},{id:"135651",title:"Prof.",name:"Gregor",middleName:null,surname:"Dubois",slug:"gregor-dubois",fullName:"Gregor Dubois"}]},{id:"21445",title:"Transcriptional Regulation of Acute Phase Protein Genes",slug:"transcriptional-regulation-of-acute-phase-protein-genes",totalDownloads:2530,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"acute-phase-proteins-regulation-and-functions-of-acute-phase-proteins",title:"Acute Phase Proteins",fullTitle:"Acute Phase Proteins - Regulation and Functions of Acute Phase Proteins"},signatures:"Claude Asselin and Mylène Blais",authors:[{id:"38677",title:"Prof.",name:"Claude",middleName:null,surname:"Asselin",slug:"claude-asselin",fullName:"Claude Asselin"},{id:"49008",title:"Dr.",name:"Mylène",middleName:null,surname:"Blais",slug:"mylene-blais",fullName:"Mylène Blais"}]}],onlineFirstChaptersFilter:{topicSlug:"immunoproteomics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/71239/martine-leblanc",hash:"",query:{},params:{id:"71239",slug:"martine-leblanc"},fullPath:"/profiles/71239/martine-leblanc",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()