N-fixing PGPB strains and their respective effect on leguminous plants.
\r\n\t
",isbn:"978-1-83768-117-4",printIsbn:"978-1-83768-116-7",pdfIsbn:"978-1-83768-118-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"a15f5d35a75d3dfee7d27e19238306b0",bookSignature:"Dr. Rakhab Mehta",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12014.jpg",keywords:"Baseball, Volleyball, Soccer Ball, Tennis Ball, Cricket Ball, Golf Ball, Fluid Mechanics, Forces and Moments, Flight Trajectory, Control and Stability, Aerodynamic Coefficients, Atmospheric Conditions",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"19 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Participated in the aerodynamic design of launch and reentry vehicles. The post-flight analysis is carried out to evaluate the vehicle's aerodynamic performance. An inverse heat conduction algorithm was developed to predict the convective heat transfer in a rocket nozzle.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"56358",title:"Dr.",name:"Rakhab",middleName:null,surname:"Mehta",slug:"rakhab-mehta",fullName:"Rakhab Mehta",profilePictureURL:"https://mts.intechopen.com/storage/users/56358/images/system/56358.jpeg",biography:"R. C. Mehta obtained his Ph.D. from the Indian Institute of Technology, Madras. He has worked as the Head of Aerodynamics\r\nDivision of Vikram Sarabhai Space Centre/Indian Space Research Organization and has participated in the design of launch and reentry vehicles. He has served as a Senior Fellow in the School of Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. He is the recipient of the Lifetime Achievement Award from the Flow Physics Society of India. He is a senior member of AIAA, has published over 120 papers in peer-reviewed national and international journals, five book chapters, and co-authored two books. He is a reviewer for many international journals and is presently Dean in the Noorul Islam Centre for Higher Education, Kumaracoil, India.",institutionString:"Noorul Islam University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Noorul Islam University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"20",title:"Physics",slug:"physics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453624",firstName:"Martina",lastName:"Scerbe",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/453624/images/20399_n.jpg",email:"martina.s@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"8356",title:"Metastable, Spintronics Materials and Mechanics of Deformable Bodies",subtitle:"Recent Progress",isOpenForSubmission:!1,hash:"1550f1986ce9bcc0db87d407a8b47078",slug:"solid-state-physics-metastable-spintronics-materials-and-mechanics-of-deformable-bodies-recent-progress",bookSignature:"Subbarayan Sivasankaran, Pramoda Kumar Nayak and Ezgi Günay",coverURL:"https://cdn.intechopen.com/books/images_new/8356.jpg",editedByType:"Edited by",editors:[{id:"190989",title:"Dr.",name:"Subbarayan",surname:"Sivasankaran",slug:"subbarayan-sivasankaran",fullName:"Subbarayan Sivasankaran"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69977",title:"Comprehensive Account of Inoculation and Coinoculation in Soybean",doi:"10.5772/intechopen.84459",slug:"comprehensive-account-of-inoculation-and-coinoculation-in-soybean",body:'Better plant growth is ensured by the balanced availability of essential nutrients in soil. Each nutrient has its own function and is required in different amount depending on the plant demand. Nitrogen (N), one of the most essential macronutrients, is routinely applied through chemical fertilizer as most field crops require large amounts of it. Nitrogen, the fifth most abundant element in the universe, was first discovered in 1772 by a Scottish physician, Daniel Rutherford. Due to its essentiality for survival of life on earth, it was called as “azote,” meaning “without life,” by Antoine Lavoisier about 200 years. Nitrogen is essential for the sustenance of life on this planet as it serves as building block for the synthesis of proteins. The inevitable role of N is well acknowledged in several biochemical processes such as cell division, growth promotion, and photosynthesis, as part of vitamins and carbohydrates and energy reactions in the plant body [1, 2]. Deficiency of N in plants is recognized by the symptom of delaying maturity of plant which leads to the late blooming. Deficiency symptoms also include chlorosis of leaves (light green or yellowing of leaves) and retarded plant growth. Due to high mobility of N, these deficiency symptoms first appear in older leaves of the plant [3].
The gaseous form of N is termed as dinitrogen (N2) which accounts for 78% of the total gaseous content of the atmosphere. This form of N is unavailable for plants until it is fixed and converted into ammonium and nitrates, the forms in which plants can uptake N [4]. Soils contain both organic and inorganic N; however, organic form constitutes a major part of total soil N content. Plants, on the other hand, can use only specific inorganic forms of N like nitrate and ammonium. Like phosphorus (P) and carbon (C), N undergoes biogeochemical conversion from gaseous state to mineralized form in soil followed by its return to the atmosphere in the gaseous phase. The net concentration of N2 per year was estimated to be 3 × 109 tons on global basis [5]. Nitrogen cycle is considered to be a biogeochemical cycle, where the N changes into different chemical forms and shifts to different ecological spheres of the earth. The fundamental components of N cycle are decomposers and N-fixing bacteria. Nitrogen cycle initiates with microbial fixation of N in the soil, where mineralization of N takes place by conversion of atmospheric or organic N into ammonium, a process known as ammonification. Further, ammonium is converted into nitrate by soil microbes and nitrifying bacteria, e.g.,
The fixation of N involves conversion of N2 into various nitrogenous compounds such as ammonium and nitrate, so that they may become more reactive and plant available.
Industrial N fixation involves the Haber-Bosch process which is an energy-inefficient method for making nitrogen fertilizers:
N fixation can be biological and nonbiological in natural environment.
In nonbiological fixation, a relatively small amount of N is fixed by a spontaneous reaction that occurs during lightning. It is estimated that about 10% of the world’s supply of fixed N comes from lightning [6]. Lightning can be described as occurrence of a sudden electrostatic discharge during a thunderstorm. During lightning, atmospheric nitrogen reacts with oxygen to form nitric oxide (NO). In the presence of excessive O2, nitric oxide oxidizes to nitrogen dioxide (NO2). In the presence of water, NO2 may react to form nitrous (HNO2) and nitric acid (HNO3) or may react with rainwater and oxygen to produce nitric acid. These acids find their way to reach the soil with rainwater, interaction with alkaline substrates occurs, and hydrogen is released forming nitrate (NO3−) and nitrite ions (NO2−). The nitrate ions can be readily consumed by microbes and plants. However, soil microbes are not directly involved in this kind of N fixation. The chemical reactions involved in such N fixation are presented below:
OR
Biological fixation of N2 is carried out by N-fixing bacteria in soil. This fixation accounts for approximately 60% of fixed N in soil. Fixation of N2 by microbes is termed as biological N fixation (BNF). Soil microbes are diazotrophs (bacteria and archaea) that contain enzyme nitrogenase, capable of converting N2 into ammonium and nitrates, a process termed as nitrification. Common diazotrophs are rhizobia, blue-green algae (cyanobacteria),
BNF can be classified into nonsymbiotic (free-living) and symbiotic (in association).
Microorganisms that fix atmospheric nitrogen independently are known as free-living diazotrophs. This type of fixation is carried out by free-living microorganisms. Examples of free-living organisms, which fix N, are cyanobacteria (blue-green algae, e.g.,
Symbiotic nitrogen fixation, carried out by specialized soil bacteria as discussed above, is the good source of N for plants. In return, plants provide required nutrients and energy for bacterial growth. Upon the death of nitrogen-fixing bacteria, nitrogen is released to the environment, and some non-leguminous plants may benefit from that nitrogen. In leguminous plants, nitrogen-fixing bacteria colonize on plant roots forming nodules. Within these nodules, nitrogen fixation is carried out by the bacteria, and the end product, NH3, produced is absorbed by the plant [7].
Legumes belong to Fabaceae or Leguminosae family and are primarily grown for human consumption, as forage and silage for livestock, and act as a green manure for enhancing soil fertility. Some common legumes include alfalfa, soybeans, chick peas, pigeon peas, clovers, cow peas, kidney, lentils, mung beans, peanuts, peas, and vetches. These are native to tropical rain forests and dry forests in America and Africa [8]. Legumes consist of 750 genera and 19,000 species of herbs, shrubs, trees, and climbers.
Legume seeds (pulses or grain legumes) are the major part of human diet. Nutritionally, legume seeds are rich in protein contents as compared to cereal grains. The combined use of legumes and cereals may provide necessary dietary proteins. Legumes are also used as pasture and animal fodder in which soybeans are most commonly used. Legumes, as green manure, improve soil quality by adding nitrogen and organic matter. Legumes are used in crop rotation for the sustainable crop production. About 2500 species of Leguminosae produce root nodules.
The soybean (
Nitrogen fixation in legumes starts with the formation of small, knob-like protuberances called nodules. The bacteria get all the necessary nutrients and energy from the plants. The roots of legumes release chemicals known as flavonoids to attract the bacteria [10]. In response to flavonoids, the soil bacteria produce nod factors. Nod factors are signaling molecules which are sensed by the roots. As a result, a series of biochemical modifications lead to cell division in the root to create the nodule. Lectins, a sugar-binding protein in root hairs of legumes, are activated by nod factors. This helps in the recognition and attachment of rhizobial cells to the root hairs whose tips in turn become curved. The growing root hair curls around the bacteria in several attempts until one or more bacteria are enclosed. The enclosed bacteria colonize and eventually enter the developing nodule through infection thread. Infection thread is a structure extended through the root hair into the epidermis cell and then comes out of the root cortex. The bacteria are then surrounded by plant-derived membrane. Rhizobial multiplication starts in cortical cells which results in the formation of nodule on the surface. In side nodules, the bacterial cells continue multiplication and colonization until host cells are completely filled. After that bacterial cell becomes dormant bacteroids and starts floating in leghemoglobin. Leghemoglobin is a reddish pigment in cytoplasm of host cells which efficiently scavenges O2 so that maintenance of the steady state of oxygen and stimulation of ATP production is possible. Plants provide shelter and organic compounds to the rhizobia, and in turn rhizobia provide fixed nitrogen to the plant. Among leguminous crops, soybean takes great consideration due to higher contribution of BNF. Normally, nodulation occurs after 4 weeks of plantation. The small nodules become visible after 1 week of the infection. The color of nodule appears white or gray when nitrogen fixation is insufficient, whereas color changes to pink or reddish as N2 fixation progresses. This color change is attributed to the occurrence of leghemoglobin which is similar to blood hemoglobin that regulates the flow of oxygen to the rhizobia.
Perennial legumes such as alfalfa, clover, etc. develop nodule about half an inch capable of fixing N throughout the growing season. Annual legumes like beans, soybeans, and peanuts have short-lived nodule, round in shape with size of pea. These nodules are continuously replaced during the growing season. Annual legumes provide nourishment to developing seed instead of nodules; therefore, nodules cannot fix N anymore. The number of nodules varies per plant species, e.g., on average beans comprised of <100 nodules per plant, soybean can have several 100 nodules per plant, and peanut may have >1000 nodules per plant. Nodules on annual legumes, such as beans, peanuts, and soybeans, are short-lived and round in shape and can reach the size of a large pea and will be replaced constantly during the growing season. At the time of pod fill, nodules on annual legumes generally lose their ability to fix nitrogen because the plant feeds the developing seed rather than the nodule. Beans have less than 100 nodules per plant, soybeans will have several hundred per plant, and peanuts may have 1000 or more nodules on a well-developed plant.
Nodulation is regulated by both external and internal processes. Soil temperature, soil N mineral content, acidity of soils, and water scarcity can be categorized as external factors, whereas autoregulation and ethylene are the most influential internal factors. Autoregulation of nodule (AON) specifies the number of nodules per plant. Leaf tissue via chemical signal can sense the onset of nodulation and inhibit it in the developing root. Such chemicals are leucine-rich repeat (LRR) receptor kinases that are crucial for autoregulation of nodule formation. The mechanism for nodule formation is coded by
Microbes inhabiting soil can be termed as plant growth-promoting rhizobia (PGPR) due to their multifuntionality in symbiotic relationship with plant. PGPRs play role in plant nutrition by mineralizing nutrients in rhizosphere. PGPRs as indicated by name actively participate in phosphate solubilization and production of siderophore, phytohormones, and several enzymes. The biochemical characteristics of PGPR, for instance, lipopolysaccharides (endotoxins), homoserine lactones (signaling molecules), acetoin (preventing over-acidification in cytoplasm), and flagella (locomotive and sensory organs) help plants to develop systematic resistance against pests and pathogens. The PGPRs enhance tolerance against extremity of environmental conditions such as drought, nutrient deficiency, and prevalence of organic (pesticides) and inorganic (heavy metals) toxicity. PGPR, therefore, are considered as biofertilizers for sustainable agricultural practices.
Soybean develops symbiotic relationship with a range of PGPRs to fix nitrogen (N) and improve plant growth [11, 12, 13]. Establishment of symbiotic relationship between roots of the host plant and symbiont is a two-step process. In first step, host tissue is infected with rhizobacteria and in second nodule formation occurs. Plant roots contribute in the symbiotic relationship by releasing flavonoids, while rhizobacterium produces nodulation factors. Rhizobacterium is entrapped in plant hairs’ curls, and infection threads are formed at the root hair curls, permitting bacterial invasion of the root tissue. The process of nodulation is initiated just below the infected point. Rhizobacterium may be restricted to infection threads, but mostly, they are released into nodule cells where nitrogen fixation occurs.
Inoculation and coinoculation of PGPRs have become a popular research area in recent crop production. The interest in rhizosphere microbiology was developed due to the beneficial effects of some free-living strains of bacteria on plant growth and disease control and maintaining good soil health. Initial studies were focused on bacterial genera including
To overcome some limitations of inoculation and increase PGPRs’ efficiency, coinoculation is now commonplace in experimental and field trials. The objective is to increase the consistency and frequency of nodulation rate in various plant species. By definition, coinoculation is the combined application of PGPRs and other bacteria, bestowed with some specialized functions, to increase the nodulation rate, plant growth, and plant tolerance to adverse environmental conditions. For example, coinoculation of PGPRs with nitrogen-fixing bacteria has caused earlier nodulation and greater intensity, better uptake of nutrients and water, and improved plant growth [11]. In another study, coinoculation of soybean plants with strains of
Inoculation and coinoculation of plants with single or multiple PGPRs may bring changes in the number of root hairs, nodule formation, root exudation, and release of phytohormones in addition to several physiological and metabolic changes. Generally, the potential of a specific PGPR strain to enhance nodulation rate can be best judged in a single experiment; however, consistent performance needs multiple field trials. The initial study on the role of PGPRs in enhancing nodulation rate was conducted on
Rhizosphere is the soil adjacent to the growing roots of a plant. A strong interaction exists between the roots and soil. The microbial activity in the rhizosphere makes the interaction even stronger. The interaction between the plants and microbes can be symbiotic, nonsymbiotic, neutral, and parasitic. There are a number of microbes that are found in the rhizosphere; these include bacteria, fungi, actinomycetes, protozoa, and algae. Among these the most common is the bacterial population. Plant growth-promoting rhizobacteria are the bacterial biomass that colonizes the plant roots in the rhizosphere [22]. PGPRs have been reported to play many important functions in plants; these include nitrogen fixation and uptake, tolerance under stress conditions, and production of certain phytohormones, i.e., plant growth regulators, siderophores (iron-binding protein compounds), volatile substances, and also certain enzymes, i.e., glucanase and chitinase to protect plants against disease [23, 24].
Phytohormones are produced in low concentration but have greater influence on the biochemical, physiological, and morphological functions of plants. They function as chemical messengers to transfer cellular activities in higher plants [25]. During the abiotic stress condition, these phytohormones play vital roles through communicating different transducing signals, which may control the external and internal stimuli [26]. Also some of the phytohormones are identified as stress hormones like abscisic acid (ABA). These phytohormones have a significant role in various plant processes. ABA besides facilitation during biotic and abiotic stress also is critical for maintaining seed dormancy, growth regulation, inhibiting germination, controlling the stomatal closure, and fruit abscission [27]. The plant growth regulators produced include auxin, gibberellic acid, cytokinins, and ethylene. Ahmad and Hasnain (2010) [28] have reported that
Plant growth regulators (PGRs) are synthetically available and are used in commercial agriculture extensively. Through various investigations, it has been found that application of growth regulators at pre-sowing stage to the seeds may enhance the nutrient reserves, tissue hydration, growth, and yield of crops [31]. Khan et al. (2018) [32] found synergistic effects of PGPRs and PGRs on different qualitative parameters of crops, i.e., chlorophyll, sugar, and protein contents. They concluded that application of PGRs to the plants inoculated with PGPRs helped plants under stress conditions. Also the amount of PGRs applied exogenously to the plants may be stored as reversible conjugates, and they also release phytohormones as required by the plants at different growth stages. Also these PGRs are found effective in transferring accumulates from source to the sink [33, 34].
Also some of the researchers have reported that the release of phytohormones may be enhanced several times by the applications of some suitable precursor of the plant hormones. These precursors are utilized by the rhizobacteria and converted into active phytohormones, and they are continuously used by the plants [35]. Among these precursors, L-methionine is an important precursor of ethylene (C2H4), a gaseous plant hormone that positively affects at almost all stages of growth and developmental processes [36]. Application of L-methionine to the rhizosphere enhanced the ethylene production and has shown significant increase in the growth and yield traits of soybean [36].
The bacterial population in the rhizosphere sometimes modifies the formation of nodules when they are coinoculated. The mechanism behind this process is that the coinoculation may directly enhance the growth and development of plant by the increase in microbial biomass, extending the root system by release of phytohormones, solubilization of phosphate in the rhizosphere, etc. Moreover, development of roots provides additional sites for nodule formation [37, 38]. Indole-acetic acid (IAA) is an important metabolite of auxin group produced by the
Some PGPRs produce allelochemicals which are phytotoxic in nature. Production of these allelochemicals may adversely affect the soil health [41], by having negative effect on the enzymatic activity and plant functions, and may also hamper the nutrient availability to plants. The number of allelochemicals has been isolated from the bacterial strain present in the rhizosphere. It has been reported that a single strain of bacteria may produce a wide range of allelochemicals, e.g.,
An exponential increase in the world’s population will demand a higher production of food crops. By 2050, it is projected that the world’s food demand will reach up to 3 billion tons. This high demand for food has been resulted in the excessive use of chemical fertilizer (nitrogen, phosphorus, potassium) in combination with advancements in technology to enhance the plant growth and production. Nitrogen is a vital nutrient in plant growth and productivity. Unfortunately, when a recommended dose of fertilizers is applied to crops for an average yield, less than 50% of applied nitrogen fertilizer is consumed by plants [43]. This low use efficiency of N causes the high fertilizer consumption and nitrate contamination of groundwater and soil which finally resulted in environmental degradation and health problems. Inoculation with microbes has been considered as an environmentally friendly alternative to minimize the use of synthetic nitrogen fertilizer without compromising the crop growth and yield [44, 45]. By biological nitrogen fixation, atmospheric nitrogen is converted to plant-utilizable forms, which is performed by microorganisms which convert the nitrogen to ammonia [46]. These microorganism generally is categorized into two groups: (i) nitrogen-fixing bacteria which generally includes the Rhizobiaceae family members and forms symbiotic associations with legume plants [47] and other non-leguminous plants and (ii) nonsymbiotic nitrogen-fixing bacteria (free-living, associative, and endophytic) such as
Bacterial strains | Plant | Effect | References |
---|---|---|---|
Improved growth and yield | Devi et al. [70] | ||
Maize | Improved N use efficiency and improved yield | Morais et al. [71] | |
Soybean | Promoted growth and yield with N application | Hungria et al. [79] | |
Chickpea | Promoted growth in combination with N application | Namvar et al. [80] | |
Soybean | Significantly improved nodule biomass | Chibeba et al. [81] | |
Soybean | Increased nodule weight and crop yield, improved the activity of nitrogenase enzyme and nitrogen assimilation | Alam et al. [82] | |
Rice | Increased grain yield | Araujo et al. [83] | |
Chickpea | Improved nodule biomass and crop yield | Imran et al. [84] |
N-fixing PGPB strains and their respective effect on leguminous plants.
Plant growth-promoting bacteria (PGPB) comprise a group of microorganisms that colonize the internal plant tissue and root surface and provide many benefits to host plants [51, 52]. These microorganisms can improve plant growth by contributing several mechanisms and processes including synthesis of hormones such as cytokinins, auxins [53], ethylene [54], gibberellins [55], and a variety of other molecules [56], biological control of pathogens [57, 58], and solubilization of phosphate [59]. Combinations of these mechanisms finally benefit the plant by improving growth [60, 61] and biological nitrogen fixation and increase the activity of nitrate reductase when growing as plant endophytes [62]. These bacteria also produce the siderophores and synthesize enzymes, antibiotics, or fungicidal compounds that protect the plants against phytopathogenic microorganisms [63, 64]. There are several factors such as agricultural practices, plant genotype, bacteria species, and strain that may affect the success of inoculation and plant response to these PGPB [65, 66]. Chickpea and
Now scientists have developed new microbial associations to avoid such negative interrelations and increase the effectiveness of biofertilizers. Consortia of PGPR with mycorrhizal algae [75] or fungi [51] can show a better performance as a result of cumulative or synergistic interactions between beneficial mechanisms of different microorganisms. Mycorrhiza is a symbiotic interaction between plants and soil fungi called as arbuscular mycorrhizal fungi (AMF). Both associates get benefits for this relationship by improving nutritional status, which reduces the needs of fertilizers for crops [76, 77]. Vesicular-arbuscular mycorrhizal fungi improved the availability of nitrogen and phosphorus to support the plant to survive in different environmental severe conditions [78].
The symbiotic relationship between N2-fixing bacteria and leguminous plants is a core factor in enhancing soybean crop yield around the world. The atmospheric nitrogen captured by these bacteria is enzymatically reduced to ammonia. This ammonia is assimilated by plant tissues in the form of nitrogenous compounds. Around 20–22 million tons of N is fixed by symbiotic rhizobia [85], while 17 million tons is removed or assimilated by aerial biomass of legumes [86]. The fixed N can serve as an inevitable resource of N depending on net N fixation in soil as compared to its removal or assimilation in aerial parts of legumes which is estimated to be 45–75% [87]. Nonetheless, the cropping systems with legumes have high crop yield as compared to non-legumes [88]. The fixation of N2 can be maximized by sustainable and organic farming practices. However, legume specie, soil type and climatic conditions can also impact fixation rate of N2 [89].The production of soybean as cash crop is evident in Brazil, Argentina, Russia, Ukraine, and the United States [90]. In Asia, North China and Japan chiefly cultivate soybean along with wheat [91].
Quantification of leguminous biological nitrogen fixation (BNF) can be beneficial for sustaining N demand and supply which can increase productivity and ability to combat environmental stresses. The techniques available for quantifying legume BNF are costly and protracted. Moreover, the data provided by such techniques are pertinent to limited time and space. Simulation of legume BNF is attainable by empirical and dynamic modeling. Empirical modeling is based on observation and experiment, while dynamic modeling is capable of representing a pattern or behavior over a time period. In case of legume BNF simulation, dynamic modeling can be desirable as it can correlate various environmental factors and legume growth status with N fixation. Broadly, legume BNF is discussed in relation to demand, uptake, and assimilation of N in biomass of root, nodule, and aerial parts of leguminous plants. Moreover, concentration of N accumulated in soil, along with soil’s environmental parameters such as water content, N mineral concentration, internal substrate, C substrate and supply, and temperature are essential to quantify N fixation. Last but not the least growth rate of leguminous plant is a dynamic indicator in estimation of fixed N [92, 93, 94, 95].
During growing period, N fixation can be estimated by considering economic yield or dry matter of aerial biomass [96, 97, 98]. For this purpose, the equation can be:
where DM represents dry matter of aerial biomass or yield, fleg is proportion of legume crop in intercropping system, Ncon is concentration of N assimilated in legume plant, and %Ndfa indicates proportion of N in crop which is derived from fixation of N2, whereas Rroot is a ratio of N fixed in belowground parts to the N fixed in aerial parts of legumes. α is a parameter which can have different definition depending on the researcher. For example, α can be used to represent correlation between decline in %Ndfa and high soil N content. In order to estimate total N input, α can be calculated as:
where ß evaluates the responsiveness of legume for N fixation to already present mineral N (nitrate and ammonia) in the soil [98]. This method can directly estimate N fixation. Its parameter values can be taken both as estimated values from literature or measured values from on-site analysis. This method can work in the absence of previous data from past years. In these equations, environmental and weather conditions are not considered; therefore, this method can only be suitable for soils with similar properties and with exposure to moderate weather conditions. Moreover, the parameter values can be accustomed according to soil condition.
The empirical model can be used to explicit correlation between amount of N fixed in legumes and the total harvested part of legumes. In the case of intercropping system, fixed N in legumes can be correlated to the present fraction of legumes in the field. The equation is devised to calculate N fixation in kg N ha−1, such as:
where Leg denotes excess in harvested biomass (kg ha−1) while c and d comprise the selected parameters.
The empirical model is based on statistical correlation with speculation of strong linear relationship between N fixation and variables. The applicability of this model is on wide variety of soils. This model requires adequate amount of data to constitute a correlation study and to determine the values for the selected parameter. The linear empirical model, however, does not account environmental conditions [99, 100].
Leguminous N fixation in soybean was first simulated by Duffy et al. (1975) [101]. He estimated rate of N fixation by measuring root growth rate after specific days of planting. Crop models being dynamic in nature involve the potential impacts of soil environmental conditions for estimating N fixation. However, soil salinity, pH and availability of other nutrients are exempted in such models. Examples of crop models are Sinclair [102, 103], EPIC [104, 105, 106], Hurley Pasture model [107, 108, 109, 110], Schwinning model [111, 112], CROPGRO [113, 114, 115, 93, 116], SOILN [117], APSIM [95, 118], Sousanna model [94] and STICS [119, 120, 121]. These crop models are applicable in varying environmental conditions; therefore, each model can have different versions for calculating N fixation. Thus, Liu et al. (2011) [122] devised a general equation for these crop models:
where Nfixpot indicates the potential rate of N to be fixed by legumes (g N fixed day−1), f represents the influence function of environmental conditions, fT is impact of soil temperature, fW can be taken as impact of water deficiency or flooding in soil, fN can estimate impact of availability of mineral N (nitrate and ammonia) in soil or N availability in root substrate, fC represents effect of C concentration in root and aerial parts of legume plant, and fgro is the effect of plant’s growth stage on potential rate of N fixation. In the case of Environmental Policy Integrated Climate (EPIC) model and Simulateur mulTIdisciplinaire pour les Cultures Standard (STICS), the equation is generalized as:
where min indicates the minimum value that can be assumed between fW and fN. If applying STICS model, the limitation by anoxia is represented by extra function, i.e., fa.
In dynamic models, the potential rate of N fixation is estimated on the basis of demand or uptake of N by legume plant or on the ability of root nodules to fix atmospheric N2. In EPIC, the potential rate of N fixation is equal to the demand of N by legume plant [107]. The higher the demand of the N in legume plant, the higher will be the potential of N fixation. In contrast, according to Agricultural Production Systems siMulator (APSIM), the internal concentration of N in plant tissues governs the N demand of legume plant, which in turn defines the potential rate of N fixation in legumes. However, APSIM is applicable when plant has sufficient N concentration which can fulfill N demand of new tissues by uptake N from the soil [122]. N uptake is relatively passive and much preferable than N fixation; therefore, N fixation is only estimated when plant’s demand for N is not fulfilled by N uptake [123]. Potential rate of N fixation, therefore, can be defined as difference between N demand and uptake [95, 118]. On the other hand, some researchers claim that the potential of N fixation is dependent on size and biomass of root and nodules, i.e., above- and underground biomass [124, 125]. However, estimation of N fixation using aboveground biomass is more convenient to handle than underground biomass [126].
Soybean being plant of tropical and sub-tropical regions requires warm conditions for growing. The favorable temperature for soybean root zone ranges from 25–30°C [127]. Crop models such as Hurley Pasture model, CROPGRO, SOILN, and STICS estimated the effect of soil temperature on rate of N fixation by specifying certain temperature range. The generalized forms of equations are:
where T represents soil temperature in °C, Tmin is the minimum temperature below which N fixation can stop, Tmax is the maximum temperature above which N fixation can stop to occur, and ToptL and ToptH indicate low and high values of optimal temperature range. In optimal condition, the optimum response to soil temperature becomes equal to the unit. Depending on location and legume species, the temperature range can vary in different models [109].
The excessive and deficient amount of soil water in the
where fTSW represents the fraction of transpirable water in soil, whereas m and n are constants defining responsiveness of legumes for N fixation in low soil water content. APSIM, EPIC, and SOILN formulated linear function, which is expressed as:
where Wf is the ratio of relative availability of water content in soil at a given field capacity, Wa is the minimum value of water content below which N fixation cannot occur, ϕ1 and ϕ2 are the coefficients, and Wb is the threshold value of Wf above which N fixation is not impeded by water content of soil.
However, researchers with special focus on water stress conditions revealed that the top layer of soil around 30 cm is susceptible to dryness or wetness during dry spell or irrigation period. This can influence the access of water to root nodules [128]. Therefore, the presence of water within the roots is a more reliable factor in quantifying N fixation in limited water supply. Contrarily, in Hurley Pasture model, the chemical activity in the roots is assumed to control N fixation, wherein the chemical activity indirectly relies on probable water content in the root and temperature of soil [107]. So the effect of water is correlated with the thermal condition of soil such as:
where Φrt, probable water content in the root (J Kg−1) and Ts is termed as thermal value of water content in soil (°C).
Excessive water can cause anoxic conditions in soil. In such condition, N fixation is assumed to be at zero in Sinclair model [103]. In anaerobic conditions, pore spaces become occupied with water; therefore, N fixation cannot occur.
The availability of N in the form of nitrates and ammonia is said to be mineral N in soil. In SOILN model, mineral N is incorporated for estimating N fixation in nodules such as:
where Ns is mineral N content of soil (mg N m−3). The N uptake can be influenced by mineral N in soil; therefore, Schwinning model estimates potential of N fixation as:
where Ԑ is the efficiency of legume BNF, fmax is the maximum amount of N derived from the uptake of mineral N from soil, KN indicates the concentration of nitrate in soil (g N m−2) with N uptake reaching at half of its maximum rate, and Ns is the actual concentration of nitrate in soil (g N m−2). In the given soil conditions, if nitrate concentration (NsNitra) lies between 10 and 30 g (Nm−3) within 30 cm topsoil layer, the EPIC model can be represented as:
In STICS model, high nitrate concentration in soil is assumed to inhibit nodulation progress which ultimately reduces potential rate of N fixation. If the concentration of nitrate in soil is higher than critical value, Nfixpot is set at baseline value; otherwise, Nfixpot is set at normal value [119]. In Hurley Pasture and Soussanna models, the plant substrate N concentration is included, such as:
where Ninter (g N g−1r.wt) is assumed to be the N concentration in the root substrate (in Hurley Pasture model), or N concentration in plant substrate (in Soussanna model), and Kr is the coefficient for stating inhibition of N fixation at high nitrate concentration level in soil.
In plants, C is the source of energy for N fixation. Carbohydrate supports nodule biomass accumulation. The effect of C in estimating potential rate of N fixation is incorporated in Hurley Pasture and CROPGRO models such as:
where Cr indicates concentration of C and Kc stands for Michaelis–Menten constant.
The impact of seasonal change on N fixation is incorporated in EPIC and STICS [106] such as:
where Gmin is indicating the time period before which N fixation does not occur. This happens because of insufficient nodulation (expressed as % of total time period required for growing); goptL is the initial time of growth and goptH is the final time of growth. The time period between goptL and goptH represents N fixation by legumes, which is independent of growth stage. gmax is the growth time where N fixation stops due to deterioration of nodule.
The influence of symbiosis on metabolic fluxes and plant growth is quantified by a flux balance analysis. A genome-scale compartmentalized model for the clover (
The simulation of BNF by the abovementioned models included various biotic and abiotic factors to simulate and predict N fixation. Nodule biomass is more reliable to estimate Nfixpot than root and aerial biomass. C supply is considered to be the prominent factor in estimating Nfixpot. High concentration of nitrate in soil as mineral N can act as inhibitor for N fixation by nodules. Although empirical and dynamic models incorporated several factors such as soil temperature, water content, C, and other mineral contents, all the models lack information regarding the influence of soil pH and O2 permeability. Therefore, adequate experimental work is required to cumulate the effect of such factors on biological fixation of N in legumes.
The impact of inoculation and coinoculation with elite strains such as
The production of soybean crop can be estimated by total operating cost (TOC) method [135]. TOC is the sum of cost of fertilizers, heavy machinery, labor, pesticides, interests, etc. The major expenses are contributed by mechanization and fertilizers besides the cost of desiccation, control of weeds, pests, and pathogens. The inoculation of
In some studies, foliar inoculation of PGPR is found to be more effective than inoculation or coinoculation. For instance, foliar inoculation of
Organic and inorganic fertilizers such as NPK fertilizer and farmyard manure used along with PGPR, i.e.,
The reliance on N fixation is inevitable in spite of application of inorganic N fertilizer in huge amount (18 million tons/year) [86]. Legume plants being highly nodulated have high potential for N fixation which can be further facilitated by sustainable agricultural practices for high crop production. Inoculation and coinoculation with different strains not only positively impact crop yield but also improve nutrient value of grains. PGPRs are natural source of plant growth hormones especially IAA, prompting nodule growth whether applied at sowing or in later stages of plant growth. In some cases, foliar inoculation was more effective for nitrogen and protein assimilation in soybeans than inoculation and coinoculation at sowing phase. Among PGPRs, certain strains of
The viability of PGPR inoculants is susceptible to rhizospheric conditions of soil, for which the compatibility studies are a compulsion [145]. When applied in the field, certain bacterial species (endophytes and rhizosphere-restricted bacteria) become VBNC, i.e., viable but not cultivable [63]. This might occur due to stress encounter by bacteria while colonizing host cell. The reason for VBNC is still unknown, but it is common to most rhizobial species. The research at molecular and genetic levels might solve this mystery. Soils with high mineral N content (ammonium and nitrate ions) are more prone to N reduction, as PGPR can readily consume it. Therefore, the viability of an applied farming approach can indicate the accessibility of organic N content in soil [98]. Moreover, the soils with common physicochemical features and exposure to similar climatic conditions may differ in net reduction of N content. This may be due to probable surface or drainage runoff of organic N during agricultural practices [146]. However, the estimation of soil N mass balance (input and output) requires long-term study which in turn will be helpful in the election of suitable cropping system. The use of economical viable PGPR inoculants along with efficient cropping systems can increase the probability of stable N retention in soils. In the case of developing countries, the lack of knowledge and relevant technological restrains demand an immediate implication of research (i.e., PGPR inoculation at sowing or spraying on leaves) in field conditions, thus providing cost reduction benefits to farmers and empowering local communities.
The concept of counseling explains how individuals who feel less able to resolve their own problems resort to help in order to solve their challenges [1]. Associated with help seeking is the client’s belief that he will receive assistance that will help him understand things that bother him such as complex and confusing emotions experienced during an event (e.g. abuse), receive alternatives, make informed decisions and move on generally in positive meaningful ways. Thus, the chance of successful counseling outcome may be higher, where needed support is provided and children’s ability to overcome sexual abuse has been found to be dependent on timely psychological interventions [2].
This study adopts World Health Organisation’s (WHO) definition of child sexual abuse as the involvement of a child in sexual activity that he or she does not fully comprehend, is unable to give informed consent to, or for which the child is not developmentally prepared and cannot give consent, or that violates the laws or social taboos of society. The scourge of child sexual abuse (CSA) has been on the increase world over, Ghana and Zambia inclusive, with millions of children being sexually abused every year. In 2004 WHO reported that the global prevalence rate of child sexual abuse [3] was an estimated 150 million girls and 73 million boys under the age of 18 years who were victims of rape or other forms of sexual violence; that between 1 and 21 percent of women were victims of sexual abuse before the age of 15. By 2010, CSA was estimated at 34.4% of global violence cases [2].
Some of the earliest studies on child sexual abuse in Africa [4] reported on cases of child sexual abuse at a Cape Town Hospital with victims ranged from 2 to 12 years with the majority being females. In Malawi, [5] described 20 cases of child sexual abuse, which were presented at the Department of Obstetrics and Gynaecology, University of Malawi, between 1995 and 1997. Half of the victims were less than ten years old [5]. estimated that these cases were merely the tip of the iceberg, and were reported due to the serious injury caused in the rape of very young children. Research on the occurrence of child sexual abuse by [6] reports that one in four girls and one in ten boys is a victim of CSA. In Zimbabwe, CSA studies show that, among unmarried sexually active youths, 52.2% had experienced forced sexual intercourse at least once and 37.4% of the first sexual intercourse was forced on them [7].
Child sexual abuse is recognised as a traumatic experience that can have a number of adverse effects on victims [8] citing [9, 10] and that these children generally reveal significant problems in diverse areas of functioning including but not limited to affect, behaviour, cognition and interpersonal relationships [11, 12].
Research has established a correlation between counseling and other forms of psychosocial support in promoting well-being of people. Although psychosocial supports have been used to investigate individuals’ experiences in adverse circumstances, there is a gap in the literature regarding the use of counseling to overcome CSA experiences. While we are inspired by the possibilities offered by the vast literature on CSA, research suggests that psychosocial supports such as counseling services for victims of CSA are unsatisfactory [13, 14] in a number of government institutions globally. A need, therefore, exists for effective treatment through counseling children who have experienced CSA [8]. The purpose of this study, therefore, is to explore how counseling as one if not the most crucial psychosocial support is used to assist victims of CSA in Victims Support Units (VSU) of the police services of Ghana and Zambia.
We connect our study to the works of [15] on the concept of trauma recovery of individuals to provide the theoretical basis for this work [15] developed a three stage model that has been used to treat trauma survivors during rehabilitation process. The model provides a useful set of goals for treatment providers regardless of theoretical orientation. Herman’s model gives an in-depth description of the healing process of people who struggle with a number of problems relating to abusive or past traumatic experiences. The three stages of this process are (1) the establishment of safety, (2) remembrance and mourning, and (3) reconnection. This process is not typically linear; there are often advances, regressions, and impasses. It has, however, been suggested that many people do not complete all three stages during their recovery [16].
Establishing safety is the first step in the treatment of trauma because no intervention can succeed without the survivor feeling safe. Safety includes protection from violence and maltreatment by other people, basic needs being met such as medical care, financial security, safe living environments, adequate food and sleep, legal protection, and a supportive social network. Research established that torture and other forms of trauma can cloud an individual’s sense of security and safety especially when trauma is experienced in childhood [16, 17]. Re-establishing safety is important in the development of relationships that can be beneficial in the process of recovery for victims of child sexual abuse.
In the remembrance and mourning stage [15] the survivor constructs a narrative of his or her experiences in a therapeutic relationship. This inspires the need for CSA victims to receive counseling on report of abuse. The reconstructive disclosure of traumatic experience has been examined widely in theory and research. Cognitive-behavioural therapy that focuses on exposure to memories and emotions has been found to be a powerful method of treating PTSD with survivors of sexual assault [18].
In the reconnection stage, the focus is on building a future and empowerment. Once the past has been assimilated, the victim can focus on developing a more resilient and complete identity. The trauma victim strives to make a meaningful life through trust and hope that were developed during the first two stages of the recovery. The victim, now a survivor, may have a desire to help others who have been victimised similarly and to prevent future victimisation by raising public awareness through educational, legal, and political activism.
Trauma counseling is thus, geared towards assisting persons recover from overwhelming stress to functioning productively. This is where the traumatic individuals move from the ability to disclose and be believed to be provided help that empowers and strengthens. Drawing from these theories, the following questions guided the study:
What is the nature of the counseling services provided to children who report their sexual abuse experiences?
What are the challenges associated with counseling services offered to victims?
This research was qualitative in approach. Given the sensitivity of the topic, the denial of perpetrators, silence that mostly surrounds the knowledge of the canker, and the stigma often attached to the victims, qualitative methods were deemed appropriate. This study employed the qualitative Narrative Approach (NA) [19] to understand the nature, benefits and challenges of counseling services provided to victims of Child Sexual Abuse. Critical to the NA is active listening and its ability to externalise the problem beyond the person(s) and the world so as to liberate them from the control of the problem and develop power to address them. Thus, through the narrative discourse, individuals can gain the power to address their own trauma by positioning a ‘named problem’ (e.g. penetration, fondling). The narrative approach that employs disclosure with strong affinity with attending skills such as listening, questioning and probing, resonates well with Herman’s stages of recovery from traumatic experiences.
The study was set in the Central Region of Ghana and the Lusaka province of Zambia. Ghana police service in the Central Region has seven divisions, thirty-two districts and ninety-nine police stations/posts. The Region also has Police Command and Staff College for Senior Officers at Winneba [20, 21]. The Regional Headquarters has 10 DOVVSU units/desks under its command [22]. Available statistics from DOVVSU suggest a downward trend in cases of child sexual abuse since 2002 (from 820 in 2002 to 670 by the end of 2005) though there is doubt about the reliability of these data [23]. The figures quoted by [23] however, were only on rape. A year earlier, [24, 25] reported that the evidence of sexual exploitation in Ghana is significant and that DOVVSU records indicate that every year quite a number of children and adolescents go through series of sexual abuse. They indicated that reported cases of defilement and rape of children and adolescents were: 1001–2002; 905–2003; 930–2004; 937–2005; 1772–2006. In addition to statistical records of reported cases of child sexual abuse, the Central Region was of interest due to recent public outcry of the rise in teenage pregnancy and social media circulations of sexual abuse against school girls (kitchen stool episode).
In the case of Zambia, according to [24], it is alleged that, majority of children who are sexually abused are females. Between 2011 and 2014, Zambia Police Victim Support Unit annual reports show a steady increase in cases of CSA from 1,939 cases in 2011 to 4,039 cases in 2014 (see Table 1 above: Zambia Police 2011 to 2014 Annual Reports).
Reported cases of child sexual abuse in Zambia between 2011 and 2014.
Purposive and criterion-based sampling strategies were employed to contribute to the overall understanding of the topic [26]. In all, 112 participants were recruited from 15 police stations across the Central Region of Ghana and Lusaka Province in Zambia. The criteria for selection were that participants were children, aged between 8 to 18 years, had a history of sexual abuse, reported their abuse to the VSUs of the police and were predominantly English-speaking. In Ghana, the principal researcher and one research assistant collected data while the principal researcher and two assistants gathered data in Zambia. The cases were selected purposively from the police dockets between 2011 and 2016 and victims and their parents located per the address in the dockets. Many victims could not be traced as they have either left their addresses given at the time of the report of abuse or the given addresses could not be traced.
In Ghana, interviews were held with a total of 55 participants made up of 20 girls, 20 officers from seven DOVVSU desks as well as 15 parents. In Zambia, a total number of 57 participants were recruited into the study. This includes 20 VSU officers from 8 provinces, 20 victims and 17 parents of victims.
In both countries, we started with engagement of police officers in charge of abuse cases then hooked in children identified and parents. There were initial challenges of recruitment as some identified parents were not willing to participate nor allowed their children to participate. With a lot of sensitization (one-on-one explanations on the challenges of CSA and the benefits of therapeutic methods) on the need to speak about the issue, some parents got involved and allowed their children to participate. Of the 15 parents from Ghana, 14 were females and only one male while parents from Zambia were all females. In all, parents from both countries comprise 25 mothers, one father, and six caregivers. From both Ghana and Zambia, there were no records of counseling services provided to victims though victims records were available.
The interview activities were conducted mostly under trees or nearby empty classrooms around victims’ homes and schools. When a victim was identified, the researcher spent time to explain the rationale, and ethical issues of the study to them. In both countries, participants were informed of the purpose of the research and discussed the meaning of ‘sexual abuse’ to include fondling, touching, forced sex, defilement and sex without consent. Interview questions covered the: a) nature of the counseling services provided and received, b) operational challenges in receiving and providing counseling services, and c) views on benefits of counseling to victims. In all, each interview with victims and parents lasted approximately 50 minutes while that of VSU officers lasted for about 1 hour.
The data collection process took a total of four and six weeks to complete in Ghana and Zambia respectively. Responses of the interviews were manually recorded by the principal investigators. After data were manually written, they were typed and printed out. Data were then cleaned through proof reading and corrections. Manual coding was done to identify confirming and disconfirming themes within and across narratives. The data were coded with acronyms to promote confidentiality and anonymity. Data were thus coded GPO (Ghana) and ZPO (Zambia) for VSU officers and followed by the assigned number of the participant.
Ethical considerations and trustworthiness of the data and research process were achieved through triangulation of data with all three sets of categories of participants. Participants, especially victims and parents, had the opportunity to corroborate or otherwise the statements provided at the VSU offices. By these, data were cleaned and ready for thematic analysis.
The results of the study were structured into five main sections: background characteristics, nature of counseling, approaches to counseling, challenges, benefits, and the way forward.
The summary of sexual abuse cases made in the Ghana and Zambia (selected regions) police dockets and files recorded from 2011 to 2016 were 223 and 345 cases respectively. Of this total number of cases, 105 were initially identified regarding their age at the time of abuse, perpetrator characteristics, and their English-speaking ability. However, only 40 were found and included in this research. Of the 40 cases analysed, 36 (90%) involved victims less than 16 years of age. All victims were females. The mean age of victims was 12.1 years. The youngest victim was 9 year of age and the oldest was 17 years. Seven had experienced sexual abuse more than once and five had re-experienced sexual abuse after their initial abuse reported to the police. Twenty-two (55%) of the victims were school pupils at the time of the abuse. Of this 22, 18 victims became school drop outs as a result of sexual abuse related issues. Of the school drop outs, twelve sexual abuse incidents resulted in pregnancy in both countries.
Most perpetrators were adults. In 36 (90.0%) cases, the perpetrators were less than 30 years of age. Most of the child sexual abuse cases were intra-familial. Of the 40 cases studied, eight victims were raped and or defiled by their fathers, twelve by uncles, six by cousins, four by brothers, four boyfriends, and six by unknown persons. This finding confirms other studies that most rape and defilement incidents are perpetrated by people known to victims and who are usually male family members [2].
Narratives revealed two types of sexual abuse reports: direct and indirect. Direct reported cases are cases where victims and or their parents lodged complaint following an abuse and this could be following the abuse immediately or later. The indirect reported cases were cases which were not originally reported due to the sexual abuse. Rather, parents/caregivers often accompany victims to lodge complaints of neglect and or denial of pregnancy where interrogations revealed that the girls were impregnated through sexual abuse. About 60% of the cases were indirect reported cases while about 40% account for direct sexual abuse reports. This finding confirms [27] affirmation that, children rarely disclose sexual abuse immediately after the event. Out of the 40 victim participants, 27 (67.5%) pregnancies cases were recorded. Fifteen (37.5%) of the victims had been defiled more than once. Pregnancies were found mostly among 14 year olds and above who were defiled by intra-familial offenders.
The level of education and or professional training of officers is presented in Table 2 below.
Type of academic qualification | |||||
---|---|---|---|---|---|
Country | 2nd Degree | 1st Degree | Diploma | Certificates | Sub-total |
Zambia | — | 1 | 5 | 15 | 20 |
Ghana | 3 | 6 | 6 | 5 | 20 |
Educational and professional qualification of VSU officers.
Source: Authors Construct, 2018.
Table 2 above indicates that of the 20 VSU officers from Ghana, 3 hold 2nd degree, 6 had 1st degree, 6 hold diploma and 5 hold certificates. Of these, was also reading law at the time of this study. From Zambia, VSU officer holds 1st degree; five hold diploma and 15 have certificates. Additionally, 20 VSU officers from both countries received certificates from various workshops attended broadly on gender and child abuse issues for capacity building.
Data revealed that in both Ghana and Zambia, VSU officers were not adequately trained in counseling especially in the area of CSA. It must be mentioned, however that, some of the officers who indicated having a certificate did not necessarily undergo formal training in counseling, but were rather referring to certificate of attendance obtained from workshops.
Under this theme we explored the general approaches, techniques and skills in counseling that VSU officers used in providing support to victims who reported their abuse. VSU officers disclosed that they lacked professional counseling skills. It was found that counseling was rarely offered in some VSU in both countries. VSU officers confirmed that:
Similar narratives abound in the data. Narratives above imply that though officers were aware of the essence of counseling they lack the requisite training to practice. They therefore engage victims and their families in what they think best by resorting mostly to advice giving on medical and legal processes leaving out the psychological and emotional assistance that victims need.
Results show that there were various services offered to victims of CSA to help reduce their trauma. These could be classified as: trauma counseling, individual counseling and group counseling.
VSU officers try their best to handle sexual abuse cases brought before them. Regarding cases reported, VSU officers first and foremost try to secure the victim’s safety and then encourage disclosure of abuse. Under this approach, two stages of trauma counseling were identified. These are: establishing safety and security of victims, and encouraging disclosure (remembering and mourning).
In addressing the issue of the nature of counseling services provided to victims, narratives reveal that officers usually try to provide safety nets as the first step to providing counseling.
Some victims corroborated this:
This approach by VSU officers in providing safety and security for victims is entrenched in the first stage of trauma counseling [15]. Depending on the perpetrator characteristics, officers provide safety where some children were taken to shelters or social welfare homes for protection and to reduce revictimization. This resonates with [28] that sexually abused children generally need safety upon disclosure.
Disclosure of abuse was seen as one fundamental phenomenon in the healing process. When victims report their abuse they are requested to disclose. Data reveal that in most cases, the reports made by non-offending parents are quite incongruent with the disclosure of victims. One officer noted:
To overcome the stress of remembering and mourning, the victim needs to narrate his or her experiences in depth with great detail. The goal is to modify the traumatic memories so they become more meaningful in the person’s life and less anxiety provoking. As the narrative develops, the memories become less disjointed, more depersonalised and more coherent. With this emotional reworking and cognitive restructuring, the memories become more manageable and the significance of the trauma changes from a story of victimisation to one of dignity and agency [16]. Once the victim is able to emotionally and cognitively process the traumatic experiences, he or she is then able to mourn the losses experienced during the abuse. Victims face the reality that they may never regain what they have lost. Herman [15] argued that with the new story, the intrusive and hyper-arousal symptoms subside.
Associated with reporting and disclosure is the issue of power imbalance. The police stations do not seem to provide a safe environment that promotes disclosure. Ironically, while the officers were interested in providing safety from perpetrators, their own personalities and immediate environments smack of insecurity and impact on effective disclosure.
In most cases, officers attempt to re-unite victims with their families especially with their non-offending parents or caregivers. This is as the result of lack of shelter and other logistics in handling the victims. Officers revealed:
This reconnection is thus exigent on the prevailing circumstances in the VSU offices. One finds it difficult to assess whether reconnection to the families has positive outcome for the victims or not as VSU officers have no means of follow-up on cases. This study thus, revealed that the reconnection stage of Herman’s model was woefully completed. Victims were not reconnected in the real sense of recovery geared towards healing and empowerment. At best their reconnections could be described as disposal.
This is normally done with victims in the same office with their parents and other VSU officers. Narratives reveal that for lack of space and other logistics, VSU officers carry out their counseling activities right in the same office with other colleagues. One stated
The term individual counseling is used interchangeably with taking victims’ statements and asking probing questions for clarification. Through observation and narratives, it was revealed that the individual counseling provided was short of appropriateness. With individual counseling done in the same office with other officers and visitors coming in and out, then the counseling environment is not conducive enough to uphold the principles of confidentiality and to promote disclosure.
Data indicate that group counseling referred to in this context is when victims and their non-offending parents or caregivers are provided some advice on seeking medical treatment, legal procedures and general advice on how to prevent being re-victimised.
Group dynamics such as purpose of group formation, theme, and other characteristics were not considered. Group counseling was offered in a form of family therapy usually with non-offending parent or family members.
Regarding the approach to counseling, it was found that the counseling that was provided (if at all) that could best be described as group counseling was used in all service (VSU) centers. The counseling provided here is more advice giving especially regarding victims’ right to legal assistance, medical treatment, and how victims could ovoid revictimization, and parental protection and provision. Advice on legal procedures and investigations: victims and their parents were also provided needed information on legal opportunities available to them. An officer explained:
In addition to the approaches used, officers also employed some basic counseling skills such as encouragement, reassurance, and rapport. However, cognitive behavioural counseling techniques skills like assertiveness training, empathising, role-play, art therapy and belief of victims’ stories were found missing. These were considered very important in reducing the grief and confusion that children abused normally go through thus, paving way for healing.
On barriers associated with counseling service provision, the following subthemes emerged: lack of skilled personnel, lack of logistics, late reporting of cases, family interference, lack of safe and conducive environment coupled with presence of power relations, inadequate time and sessions among others.
Data reveal that VSU officers perceived themselves as inadequate in providing counseling services to victims. They, however, bemoan their lack of professional training and capacity. It was noted that in both countries, VSU officers have no psychological tests to administer to victims, they do not have any structured system or documents to use such as intake form upon report of an abuse.
Direct observation and in-depth interview report indicated that the VSU officers lacked capacity in terms of resources for their work. Apart from the units in the regional capitals of the study sites in both countries with one and two computers each in Ghana and Zambia respectively, the VSU desks in the study regions had no computers and therefore no database of cases before them. The police dockets were managed manually by using notebooks and files. Officers did not have filing cabinets. These challenges were acknowledged by the officers at the units. One officer indicated:
There were also no vehicles assigned to the VSUs in the study sites in Ghana. However, the Lusaka headquarters unit had one vehicle for investigation of cases. This was however bemoaned as woefully inadequate.
These reports were corroborated by VSUs from Ghana:
Many victims did not report the offence until later when they fell ill or got pregnant and the men refuse responsibility.
Late reporting or indirect reporting of Child Sexual Abuse cases makes it difficult for victims to receive any form of counseling (if any) from VSU officers. This finding resonates with other research that, sexually abused children rarely disclose sexual abuse immediately after the event [27].
The constant appeals by family members to withdraw the cases from the courts do not only thwart the efforts of the courts to prosecute offenders, it also cuts short whatever counseling interventions that VSU officers could offer the victims since the withdrawals mark the end of victims’ visit to the station for further assistance. One officer bemoaned:
These narratives point to the administrative challenges faced by VSU officers. In all, victims were provided first aid counseling. Police dockets revealed that most cases were discontinued. In most cases parents or caregivers request for withdrawal of cases to be settled at home. About 90% of reported cases were not followed up by parents and since the police have no means of following up, the cases die naturally and the courts closed dockets on them. Feedbacks on settlement were not provided by parents. The settlement of defilement cases outside court violates the very spirit and letter of the law on defilement [29] because rape under laws of both countries is a first degree felony [27].
Regarding benefits of counseling for victims, the following were some of the subthemes: need for professional training; assurance that will lead to disclosure, anxiety and fear reductioning, promoting healing, and empowering victims; non-belief of victim’s story and lack of privacy and confidentiality were seen as immediate issues that could be addressed to pave way for effective counseling of victims. The following narratives are revealing:
Though some victims feel less threatened by their disclosure to the police the same sense of lack of security prevents detailed disclosure and hinders recovery. This finding corroborates conclusion drawn by [30] that distrust of, and poor experience with, state authorities and public services contributed to individuals abused not seeking help.
This study attempted to explore the counseling services provided to children who report their sexual abuse to the police in Ghana and Zambia. The study found that, although group counseling was used as treatment for victims of CSA, it did not follow group dynamics and was offered without individual counseling. It also revealed that some clients needed individual treatment before they were ready for group therapy. The study found among others that children in both countries were provided family therapy rather than individual and group counseling that would have been more helpful for disclosure, connecting, and healing. It also found that though some victims expressed happiness that their abuses have been reported and heard, lack of counseling training and power imbalances inhibit officers’ efforts.
The study concludes that though police officers use some skills, more is needed to provide comprehensive and effective counseling to CSA victims. When children receive adequate counseling immediately after abuse they do immediate damage repair both of their psychological and social “self”.
While this study expands knowledge on CSA and counseling services, it also significantly, seeks to influence policy and suggest ways by which effective interventions mechanisms can support victims of CSA in both countries.
The study recommends that Police services in both countries should sponsor VSU officers to do professional training in counseling in order to provide effective counseling for abused individuals. Additionally, it is recommended that counseling professionals should help design a framework or protocols to use in providing integrated trauma counseling services for abused children. It further recommends that the service in both countries should team up with universities which offer counseling programs to offer periodic capacity training for their staff. And finally, officers should be linked with professional counsellors at universities to refer abuse cases for treatment.
An earlier version of this article was presented at the World Education Research Association Annual Meeting at Cape Town, South Africa in August 2018. We are grateful to the following institutions for allowing us to conduct this research: the DOVVSU Central Region Police Headquarters of the Ghana Police Service, the Zambian Lusaka Police Service, and all our participants.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}},{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6495/images/1947_n.jpg",biography:"Daniel Eberli MD. Ph.D. is a scientific physician working in the translational field of urologic tissue engineering. He has a medical degree from the Medical School in Zurich, Switzerland, and a Ph.D. in Molecular Medicine from Wake Forest University, Winston Salem, NC. He currently has a faculty position at the Department of Urology at the University Hospital Zurich, where he devotes half of his time to patient care. He is a lecturer at the Medical School of Zurich and the Swiss Federal Institute of Technology. Together with his research team, he is working on novel biomaterials for bladder reconstruction, improving autonomic innervation, cellular treatment of incontinence and tracking of stem cells.",institutionString:null,institution:{name:"University Hospital of Zurich",country:{name:"Switzerland"}}},{id:"122240",title:"Prof.",name:"Frede",middleName:null,surname:"Blaabjerg",slug:"frede-blaabjerg",fullName:"Frede Blaabjerg",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Aalborg University",country:{name:"Denmark"}}},{id:"50823",title:"Prof.",name:"Hamid Reza",middleName:null,surname:"Karimi",slug:"hamid-reza-karimi",fullName:"Hamid Reza Karimi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Polytechnic University of Milan",country:{name:"Italy"}}},{id:"22128",title:"Dr.",name:"Harald",middleName:null,surname:"Haas",slug:"harald-haas",fullName:"Harald Haas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Edinburgh",country:{name:"United Kingdom"}}},{id:"80399",title:"Dr.",name:"Huosheng",middleName:null,surname:"Hu",slug:"huosheng-hu",fullName:"Huosheng Hu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Essex",country:{name:"United Kingdom"}}},{id:"135796",title:"Prof.",name:"Jim",middleName:null,surname:"Van Os",slug:"jim-van-os",fullName:"Jim Van Os",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Utrecht University",country:{name:"Netherlands"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:17575},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:25},{group:"topic",caption:"Computer and Information Science",value:9,count:19},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:19},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:12},{group:"topic",caption:"Materials Science",value:14,count:30},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:128},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:3},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"109",title:"Space Science",slug:"space-science",parent:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:33,numberOfWosCitations:7,numberOfCrossrefCitations:10,numberOfDimensionsCitations:14,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"109",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8556",title:"Mars Exploration",subtitle:"a Step Forward",isOpenForSubmission:!1,hash:"44538d785d8dfcc0d4f809e3a62b0035",slug:"mars-exploration-a-step-forward",bookSignature:"Giuseppe Pezzella and Antonio Viviani",coverURL:"https://cdn.intechopen.com/books/images_new/8556.jpg",editedByType:"Edited by",editors:[{id:"14939",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pezzella",slug:"giuseppe-pezzella",fullName:"Giuseppe Pezzella"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7632",title:"Beyond LEO",subtitle:"Human Health Issues for Deep Space Exploration",isOpenForSubmission:!1,hash:"800d9e65b9eca19dd1372fa0db7478cd",slug:"beyond-leo-human-health-issues-for-deep-space-exploration",bookSignature:"Robert J. Reynolds",coverURL:"https://cdn.intechopen.com/books/images_new/7632.jpg",editedByType:"Edited by",editors:[{id:"220737",title:"Dr.",name:"Robert",middleName:null,surname:"J. Reynolds",slug:"robert-j.-reynolds",fullName:"Robert J. Reynolds"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"70679",doi:"10.5772/intechopen.90700",title:"Effects of Microgravity on Human Physiology",slug:"effects-of-microgravity-on-human-physiology",totalDownloads:1391,totalCrossrefCites:7,totalDimensionsCites:11,abstract:"The effects of microgravity conditions on neurovestibular, cardiovascular, musculoskeletal, bone metabolic, and hemato-immunological systems are described. We discuss “space motion sickness,” sensorimotor coordination disorders, cardiovascular deconditioning, muscular atrophy, bone loss, and anemia/immunodeficiency, including their causes and mechanisms. In addition to the previously described deconditioning, new problems related to microgravity, spaceflight-associated neuro-ocular syndrome (SANS), and structural changes of the brain by magnetic resonance imaging (MRI) are also explained. Our proposed countermeasure, artificial gravity produced by a short-arm centrifuge with ergometric exercise, is also described in detail, and we confirmed this system to be effective in preventing the abovementioned deconditioning caused by microgravity exposure.",book:{id:"7632",slug:"beyond-leo-human-health-issues-for-deep-space-exploration",title:"Beyond LEO",fullTitle:"Beyond LEO - Human Health Issues for Deep Space Exploration"},signatures:"Satoshi Iwase, Naoki Nishimura, Kunihiko Tanaka and Tadaaki Mano",authors:[{id:"76278",title:"Prof.",name:"Satoshi",middleName:null,surname:"Iwase",slug:"satoshi-iwase",fullName:"Satoshi Iwase"},{id:"321445",title:"Dr.",name:"Naoki",middleName:null,surname:"Nishimura",slug:"naoki-nishimura",fullName:"Naoki Nishimura"},{id:"321447",title:"Dr.",name:"Kunihiko",middleName:null,surname:"Tanaka",slug:"kunihiko-tanaka",fullName:"Kunihiko Tanaka"},{id:"321448",title:"Dr.",name:"Tadaaki",middleName:null,surname:"Mano",slug:"tadaaki-mano",fullName:"Tadaaki Mano"}]},{id:"72944",doi:"10.5772/intechopen.93281",title:"Aerocapture, Aerobraking, and Entry for Robotic and Human Mars Missions",slug:"aerocapture-aerobraking-and-entry-for-robotic-and-human-mars-missions",totalDownloads:572,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter provides an overview of the aeroassist technologies and performances for Mars missions. We review the current state-of-the-art aeroassist technologies for Mars explorations, including aerocapture, aerobraking, and entry. Then we present a parametric analysis considering key design parameters such as interplanetary trajectory and vehicle design parameters (lift-to-drag ratio, ballistic coefficient, peak g-load, peak heat rate, and total heat load) for aerocapture, aerobraking, and entry. A new perspective on a rapid aerobraking concept will be provided. The analysis will include first-order estimates for thermal loading, thermal protection systems material selection, and vehicle design. Results and discussion focus on both robotic missions and human missions as landed assets and orbiters.",book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Ye Lu",authors:[{id:"313126",title:"Prof.",name:"Ye",middleName:null,surname:"Lu",slug:"ye-lu",fullName:"Ye Lu"}]},{id:"67679",doi:"10.5772/intechopen.86728",title:"Oral Tissue Responses to Travel in Space",slug:"oral-tissue-responses-to-travel-in-space",totalDownloads:1033,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The oral cavity functions in taste, mastication, solubilization and digestion of nutrients, as well as in respiration and speech, and participates in innate and adaptive immunity. Saliva creates and regulates the environment of the oral cavity, and changes in its composition and rate of secretion have significant effects on oral tissues as well as on systemic health. The effects of microgravity on the salivary glands, mandible and teeth were studied in mice flown on US space shuttle STS-131 and STS-135 missions, and the Russian Bion-M1 biosatellite. Significant changes in morphology and secretory protein expression occurred in parotid glands; submandibular glands were affected only on the 30-day Bion-M1 mission, indicating tissue specificity of the effects due to changes in gravity which may be similar to those taking place in humans. Changes also occurred in mandibular bone and incisor teeth. Collection of saliva is a non-invasive procedure for assessing physiological status and diagnosis of several disorders and provides a simple method for monitoring astronaut health during extended spaceflight.",book:{id:"7632",slug:"beyond-leo-human-health-issues-for-deep-space-exploration",title:"Beyond LEO",fullTitle:"Beyond LEO - Human Health Issues for Deep Space Exploration"},signatures:"Maija I. Mednieks and Arthur R. Hand",authors:[{id:"296192",title:"Emeritus Prof.",name:"Arthur",middleName:null,surname:"Hand",slug:"arthur-hand",fullName:"Arthur Hand"},{id:"296354",title:"Dr.",name:"Maija",middleName:null,surname:"Mednieks",slug:"maija-mednieks",fullName:"Maija Mednieks"}]},{id:"70846",doi:"10.5772/intechopen.90912",title:"Aerodynamics of Mars 2020 Rover Wind Sensors",slug:"aerodynamics-of-mars-2020-rover-wind-sensors",totalDownloads:688,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Environmental factors in Mars atmosphere are a part of the research issues of the future Mars 2020 mission. The new rover surface vehicle will transport different instruments to investigate the geology, biology, and meteorology of Mars. Amongst these instruments, the Mars Environmental Dynamics Analyzer (MEDA) will be dedicated to the measurement of environment parameters. Two wind sensors will be included in the meteorological station MEDA because wind plays a very important role in Martian climate. High-quality wind data are required to build mathematical models of the Mars climate; therefore, powerful techniques are necessary to eliminate aerodynamic perturbations produced by the rover presence over wind measurements. This chapter is dedicated to the characterization of the aerodynamics around the Mars 2020 rover and its interaction with the rover Mars surface vehicle in order to get information to correct wind data coming from Mars.",book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Rafael Bardera, Suthyvann Sor and Adelaida García-Magariño",authors:[{id:"275076",title:"Dr.",name:"Suthyvann",middleName:null,surname:"Sor Mendi",slug:"suthyvann-sor-mendi",fullName:"Suthyvann Sor Mendi"},{id:"275078",title:"Dr.",name:"Rafael",middleName:null,surname:"Bardera",slug:"rafael-bardera",fullName:"Rafael Bardera"},{id:"313617",title:"Dr.",name:"Adelaida",middleName:null,surname:"García-Magariño",slug:"adelaida-garcia-magarino",fullName:"Adelaida García-Magariño"}]},{id:"72974",doi:"10.5772/intechopen.93448",title:"Introductory Chapter: Mars Exploration - A Story Fifty Years Long",slug:"introductory-chapter-mars-exploration-a-story-fifty-years-long",totalDownloads:670,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Giuseppe Pezzella and Antonio Viviani",authors:[{id:"14939",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pezzella",slug:"giuseppe-pezzella",fullName:"Giuseppe Pezzella"},{id:"216136",title:"Prof.",name:"Antonio",middleName:null,surname:"Viviani",slug:"antonio-viviani",fullName:"Antonio Viviani"}]}],mostDownloadedChaptersLast30Days:[{id:"71802",title:"Autonomous Navigation for Mars Exploration",slug:"autonomous-navigation-for-mars-exploration",totalDownloads:821,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The autonomous navigation technology uses the multiple sensors to percept and estimate the spatial locations of the aerospace prober or the Mars rover and to guide their motions in the orbit or the Mars surface. In this chapter, the autonomous navigation methods for the Mars exploration are reviewed. First, the current development status of the autonomous navigation technology is summarized. The popular autonomous navigation methods, such as the inertial navigation, the celestial navigation, the visual navigation, and the integrated navigation, are introduced. Second, the application of the autonomous navigation technology for the Mars exploration is presented. The corresponding issues in the Entry Descent and Landing (EDL) phase and the Mars surface roving phase are mainly discussed. Third, some challenges and development trends of the autonomous navigation technology are also addressed.",book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Haoting Liu",authors:[{id:"314772",title:"Associate Prof.",name:"Haoting",middleName:null,surname:"Liu",slug:"haoting-liu",fullName:"Haoting Liu"}]},{id:"70846",title:"Aerodynamics of Mars 2020 Rover Wind Sensors",slug:"aerodynamics-of-mars-2020-rover-wind-sensors",totalDownloads:688,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Environmental factors in Mars atmosphere are a part of the research issues of the future Mars 2020 mission. The new rover surface vehicle will transport different instruments to investigate the geology, biology, and meteorology of Mars. Amongst these instruments, the Mars Environmental Dynamics Analyzer (MEDA) will be dedicated to the measurement of environment parameters. Two wind sensors will be included in the meteorological station MEDA because wind plays a very important role in Martian climate. High-quality wind data are required to build mathematical models of the Mars climate; therefore, powerful techniques are necessary to eliminate aerodynamic perturbations produced by the rover presence over wind measurements. This chapter is dedicated to the characterization of the aerodynamics around the Mars 2020 rover and its interaction with the rover Mars surface vehicle in order to get information to correct wind data coming from Mars.",book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Rafael Bardera, Suthyvann Sor and Adelaida García-Magariño",authors:[{id:"275076",title:"Dr.",name:"Suthyvann",middleName:null,surname:"Sor Mendi",slug:"suthyvann-sor-mendi",fullName:"Suthyvann Sor Mendi"},{id:"275078",title:"Dr.",name:"Rafael",middleName:null,surname:"Bardera",slug:"rafael-bardera",fullName:"Rafael Bardera"},{id:"313617",title:"Dr.",name:"Adelaida",middleName:null,surname:"García-Magariño",slug:"adelaida-garcia-magarino",fullName:"Adelaida García-Magariño"}]},{id:"67679",title:"Oral Tissue Responses to Travel in Space",slug:"oral-tissue-responses-to-travel-in-space",totalDownloads:1033,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The oral cavity functions in taste, mastication, solubilization and digestion of nutrients, as well as in respiration and speech, and participates in innate and adaptive immunity. Saliva creates and regulates the environment of the oral cavity, and changes in its composition and rate of secretion have significant effects on oral tissues as well as on systemic health. The effects of microgravity on the salivary glands, mandible and teeth were studied in mice flown on US space shuttle STS-131 and STS-135 missions, and the Russian Bion-M1 biosatellite. Significant changes in morphology and secretory protein expression occurred in parotid glands; submandibular glands were affected only on the 30-day Bion-M1 mission, indicating tissue specificity of the effects due to changes in gravity which may be similar to those taking place in humans. Changes also occurred in mandibular bone and incisor teeth. Collection of saliva is a non-invasive procedure for assessing physiological status and diagnosis of several disorders and provides a simple method for monitoring astronaut health during extended spaceflight.",book:{id:"7632",slug:"beyond-leo-human-health-issues-for-deep-space-exploration",title:"Beyond LEO",fullTitle:"Beyond LEO - Human Health Issues for Deep Space Exploration"},signatures:"Maija I. Mednieks and Arthur R. Hand",authors:[{id:"296192",title:"Emeritus Prof.",name:"Arthur",middleName:null,surname:"Hand",slug:"arthur-hand",fullName:"Arthur Hand"},{id:"296354",title:"Dr.",name:"Maija",middleName:null,surname:"Mednieks",slug:"maija-mednieks",fullName:"Maija Mednieks"}]},{id:"72944",title:"Aerocapture, Aerobraking, and Entry for Robotic and Human Mars Missions",slug:"aerocapture-aerobraking-and-entry-for-robotic-and-human-mars-missions",totalDownloads:572,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter provides an overview of the aeroassist technologies and performances for Mars missions. We review the current state-of-the-art aeroassist technologies for Mars explorations, including aerocapture, aerobraking, and entry. Then we present a parametric analysis considering key design parameters such as interplanetary trajectory and vehicle design parameters (lift-to-drag ratio, ballistic coefficient, peak g-load, peak heat rate, and total heat load) for aerocapture, aerobraking, and entry. A new perspective on a rapid aerobraking concept will be provided. The analysis will include first-order estimates for thermal loading, thermal protection systems material selection, and vehicle design. Results and discussion focus on both robotic missions and human missions as landed assets and orbiters.",book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Ye Lu",authors:[{id:"313126",title:"Prof.",name:"Ye",middleName:null,surname:"Lu",slug:"ye-lu",fullName:"Ye Lu"}]},{id:"72974",title:"Introductory Chapter: Mars Exploration - A Story Fifty Years Long",slug:"introductory-chapter-mars-exploration-a-story-fifty-years-long",totalDownloads:670,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"8556",slug:"mars-exploration-a-step-forward",title:"Mars Exploration",fullTitle:"Mars Exploration - a Step Forward"},signatures:"Giuseppe Pezzella and Antonio Viviani",authors:[{id:"14939",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pezzella",slug:"giuseppe-pezzella",fullName:"Giuseppe Pezzella"},{id:"216136",title:"Prof.",name:"Antonio",middleName:null,surname:"Viviani",slug:"antonio-viviani",fullName:"Antonio Viviani"}]}],onlineFirstChaptersFilter:{topicId:"109",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 25th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"7",title:"Bioinformatics and Medical Informatics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",isOpenForSubmission:!0,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},{id:"8",title:"Bioinspired Technology and Biomechanics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",isOpenForSubmission:!0,editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",slug:"adriano-andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",biography:"Dr. Adriano de Oliveira Andrade graduated in Electrical Engineering at the Federal University of Goiás (Brazil) in 1997. He received his MSc and PhD in Biomedical Engineering respectively from the Federal University of Uberlândia (UFU, Brazil) in 2000 and from the University of Reading (UK) in 2005. He completed a one-year Post-Doctoral Fellowship awarded by the DFAIT (Foreign Affairs and International Trade Canada) at the Institute of Biomedical Engineering of the University of New Brunswick (Canada) in 2010. Currently, he is Professor in the Faculty of Electrical Engineering (UFU). He has authored and co-authored more than 200 peer-reviewed publications in Biomedical Engineering. He has been a researcher of The National Council for Scientific and Technological Development (CNPq-Brazil) since 2009. He has served as an ad-hoc consultant for CNPq, CAPES (Coordination for the Improvement of Higher Education Personnel), FINEP (Brazilian Innovation Agency), and other funding bodies on several occasions. He was the Secretary of the Brazilian Society of Biomedical Engineering (SBEB) from 2015 to 2016, President of SBEB (2017-2018) and Vice-President of SBEB (2019-2020). He was the head of the undergraduate program in Biomedical Engineering of the Federal University of Uberlândia (2015 - June/2019) and the head of the Centre for Innovation and Technology Assessment in Health (NIATS/UFU) since 2010. He is the head of the Postgraduate Program in Biomedical Engineering (UFU, July/2019 - to date). He was the secretary of the Parkinson's Disease Association of Uberlândia (2018-2019). Dr. Andrade's primary area of research is focused towards getting information from the neuromuscular system to understand its strategies of organization, adaptation and controlling in the context of motor neuron diseases. His research interests include Biomedical Signal Processing and Modelling, Assistive Technology, Rehabilitation Engineering, Neuroengineering and Parkinson's Disease.",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",isOpenForSubmission:!0,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:18,paginationItems:[{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},overviewPagePublishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}]},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",biography:"Michele Lanza is Associate Professor of Ophthalmology at Università della Campania, Luigi Vanvitelli, Napoli, Italy. His fields of interest are anterior segment disease, keratoconus, glaucoma, corneal dystrophies, and cataracts. His research topics include\nintraocular lens power calculation, eye modification induced by refractive surgery, glaucoma progression, and validation of new diagnostic devices in ophthalmology. \nHe has published more than 100 papers in international and Italian scientific journals, more than 60 in journals with impact factors, and chapters in international and Italian books. He has also edited two international books and authored more than 150 communications or posters for the most important international and Italian ophthalmology conferences.",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}]},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null}]},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11579",title:"Animal Welfare - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11579.jpg",hash:"12e4f41264cbe99028655e5463fa941a",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"51520",title:"Dr.",name:"Shao-Wen",surname:"Hung",slug:"shao-wen-hung",fullName:"Shao-Wen Hung"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11578",title:"Antibiotics and Probiotics in Animal Food - Impact and Regulation",coverURL:"https://cdn.intechopen.com/books/images_new/11578.jpg",hash:"3731c009f474c6ed4293f348ca7b27ac",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"225390",title:"Dr.",name:"Asghar Ali",surname:"Kamboh",slug:"asghar-ali-kamboh",fullName:"Asghar Ali Kamboh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:52,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:3,group:"subseries"},{caption:"Metabolism",value:17,count:10,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Chemical Biology",value:15,count:21,group:"subseries"}],publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Business and Management",value:86,count:1}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"18",type:"subseries",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7004",title:"Metabolomics",subtitle:"New Insights into Biology and Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/7004.jpg",slug:"metabolomics-new-insights-into-biology-and-medicine",publishedDate:"July 1st 2020",editedByType:"Edited by",bookSignature:"Wael N. Hozzein",hash:"35a30d8241442b716a4aab830b6de28f",volumeInSeries:16,fullTitle:"Metabolomics - New Insights into Biology and Medicine",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein",profilePictureURL:"https://mts.intechopen.com/storage/users/189233/images/system/189233.jpeg",institutionString:"Beni-Suef University",institution:{name:"Beni-Suef University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6967",title:"Prebiotics and Probiotics",subtitle:"Potential Benefits in Nutrition and Health",coverURL:"https://cdn.intechopen.com/books/images_new/6967.jpg",slug:"prebiotics-and-probiotics-potential-benefits-in-nutrition-and-health",publishedDate:"March 4th 2020",editedByType:"Edited by",bookSignature:"Elena Franco-Robles and Joel Ramírez-Emiliano",hash:"11781d6b1c070edcf204518e632033be",volumeInSeries:8,fullTitle:"Prebiotics and Probiotics - Potential Benefits in Nutrition and Health",editors:[{id:"219102",title:"Dr.",name:"Elena",middleName:null,surname:"Franco-Robles",slug:"elena-franco-robles",fullName:"Elena Franco-Robles",profilePictureURL:"https://mts.intechopen.com/storage/users/219102/images/system/219102.jpg",institutionString:"Universidad de Guanajuato",institution:{name:"Universidad de Guanajuato",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8292",title:"Oral Health by Using Probiotic Products",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8292.jpg",slug:"oral-health-by-using-probiotic-products",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Razzagh Mahmoudi",hash:"327e750e83634800ace02fe62607c21e",volumeInSeries:5,fullTitle:"Oral Health by Using Probiotic Products",editors:[{id:"245925",title:"Dr.",name:"Razzagh",middleName:null,surname:"Mahmoudi",slug:"razzagh-mahmoudi",fullName:"Razzagh Mahmoudi",profilePictureURL:"https://mts.intechopen.com/storage/users/245925/images/system/245925.jpg",institutionString:"Qazvin University of Medical Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 26th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:4,numberOfPublishedChapters:289,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},subseries:[{id:"14",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",annualVolume:11410,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",annualVolume:11411,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",annualVolume:11413,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",annualVolume:11414,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",fullName:"Shymaa Enany",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRqB9QAK/Profile_Picture_1626163237970",institutionString:null,institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/67670",hash:"",query:{},params:{id:"67670"},fullPath:"/profiles/67670",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()