Risk factors for infectious complications in multiple myeloma.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"intechopen-supports-asapbio-s-new-initiative-publish-your-reviews-20220729",title:"IntechOpen Supports ASAPbio’s New Initiative Publish Your Reviews"},{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"}]},book:{item:{type:"book",id:"10228",leadTitle:null,fullTitle:"Dyslexia",title:"Dyslexia",subtitle:null,reviewType:"peer-reviewed",abstract:"This book includes a variety of perspectives on dyslexia from different contexts. Chapters provide examples of empirical research; the outcomes of which have the potential to improve the experiences of individuals with dyslexia. The book emphasises the importance of adopting a capability rather than a deficit approach.",isbn:"978-1-83881-967-5",printIsbn:"978-1-83881-966-8",pdfIsbn:"978-1-83881-968-2",doi:"10.5772/intechopen.91069",price:119,priceEur:129,priceUsd:155,slug:"dyslexia",numberOfPages:226,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"6b4060d23ac02fcb4a11313ec1c911c6",bookSignature:"Jonathan Glazzard and Samuel Stones",publishedDate:"June 16th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10228.jpg",numberOfDownloads:4699,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:2,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:3,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 3rd 2020",dateEndSecondStepPublish:"September 16th 2020",dateEndThirdStepPublish:"November 15th 2020",dateEndFourthStepPublish:"February 3rd 2021",dateEndFifthStepPublish:"April 4th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"294281",title:"Prof.",name:"Jonathan",middleName:null,surname:"Glazzard",slug:"jonathan-glazzard",fullName:"Jonathan Glazzard",profilePictureURL:"https://mts.intechopen.com/storage/users/294281/images/system/294281.png",biography:"Professor Jonathan Glazzard’s research focuses on mental health, well-being and inclusion in education. He is a qualitative researcher and uses a broad range of approaches, including narrative methodology, visual/participatory methods and more traditional interviews and focus groups. Jonathan’s recent projects include exploration of head teacher resilience, teacher and child mental health and the experiences of teachers who identify as LGBTQ+. Jonathan is a co-convenor of the British Educational Research Association (BERA) Special Interest Group, Mental Health and Wellbeing in Education. He is also a member of the Excellence in International Transitions Research, which is led by Professor Divya Jindal-Snape. Jonathan is deeply committed to research that advances social justice. He has widely published on aspects of inclusion and social justice for marginalised groups and individuals, and he is deeply committed to research that improves the lives of individuals and research-informed teaching.",institutionString:"Edge Hill University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Edge Hill University",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"309587",title:"Mr.",name:"Samuel",middleName:"Oliver James",surname:"Stones",slug:"samuel-stones",fullName:"Samuel Stones",profilePictureURL:"https://mts.intechopen.com/storage/users/309587/images/system/309587.jpg",biography:"Samuel Stones is a Lecturer and Researcher at Leeds Beckett University as well as Assistant Headteacher at a secondary school and sixth form located in North Yorkshire, England. He also holds a national training role with a large multi-academy trust. Samuel\\'s research outputs are linked with the Centre for LGBTQ+ Inclusion in Education and the Carnegie Centre of Excellence for Mental Health in Schools at Leeds Beckett University. His research explores the experiences of teachers who identify as Lesbian, Gay, Bisexual and Transgender, with specific emphasis on the impact of sexual orientation on teacher identity and mental health. Samuel\\'s research explores issues of social justice and inclusion, particularly in relation to mental health, special educational needs, sexual orientation and gender identity.",institutionString:"Leeds Beckett University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Leeds Beckett University",institutionURL:null,country:{name:"United Kingdom"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1239",title:"Learning Disability",slug:"learning-disability"}],chapters:[{id:"74094",title:"Dyslexia and Academic Life",doi:"10.5772/intechopen.94577",slug:"dyslexia-and-academic-life",totalDownloads:736,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This chapter intends to discuss the experiences of university students with dyslexia and academic learning and assessment. It intends to challenge the traditional access to and production of examinations and to separate the ability to retrieve and produce verbal visual print from academic learning and performance in order to propose a model where educational systems join the fourth revolution. The intention is to address the brain drain that communities experience when students with Dyslexia are not able to show what they really know, due to possibly archaic access to and production of academic learning and assessment. The use of technology and independent access to printed material will also be discussed. The framework of this chapter is the Kannangara model of dyslexia: from Languishing to Thriving with Dyslexia. When reading this chapter, one also needs to remember that, whilst I refer to dyslexia, this profile more often than not co-occurs with other learning challenges and is often grouped with populations of Specific Learning Difficulties or Learning Disabilities in research and national data.",signatures:"Ruth Falzon",downloadPdfUrl:"/chapter/pdf-download/74094",previewPdfUrl:"/chapter/pdf-preview/74094",authors:[{id:"323851",title:"Dr.",name:"Ruth",surname:"Falzon",slug:"ruth-falzon",fullName:"Ruth Falzon"}],corrections:null},{id:"75089",title:"Effects of a Phonological Intervention on EEG Connectivity Dynamics in Dyslexic Children",doi:"10.5772/intechopen.95975",slug:"effects-of-a-phonological-intervention-on-eeg-connectivity-dynamics-in-dyslexic-children",totalDownloads:367,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"We examined the brain networks and oscillatory dynamics, inferred from EEG recordings during a word-reading task, of a group of children in grades 4 and 5 (ages 9–11), some of whom were dyslexic. We did this in order to characterize the differences in these dynamics between typical and dyslexic readers, and to begin to characterize the effect of a phonological intervention on those differences. Dyslexic readers were recorded both before and after they participated in a FastForWord (FFW) reading training program for approximately six months and typical readers were recorded once during this period. Before FFW dyslexic readers showed (i) a bottleneck in letter recognition areas, (ii) expansion in activity and connectivity into the right hemisphere not seen in typical readers, and (iii) greater engagement of higher-level language areas, even for consonant string stimuli. After FFW, dyslexic readers evinced a significant reduction in the engagement of language processing areas, and more activity and connectivity expanding to frontal areas, more resembling typical readers. Reduction of connectivity was negatively correlated with gains in reading performance, suggesting an increase in communication efficiency. Training appeared to improve the efficiency of the alternative (bilateral) pathways already used by the dyslexic readers, rather than inducing them to create new pathways more similar to those employed by typical readers.",signatures:"Nicolas Bedo, Dikla Ender-Fox, Janet Chow, Linda Siegel, Urs Ribary and Lawrence M. Ward",downloadPdfUrl:"/chapter/pdf-download/75089",previewPdfUrl:"/chapter/pdf-preview/75089",authors:[{id:"330847",title:"Prof.",name:"Urs",surname:"Ribary",slug:"urs-ribary",fullName:"Urs Ribary"},{id:"330848",title:"Prof.",name:"Lawrence",surname:"Ward",slug:"lawrence-ward",fullName:"Lawrence Ward"},{id:"342559",title:"Dr.",name:"Nicolas",surname:"Bedo",slug:"nicolas-bedo",fullName:"Nicolas Bedo"},{id:"342560",title:"Dr.",name:"Dikla",surname:"Ender-Fox",slug:"dikla-ender-fox",fullName:"Dikla Ender-Fox"},{id:"342561",title:"Mrs.",name:"Janet",surname:"Chow",slug:"janet-chow",fullName:"Janet Chow"},{id:"342562",title:"Prof.",name:"Linda",surname:"Siegel",slug:"linda-siegel",fullName:"Linda Siegel"}],corrections:null},{id:"73579",title:"Dyslexia and the Speech Pathologist",doi:"10.5772/intechopen.93690",slug:"dyslexia-and-the-speech-pathologist",totalDownloads:420,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Dyslexia is a complex condition. Timely identification of this disorder is imperative to its optimal management. Students benefit most when the skill sets of specialists trained to recognize markers and characteristics of dyslexia are effectively utilized. This chapter provides a real-life case study describing the process by which a student with a language literacy disorder such as dyslexia was assessed by a speech-language pathologist (SLP). Supporting literature is embedded throughout the case study to enhance learning and support the decisions made by the SLP. The role that the SLP can take in working with students with language literacy disorders such as dyslexia is also discussed. Therefore, the aims of this chapter are threefold: to (a) provide guidance for SLPs who may work with students with language literacy disorders such as dyslexia; (b) educate parents of children, with language literacy disorders such as dyslexia, about SLPs; and (c) support teachers and educational professionals by providing information about professionals who can serve as a resource for students.",signatures:"Jane Roitsch",downloadPdfUrl:"/chapter/pdf-download/73579",previewPdfUrl:"/chapter/pdf-preview/73579",authors:[{id:"323862",title:"Assistant Prof.",name:"Jane",surname:"Roitsch",slug:"jane-roitsch",fullName:"Jane Roitsch"}],corrections:null},{id:"73999",title:"“It’s a Battle!”: Parenting and Supporting a Child with Dyslexia",doi:"10.5772/intechopen.93948",slug:"-it-s-a-battle-parenting-and-supporting-a-child-with-dyslexia",totalDownloads:358,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Parents and carers supporting their children with dyslexia liken their experiences to battle, when trying to secure appropriate educational provision for their children. This chapter expands our understanding of parents’/carers’ experiences through exploration of both academic studies, reviews and gray literature since the Assent of the Children and Families Act 2014 in England. Using a Bourdieusian framework underpinned by Jenkins’ ‘levels of interaction’, this chapter studies parental/carers’ experiences of dyslexia and procurement of appropriate educational provision for their children with dyslexia. Parents’/carers’ internal sense-making of dyslexia is explored. Connections are made between this sense-making and the nature of parents’/carers’ interactions with their children and education professionals. These interactions, as underpinned by individuals’ understandings of dyslexia are then explored in the context of the social positions occupied by parents/carers relative to others within the field of education. Parents’/carers’ capacity to engage with professionals, and contribute meaningfully to decision-making processes through embodiment of necessary habitus is exposed through analysis of individual sense-making, interactional exchanges and institutional relationships. Practical and theoretical implications of parents’/carers/sense-making of dyslexia, their interactional experiences, and embodiment of habitus are then described in a ‘Who, What, When and How’ overview of parents/carers supporting a child with dyslexia.",signatures:"Helen Ross",downloadPdfUrl:"/chapter/pdf-download/73999",previewPdfUrl:"/chapter/pdf-preview/73999",authors:[{id:"324010",title:"Dr.",name:"Helen",surname:"Ross",slug:"helen-ross",fullName:"Helen Ross"}],corrections:null},{id:"73121",title:"The Three Educational Faces of Dyslexia: Identification and Remediation in the Orthographic Phase",doi:"10.5772/intechopen.93443",slug:"the-three-educational-faces-of-dyslexia-identification-and-remediation-in-the-orthographic-phase",totalDownloads:477,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Frith defined a her 3-phase and 6-step psychological model of dyslexia. The three phases were named Logographic, Alphabetic and Orthographic in which sometimes the steps in reading and at other times spelling were in the lead. Using this model, it was possible to consider what teachers would experience when meeting dyslexic pupils in the different phases and resulted in being able to identify three different educational faces. In the process of this research the dyslexic characteristics were more clearly illustrated and identified in the written work of dyslexics rather than in their reading. What they wrote displayed in concrete terms their knowledge of the alphabetic system and the structure of words. Many able readers were identified who found it almost impossible to write a legible, coherent and correctly spelled script at any age but the poorest spellers were able to read much more than they could write. It was found that nearly 20% of pupils in a range of schools had dyslexic-type spelling problems but these were generally ignored if they could read adequately. In this publication the subject is the Orthographic face and what teachers may do to help.",signatures:"Diane Montgomery",downloadPdfUrl:"/chapter/pdf-download/73121",previewPdfUrl:"/chapter/pdf-preview/73121",authors:[{id:"85131",title:"Prof.",name:"Diane",surname:"Montgomery",slug:"diane-montgomery",fullName:"Diane Montgomery"}],corrections:null},{id:"74022",title:"Mediating the Learning of a Student with Dyslexia in a Greek Supplementary School in the UK",doi:"10.5772/intechopen.94267",slug:"mediating-the-learning-of-a-student-with-dyslexia-in-a-greek-supplementary-school-in-the-uk",totalDownloads:305,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This paper’s aim was to investigate a second language teacher’s beliefs about teaching and learning and her practices in relation to a student with dyslexia from a sociocultural perspective. It first referred to studies on teachers’ beliefs and practices, then the concepts of mediation, scaffolding and zone of proximal development were defined and studies on mediation and scaffolding were reviewed. Τhe data from the interview with the teacher and the classroom observations were analyzed and compared. The study illustrated that the teacher’s practices were not always consistent with her beliefs of how students with dyslexia learn better. Her teaching practice did not always have a theoretical concept behind it either. The observation of her lessons demonstrated though an effective use of multisensory methods, actions, objects and scaffolding to mediate a student’s with dyslexia learning. In the end of the chapter suggestions for teachers of students with dyslexia in similar settings are given based on the data.",signatures:"Maria Rontou",downloadPdfUrl:"/chapter/pdf-download/74022",previewPdfUrl:"/chapter/pdf-preview/74022",authors:[{id:"312572",title:"Ph.D.",name:"Maria",surname:"Rontou",slug:"maria-rontou",fullName:"Maria Rontou"}],corrections:null},{id:"74709",title:"Visual-Motor Perception and Handwriting Performance of Students with Mixed Subtype Dyslexia",doi:"10.5772/intechopen.93626",slug:"visual-motor-perception-and-handwriting-performance-of-students-with-mixed-subtype-dyslexia",totalDownloads:357,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"This studyaimed to characterize and compare the visual-motor perception and handwriting performance of students with mixed dyslexia and students with good academic performance. Twenty-six schoolchildren of both sexes participated in this study, aged 9 to 11 years and 11 months old, from fourth and fifth grades of an elementary school in municipal public schools, from an average socioeconomic level, divided into two groups: Group I (GI) composed of 13 students with a multidisciplinary diagnosis of mixed developmental dyslexia and Group II (GII) composed of 13 students with good academic performance from a municipal school and matched according to gender, education, and age to GI. All students in this study were subjected to the application of the following procedures: Developmental Test of Visual Perception III—DTVP-III, Dysgraphia Scale and writing analysis by NeuroScript MovAlyzeR 6.1 software. The results were analyzed statistically using the following tests: Mann-Whitney test, Wilcoxon signed-rank test, and Friedman test, aiming to verify intragroup and intergroup differences for the variables of interest in the DTVP-III, the Dysgraphia Scale, and the measures of handwriting speed and pressure by the MovAlyzeR software. The results were analyzed statistically at a significance level of 5% (0.050). The results showed that there were statistically significant differences between GI and GII in the parameters of the Dysgraphia Scale, floating lines, irregular spaces between words, junction points, sudden movements, and dimension irregularities. GII showed a superior performance in relation to GI in the variables analyzed with the DTVP-III in visual-motor integration, reduced motricity perception, and general visual perception. There was no statistically significant difference between GI and GII in the variables analyzed by the MovAlyzeR software. The results of this study allowed us to conclude that students with mixed dyslexia present a lower performance profile than the students with good academic performance in general visual perception, reduced motricity visual perception, and visual-motor perception skills, which may be the cause of the quality of dysgraphic writing characterized by floating lines, irregular spaces, junction points, sudden movements, and dimension irregularities.",signatures:"Simone Aparecida Capellini, Larissa Sellin, Ilaria D’Angelo, Noemi Del Bianco, Catia Giaconi and Giseli Donadon Germano",downloadPdfUrl:"/chapter/pdf-download/74709",previewPdfUrl:"/chapter/pdf-preview/74709",authors:[{id:"325210",title:null,name:"Simone",surname:"Capellini",slug:"simone-capellini",fullName:"Simone Capellini"},{id:"325437",title:"Mrs.",name:"Larissa",surname:"Sellin",slug:"larissa-sellin",fullName:"Larissa Sellin"},{id:"325438",title:"Mrs.",name:"Ilaria",surname:"D’Angelo",slug:"ilaria-d'angelo",fullName:"Ilaria D’Angelo"},{id:"325440",title:"Dr.",name:"Noemi",surname:"Del Bianco",slug:"noemi-del-bianco",fullName:"Noemi Del Bianco"},{id:"325441",title:"Dr.",name:"Catia",surname:"Giaconi",slug:"catia-giaconi",fullName:"Catia Giaconi"},{id:"325443",title:"Dr.",name:"Giseli Donadon",surname:"Germano",slug:"giseli-donadon-germano",fullName:"Giseli Donadon Germano"}],corrections:null},{id:"73587",title:"Understanding the Socio-Emotional Impact of Dyslexia in the Inclusive Classroom",doi:"10.5772/intechopen.94203",slug:"understanding-the-socio-emotional-impact-of-dyslexia-in-the-inclusive-classroom",totalDownloads:570,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Much of the literature pertaining to children’s experiences of dyslexia points to low self esteem and low self-concept as compared with typically developing peers (i.e. those without dyslexia). While the specific difficulties associated with dyslexia may present challenges for those children, the author outlines how external forces such as the environment, relationships and teacher understanding may contribute to (or alleviate) such negative self perceptions. While children may learn and process information differently, negative feelings are often compounded by a teacher’s lack of knowledge regarding this different way of learning in the inclusive classroom. In order to develop truly inclusive practices in schools, it is imperative that contextual issues impacting children are understood and that this understanding is utilised to improve outcomes for all children, including those with dyslexia. It is also contended that children should be at the centre of this process and their views on how they learn best must be considered paramount.",signatures:"Trevor O’ Brien",downloadPdfUrl:"/chapter/pdf-download/73587",previewPdfUrl:"/chapter/pdf-preview/73587",authors:[{id:"323076",title:"Dr.",name:"Trevor",surname:"O’Brien",slug:"trevor-o'brien",fullName:"Trevor O’Brien"}],corrections:null},{id:"73810",title:"Potential Logographic Dyslexics Identified via Self-Reporting during a Questionnaire Survey in Taiwan",doi:"10.5772/intechopen.94298",slug:"potential-logographic-dyslexics-identified-via-self-reporting-during-a-questionnaire-survey-in-taiwa",totalDownloads:432,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"According to the patterns of difficulties of the dyslexics that have been reported in Western societies, a questionnaire in traditional Chinese was developed to carry out initial screening among Taiwanese. The questionnaire includes 30 items with four-point scales and 7 open-ended questions. Of the 2133 copies distributed, a total of 1599 questionnaires were collected which gives a 75.0% response rate and 1442 were completed. The mean of 30-item scores collected from 1442 participants is 87.99 ± 11.9. Among these participants, 9 self-reported potential logographic dyslexics have been identified. The individual scores of 30 items of the nine subjects were at least 1 SD to 4.5 SD lower than that of their counterparts. There are two potential logographic dyslexics families show genetic influence. Since there is no standard test for dyslexics, we developed a 30-item questionnaire that can be completed in 15-20 minutes on average. The questionnaire may serve as a low cost, initial screening tool and allows the potential probands to self-report while the formal diagnosis is not available.",signatures:"Ying-Fang Sun and Pei-Shan Liao",downloadPdfUrl:"/chapter/pdf-download/73810",previewPdfUrl:"/chapter/pdf-preview/73810",authors:[{id:"86215",title:"Dr.",name:"Ying-Fang",surname:"Sun",slug:"ying-fang-sun",fullName:"Ying-Fang Sun"},{id:"331299",title:"Prof.",name:"Pei-Shan",surname:"Liao",slug:"pei-shan-liao",fullName:"Pei-Shan Liao"}],corrections:null},{id:"75012",title:"An Ecocultural Perspective on Learning Disability: Evaluation of Familial and Cultural Factors and Presentation of an Integrated Model",doi:"10.5772/intechopen.95827",slug:"an-ecocultural-perspective-on-learning-disability-evaluation-of-familial-and-cultural-factors-and-pr",totalDownloads:271,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Ecocultural theory defines culture as a broad context that includes the tasks, goals, beliefs, values, and resources of society. According to ecocultural theory, culture shapes families’ resources, routines, goals, and parenting practices. In turn, these characteristics of family ecology and parenting determine child development. Ecocultural theory is one of the modern approaches that examine the adaptation of children with disabilities and their families. This chapter aims to outline the relationship between cultural values and families’ support resources, and their influence on adaptation of the families and their children with learning disability (LD) within the framework of ecocultural theory. Previous studies supported that cultural values determine public knowledge, awareness, beliefs, and attitudes about LD. This chapter outlines both the detrimental and positive effects of the public knowledge, beliefs, and attitudes on families’ support resources. Also, families’ diversified support resources are detailed, and their differential influences on family and child development are elaborated. In the chapter, an integrated model is presented based on findings of previous empirical studies and ecocultural perspective. The model might enhance a culturally sensitive understanding of the experience of families and children. This chapter can also guide researchers in developing more comprehensive and effective intervention programs for the target group.",signatures:"Suzan Cen-Yagiz and Berna Aytac",downloadPdfUrl:"/chapter/pdf-download/75012",previewPdfUrl:"/chapter/pdf-preview/75012",authors:[{id:"323815",title:"Dr.",name:"Suzan",surname:"Cen-Yagiz",slug:"suzan-cen-yagiz",fullName:"Suzan Cen-Yagiz"},{id:"339687",title:"Dr.",name:"Berna",surname:"Aytac",slug:"berna-aytac",fullName:"Berna Aytac"}],corrections:null},{id:"74892",title:"Eye Tracking Using Nonverbal Tasks Could Contribute to Diagnostics of Developmental Dyslexia and Developmental Language Disorder",doi:"10.5772/intechopen.95561",slug:"eye-tracking-using-nonverbal-tasks-could-contribute-to-diagnostics-of-developmental-dyslexia-and-dev",totalDownloads:408,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"There are not many studies dealing with a comparison of the eye movements of individuals with dyslexia and developmental language disorder (DLD). The aim of this study is to compare the eye movements in the two most common language disorders, dyslexia and DLD and to consider their contribution to diagnostics. In the research the oculomotor test was administered to 60 children with the clinical diagnosis of dyslexia or DLD and 58 typically developing children (controls). The test included a prosaccadic task, antisaccadic task and a nonverbal sequential task with self-regulation of the pace. Controls could be singled out from other two clinical groups by means of the oculomotor imaging. Both of the clinical groups in comparison with the controls were characterized by worse overall performance. Through the employment of the oculomotor it was possible to differentiate between both of the clinical groups. The dyslexics had an overall worse oculomotor performance than the DLD group. The results of the study show that the oculomotor test has the potential to contribute to diagnostics of dyslexia and DLD and the screening of these disorders at pre-school age.",signatures:"Zuzana Bilkova, Martin Dobias, Jaromir Dolezal, Vratislav Fabian, Helena Havlisova, Jiri Jost and Olga Malinovska",downloadPdfUrl:"/chapter/pdf-download/74892",previewPdfUrl:"/chapter/pdf-preview/74892",authors:[{id:"275733",title:"Dr.",name:"Olga",surname:"Malinovska",slug:"olga-malinovska",fullName:"Olga Malinovska"},{id:"275734",title:null,name:"Jiri",surname:"Jost",slug:"jiri-jost",fullName:"Jiri Jost"},{id:"338777",title:"Dr.",name:"Zuzana",surname:"Bilkova",slug:"zuzana-bilkova",fullName:"Zuzana Bilkova"},{id:"338778",title:"Dr.",name:"Helena",surname:"Havlisova",slug:"helena-havlisova",fullName:"Helena Havlisova"},{id:"338779",title:"Dr.",name:"Martin",surname:"Dobias",slug:"martin-dobias",fullName:"Martin Dobias"},{id:"338780",title:"Dr.",name:"Jaromir",surname:"Dolezal",slug:"jaromir-dolezal",fullName:"Jaromir Dolezal"},{id:"338781",title:"Dr.",name:"Vratislav",surname:"Fabian",slug:"vratislav-fabian",fullName:"Vratislav Fabian"}],corrections:[{id:"76730",title:"Erratum - Eye Tracking Using Nonverbal Tasks Could Contribute to Diagnostics of Developmental Dyslexia and Developmental Language Disorder",doi:null,slug:"erratum-eye-tracking-using-nonverbal-tasks-could-contribute-to-diagnostics-of-developmental-dyslexia",totalDownloads:null,totalCrossrefCites:null,correctionPdfUrl:null}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"715",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!1,hash:"7cf7910a2068cff1fdcdfd5ed3c25cc7",slug:"learning-disabilities",bookSignature:"Wichian Sittiprapaporn",coverURL:"https://cdn.intechopen.com/books/images_new/715.jpg",editedByType:"Edited by",editors:[{id:"73395",title:"Dr.",name:"Phakkharawat",surname:"Sittiprapaporn",slug:"phakkharawat-sittiprapaporn",fullName:"Phakkharawat Sittiprapaporn"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5878",title:"Learning Disabilities",subtitle:"An International Perspective",isOpenForSubmission:!1,hash:"233671027a40a86828b81f5f6094c4df",slug:"learning-disabilities-an-international-perspective",bookSignature:"Carolyn S. Ryan",coverURL:"https://cdn.intechopen.com/books/images_new/5878.jpg",editedByType:"Edited by",editors:[{id:"28738",title:"Dr.",name:"Carolyn S",surname:"Ryan",slug:"carolyn-s-ryan",fullName:"Carolyn S Ryan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10910",title:"Learning Disabilities",subtitle:"Neurobiology, Assessment, Clinical Features and Treatments",isOpenForSubmission:!1,hash:"0999e5f759c2380ae5a4a2ee0835c98d",slug:"learning-disabilities-neurobiology-assessment-clinical-features-and-treatments",bookSignature:"Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/10910.jpg",editedByType:"Edited by",editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79356",slug:"corrigendum-to-production-of-sustainable-concrete-by-using-challenging-environmentally-friendly-mate",title:"Corrigendum to: Production of Sustainable Concrete by Using Challenging Environmentally Friendly Materials Instead of Cement",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81454.pdf\r\n",downloadPdfUrl:"/chapter/pdf-download/81454",previewPdfUrl:"/chapter/pdf-preview/81454",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81454",risUrl:"/chapter/ris/81454",chapter:{id:"77888",slug:"production-of-sustainable-concrete-by-using-challenging-environmentally-friendly-materials-instead-o",signatures:"Abebe Demissew Gashahun",dateSubmitted:"April 13th 2021",dateReviewed:"July 5th 2021",datePrePublished:"September 23rd 2021",datePublished:"May 4th 2022",book:{id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,fullTitle:"Sustainability of Concrete With Synthetic and Recycled Aggregates",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",publishedDate:"May 4th 2022",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"347459",title:"Mr.",name:"Abebe",middleName:"Demissew",surname:"Demissew Gashahun",fullName:"Abebe Demissew Gashahun",slug:"abebe-demissew-gashahun",email:"abebe_demissew@dmu.edu.et",position:null,institution:{name:"Debre Markos University",institutionURL:null,country:{name:"Ethiopia"}}}]}},chapter:{id:"77888",slug:"production-of-sustainable-concrete-by-using-challenging-environmentally-friendly-materials-instead-o",signatures:"Abebe Demissew Gashahun",dateSubmitted:"April 13th 2021",dateReviewed:"July 5th 2021",datePrePublished:"September 23rd 2021",datePublished:"May 4th 2022",book:{id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,fullTitle:"Sustainability of Concrete With Synthetic and Recycled Aggregates",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",publishedDate:"May 4th 2022",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"347459",title:"Mr.",name:"Abebe",middleName:"Demissew",surname:"Demissew Gashahun",fullName:"Abebe Demissew Gashahun",slug:"abebe-demissew-gashahun",email:"abebe_demissew@dmu.edu.et",position:null,institution:{name:"Debre Markos University",institutionURL:null,country:{name:"Ethiopia"}}}]},book:{id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,fullTitle:"Sustainability of Concrete With Synthetic and Recycled Aggregates",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",publishedDate:"May 4th 2022",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11817",leadTitle:null,title:"Next Generation Fiber-Reinforced Composites - New Insights",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tHigh-performance fiber-reinforced polymer/ceramic/metal composites are the current state-of-the-art for lightweight structures and their use is rising exponentially in a wide range of applications. They offer outstanding mechanical properties: high strength and stiffness, low weight, and low susceptibility to fatigue and corrosion. This book will be focused on the next-generation fiber-reinforced composites, which possess better mechanical properties for engineering applications. For polymer-matrix composites (PMCs), works regarding the research contents of fabrication methods, testing and theoretical analysis for high mechanical properties (i.e., tensile, compression, and shear, et al.) and related damage mechanisms are welcome. For ceramic-matrix composites (CMCs), the works on the fabrication methods and high-temperature mechanical properties related to durability, fatigue, creep, and damage mechanisms and theoretical predictions are welcome. For metal-matrix composites (MMCs), the investigations on the fabrication methods and mechanical properties of MMCs are also welcome to be submitted.
\r\n\t
Multiple myeloma (MM), the second most common hematologic malignancy (HM), is a plasma cell neoplasm characterized by production of a monoclonal immunoglobulin that ultimately leads to several complications including anemia, renal dysfunction, bone disease, immunodeficiency, and various infections [1, 2, 3, 4, 5].
Over the past two decades, the outcomes of patients with MM have improved substantially due to the following: (1) the widespread utilization of high-dose (HD) chemotherapy followed by autologous stem cell transplantation (HSCT), (2) the introduction of several novel therapies and monoclonal antibodies, (3) the evolution of advanced technology that facilitated understanding of the biology of the disease and helped in the diagnosis, risk stratification and follow-up of patients, (4) the evolution of new therapeutic strategies such as consolidation and maintenance treatments as well as total and continuous therapy, and (5) improvements in supportive care and antimicrobial therapies [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Currently, the following novel therapies are available for patients with MM: (1) immunomodulatory agents such as thalidomide, lenalidomide, and pomalidomide; (2) proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib; (3) monoclonal antibodies such as daratumumab and elotuzumab; and (4) histone deacetylase inhibitors such as panobinostat and vorinostat [1, 3, 4, 6, 9, 11]. Unfortunately, despite the remarkable progress achieved in the diagnostics and therapeutics and the plethora of therapeutic modalities, MM remains incurable [1, 4, 5, 7, 11]. The numerous treatment modalities that are available for patients with MM have shown their effectiveness, but they have their own adverse effects including bone marrow (BM) suppression and infectious complications that may be life-threatening [13, 14, 15].
The standard induction therapy in patients with newly diagnosed MM is the triplet regimen of bortezomib, lenalidomide, and dexamethasone [4, 16]. Autologous HSCT is the standard of care for transplant-eligible patients either upfront or at relapse [4, 10, 16]. Studies have shown that post-HSCT consolidation and maintenance treatments can further improve the outcome of patients with MM [10, 16, 17]. Monitoring disease response at various stages of treatment is essential and studies have shown that monitoring of minimal residual disease is associated with longer progression-free survival (PFS) and overall survival (OS) [18, 19].
In patients with MM, several studies have shown that risk factors for early mortality include male gender, age >75 years, poor performance status, presence of comorbid medical conditions such as renal failure and hypertension, low platelet count, low serum albumin level, elevated serum levels of calcium and lactic dehydrogenase, low body mass index, presentation with primary plasma cell leukemia, advanced stage of disease at presentation, and infectious complications [20, 21, 22, 23, 24, 25]. Two major studies that included 451 and 299 patients with MM showed that 65 and 45% of early deaths were attributable to infections [20, 21].
Despite the use of prophylactic antimicrobials, infections remain a leading cause of mortality and morbidity in patients with MM [26]. In patients with MM, approximately 45% of deaths occurring within 60 days of diagnosis are caused by various infections, predominantly pneumonia and sepsis [20, 26].
In patients with MM, causes of immunosuppression include: (1) the immunosuppressive effects of the disease or the direct immunosuppression caused by tumor cells, particularly in advanced stage or refractory disease, (2) therapeutic interventions to control MM, such as corticosteroids, cytotoxic chemotherapy, and the novel therapies such as thalidomide, lenalidomide and bortezomib reduce the immunity further by different mechanisms including neutropenia and mucositis, (3) old age and its immunosuppressive effects, (4) impairment of the capacity of the immune system to mount effective responses or challenges to infection or vaccination, (5) further suppression of the immune system by the administration of HD chemotherapy (melphalan) followed by autologous HSCT, and (6) presence of comorbid medical conditions [14, 27, 28, 29, 30, 31].
In patients with MM, the risks of infectious complications and disease progression are enhanced by following forms of dysfunction of the immune system: reduced antigen presentation, high cytokine levels and increased suppressive cells such as CD8 Tregs [32, 33]. Both cellular and humoral components of the immune system are suppressed in patients with MM [28, 34, 35]. Hypogammaglobulinemia or immunoparesis is associated with unfavorable prognosis in newly diagnosed patients with MM [34]. In a Danish study that included 2558 patients with MM, immunoparesis at diagnosis was not confirmed to be an independent prognostic factor for OS, but quantitative immunoparesis was found to be associated with a shorter PFS [34].
Patients with MM have increased susceptibility to infections due to the profound B-cell dysfunction or the depression in humoral immunity [36]. These patients are 10 times more prone to infections than patients with Waldenstrom’s macroglobulinemia and 5 times more prone to infections than individuals with monoclonal gammopathy of undetermined significance [36]. MM patients have increased susceptibility to severe pneumococcal infections, and they respond poorly to pneumococcal vaccination [35, 36].
The highest risk of infection occurs within the first month after the diagnosis of MM, particularly in patients with renal failure [14, 36]. The infections that are encountered in patients with MM include urinary tract infection, pneumonia, septicemia, fungal infections, and viral infections such as
The risk factors for infectious complications in patients with MM can be divided into patient-related factors, disease-related factors, and treatment-related factors as shown in Table 1 [13, 14, 38, 39, 40, 41, 42, 43, 44, 45]. However, the infections encountered in patients with MM include: (1) bacterial infections, predominantly involving respiratory and urinary tract, caused by
1 | Patient-related factors:
|
2 | Disease-related factors:
|
3 | Treatment-related factors:
|
Risk factors for infectious complications in multiple myeloma.
The sites of infections in patients with MM include: (1) upper and lower respiratory tract with otitis, sinusitis, and pneumonia; (2) urinary tract; (3) brain with meningitis; (4) skin with VZV infection; (5) heart with endocarditis; (6) bone and joint infections; and (7) bacteremia [14, 43, 47, 48, 49, 50, 51]. Bacterial infections are the most frequent etiological agents. However, invasive fungal infections (IFIs) caused by molds such as
In patients with MM having active disease, the following types of infections are common: bacteremia, pneumonia, sinusitis, otitis, meningitis, and IFIs [14, 50]. In active disease, Gram-negative bacterial (GNB) particularly encapsulated bacteria and fungi are common causes of infectious complications [14].
Patients with MM are at high risk of developing infections as infections in these patients have been reported to be 10 times more than that in healthy individuals. Also, the new novel therapies make patients with MM at higher risk of infectious complications than myeloma patients treated with cytotoxic chemotherapy [52, 53]. Even, prior to the diagnosis of MM, there is an underlying immune disturbance, which may predispose to various infections such as VZV, sinusitis, cystitis, and bronchitis that may be encountered during the disease evolution [54].
Neutropenia is a hematologic adverse event of medications characterized by an absolute neutrophil count (ANC) lower than 1500 cells/mL [55]. Neutropenia is a well-recognized complication of cytotoxic chemotherapy. Also, it develops in patients with MM receiving novel therapies or undergoing HSCT [55, 56, 57]. Prolonged and severe neutropenia increases the risk of febrile neutropenia (FN) and serious infections that may be life-threatening [57]. Persistent neutropenia causes not only delay in administration of chemotherapy or novel therapies, but also dose reductions in the next cycle of chemotherapy. Nevertheless, once the ANC reaches ≥1000 cells/mL, scheduled treatment may be resumed [55].
FN is a serious effect of chemotherapy, and it has the following adverse consequences: delay in administration of scheduled therapies, costs of hospitalization, and increased risk of morbidity and mortality in immunocompromised individuals [58]. Several studies have shown that the following risk factors for neutropenia and FN in patients with MM: (1) heavily pretreated disease and relapsed and refractory (R/R)-MM, (2) elderly patients with comorbid medical conditions, and (3) use of the following drugs particularly in combination with other agents such as lenalidomide, bendamustine, and the combination of bendamustine, bortezomib and dexamethasone [55, 58, 59, 60].
Management of patients with prolonged neutropenia and FN includes: (1) thorough physical evaluation for the site or source of infection, (2) taking enough cultures and septic screens, (3) administration of prophylactic and empirical antimicrobials, and (4) pre-emptive or prophylactic administration of granulocyte-colony stimulating factor (G-CSF) in patients who are expected to have prolonged or severe neutropenia [58, 59]. However, the choice of empirical antibiotic therapy in patients with HMs having FN depends on the risk stratification of the individual patient [61, 62]. In low-risk (LR) patients with FN, duration of neutropenia is <1 week and there are no comorbid medical conditions; while in high-risk (HR) patients with FN, the duration of neutropenia is >1 week and there are comorbid medical conditions [61, 62]. In case the patient is stratified as LR, oral antibiotics such as ciprofloxacin or levofloxacin are sufficient, while if the patient belongs to the HR group, intravenous (IV) antibiotics may need to be administered. IV ceftazidime, piperacillin-tazobactam, or a carbapenem can be given as single agents or in combination with either vancomycin or an aminoglycoside [62, 63, 64, 65]. However, the fact that there is a recent increase in the incidence of Gram-positive bacteria (GPB) cultured from neutropenic patients with MM has to be taken into consideration [56]. Empirical antifungal therapy can be used in patients with persistent fever despite the use of broad-spectrum antibiotics [61, 62, 66]. In addition, recombinant G-CSF is commonly used to reduce the incidence, duration, and severity of FN [57]. Studies have shown that the use of G-CSF as primary prophylaxis improves quality of life, is cost-effective as it reduces the: days of hospitalization, infectious complications, and incidence of chemotherapy interruptions [58, 59].
Bloodstream infections (BSIs) are important causes of morbidity and mortality in patients with HMs, and they contribute to delayed administration of planned chemotherapy, increased length of hospitalization, and increased health care costs [29]. The risk factors for bacteremia or bacterial BSIs in patients with HMs include the primary disease, neutropenia induced by intensive chemotherapy, and mucositis due to the cytotoxic effects of chemotherapy on the cells of gastrointestinal tract [67, 68]. In recent years, there has been a shift in prevalence of the causative organisms for bacterial BSIs in patients with HMs from GPB to GNB. Also, there has been increasing frequency of antimicrobial resistance in GNB [69]. Therefore, in patients with HMs having FN, BSIs caused by GNB should initially be treated with non-carbapenem-based anti-pseudomonal therapy taking into consideration the antimicrobial stewardship [67].
In patients with MM undergoing autologous HSCT, mucositis and chemotherapy-induced neutropenia are risk factors for the development of bacteremia [67, 68]. In two retrospective studies on BSIs that included 421 patients with MM, the following results were obtained: (1) the independent risk factors for BSIs were: advanced stage of disease, poor performance status, and receipt of autologous HSCT; (2) GPB, mainly
Bacteremia may antedate the diagnosis of MM and may be related to the use of venous catheters used during stem cell collection or autologous HSCT [71, 72]. Polymicrobial or multiple microbiologically confirmed infections are frequent and may cause serious consequences in recipients of HSCT [73]. Several studies have shown that the use of ciprofloxacin or levofloxacin prophylaxis in patients with MM undergoing autologous HSCT is associated with significant reduction in the incidence of FN, bacteremia, and pneumonia [68, 74, 75]. On the contrary, a randomized phase III study that included 212 MM patients undergoing induction therapy showed that the prophylactic use of antibiotics did not decrease the incidence of serious bacterial infections, thus obviating the need for the routine use of antibacterial prophylaxis in patients with MM receiving induction therapy [76]. However, other studies have shown that the addition of doxycycline to ciprofloxacin and the sequential use of levofloxacin followed by ertapenem in patients with MM subjected to autologous HSCT reduce the frequency of FN episodes, bacteremia, and documented bacterial infections without increasing the rate of serious complications [77, 78].
Reactivation of CMV after autologous HSCT performed for patients with MM is relatively common and is mainly encountered in patients receiving tandem rather than single HSCT; HD-melphalan conditioning therapy; and induction with combination therapy particularly bortezomib, thalidomide, and dexamethasone [79]. Also, reactivation of
Viremia caused by CMV is common and is often associated with fever, while CMV disease with biopsy proven tissue infiltration is rare in patients with MM receiving autologous HSCT [79]. CMV surveillance should be considered in patients with MM subjected to autologous HSCT, particularly those receiving tandem transplants, HD-melphalan and combination therapies for induction [79]. Acyclovir of valacyclovir prophylaxis should be offered to HR patients including recipients of HSCT, patients with progressive disease, and patients treated with bortezomib or lenalidomide [81, 82, 83, 84, 85, 86, 87].
Candidemia and IFIs are major complications in patients with HMs who develop prolonged and severe neutropenia. Additionally, IFIs are difficult to diagnose in these severely immunocompromised patients [88, 89, 90, 91]. In patients with MM prior to the introduction of novel therapies, IFIs were encountered in patients treated with traditional intensive cytotoxic chemotherapeutic regimens and mortality rates due to IFIs were reaching 60% [91]. In the era of novel therapies, IFIs are associated with mortality rate of approximately 44% and are mainly encountered in MM patients having: (1) progressive disease, (2) ≥ 3 lines of therapy administered, (3) received HSCT, particularly in the early post-transplant period, and (4) history of IFI treated [91, 92, 93].
Over the past two decades, the spectrum of
Tuberculosis (TB) is the most common cause of death from a single infectious agent worldwide [94]. In patients with HMs and in recipients of HSCT living in geographic locations that are endemic for TB, these infections are uncommon, but they cause significant morbidity and mortality [95, 96]. Early diagnosis, prompt administration of anti-TB chemotherapy, and adherence to treatment schedules are associated with successful outcome, while delayed management, drug resistance, and presence of disseminated infection are associated with poor prognosis and high mortality rates [95, 96].
The incidence of TB infection is higher in patients with MM than in the general population. Also, patients with MM have higher risk of mortality compared to MM patients without TB [97]. The risk factors for TB infection in patients with MM include: (1) the disease itself with its associated immunological abnormalities that include hypogammaglobulinemia as well as abnormal T cell-mediated and humoral immunities, (2) treatment of MM that includes corticosteroids, cytotoxic chemotherapy, and novel therapies such as bortezomib, (3) old age, (4) alcohol use disorder, (5) poor socioeconomic conditions, (6) HSCT, and (7) presence of comorbid medical conditions such as diabetes mellitus and malnutrition [94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104].
TB infections in patients with MM can be primary infections or reactivation of old or latent TB infections [94, 100, 101]. Reactivation of TB may by induced by (1) HD corticosteroids, (2) cytotoxic chemotherapy, (3) administration of novel therapies, and (4) autologous as well as allogeneic HSCT [95, 104]. In patients with MM receiving bortezomib-containing regimens, TB infections are uncommon [94]. In a retrospective analysis of 115 patients with MM treated with bortezomib-based therapy: TB infection was diagnosed in 7% of cases, bortezomib therapy was interrupted in 50% of the patients treated for TB and this affected outcome of patients significantly, but none of the patients died because of uncontrolled TB infection. In these patients, early diagnosis and prompt anti-TB treatment were essential to avoid further worsening of the outcome [94].
TB infections may be diagnosed at the time of diagnosis of MM or may evolve during or after treatment of MM [98, 99, 100, 105]. In patients with MM, TB infections have been reported to involve: (1) lungs with pulmonary infiltration, lung nodules, and bronchiectasis; (2) spine causing paraspinal masses and spinal cord compression; and (3) meninges with TB meningitis [98, 99, 100, 105]. However, spinal TB is the most serious form of TB infections [100]. TB infections in MM patients may coexist with infections caused by other microorganisms such as
TB infections are 10–40 times more common in recipients of HSCT than in the general population. Also, approximately 80% of
Bone and joint infections are uncommon in patients with MM. These infections manifest as: osteomyelitis, septic arthritis, and prosthetic joint infections [51, 106]. The pathogens encountered are similar to those cultured in patients without myeloma, although GPB predominate and polymicrobial infections occur less frequently [51]. In patients with MM treated with radiotherapy or IV bisphosphonates, there is a risk of developing osteonecrosis of the jaw [106, 107]. Patients with osteonecrosis of the jaw are at risk for developing infections and often require long-term antimicrobial therapy [108]. Having history of jaw osteonecrosis is not a contraindication for HSCT as the outcome of these patients is not worsened by HSCT itself [108].
Infections represent a significant cause of morbidity and a leading cause of death in patients with MM [13, 53]. The novel therapies that have been introduced over the past decade have improved the survival of patients with MM [53, 109]. Consequently, management of disease complications such as infections has become an important issue as patients with MM survive longer [53]. The pattern of infection and the risk factors for infection in MM patients have shifted due to the evolution of new therapies and the widespread use of HSCT [13, 43].
Several studies have shown that the use of immunomodulatory agents such as thalidomide and lenalidomide and proteasome inhibitors such as bortezomib, particularly if they are used in drug combinations that include corticosteroids in the treatment of MM at any stage, induction, relapse, or maintenance, are associated with increased risk of infectious complications, thus making the use of antimicrobial prophylaxis with fluoroquinolones, acyclovir, cotrimoxazole, and fluconazole essential [13, 52, 110, 111]. Also, in a meta-analysis that included 13 clinical trials, with 2402 patients participating, the use of daratumumab and elotuzumab in the treatment of R/R-MM was associated with myelosuppression in the form of neutropenia and lymphopenia and subsequent risk of infectious complications such as pneumonia [109].
Thalidomide is not significantly myelotoxic, so the risk of infection in patients with MM receiving thalidomide alone is very low [14]. However, severe infections have been encountered once thalidomide is used in combination with other drugs in the treatment of MM. Therefore, antibiotic prophylaxis is needed once thalidomide is used in combination with other drugs such as dexamethasone [112].
Lenalidomide has more potent costimulatory effects on CD4+ and CD8+ cells than thalidomide, and it causes neutropenia as part of myelosuppression, which is highest during the initial cycles of therapy and then it decreases thereafter [14, 31, 113].
Serious infections and even deaths have been encountered with the use of lenalidomide [31]. Several studies have shown the following results once lenalidomide is combined with dexamethasone: (1) various infections are prone to occur, and (2) these infectious complications may be severe to the extent that the patients need hospitalization to receive G-CSF and IV antimicrobial therapy, (3) respiratory tract infections are common, and (4) viral infections such as VZV may be encountered requiring treatment as well as prophylaxis with acyclovir [14, 82, 113, 114, 115, 116].
Pomalidomide causes neutropenia [44, 116, 117]. When combined with dexamethasone in the treatment of patients with MM, severe infections may develop and pneumonia is a commonly encountered infection [44, 116, 117].
Infection is the second most common cause of death, after disease progression, in MM patients treated with pomalidomide [44]. Patient receiving pomalidomide therapy may have interruption of their scheduled treatment in case of severe infection and may need: G-CSF administration, antimicrobial prophylaxis with quinolones and cotrimoxazole, and even revaccination [44, 116, 117].
Bortezomib causes decreased lymphocytic count and imbalance in T-lymphocyte subsets due to its potent immunosuppressive effect on T cells [14, 118, 119, 120]. Several studies have shown that the use of bortezomib in the treatment of patients with MM is associated with development of the following infectious complications: (1) viral infections such as HSV and VZV infections mainly in patients with IgG type of myeloma, (2) fungal infections, (3) bacterial infections, mainly in IgG type of MM, and (4) TB reactivation, which is more pronounced in patients receiving other drugs, such as thalidomide and cyclophosphamide, in combination with bortezomib [14, 118, 119, 121]. However, one study found that
Carfilzomib causes BM suppression that includes lymphopenia [123, 124]. The use of carfilzomib in the treatment of MM has been associated with the following infections: bacterial pneumonia, viral respiratory tract infections, and bacterial sepsis [123, 124].
Daratumumab has the following effects: neutropenia, lymphopenia, hyperglycemia, and decrease in natural killer cells, which play a major role in the immune clearance of virally infected cells [125, 126]. The use of daratumumab in the treatment of MM patients is associated with the following infections: nasopharyngitis, pneumonia, and viral infections such as VZV [125, 126, 127, 128].
Elotuzumab can cause neutropenia, lymphopenia, and hyperglycemia [129, 130, 131, 132]. Several studies have shown that its use in the treatment of patients with MM is associated with the following infections: pneumonia, sepsis, and even leishmaniasis [129, 130, 131, 133].
Corticosteroids predispose to infectious complications by causing immune suppression and hyperglycemia [13, 14, 39]. The following infections have been reported in patients with MM receiving corticosteroid therapy: (1)
Prior to the era of novel therapies for MM, studies in patients with HMs receiving autologous HSCT showed that there was no significant difference in incidence, type of infection, and clinical course of infection between patients with MM and patients with other HMs [134, 135]. However, a recent study showed that in-hospital mortality in patients with MM receiving autologous HSCT was approximately 1.5% and that there was no significant difference in mortality between elderly individuals and young patients [136]. Nevertheless, elderly patients were more likely to develop complications such as pneumonia, septic shock, acute respiratory failure needing endotracheal intubation, acute renal failure, and cardiac arrhythmias [136].
In patients with MM having dialysis-dependent renal failure are at higher risk of FN and infectious complications such as septic shock compared to patients without renal failure [137]. Patients with MM subjected to autologous HSCT are at higher risk of developing bacterial meningitis, which is associated with high rates of mortality and morbidity [138]. MM patients having MBL2 (mannan-binding lectin, which is part of the innate immune system that protects against severe infections during autologous HSCT) polymorphism are at risk of severe infections particularly after receiving HD-melphalan and autologous HSCT [139]. In addition to the administration of prophylactic antimicrobials in patients with HR-MM and in recipients of HSCT, strategies to reduce the incidence of infectious complications include administration of IV immunoglobulins and vaccination despite the likelihood of vaccination failure [140, 141].
During stem cell mobilization, infections related to central venous catheters are likely to occur with predominance of GPB [142]. Conditioning therapy with HD-melphalan causes mucositis and myelosuppression with neutropenia [14]. The use of melphalan is associated with colitis, pneumonia, and bacteremia, and these infections are usually caused by the following encapsulated bacteria,
During the post-transplant period, organisms such as
Reactivation of HBV is a well-recognized complication in patients with chronic HBV infection undergoing cytotoxic chemotherapy or immunosuppressive treatment [144]. In patients undergoing autologous HSCT, reverse seroconversion of HBV is not a rare complication and this poses concerns about possible complications in such severely immunocompromised individuals [144]. There is an extremely low incidence of PJP in recipients of autologous HSCT; thus, routine PJP prophylaxis should not be offered routinely to this population group. However, patients who require systemic corticosteroid therapy in the post-transplant period are candidates for PJP prophylaxis [145].
The introduction of the novel agents in the treatment of patients with MM has led to unprecedented improvements in survival rates. However, these novel therapies have their own toxicities that include BM suppression and various infectious complications. These infections include bacterial, viral, fungal, mycobacterial, and parasitic infections. Also, they can be local or disseminated and can affect the bloodstream and may invade internal organs, thus causing life-threatening illnesses.
As these infectious complications vary according to the stage of the disease and the specific agents used, prospective and multicentric studies are needed to explore the real extent of these infections in order to establish guidelines for the use of antimicrobial agents in the prophylaxis as well as the treatment of the various infections that can be encountered.
Composites consist of two materials; one of the materials is called the reinforcing phase (fibers, sheets, or particles), and is embedded in the other material called the matrix phase. The composite materials have more strength as compared to constituent materials. Wood is a common example of natural composites. Snails and oysters shells are also examples of natural composite materials. The history of the usage of nanocomposites is quite old. Egyptian have mixed straws with clay to form bricks. Mongols have used the composites in warfare and even in recent times, during World War II, the composite-based materials were used in military appliances, and in the modern era, a large number of composites are used in different fields [1].
The nanocomposite is a solid compound made up of several layers where at least one of the layers has one, two, or three dimensions with a nanometer size [2]. In nanocomposites, the atoms of the materials are arranged in the form of clusters or small grains. A solid multiphase having one of the 1, 2, or 3 phases less than 100 nm is called nanocomposites [3]. Nanoparticles, nanoclays, and nanofibers are examples of nanocomposites. Nanocomposites find their applications in the fields of medical and engineering.
Currently, scientists are facing the problem of data loss due to the overheating of imaging spectrographs in the Hubble Space Telescope. A probable solution is the use of a carbon nanotube that could dissipate the excess heat. The nanocomposites are lighter in weight and it is estimated that in near future the steel and aluminum-based products used in different engineering applications might be replaced with nanocomposites.
A Nanocomposite (NC) consists of several stages where, at least one, two, or three dimensions are in the nanometric range. Taking the size of objects up to the nanometer level creates optical connectors that are very important in the development of building material structures. Nanocomposites (NCs) provide opportunities on a completely new scale to solve hurdles ranging from the medical, pharma-industry to food packaging and from the electronics to energy-producing industries. Nanocomposites can be divided into three categories, which are as follows:
Metal matrix nanocomposites (MMNCs).
Ceramic matrix nanocomposites (CMNCs).
Polymer matrix nanocomposites (PMNCs).
The aim of the development of nanocomposites is to designate which raw materials and processes are best suited to produce specific nanomaterials by studying their uses, benefits, and drawbacks. Transformation factor where the size of the material is made less than a certain level is known as “Sensitive size.” Taking the size of the material down to the nanometer level fabricates the interactions with phase interfaces that become necessary in the development of building material structures. The ratio within the surface area to the volume of a reinforced material is used in synthesizing nanocomposites has directly been related to the structure-property relationship. A material nanocomposite (10−9 m diameter) that is made from non-metallic, metallic, or polymeric constituents by a certain process offers added benefits to retain their primary features and overcome defects by expressing some new characteristics. Such materials present a multiphase crossover in the matrix as well as in reinforcing materials. Reinforced material is a dispersed surface in the form of composite materials, such as fiberglass and organic fibers, whereas, matrix material consists of a uniform state and contains metallic, non-metallic, and polymer-based materials [4]. Nanocomposites represent a new way to surpass the limitations posed by microcomposites and the monoliths which have become the objects of the future. NCs have the following advantages over other materials:
The ratio between surface area and volume is high that allows a small fill size.
Superior mechanical characteristics that are minimum wastage of power and initial resistance and possess high ductility.
Having improved visual features (the particle size anchors the light transmission).
High robustness and effective impact are associated with nanoparticles along with the incorporation of composite matrix. But, insufficient understanding of structural materials and material to structural relationships, the need for easy particle breakdown and dispersion are the major hurdles in nanocomposite synthesis (see Figure 1).
Broader classification and applications of nanotechnology.
Since the late nineteenth century, composite materials were widely applicable in many systems with greater efficacy [5]. MMCs are one of the largest groups of compounds that are often strengthened with clay. The combination of metals and ceramic structures offers a variety of applications. There have been different ways of making MMCs but, powdered metallurgy is considered a unique process. Indeed, powdered metallurgy (PM) has been considered an effective method that has transformed the material industry by allowing them to build complex structural elements that control the precise strength, flexibility of composite design, and produce highly soluble materials with desirable compositions [6]. It seems that there are two main factors that determine the mechanisms of action in MMCs, that is the desired features of a material and technical constraints. If manufacturing a special type of alloy, for example, it is imperative of establishing a hot phase that allows a phase transformation into a metallic wire form; however, the scientific possibility still exists to design it from a large billet but, technological hurdles would have not allowed it to do so. We would otherwise need to apply high strain and thermal modulus, which can eventually damage the required structure. Therefore, multistep processing channels are used to improve features and overcome technical barriers that are the backbone of the process. To elaborate further, two-step sintering (TSS) and multistep isothermal forging (MIF), and isothermal rolling (IR) as a good plastic deformation (SPD) process have been used.
The sorting of building materials to meet the desired mechanical requirements followed by fine grain sizes and high density is a challenge for MMCs, as it requires very high temperature and often requires to be aligned with mechanical stress in a standard environment, that is very costly for samples having large sizes. The process offered a constricted geometry of the sample matrix [7]. Such a challenge can be remedied by using pressure-less two-step sintering (TSS) where the exfoliated sintering has resulted in fine heat resistance-granular material that is highly pure and more stable. TSS is a robust and productive method for obtaining a good microstructure with theoretical density. The mechanism includes heating of the composite until it reaches a high temperature and gains 70–90% of theoretical density then returns to a lower temperature to obtain higher density with controlled grain growth. As the grain boundary responsible for grain growth, it has a higher enthalpy compared to the grain boundary distribution at a certain temperature, the latter accomplishes during the second-step sintering in mild thermal conditions, suppresses grain growth, and cause pores annihilation and full densification. In addition, the TSS can overcome the problems associated with performing cold compression/filtration and/or compaction of the water phase leading to the metal agglomeration, respectively. Many other studies have shown that MMCs obtained through different processes provide a higher initial temperature for many clay materials, such as zinc oxide, magnesium-niobium-doped yttrium oxide, barium titinate, and silicon carbide, as well as other compounds. Ceramic matrix materials include compounds that are titanium boride 40% by weight, titanium nitride, and aluminum oxide 10% by volume.
Ceramic matrix nanocomposites (CMNCs) are added with solitary or multiple layers of ceramics to strengthen the crack resistance, heat absorption, and chemical resistance. Whereas, the main flaws of ceramics are their stiffness and less durability that keep them away from being used for industrial references. The limitation has been overcome by the production of ceramic-matrix (CMNCs) nanocomposites. The CMNC model incorporates a matrix in which energy dispelling components (fiber, platelets, or particulates) are added to CMNCs to reduce stiffness and increase crack resistance [2]. Raw materials for CMNC matrixes include alumina, SiC, SiN, etc. Generally, all reinforcements of the nanocomposites are of nanometric sizes. Iron and other metal powders: TiO2, silica, clay are used for amorphous reinforcements. The most common reinforcements are clays and silicates, due to their low particle sizes and well-studied chemical interactions. The addition of clays and silica layers even in small amounts modify matrix structures. Many different approaches are designed for CMNCs integrations. Recently modified techniques are single source-precursor technology that is based on melt spinning of mixed raw materials followed by pyrolysis of the nanofibers. Some established mechanisms are PM; polymeric monomer method, spray-pyrolysis, and vapor methodologies (CVD and PVD) [8]. Chemical methods are the sol-gel process, colloidal method, and rain synthesis [9].
Mixtures of metal amalgamation and mechanical milling are widely used to process a promising program but these methods require an accurate measurement of powdered concentrations to produce a system in a metastable state and then there are a few steps that make strong semifinal products. Various combinations of metallic reactants are another method of directly producing the metallic bulk, for example, the Mg system is a hybrid matrix that includes fusion welding and composite casting requiring metal in the form of a liquid or roll cladding/bonding of solid-state welding. In all of these ways, metals present a diffusion-bound under relatively moderate pressure at a higher temperature for a long time; so, it is not possible to produce a good microstructures. In the process, the metal disk is pressed in high pressure environment with simultaneous torsion straining and processing, which is usually carried out at room temperature (RT), the process is equally effective even on hard as well as on amorphous substances, such as Mg alloys. Also, processed metals usually show improvements in physical and mechanical properties through the use of critical grain refinement and deep introduction of point and line disorders (see Tables 1–3).
Class | Matrix/Reinforcements | Properties | Reference |
---|---|---|---|
Ceramic/Matrix | Al2O3/NdAlO3 | Improved Photoluminescence | [10, 11] |
Al2O3/Mo | Improved strength and toughness | [12, 13] | |
Al2O3/W | — | [11] | |
Al2O3/ZrO2 | — | [14] | |
Al2O3/SiC | — | [15] | |
Si3N4/SiC | — | [16, 17] | |
MoSi2/ZrO2 | — | [18] | |
B4C/TiB2 | — | [19] | |
MgO/SiC | — | [20] | |
Al2O3/TiO2 | [13] | ||
Al2O3/CNT | [18, 21] |
Examples of ceramic-based nanocomposites.
Matrix/reinforcement | Ag/Au | Improved catalytic activity | [22] |
Ag-Pd | Improved catalytic activity | [22] | |
Au-Pd | Improved catalytic activity | [22] | |
Cu/Nb | Improved microhardness | [23] | |
Al/AlN | Higher compression resistance | [24] | |
Al/SiC | Improved hardness | [25] | |
CNT/Sb | Improvement in Li intercalation properties | [26] | |
Cu/Al2O3 | Improved microhardness | [27] | |
CNT/Fe3O4 | Improved electrical conductivity | [28] | |
Fe-Cr/Al2O3 | — | [21]; [29] | |
Co/Cr | — | [12]; [19] | |
Fe/MgO | — | [30] | |
Mg/CNT | — | [31] | |
Al/CNT | — | [32] |
Examples of metal-based nanocomposites.
Class | Matrix/Reinforcements | Properties | Reference |
---|---|---|---|
Polymers/metal oxide | PANI/WO3 | [33] | |
PPANI/CeO2 | Thermally stable material | [34] | |
PANI/ Sm2O3, La2O3 | — | [35] | |
PANI/La-Nd | Electromagnetic interference | [36] | |
PANI/ Ce-TiO2 | sensor | [37] | |
PANI/Nd2O3:Al2O3 | Dielectric constant | ||
PPY/Sm2O3 | Supercapacitor | [38, 39] | |
PPY/Y2O3 | Semiconductor | [30] | |
PPY/Nb2O5 | — | [38] | |
PPY/CeO2 | Sensor | [40] | |
PPY/RuO2 | Supercapacitor | [41] | |
PPY/RuO2 | Supercapacitor | [42] | |
Polyindole (PIN) TiO2 | Semiconductor | [43] | |
PEO/La2O3 | Semiconductor and Solid Polymer Electrolyte (SPE) | [44] | |
PVA/Ho/Gd | Optical display | [45] | |
PVDF/La2O3 | Thermally stable material | [46] | |
Polymers/NPs | Poly (styrene sulfonate) Co3O4 nanoparticles | Humidity Sensing | [47] |
Polypyrrole (PPy) Titanium dioxide (TiO2) | Gas sensor Applications | [48] | |
Polyaniline (PANI) Halloysite | Supercapacitor Applications | [49] | |
Poly (allylamine hydrochloride) Graphene Oxide | Enhanced Mechanical Properties | [50] | |
poly-L-lysine Graphene Oxide | Bio-scaffold coating | [50] | |
Gelatin Graphene | Cellular imaging / Drug Delivery | [47] | |
Sodium alginate Graphene | Oxide Tissue Engineering | [51] | |
poly(lactic-co-glycolic acid) Graphene Oxide | Enhance Mechanical and Thermal properties | [52] | |
Polyurethane (PU) Graphene Oxide | Enhance Mechanical and Thermal properties | [53] | |
Poly(propylene fumarate) Graphene Oxide | Tissue Engineering | [54] | |
polyvinylidene difluoride (PVDF) Graphene/ZnO | Temperature Sensing Applications | [55] |
Examples of polymer-based nanocomposites.
PANI = polyanialine, PPY = polypyrrole, PVA = Polyvinyl Alcohol, PEO = Poly(ethylene oxide), PVDF = Polyvinylidene fluoride.
When fine-grained ceramic or other solid particles are embedded in a “soft” metal matrix to form metal matrix compounds (MMCs), the elements of the matrix materials can be greatly improved and strengthened. The strengthening of the mechanism for MMCs has been tested by many researchers. It has been thought that desired characteristics of composite metal structures with nano-sized ceramic particles (1.0–100 nm), called MMNCs, can be greatly improved even in these lowest volume conditions. Currently, mechanical mixing (e.g., high-power ball milling) for metal and ceramic powders is generally used to study the characteristics of MMNCs. Mixing ceramic particles with nanosize is energy as well as a time-consuming and costly procedure. Exfoliation, like the liquid-phase process, is best known for its ability to produce products with complex shapes. It will be desirable to synthesize MMNCs parts that are not as heavy as cast with the distribution of good reinforcement and integrity of the structure. However, there are ceramic particles with nanosize that put forth several problems that is very difficult to disperse the same is true for liquid metals because of their unwetting nature, the metal matrix having large surface to volume ratios, which facilitates agglomeration and cluster formation. Powerful ultrasonic waves have been proven very helpful in the context that they produce important indirect effects of liquids, namely transient cavitation as well as acoustic radiation. Acoustic cavitation covers the formation, growth, folding, and collapse of small object bubbles, which produce momentary (in microseconds) small “hot spots” that can attain temperatures (5000°C), pressures (1000 atm), and temperature rise and drops of 1010 K/s. The combination of impact with higher temperatures can also create improvements in the wetting between liquids and particles, thus facilitating the preparation of diffused compounds with effective microparticles.
It is thought that strong cavitation of the microscale transient, as well as macroscopic dispersion, may effectively disperse nanoparticles into soluble alloys and improve their wetting, thus making them more productive in performance as highly castable, light-weighted MMNCs.
Most CMNCs have low fracture resistance and are brittle. In addition to the discovery of ceramic coated CMNCs and silicon carbide (SiC), the modern focus is on the construction of ceramic-based nanocomposites with improved properties. Carbon nanotubes agglomeration increases the material’s toughness by energy quenching through elastic modulus in the deformation stage. However, the design complexities have put a limit on the syntheses of these nanomaterials. The main drawback has been the nonuniformity of carbon nanotubes (CNTs) in the matrix suspension. The deformation of CMNCs has often been associated with high thermal and reactive environments that occur during the production of CMNCs. Nevertheless, there is sizeable progress in the field of nanocomposites but still, these are just preliminary steps to develop nanocomposites, a significant amount of exploration and effort is further required to ultrafine these manufacturing techniques. For example, a team from the University of California, Davis, has developed alumina ceramic by combining a single wall of carbon nanotubes (SWCNTs) with Al2O3 nanopowders using PM method. The resulting nanocomposite had advanced thermal, electronic, and mechanical characteristics. The highly potent anisotropic nanocomposite has a thermal ratio of 3:1 in an aligned plane. Electrical conductivity was far better than pure alumina matrix. Most importantly, the fracture strength was thrice higher than alumina with the crack resistance, heat absorption, and shock resistance capacity. Recently, at Tohoku University, a research group has synthesized a sophisticated CMNC on alumina ceramic through multi-walled carbon nanotubes. This process has reduced the phase separation that has resulted in a nanocompound with more uniformity in its structural phase. The addition of 0.9% acid-contained MWCNTs produced a component with a crack capacity of 5.90–0.27 MPa m1/2, greater than pure alumina NC (3–5 MPa m1/2) and a stronger bending capacity of 27%. A Chinese group of Qingdao University of Science and Technology has reported the MWCNT/zircona CMNCs produced by spark-sintering process had 18% higher fracture strength as compared to pure zircona. Another study by US Nano Labs has prepared a high-density boron carbide (B4C) containing CMNCs. This composite was produced by the hot pressure-sintering process. However, none of these techniques have produced significant fracture toughness and heat dispelling properties, such as those in SiC-fiber-reinforced composite.
While nanotechnology still presents a picture of the future, nanocomposites set an example for realistic and rapidly booming applications. For instance, Geoff Ogilvy won the 2006 US Open golf tournament by using a nanomaterial-reinforced polymer-based club. Nanocomposites include materials that is CNTs, mineral materials, metals, and other fillers that can greatly improve composite structures. They attract a lot of awareness and some have been commercially available, having abilities to offer all kinds of uniqueness. Polymer-based products are the best-selling categories of NCs and covered global revenue of approximately, 223 million US dollars, in the year 2009. The nanomaterial’s inclusions to the polymeric materials can enhance polymer characteristics that is robustness and strength, Young’s modulus, impact endurance and scratch proofing, heat absorption, chemical defiance with electrical insulation and thermal adherence, stability toward the thermal shocks. Currently, minerals compounds and CNTs-based materials are more widely used than NPs. One of the premier commercial systems for PMNCs was used by Toyota, which has used nanoclay with nylon-6 PMNC [56] in their engine component showed an excellent result. In the late 1980s, Toyota Central Research Labs partnered with Ube Industries, a Japanese supplier of fossils, to cement a new 6-nylon composite coated with layers of montmorillonite (naturally occurring silicate clay). The component of this clay has enhanced Toyota’s new model’s performance which subsequently found its uses in a time belt cover, benefiting from improved temperature adherence and size stability. Since then, few car manufacturers have used nanocomposites of clay material in auto parts, such as rocker box coverings, body panels; the latter is 60% lighter and is more fracture-proof than regular automotive parts. The cargo bed for the 2005 GM model Hummer used approximately 3-kilogram of molded parts of nanoclay/polypropylene nanocomposite in its trim, mid-bridge, canvas panel, and box protectors. Polymer barrier technology was also benefited from these material NCs. Nylon/nanoclay composite is also applied for beverage bottles and in the food packaging industries. The addition of clay can significantly reduce gas/vapor infiltration, as clay platelets and thus prevent mobility, leading to significant improvements in shelf life. CNT-based nanocomposites are gaining increased industrial use from sports and leisure to technology, automotive, and defense motives. CNTs are attractive because of their excellent physical properties that often surpass many highly advanced materials and are now embedded in many polymeric NCs. Many automotive systems are sprayed with electrostatic paints. Plastic body panels need to be carefully processed for the paint to work properly. CNT is being applied as an alternative to carbon black, an expensive primer. The extra edge is being low CNT loading is needed to acquire the required conduction for the polymer to retain half of its actual length than 3–4% length saved when using carbon black. Importantly it is ensured that a panel must maintain its strength at a critical decrease of temperatures and never breaks. In addition, CNTs are so minute and used for such a low load that the higher end of class “A” is available in obtained NCs. The high-power output of CNT-nanocomposites is also utilized in the electronic industry, mainly to reduce the chances of damage caused by electrostatic accumulation or emissions. The PMNCs have found their applications in integrated circuits (IC). Joint Electronic Engineering Council trays wafer carriers and IC test that burn sockets because of high potential differences, combined with these materials having superior thermophysical properties to avoid the disaster. An example of a substance used in the industry is the Plasticyl range of CNTs/thermoplastic and nanocomposites, produced by the Nanocyl component as a precursor. Other benefits of PMNCs are seawater-cooled intercoolers on large diesel engines and in the power stations, where PMNCs will offer a robust substitution to copper-containing alloy, thermal rescue systems from fire hydrants and flue gases, working under 3008 celsius, whereas commercially used MMNCs systems lose their robustness in the chemical management as well as in processing industries where fissile environments prevail [56]. Demonstrating their strength and toughness, these materials have found applications from being used in baseball bats, bicycle frames, and power boats to military boats and aircraft. The leading company in nanocomposite technology is Applied Nanotech Holdings.
However, adding PMNCs, especially CNTs, in a resin or other matrices is not an easy task. Problems, such as segmentation, merging, poor disintegration, and poor adherence to host, should be overcome during integration. Some companies have developed methods that are specific for certain NP. For example, Zyvex uses new technologies based on solid composite polymers, in which large interactions within the polymer core and the nanotube surface occur with noncovalent (“aromatic”) interactions. Although these interactions are much weaker with fragile bonds than covalent interactions, their total impact strengthens the composite leading to stable systems. Similarly, dispersing nanoparticles of clay onto polymers requires special techniques, most commonly involving solution,
Melt-intercalative polymerization has been attributed as a process in which
An aqueous solution or a gel containing material and silicate block has been utilized during this process. During nucleation processing, the inorganic host crystals grow and are adsorbed within the layered surface. The sol-gel method can enhance the elimination between silicate layers through the single-step process in the absence of important oniumions, with some disadvantages. First, in the composition of clay compounds, the clay mineral requires high amounts of heat energy, which decomposes polymers matrix. Also, the negative tendency has been found while merging during silicate growth. Sol-gel process has commonly been employed for the generation of dual-layer nanocomposites, but with very little variation in concentrated silicates [2]. The natural features of the matrix structure have allowed it to be the most widely used synthetic material.
The main advantages of the method are as follows:
Limitations of spray pyrolysis and efficacy in producing ultrafine grains.
More uniform and well-oriented nanopowders with the larger surface area are used in multicomponent systems.
Production of large-scale uniform, nano-sized particles.
The sol-gel process is quite versatile, processing at low temperature, better homogeneity, rigorous stoichiometrically controlled, and renders pure products.
The composite is porous having a low wear-resistivity and is weakly bonded.
Include rapid solidification process (RSP), effective, reliable, and simple.
High strength, high specific modulus, a combination of high performance, and low density of reinforced fibers making a low modulus.
In heavily denser fiber glasses, the specific elastic modulus of the fiber-glass resins is slightly lower than MNCs.
High shock absorbance, unlike classic materials, where fracture propagations cause breakages, nanocomposites have low matrix toughness with interfacial de-bonding and fiber splitting.
There are only a few numbers of nanofibers, which are observed with fracture-effect on load transfer through the matrix, on intact nanofibers. When nanocomposite material is loaded for short time bearing capacity has not been affected, even encompassing defects in the desired nanocomposite.
The drawback with metal-metal nanocomposites is agglomeration and nonhomogeneous composition. The preparation of high-quality polymer nanocomposite materials using appropriate processing methods is essential to achieve high NC performance. Unique processing methods have been designed for the preparation of polymer nanocomposites. One universal method of preparation for all nanocomposites is not possible due to the structural and chemical differences of NCs and the different types of materials used. Each process requires specific processing conditions depending on the synthesis method, the type of nanoscale filler, and the required structures. In general, processing different technologies does not produce the same results.
Since silicate clay is hydrophilic, it is not suitable for mixing and blending with many compounds. In addition, the electrostatic forces cause the solid accumulation of platelets of clay. The neighboring platelets can share counter-ions, resulting in stacked platelets. It does not work with untreated clay to form nanocomposites because most of the clay matter is trapped internally and shows an interaction with layered nanocomposites. So, the clay must be processed well, before it can be utilized to prepare a nanocomposite material. The ion-exchange method is commonly used to obtain molded clays which make it more compatible with organic nanocomposites. After that, the clay can be mixed with different materials to get the desired product. Toyota has begun extensive research on nanocomposites molding and done a lot of work on loaded nanocomposites. There are four main processes that are used for the synthesis of polymer composites. These processes are as follows:
Intercalation of polymer or pre-polymer from solution.
Direct melt intercalation.
Template synthesis for layered silicate/polymer nanocomposites.
The silicate layers are hardened and the polymer is melted to further processing stages. The concentrated silicate is swollen in a solvent, for example, chloroform, toluene, or water. Thereafter, the surface silicate and polymer solutions are mixed, the polymer chains bind and the solution inside the silicate layers evaporates. The composite structure remains the same during solvent removal, resulting in nanocomposite being deposited between the moving layers. Because of their excellent properties, that often used in materials, that are embedded in many nanocomposites. For example, amino acids convert montmorillonite (MMT) which is degraded by caprolactam monomer at 100 degrees centigrade and initiate its ring opening to detect MMT/nylon-6 nanocomposites. Ammonium cation of amino acids prefers the separation of caprolactam. The number of carbon atoms in the amino acid moiety greatly affects the flammability, which indicates that the concentration of caprolactam monomer is higher.
In the second process, embedded silicate begins to swell in an aqueous monomer mixture to form a polymer solution between the coated clay layers. Although the methods of interlamellar polymerization are best known for using concentrated silicates. Polymer nanocomposites are receiving a lot of attention due to the nanocomposite activity of MMT/nylon-6. In addition, two-step
In the third process, melt intercalation occurs directly and composite silicates are combined with molten state NPs without the requirement of solvent. The polymer mixture is drawn by cutting over the softening area of the polymer suspension. The expanded chains of the polymer penetrate the intermediate layers of silicate from the melting of the polymer mass during the shrinkage. Fourthly, the process enforces as polymer suspension behaves as a template to form layered clay material. Silicon-based polymer materials are made from
Polymerization techniques are well known for using concentrated silicates. Polymer nanocomposites are receiving high admiration due to nanocomposite induction. The
To date, there have been several reported studies on the integration of Ch-NCs using a variety of integrated approaches. Researchers have developed several novel methods for the synthesis of Ch-NCs. Such methods include emulsion droplet coalescence, micellar modification, ionic gelation, precipitation, sieving, and spray drying. These methods have been used in the integration of chitosan-based materials which are used for drug delivery and other biomedical applications. However, the use of nanocomposites for agro-applications is still very limited. This can only happen if nanocomposite sources are economical and consistent. To ascertain the desirable characteristics, chitosan has been used for nanocomposite synthesis. As per the literature, ionic gelation methods and spray suspension methods have been considered as the most suitable synthetic methods for the production of large Ch-NCs. The mechanism of ionic gelation has been discussed. In this system, well-charged amino groups are combined with the less well-gelled tripolyphosphate (TPP). TPP is an anionic cross-linker that binds to the chitosan molecule and converts it into nanoparticles. TPP is nontoxic, so it is used in the production of chitosan-based nanomaterials (ChNMs). The plant response to nanocomposites used depends on a number of factors, including particle size, size distribution index, higher zeta capacity, and component nature. Nanocomposites and their activities with naturally occurring materials have introduced the environmentally friendly pollution-free method to deal with many challenges. Manufactured nanocomposites can be used as a foliar application, seed growth, and in soil mixing.
Chitosan-based nanomaterials are very extensively tested on plants to identify various factors, such as antimicrobial, adhesive, antioxidant. Chitosan can be used as a single ingredient or combined with other substances, such as copper (Cu), zinc (Zn), and silver (Ag), to synthesize the material of interest. Chitosan exhibits a strong metal bonding due to the availability of free amine groups throughout the polymeric spine of chitosan. The Zn+ 2 and Cu+ 2 have an important role in plant growth and germination; therefore, researchers have focused more on these two metal ions, by combining them with chitosan substrate.
The researchers have incorporated a variety of plant micronutrients onto NCs, including zinc. Zinc (Zn) was named as an integral part of the plant micronutrient in 1869. The addition of Zn to plants was intended to ensure its continued availability and increased efficiency. Zinc also protects plants from different environmental hazards (sun, water, etc.). Interactions between Zn-chitosan molecules have been demonstrated by using analytical methods, such as FT-IR and X-ray diffraction. The amino moiety in chitosan has shown two different styles, which are as follows:
There was only a solitary amino moiety that showed any type of bonding with chitosan in a pendant pattern.
Bridging pattern was found in metal ions when two or more amino groups got embedded in a metal chunk.
In 2018, Ch-Zn nanocomposite was prepared by the incorporation of low-molecularized chitosan molecules by iron-containing organosol. In a standard test, Zn granules (0.5 g), toluene (120 ml), and chitosan (4 g) were used. The synthesized NC was also tested for the physicochemical parameters by using different analytical methods, such as; SEM, TEM, and XRF. The nanocomposite, when combined with iron, has shown excellent antifungal activity against
Copper (Cu) is one of the most important nutrients in plants. Although excessive use of Cu is harmful to all plants, Cu is allowed for organic farming. There are several reported copper-based fungicides. Various formulas are designed for the successful absorption of Cu by plants. It acts as an elicitor in plant cells to accelerate enzymatic activity. In other compounds, chitosan-copper nanocomposites (Ch-CuNCs) have also been tested for their antifungal activity in tomato inhibitors; Alternaria solani and Fusarium oxysporum. TEM, SEM-EDS, AAS-TEM, and SEM micrographs successfully demonstrated the inclusion of Cu in the chitosan matrix. Ch-CuNCs inhibits 70.5% and 73.5% mycelia growth and 61.5 and 83.0% algae growth rate in Alternaria solicit and Fusarium oxysporum, respectively. Plant lesion control was demonstrated when a significant decrease was observed in nano formulation-treated plants. The percentage efficacy of disease control (PEDC) success rate for Ch-Cu was recorded as 87.7%. In another report, Ch-Cu nanocomposite has shown significant antifungal activity against Sclerotium rolfsii and Rhizoctonia solani. The synthesized compound shows a means diameter of around 2–3 nm and is shown to be evenly distributed in nanocomposite uniforms. The results showed excellent results for the prevention of tested fungal diseases. Nanoparticles synthesized in acetone, produced a much higher degree of inhibition compared to those inferred by using toluene solvent. Jaiswal et al. synthesized Ch-CuNCs by adding copper sulfate to a chitosan solution followed by the incorporation of NaOH. The size of the copper particles produced was recorded as 700–750 nm. The solution is applied to plants referred to as a fungicide. The results revealed an important protective effect built against fungal pathogens. Chitosan-Cu nanocomposite has also been shown to be an important growth promoter in a variety of plants that performs Ch-Cu nano formulation and is combined with maize seedlings. Nano formulation has shown promising effects on plant growth by reducing the activity of α-amylase and protease enzyme and increasing the amount of protein content in seed germination (see Figure 2).
Flow chart diagram for the synthesis of nanocomposites.
The addition of CNTs to composite materials has had a significant impact on improving the conductive properties of nanocomposites. It is reported that the addition of CNTs improves the mechanistic and thermal characteristics of nanocomposites. Multiscale strengthening with NPs greatly improves enthalpy and electronic efficiency in related NCs. Conventional filters, such as carbon and glass filters are a viable solution in developing a combination of multiple functions. The doping of carbon black and nanotubes has led to the improved electronic operations of polymer film and organic sheets. Electrical conductivity depends on the concentration or the amount of filling material applied to nanopolymers. Semicrystalline polyamino compounds have shown better electrical performance than noncrystalline polycarbonate. When polymer films are applied to an organic sheet in nanofibers agglomeration, it causes an increase in electrical activity. The insulator material such as polycarbonate can be made conductive by adding it to nanocomposite material of varying compositions. The cheapest plastic known is made from nanocomposite material has both mechanical and optical features and is gaining future use. By assembling the right amount of CNTs in plastic, it becomes an electrical device. Cheap plastic is used to make optical discs, used in high-performance air-conditioning products and to shield these from electrical transformations and pulsation that cause the failure of the product. By changing the number of CNTs in polycarbonate, the performance of nanocomposite is also improved. The mixing of conductive particles to the polymer has a reasonable impact on the dielectric properties of composites. By the advent of electrical devices (capacitors, resistors, and others) on printed circuit boards, advanced compounds of nanocomposites have prevailing properties, such as:
The integrated capacitors can be functionalized to produce large capacitance.
The greater compatibility was found by industrial PCB fabrication with other composite materials.
Robust process.
Abandoning of leaded materials.
The higher number of life cycles.
Greater reliability and when it is required to increase dielectric properties of NCs then it has been added with ferroelectric ceramics material that has more permeation to work with that is BaTiO3.
They have a wide variety of properties with some important features, such as ease of processing, recycling, cost-effectiveness, and sustainability. The nonstandard semiconductors possess better electronic features, such as high thermal conductivity, high throughput, and high electrical conductivity. The inorganic NPs semiconductors materials have better luminescent and image processing properties. By combining both the polymers NPs and inorganic semiconductors form a hybrid nanocomposite that became the dominant candidate for photovoltaic cells. A variety of materials are used to form NCs. High performance has been achieved by mixing the CNTs to titina and P3HT with the ability of power conservation. The addition of CNTs improves the thermomechanical characteristics of nanocomposites. Multistage strengthening with nanoparticles enhances electronic efficiency. The carbo-glass amalgamation is a viable solution for developing a composite having multiple functions. The addition of carbon allotropes has led to the improved electrical conduction of polymer and organic sheets. There are many factors that affect a hybrid system and require research to improve these systems. Overall, the nanotubes array and the nanorod-based hybrid system work better. Second, the interaction between organic and inorganic elements determines the effectiveness of cost sharing as well. Additionally, the alignment of power levels in the interface is one of the most important aspects of hybrid systems. Therefore, greater caution is required during the selection of these genotypes. Some guidelines should be followed to improve these systems. The correct combination of inorganics and metal semiconductors should also be taken into account. So,
In the process of charge separation, a nanostructure with a large interface should be used.
Good contact between inorganic and biological elements should occur.
The nanostructure network greatly assists in hybrid systems, TiO2 has been employed as among the most widely used nanomaterial in our daily lives.
Multifunctional materials, such as nanocomposites, are mostly applied as active sensors that perform multiple functions. Au (Pt) doped with α Fe2O3, nanospindles work in many ways to combine co-oxidation, and gas sensing devices. Catalytic activity is measured in a stainless steel bed reactor, while a gas measuring device performs gas sensor testing. It was found that the activity of various NPs led to higher performance in both functions compared to α Fe2O3. The reason for the improved effect is due to the active Au-NPs that act as a catalyst for sensitive reactions and also exhibit high efficiency in low-temperature co-oxidation. In 2010, thick and dense oxidized nanorod was produced in a row to form a strong fabric with good resistance to washing and pressure cycles [3]. Polymeric materials attract a lot of attention because of their advanced properties and functional performance in various industries. In structural features, thermoset polymers are very important in fields, such as automotive and aviation. In addition, the high strength of the thermoset polymers makes them compatible with their metal counterparts and creates a multi-layered environment. Recently, advances in nanotechnology introduced many innovative features in NCs. These benefits include an increase in strength, lightness, and durability. Nanocomposites are receiving a lot of attention because of the advanced mechanistic properties that have improved their stability.
There are different materials that are used in the production of thermoset nanocomposites. One of the most extensively used material components is carbon nanoparticles (CNPs) and nanoclays. One of the major hurdles is the dispersing of NPs on the matter substrate during the synthesis process. Nanocomposites contain 10–12% nanoclays with greater strength and durability than nanocalcium products. In nanoclay components, nanoparticles are extracted and synthesized. This improves the mechanical and physical performance of the filler and matrix optical connector which is very helpful in eliminating stress by improving the mechanical properties of nanocomposites. High-pressure mixing is better than direct mixing that can induce clay breakage. Titanate conversion is used for better spreading of nanoparticles. Due to the excellent mechanical properties, the requirement for low filling load, reinforcement strength, less weight, and corrosive environment of nanoparticles are found in some materials, such as cellulose, which is an ideal ingredient for the development of enviro-friendly polymers. Many researchers have focused on high-quality performance, extraction, and mechanical performance of filling polymer matrix in varying proportions. There are some challenges to the formation of nanocomposites, such as low dispersion of natural solvents, agglomeration, inclination, and hydrophilic nature. Due to growing environmental concerns, regulations have placed a great deal of interest in developing enviro-safe materials. Natural fibers have many advantages over synthetic due to their eco-friendly nature, but working with natural fibers, we cannot find the same strength that we can get from synthetic fibers.
Cellulose nanocrystals have been used in systematic and geometrically modeled cellulose fillers in a variety of useful products. It has been found that it will improve the mechanistic and thermal range of nanocomposites. Structure toughness with NPs affects the heat resistivity and electronic mobility in related NCs. As compared to traditional fillers, woody cellulose offers multidimensional combinations of variable functions. Microcrystalline cellulose as a colloidal matrix found in water with high solid concentrations, such as Celish (Trade name from Daicel Corporation) which provides 10% cellulose slurry and nanofibers. Solid-liquid crystals are used in a variety of optical applications. Researchers have successfully developed optically transparent wood cellulose nanocomposites with a small young’s modulus and low thermal increase. In addition, they have successfully applied an electroluminescent to flexible transparent cellulose nanocomposites resulting in a low coefficient of thermal expansion. To prevent the scattering of ionic diffusivity, cellulose whiskers (less than 10% concentrate) can be used in low-density electrolyte polymers having applications in lithium batteries. Low-density loudspeaker membranes with high Young’s modulus can be made from melamine-formaldehyde and micro-fibrillated cellulose. Electrospun cellulose nanofibers are used as an affective membrane that allows the purification and penetration of molecules based on physical or chemical characteristics instead of the weight or size of a molecule. Cellulose nanofibers are an excellent part of biological systems due to their load-bearing properties, low toxicity, excellent mechanical properties, biodegradability decay, and biocompatibility. Cellulose nanocomposites can be obtained from soft pulp from wood by mechanical fibrillation process. Mixing of the mixture can also be done using nanowhiskers and semiconducting polymers. NCs are very useful in producing stable materials with improved performance and mechanical properties. Scientists are trying to modify thermoset NCs to use Polyoles of vegetable oil-based chemicals instead of bio-based resins to stabilize and reduce dependence on petroleum-based resins. According to a recent study, nanocomposites can also be made from environmentally friendly vegetable oils.
Previously, thermoplastic materials were used with nanocellulose materials, showing the advantage of high crack resistance and recycling. The strength and durability of nanocomposites are greatly enhanced by the use of nanocellulose on a thermoplastic composite particulate or composite-based dispersion with the benefits of nanocellulose in resin interaction and the limited surface area of cellulose fibers. Fiber impacts on the mechanical/thermal properties of biocomposites based on carbon nanofibers (CNFs). It has been found that up to 40% of fiber content laminar increase in fiber modulus was observed using phenolic resins. With the inclusion of CNF in epoxy resins, a significant increase in the glass transition temperature was found. With 5% epoxy film of CNFs at 30°C, modulus showed an increase from 2.6 GPa to 3.1 GPa. In addition to the changing temperature of the glass, a significant increase has been reported. The mechanical properties have been drastically improved by adding up to 2% CNFs by weight while continuous addition of CNFs reduces mechanical and thermal conversion features due to agglomeration. Increased reinforcement of CNFs around bamboo fibers in the poly-lactic acid (PLA) matrix has been found to bind CNFs and improves fracture resistance that prevents fracture growth. But when, the CNFs did not gain weight of 1%, the cause of the fractured impact was increased by 200%. It has been investigated that the processing of CNFs could lead to safer, lightweight compounds with different properties, such as barriers and open spaces with multiple applications in electronics, sensors, energy storage, packaging, medicine, and automotive production. Nanocellulose films are also used to induce the barrier properties to the resulting composites. In addition, high-porosity aerogels, ease out the gas outflows and due to their hydrophobic properties, moisture absorbance has also been aided. Nanocellulose integration offers a wide range of applications that include weapon systems and flexible display devices. Highly effective NCs are possible using CNFs.
Many efforts have been made to prepare metal-reinforced material nanocomposites which have structural significance and greater toughness compared to their contemporary counterparts. But they still exhibit larger differences while analyzing their physicomechanical properties. The strengthening process includes metal oxide scattering, stiffening, preventing premature solidification, load transfer, and difference in coefficient of thermal expansion in MMNCs. MMNCs combine metal components with ceramic precursors to having enhanced mechanical properties and toughness.
Nanocomposites can be a part of the living organisms present in this diverse biosphere. The materials used must be structurally, biologically, physically, chemically, and mechanically compatible with the surrounding tissue. Since the mechanical properties are mainly affected by the elastic modulus, the transfer of load, durability, and higher strengths are of particular interest. Metals, polymers, and ceramic composites are approved for the synthesis of the required materials. Some examples of polymer filling compounds are given below:
The bone fractures can be repaired by using these fillers as external fixators with the help of epoxide carbon fiber composite.
Bone fixing screws and as replacement of bone plates in different body parts.
The bone joints can be replaced by using these fillers, for example., carbon fibers (PEEK) are applied as total hip replacement material.
The impact of particle treatment on nanocomposite substances is very important. The
There are two classes of NCs compounds exhibiting magnetic properties, one containing metal NPs and the other ferrite NPs. Basically, lack of hysteresis, shows 18 increased superparamagnetic activity in ferrite NPs. Nanocomposite containing 2.8% concentration of ferrites was found to have no hysteresis at room temperature and was clearly visible. They also found that nanocomposites containing γ-Fe2O3 NPs in the electromagnetic polymer matrix were also free of hysteresis. Nanoparticles from nickel oxide synthesis in Polyvinyl cinnamate also show magnetic properties. They found a ferromagnetic state in nickel nanocomposites. Additionally, weight gain, magnetic response, and hysteresis values are obtained with the incorporation of nickel oxide NPs on the nanocomposite material.
Thermoset polymers composites and nanocomposites are very important in today’s ultratech world. Items, such as seafood, automobiles, aircraft, are examples of nanocomposites applications. Most importantly, the improved structural modification, NCs of special strength make them compatible with metal materials incorporated in various locations. These materials are easy to process and therefore, have a broad range of applications. With the advent of nanotechnology, NCs offer numerous benefits as synthetic nanomaterials, such as stability, lightweight, and sustainability. Nanocomposites are receiving a lot of attention because of their advanced mechanical properties that have increased the reliability of these materials. Different materials are used in the production of different types of nanocomposites. The most widely used compounds are carbon nanoparticles loaded on nanoclays. Dispersion of NPs is one of the major hurdles faced by researchers recently. Nanocomposites contain 10–12% of nanoclays that are more potent and stronger than nanocalcium compounds.
The nanoscale size significantly improves physicochemical and chemical interactions. The morphology found in nanocomposites can change the phase, important for the development of various structures. Mixing and aero treatment are two important factors that improve the performance of a given NC. The variety of combinations between matrix, synthetic additives, and nanofillers allows for a wide range of materials used in fire reactions, electronic structures, optical performance, mechanical and thermal properties. Improvement of filling quality greatly improves the distribution of such nanocomposites through multiple applications. The impact of nanoparticles on the mechanical properties of polymer composites is an important factor to consider. The addition of nanofiller significantly reduced the resistance coefficient compared to pristine epoxy. Besides, 1% by weight of nanofillers showed better results than 3% by weight of nanofillers, which was unexpected. It may be due to agglomeration particles leading to poor dispersion in the epoxy matrix.
Nanoclays improve the mechanical and physical characteristics of the filler and matrix optical interface, which is very helpful in eliminating pressures by improving the mechanical properties of nanocomposites. Due to the impressive mechanical properties, requirements, such as low filling, stiffness, low weight, and biodegradability of nanoparticle materials, make them ideal for enviro-compliant material development. Many researchers have focused on high-quality optimization, extraction, and machine performance by filling the matrix polymer with varying degrees. There are some challenges to the formation of NCs namely, severe dispersion of organo-solvents, agglomeration, and the presence of a hydrophilic environment.
Due to the growing environmental concerns, it has indeed been emphasized that natural fibers have many advantages over synthetics because of their eco-friendly nature. However, when we use natural fibers, we cannot get more stiffness than synthetic fibers. Cellulose nanocrystals have been used as structural and geometric models of “cellulose” in various functional products. In addition, the active incorporation of electroluminescent compounds in naturally found nanocomposites results in a lower coefficient of thermal expansion. To prevent ionic diffusivity, cellulose whiskers (less than 10%) can be applied to low-density electrolyte polymers that are used in lithium-ion batteries.
Organic and inorganic composites based on alkoxy-lanes and alko-oxides have great uses in hard-coated eye glass lenses. The addition of NPs to epoxy silanes acts as a linker between organic and inorganic moieties that greatly enhance abrasion control without affecting the transparency of the glass material. Nanocomposites have also been developed for low surface free energy coatings. To add up in the mechanical properties, nanotubular materials are extensively used that gave strength to NCs where light weight and hardness are required for the resultant NCs. The use of nonlinear optics, including optical sensor protection from high-intensity laser beams, flat panel displays, electromechanical actuators, light-emitting diodes, field-effect transistors, supercapacitors, and optical limiters are some applications of CNTs. Nanocomposites have provided significant advances over conventional NCs in tropical, mechanical, electrical, and barrier properties. Furthermore, it maintains transparency and reduces the flammability of the polymer matrix.
The industrial applications include:
The reinforced materials add up some important advantages to the plumbing and pipeline systems are as follows:
The nanocomposites exhibit anisotropic properties that provide strength to extraordinary collapse and burst due to pressure increase.
These nano-derived pipes have increased load-carrying ability, high compressibility, and have greater tensile strength.
The use of welding or joining these nano pipes to a long distance is not required.
Very few of these materials are required to be replaced. Therefore, the replacement ratio is very less than metallic pipes.
They are highly corrosion resistant.
They fulfill all the standards set for gas and oil pipelines.
Nanocomposites are well-suited for automotive parts due to their tolerance to breakage during harsh damages. Nanocomposites loaded with supports are useful to give strength to the different parts of a material where high efficacy is required. Because of the high pollution concerns, car manufacturers are working on the development of such technologies that can effectively control the problem. Therefore, nanocomposites are used to deal with this problem. Nanocomposites have improved barriers, heat resistance, impact adherence, and mechanical properties than conventional compounds. Therefore, the development of structural compounds having properties, such as biodegradability and recycling is a challenging goal. Such compounds are extensively used in automotive body parts. Industries are deeply concerned about the following factors using NCs:
Aesthetical perspectives.
Ability to recycle the used raw materials.
Reduction of heavily weighted products.
High performance with greater precision.
Nanotechnology is a driving force that has brought many changes in different industries at the level of component development, material selection, and system execution.
Nanocomposites are also used in:
Development of sophisticated computer chips and capacitors with the help of thin films.
It is used as a polymer electrolyte in different battery systems.
Structural NCs are used in fuel tanks.
Nanocomposites are used in the automotive industry.
The blades and high-performance impellers are derived by using NCs.
They are used in gas-oxygen barrier systems, thereby reducing the delamination/cracking of composite materials.
Fiber-reinforced nanocomposites have excellent mechanical advantages, but the problem of delamination appears due to different mismatches.
Carbon nanotubes (CNTs) are well investigated for their importance in health-related features, especially those which are used in medicine. CNTs provide strength for metal matrix compounds, composite matrix compounds, and ceramic matrix compounds. They also improve mechanical properties,
The addition of nanocomposite to inorganic compounds improves their physical properties and gave the number of applications based on inorganic composites within the material. Nanocomposites are composed of carbon nanotubes as filler material, are used in the electronics industry. Their electrical insulation range and thermal properties have made them suitable to be used in an area where insulative electrical characteristics are required. The challenges of agglomerations are one of the biggest problems when adding nanomaterials to composite materials. Due to agglomerations, nanomaterials cannot be dispersed evenly, which is a major obstacle to the commercial application of nanocomposites. When agglomeration occurs during mass production then the uniform structures are more difficult to achieve. Some other applications are as follows:
Thermoelectric devices with quite flexible properties.
When combined with organonano they are used for dying.
Inorganic NCs show photoelectric characters and are used in photocells.
Polyethylene glycol NCs are used for effective drug delivery systems.
Polyethers Ag-based nanocomposites are used in antimicrobial and biomedical remedies.
Tissue engineering technique includes inorganic nanocomposites of calcium phosphate and poly lactic acid.
MMNCs, such as cobalt oxide nanocomposites, are applied for humidity sensing in meteorology.
Reduced graphene oxide NCs have applications in energy-harvesting devices.
The doped alumina-zinc nanocomposites are used to increase the dielectric constant and also increase the conductivity of the composite.
PMMA doped iron oxide composites are used for electromagnetic uses and also have shielding capacity.
Cellulose loaded with copper and ZnO have shown significant UV resistance, therefore, they are used as UV-protection devices.
The use of agro-biomass is a promising and continuous process of producing naturally occurring NCs, where agro-biomass is used simultaneously. In this regard, lignin-derived agro-biomass is an economical resource for the production of functional biomaterials that are compatible and sustainable. In the case of metal oxide nanocomposites (MONCs), the use of lignin-based MONCs should be extended to dynamic fields, for example, ultraviolet (UV) protection, photocatalysis, and antimicrobial agents. The development of lignocellulosic biomass as raw material should be a viable option for the development of UV protective materials from an industrial point of view.
Today different integration methods for the production of nanocomposites (CMNCs, MMNCs, and PMNCs) are available, but limitations and barriers also exist, which require the exploration of new techniques and engineered methodologies. These NCs offer improved performance in addition to their monolithic and microcomposite counterparts and are well-adapted partners to overpower the constraints of many existing materials and devices. Today the use of nanocomposites is taking place rapidly, but still, their full potential has not been attained. Making such highly stress-tolerant equipment, low-load reinforcements, gas barrier, and flame-related adherence create potential applications and marketplaces for these items. So, these nanocomposites discussed have the potential to create a new material age in the future.
Nanocomposites are versatile materials and are the current focus of research across the world. Different methods, for example, sol-gel, electrospinning, precipitation, melt mixing, solution mixing,
All publications on this website are published under the Open Access model, without any subscription, registration, or access fees required from the user or his/her institution. In accordance with the Budapest Open Access Initiative's (BOAI) definition of Open Access, users are allowed to read, download, copy, distribute, print, search, and link to the full text versions of all Chapters. To read more about our Open Access Statement click here.
\n\nFor Editorial Policies for journals please consult individual journal pages.
',metaTitle:"Editorial policies",metaDescription:"Editorial policies",metaKeywords:null,canonicalURL:"/page/editorial-policies",contentRaw:'[{"type":"htmlEditorComponent","content":"All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\\n\\n\\n\\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\\n\\n\\n\\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\\n\\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\\n\\n\\n\\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\\n\\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\\n\\n\\n\\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\\n\\n\\n\\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\\n\\n\\n\\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\\n\\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\\n\\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\\n\\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\\n\\n\\n\\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\\n\\n\\n\\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\\n\\n\\n\\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\\n\\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\\n\\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\\n\\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\\n\\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\\n\\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\\n\\nIntechOpen books are available online by accessing all published content on a chapter level.
\\n\\n\\n\\nIntechOpen publishes different types of publications.
\\n\\n\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
All published Book Chapters are licensed under a Creative Commons Attribution 3.0 Unported License. Monographs are licensed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license granted to all others. Our Copyright Policy aims to guarantee that original material is published while at the same time giving significant freedom to our Authors. IntechOpen upholds a flexible Copyright Policy meaning that there is no copyright transfer to the publisher and Authors hold exclusive copyright to their work.
\n\n\n\nWith the purpose of protecting our Authors' copyright and the transparent reuse of Open Access content, IntechOpen has developed an Attribution Policy for works published under Creative Commons licenses.
\n\n\n\nIntechOpen is committed to disseminating high-quality scientific research in a manner that exemplifies the best practice in scholarly publishing. IntechOpen is an official member of the Committee on Publication Ethics (COPE), which advocates the maintenance of the highest ethical standards for all parties involved in the act of publishing, including Authors, Academic Editors of the book, Peer Reviewers, the publisher and Societies, where applicable.
\n\nIn line with publication ethics practices recommended by COPE, ICMJE, and other similar organizations, IntechOpen's contributing Authors, Academic Editors, and Peer Reviewers are required to declare fully all possible conflicts of interest.
\n\n\n\nIntechOpen's Authorship Policy is based on ICMJE criteria for authorship. In order to be identified as an Author, the following requirements must be met:
\n\nAll scientific works are subject to Peer Review prior to publishing. IntechOpen is a member of the Committee on Publication Ethics (COPE) and all participating referees and Academic Editors are expected to review submitted scientific works in line with the COPE Ethical Guidelines for Peer Reviewers where applicable.
\n\n\n\nThe Internet has changed the dynamics of scholarly communication and publishing which is why we find it necessary to clearly indicate our stance on what we consider to be a published scientific work. A significant number of working papers, early drafts, and similar works in progress are shared openly online between members of the scientific community. It has become common practice for researchers to announce their work on a personal website or a blog in order to gather comments and suggestions from other researchers. Such works and online postings are ‘published’ in the sense that they are made publicly available, but this does not mean that if submitted for publication by IntechOpen they are not original works. We differentiate between reviewed and non-reviewed works when determining whether a work is original and has been published in a scholarly sense or not.
\n\n\n\nTo identify instances of fraud and misconduct during the publishing process, IntechOpen implements a robust policy governing such occurrences. In line with our general commitment to openness, and in order to maintain the highest scientific standards, we are committed to transparency about our editorial policy regarding retractions and corrections.
\n\n\n\nWhen faced with potential misconduct, IntechOpen accepts its responsibility to maintain the integrity of the academic record. For particularly complex cases, IntechOpen might ask for the assistance of formal industry bodies or seek advice from an appropriate team of advisors.
\n\nIntechOpen's advisors are professionals and scholars with broad knowledge and understanding of different aspects of the scientific publishing process: editorial, authorship, and reviewing roles; publication ethics, copyright, and general legal issues; as well as bibliographic and technical standards.
\n\nIn order to provide us with unbiased insights, without compromising the privacy of third parties, IntechOpen presents problematic cases to its advisors in an anonymized format.
\n\nIntechOpen publishes books in the English language. If you are interested in the translation of Book Chapters, please check IntechOpen's Translation Policy.
\n\n\n\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, you can access a more detailed description of IntechOpen's Advertising Policy.
\n\n\n\nAt IntechOpen we realize that exceptional circumstances can occur, resulting in a request for a refund. We will honor all justified requests in the specific instances outlined in our Refund Policy.
\n\n\n\nAll chapters will be published via IntechOpen's 'Online First' service meaning chapters will be published individually, immediately after review and before the entire book is ready for publication, allowing content to be shared, searched and cited straightaway, thereby generating early stage interest and momentum for your research
\n\nOnline First Chapters are considered published on the day they are posted and are citable from that date.
\n\nChapters will remain listed as Online First until the final versions of the books are published online. Following publication of the full monograph, Chapters will be redirected from the Online First version and will be available only through the final link of the official published page.
\n\nYou are invited to download, use, reproduce, make derivative works of, display, distribute and cite the Online First works. You can find "How to Cite and Reference" by following the link at the end of each online book chapter. Please be aware that it is possible that further editing and changes might be made before the final release of the book.
\n\nIf there are supplemental materials to the chapter, these will be published at the time the final book is published online.
\n\nReaders and Authors can notify us if they find any errors in the works published under Online First. All major errors will be accompanied by a separate correction notice, erratum or corrigendum (Retraction and Correction Policy.)
\n\nIntechOpen books are available online by accessing all published content on a chapter level.
\n\n\n\nIntechOpen publishes different types of publications.
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:13389},{group:"region",caption:"Middle and South America",value:2,count:11658},{group:"region",caption:"Africa",value:3,count:4168},{group:"region",caption:"Asia",value:4,count:22334},{group:"region",caption:"Australia and Oceania",value:5,count:2019},{group:"region",caption:"Europe",value:6,count:33642}],offset:12,limit:12,total:135272},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12050",title:"Advanced Biodiesel - Technological Advances, Challenges, and Sustainability Considerations",subtitle:null,isOpenForSubmission:!0,hash:"bb86ab5c5ca0dab95f01941eb350f920",slug:null,bookSignature:"Dr. IMR Fattah",coverURL:"https://cdn.intechopen.com/books/images_new/12050.jpg",editedByType:null,editors:[{id:"463663",title:"Dr.",name:"IMR",surname:"Fattah",slug:"imr-fattah",fullName:"IMR Fattah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11500",title:"Multi-Objective Optimization - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"842f84f308439c0a55c4e8e6a8fd9c01",slug:null,bookSignature:"Dr. Adel El-Shahat",coverURL:"https://cdn.intechopen.com/books/images_new/11500.jpg",editedByType:null,editors:[{id:"193331",title:"Dr.",name:"Adel",surname:"El-Shahat",slug:"adel-el-shahat",fullName:"Adel El-Shahat"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:18},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:8},{group:"topic",caption:"Engineering",value:11,count:43},{group:"topic",caption:"Environmental Sciences",value:12,count:6},{group:"topic",caption:"Immunology and Microbiology",value:13,count:9},{group:"topic",caption:"Materials Science",value:14,count:17},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:73},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:3},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:6},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:7},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:273},popularBooks:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3560",title:"Advances in Landscape Architecture",subtitle:null,isOpenForSubmission:!1,hash:"a20614517ec5f7e91188fe8e42832138",slug:"advances-in-landscape-architecture",bookSignature:"Murat Özyavuz",coverURL:"https://cdn.intechopen.com/books/images_new/3560.jpg",editors:[{id:"93073",title:"Dr.",name:"Murat",middleName:null,surname:"Ozyavuz",slug:"murat-ozyavuz",fullName:"Murat Ozyavuz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"3568",title:"Recent Advances in Plant in vitro Culture",subtitle:null,isOpenForSubmission:!1,hash:"830bbb601742c85a3fb0eeafe1454c43",slug:"recent-advances-in-plant-in-vitro-culture",bookSignature:"Annarita Leva and Laura M. R. Rinaldi",coverURL:"https://cdn.intechopen.com/books/images_new/3568.jpg",editors:[{id:"142145",title:"Dr.",name:"Annarita",middleName:null,surname:"Leva",slug:"annarita-leva",fullName:"Annarita Leva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4805},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",publishedDate:"July 27th 2022",numberOfDownloads:7107,editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1955,editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",publishedDate:"July 27th 2022",numberOfDownloads:1452,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",isOpenForSubmission:!1,hash:"eb5407fcf93baff7bca3fae5640153a2",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",bookSignature:"Manash K. Paul",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",publishedDate:"July 20th 2022",numberOfDownloads:2289,editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11263",title:"Supply Chain",subtitle:"Recent Advances and New Perspectives in the Industry 4.0 Era",isOpenForSubmission:!1,hash:"aab634c9c1f9a692c1e9881d18e9c9b7",slug:"supply-chain-recent-advances-and-new-perspectives-in-the-industry-4-0-era",bookSignature:"Tamás Bányai, Ágota Bányai and Ireneusz Kaczmar",coverURL:"https://cdn.intechopen.com/books/images_new/11263.jpg",publishedDate:"July 27th 2022",numberOfDownloads:888,editors:[{id:"201248",title:"Dr.",name:"Tamás",middleName:null,surname:"Bányai",slug:"tamas-banyai",fullName:"Tamás Bányai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10739",title:"Global Decline of Insects",subtitle:null,isOpenForSubmission:!1,hash:"543783652b9092962a8fa4bed38eeb17",slug:"global-decline-of-insects",bookSignature:"Hamadttu Abdel Farag El-Shafie",coverURL:"https://cdn.intechopen.com/books/images_new/10739.jpg",publishedDate:"July 20th 2022",numberOfDownloads:1566,editors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"Abdel Farag El-Shafie",slug:"hamadttu-abdel-farag-el-shafie",fullName:"Hamadttu Abdel Farag El-Shafie"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10911",title:"Higher Education",subtitle:"New Approaches to Accreditation, Digitalization, and Globalization in the Age of Covid",isOpenForSubmission:!1,hash:"223a02337498e535e967174c1f648fbc",slug:"higher-education-new-approaches-to-accreditation-digitalization-and-globalization-in-the-age-of-covid",bookSignature:"Lee Waller and Sharon Waller",coverURL:"https://cdn.intechopen.com/books/images_new/10911.jpg",publishedDate:"July 13th 2022",numberOfDownloads:2054,editors:[{id:"263301",title:"Dr.",name:"Lee",middleName:null,surname:"Waller",slug:"lee-waller",fullName:"Lee Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",publishedDate:"July 27th 2022",numberOfDownloads:780,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"95",title:"Applications and Experiences of Quality Control",subtitle:null,isOpenForSubmission:!1,hash:"4bcb22b1eee68210a977a97d5a0f363a",slug:"applications-and-experiences-of-quality-control",bookSignature:"Ognyan Ivanov",coverURL:"https://cdn.intechopen.com/books/images_new/95.jpg",publishedDate:"April 26th 2011",numberOfDownloads:318480,editors:[{id:"22230",title:"Prof.",name:"Ognyan",middleName:null,surname:"Ivanov",slug:"ognyan-ivanov",fullName:"Ognyan Ivanov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",publishedDate:"September 26th 2012",numberOfDownloads:271760,editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10808",title:"Current Concepts in Dental Implantology",subtitle:"From Science to Clinical Research",isOpenForSubmission:!1,hash:"4af8830e463f89c57515c2da2b9777b0",slug:"current-concepts-in-dental-implantology-from-science-to-clinical-research",bookSignature:"Dragana Gabrić and Marko Vuletić",coverURL:"https://cdn.intechopen.com/books/images_new/10808.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"26946",title:"Prof.",name:"Dragana",middleName:null,surname:"Gabrić",slug:"dragana-gabric",fullName:"Dragana Gabrić"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11328",title:"Botulinum Toxin",subtitle:"Recent Topics and Applications",isOpenForSubmission:!1,hash:"7dd05a316001cef143e209eda51387a7",slug:"botulinum-toxin-recent-topics-and-applications",bookSignature:"Suna Sabuncuoglu",coverURL:"https://cdn.intechopen.com/books/images_new/11328.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"270856",title:"Associate Prof.",name:"Suna",middleName:null,surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11085",title:"Polycystic Ovary Syndrome",subtitle:"Functional Investigation and Clinical Application",isOpenForSubmission:!1,hash:"3066dd3ff29e1fac072fd60b08d4d3e7",slug:"polycystic-ovary-syndrome-functional-investigation-and-clinical-application",bookSignature:"Zhengchao Wang",coverURL:"https://cdn.intechopen.com/books/images_new/11085.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"204883",title:"Dr.",name:"Zhengchao",middleName:null,surname:"Wang",slug:"zhengchao-wang",fullName:"Zhengchao Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10833",title:"Tumor Angiogenesis and Modulators",subtitle:null,isOpenForSubmission:!1,hash:"f29b575c46128b2da061ef7f9bd1070b",slug:"tumor-angiogenesis-and-modulators",bookSignature:"Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/10833.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"59529",title:"Dr.",name:"Ke",middleName:null,surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11356",title:"Molecular Cloning",subtitle:null,isOpenForSubmission:!1,hash:"671c629dd86e97f0fb467b9e70e92296",slug:"molecular-cloning",bookSignature:"Sadık Dincer, Hatice Aysun Mercimek Takcı and Melis Sumengen Ozdenef",coverURL:"https://cdn.intechopen.com/books/images_new/11356.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"188141",title:"Prof.",name:"Sadik",middleName:null,surname:"Dincer",slug:"sadik-dincer",fullName:"Sadik Dincer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7827",title:"Interpersonal Relationships",subtitle:null,isOpenForSubmission:!1,hash:"ebf41f4d17c75010eb3294cc8cac3d47",slug:"interpersonal-relationships",bookSignature:"Martha Peaslee Levine",coverURL:"https://cdn.intechopen.com/books/images_new/7827.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"186919",title:"Dr.",name:"Martha",middleName:null,surname:"Peaslee Levine",slug:"martha-peaslee-levine",fullName:"Martha Peaslee Levine"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Advances in Decision Making",subtitle:null,isOpenForSubmission:!1,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:"advances-in-decision-making",bookSignature:"Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",middleName:null,surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10669",title:"Corrosion",subtitle:"Fundamentals and Protection Mechanisms",isOpenForSubmission:!1,hash:"4a76d54f8a40fc2e7002a8d13fd617c1",slug:"corrosion-fundamentals-and-protection-mechanisms",bookSignature:"Fahmina Zafar, Anujit Ghosal and Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Advanced Topics of Topology",subtitle:null,isOpenForSubmission:!1,hash:"bf964c52f9e653fac20a7fcab58070e5",slug:"advanced-topics-of-topology",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11195",title:"Recent Advances in Biometrics",subtitle:null,isOpenForSubmission:!1,hash:"2d32e33e0f499cb5241734bb75dd2a83",slug:"recent-advances-in-biometrics",bookSignature:"Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/11195.jpg",editedByType:"Edited by",publishedDate:"July 27th 2022",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"151",title:"Pure Microbiology",slug:"pure-microbiology",parent:{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"},numberOfBooks:19,numberOfSeries:0,numberOfAuthorsAndEditors:529,numberOfWosCitations:317,numberOfCrossrefCitations:239,numberOfDimensionsCitations:545,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"151",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10442",title:"Cyanobacteria",subtitle:"Recent Advances in Taxonomy and Applications",isOpenForSubmission:!1,hash:"2fec78743d3f973c80881957ce3e6d79",slug:"cyanobacteria-recent-advances-in-taxonomy-and-applications",bookSignature:"Wael N. Hozzein",coverURL:"https://cdn.intechopen.com/books/images_new/10442.jpg",editedByType:"Edited by",editors:[{id:"189233",title:"Prof.",name:"Wael N.",middleName:"Nabil",surname:"Hozzein",slug:"wael-n.-hozzein",fullName:"Wael N. Hozzein"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9665",title:"Pseudomonas aeruginosa",subtitle:"Biofilm Formation, Infections and Treatments",isOpenForSubmission:!1,hash:"00e9f0f41cf8cd97ff33fac3bcea14cb",slug:"pseudomonas-aeruginosa-biofilm-formation-infections-and-treatments",bookSignature:"Theerthankar Das",coverURL:"https://cdn.intechopen.com/books/images_new/9665.jpg",editedByType:"Edited by",editors:[{id:"179493",title:"Dr.",name:"Theerthankar",middleName:null,surname:"Das",slug:"theerthankar-das",fullName:"Theerthankar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8997",title:"Microorganisms",subtitle:null,isOpenForSubmission:!1,hash:"d4bb9c77b89f8baf2716d1fb84c5bd9f",slug:"microorganisms",bookSignature:"Miroslav Blumenberg, Mona Shaaban, Abdelaziz Elgaml",coverURL:"https://cdn.intechopen.com/books/images_new/8997.jpg",editedByType:"Edited by",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9025",title:"Parasitology and Microbiology Research",subtitle:null,isOpenForSubmission:!1,hash:"d9a211396d44f07d2748e147786a2c8b",slug:"parasitology-and-microbiology-research",bookSignature:"Gilberto Antonio Bastidas Pacheco and Asghar Ali Kamboh",coverURL:"https://cdn.intechopen.com/books/images_new/9025.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8806",title:"Biology of Trypanosoma cruzi",subtitle:null,isOpenForSubmission:!1,hash:"514ab85661e01a47575e845792ef5bdc",slug:"biology-of-em-trypanosoma-cruzi-em-",bookSignature:"Wanderley De Souza",coverURL:"https://cdn.intechopen.com/books/images_new/8806.jpg",editedByType:"Edited by",editors:[{id:"161922",title:"Dr.",name:"Wanderley",middleName:null,surname:"De Souza",slug:"wanderley-de-souza",fullName:"Wanderley De Souza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6979",title:"Parasites and Parasitic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"f55304c8bd1d92268e33689c368f9e33",slug:"parasites-and-parasitic-diseases",bookSignature:"Gilberto Bastidas",coverURL:"https://cdn.intechopen.com/books/images_new/6979.jpg",editedByType:"Edited by",editors:[{id:"238219",title:"Dr.",name:"Gilberto Antonio",middleName:null,surname:"Bastidas Pacheco",slug:"gilberto-antonio-bastidas-pacheco",fullName:"Gilberto Antonio Bastidas Pacheco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8122",title:"Vectors and Vector-Borne Zoonotic Diseases",subtitle:null,isOpenForSubmission:!1,hash:"5a088c3ab82e499c8d5d2f8ceec6a601",slug:"vectors-and-vector-borne-zoonotic-diseases",bookSignature:"Sara Savić",coverURL:"https://cdn.intechopen.com/books/images_new/8122.jpg",editedByType:"Edited by",editors:[{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",isOpenForSubmission:!1,hash:"105e347b2d5dbbe6b593aceffa051efa",slug:"influenza-therapeutics-and-challenges",bookSignature:"Shailendra K. Saxena",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",editedByType:"Edited by",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5831",title:"Clostridium Difficile",subtitle:"A Comprehensive Overview",isOpenForSubmission:!1,hash:"fabbec5ed99960d2fb904f16790e8b97",slug:"clostridium-difficile-a-comprehensive-overview",bookSignature:"Shymaa Enany",coverURL:"https://cdn.intechopen.com/books/images_new/5831.jpg",editedByType:"Edited by",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:19,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"31812",doi:"10.5772/32521",title:"Soft Ticks as Pathogen Vectors: Distribution, Surveillance and Control",slug:"soft-ticks-as-pathogen-vectors-distribution-surveillance-and-control-",totalDownloads:6456,totalCrossrefCites:17,totalDimensionsCites:42,abstract:null,book:{id:"1692",slug:"parasitology",title:"Parasitology",fullTitle:"Parasitology"},signatures:"Raúl Manzano-Román, Verónica Díaz-Martín, José de la Fuente and Ricardo Pérez-Sánchez",authors:[{id:"91813",title:"Dr.",name:"Ricardo",middleName:null,surname:"Pérez-Sánchez",slug:"ricardo-perez-sanchez",fullName:"Ricardo Pérez-Sánchez"},{id:"120373",title:"Dr.",name:"Raúl",middleName:null,surname:"Manzano-Román",slug:"raul-manzano-roman",fullName:"Raúl Manzano-Román"},{id:"120375",title:"Ms.",name:"Verónica",middleName:null,surname:"Díaz-Martín",slug:"veronica-diaz-martin",fullName:"Verónica Díaz-Martín"},{id:"120378",title:"Dr.",name:"José",middleName:null,surname:"De La Fuente",slug:"jose-de-la-fuente",fullName:"José De La Fuente"}]},{id:"54154",doi:"10.5772/67338",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:7215,totalCrossrefCites:14,totalDimensionsCites:27,abstract:"Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"32282",doi:"10.5772/33983",title:"Bacteriophages of Ralstonia solanacearum: Their Diversity and Utilization as Biocontrol Agents in Agriculture",slug:"bacteriophages-of-ralstonia-solanacearum-their-diversity-and-utilization-as-biocontrol-agents-in-agr",totalDownloads:3755,totalCrossrefCites:7,totalDimensionsCites:23,abstract:null,book:{id:"555",slug:"bacteriophages",title:"Bacteriophages",fullTitle:"Bacteriophages"},signatures:"Takashi Yamada",authors:[{id:"98151",title:"Dr.",name:"Takashi",middleName:null,surname:"Yamada",slug:"takashi-yamada",fullName:"Takashi Yamada"}]},{id:"32276",doi:"10.5772/34642",title:"Bacteriophages and Their Structural Organisation",slug:"bacteriophages-and-their-structural-organisation-",totalDownloads:12433,totalCrossrefCites:9,totalDimensionsCites:17,abstract:null,book:{id:"555",slug:"bacteriophages",title:"Bacteriophages",fullTitle:"Bacteriophages"},signatures:"E.V. Orlova",authors:[{id:"101052",title:"Prof.",name:"Elena",middleName:null,surname:"Orlova",slug:"elena-orlova",fullName:"Elena Orlova"}]},{id:"30110",doi:"10.5772/36203",title:"Artifacts in Atomic Force Microscopy of Biological Samples",slug:"artifacts-in-atomic-force-microscopy-of-biological-samples",totalDownloads:5958,totalCrossrefCites:5,totalDimensionsCites:16,abstract:null,book:{id:"1630",slug:"atomic-force-microscopy-investigations-into-biology-from-cell-to-protein",title:"Atomic Force Microscopy Investigations into Biology",fullTitle:"Atomic Force Microscopy Investigations into Biology - From Cell to Protein"},signatures:"E. Ukraintsev, A. Kromka, H. Kozak, Z. Remeš and B. Rezek",authors:[{id:"107471",title:"Dr.",name:"Egor",middleName:null,surname:"Ukraintsev",slug:"egor-ukraintsev",fullName:"Egor Ukraintsev"}]}],mostDownloadedChaptersLast30Days:[{id:"69731",title:"Isolation and Purification of Sulfate-Reducing Bacteria",slug:"isolation-and-purification-of-sulfate-reducing-bacteria",totalDownloads:1550,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Sulfate-reducing bacteria (SRB) are a widespread group of microorganisms that are often isolated from the anoxygenic environments (lake depths, soil, or swamps), and they are also present in the human and animal intestines. This group is often detected in patients with inflammatory bowel disease, including ulcerative colitis. That is why new rapid methods for their isolation, purification, and identification are important and necessary. In this chapter, the methods of mesophilic SRB isolation from various environments are described. Particular attention is paid to the purification of mesophilic SRB since they can be in close interaction with other microorganisms (Clostridium, Bacteroides, Pseudomonas, etc.), which are their frequent satellites. Moreover, the main methods of mesophilic SRB identification based on their morphological, physiological, biochemical, and genetical characteristics are presented.",book:{id:"8997",slug:"microorganisms",title:"Microorganisms",fullTitle:"Microorganisms"},signatures:"Ivan Kushkevych",authors:[{id:"252191",title:"Associate Prof.",name:"Ivan",middleName:null,surname:"Kushkevych",slug:"ivan-kushkevych",fullName:"Ivan Kushkevych"}]},{id:"65773",title:"Life Cycle of Trypanosoma cruzi in the Invertebrate and the Vertebrate Hosts",slug:"life-cycle-of-em-trypanosoma-cruzi-em-in-the-invertebrate-and-the-vertebrate-hosts",totalDownloads:1490,totalCrossrefCites:4,totalDimensionsCites:7,abstract:"Trypanosoma cruzi (T. cruzi) is a protozoan parasite that causes Chagas disease, a zoonotic disease that can be transmitted to humans by blood-sucking triatomine bugs. T. cruzi is a single-celled eukaryote with a complex life cycle alternating between reduviid bug invertebrate vectors and vertebrate hosts. This article will look at the developmental stages of T. cruzi in the invertebrate vector and the vertebrate hosts, the different surface membrane proteins involved in different life cycle stages of T. cruzi, roles of different amino acids in the life cycle, carbon and energy sources and gene expression in the life cycle of T. cruzi. The author will also look at extracellular vesicles (EV) and its role in the dissemination and survival of T. cruzi in mammalian host.",book:{id:"8806",slug:"biology-of-em-trypanosoma-cruzi-em-",title:"Biology of Trypanosoma cruzi",fullTitle:"Biology of Trypanosoma cruzi"},signatures:"Kenechukwu C. Onyekwelu",authors:[{id:"245368",title:"Dr.",name:"Kenechukwu C.",middleName:null,surname:"Onyekwelu",slug:"kenechukwu-c.-onyekwelu",fullName:"Kenechukwu C. Onyekwelu"}]},{id:"54154",title:"Staphylococcus aureus: Overview of Bacteriology, Clinical Diseases, Epidemiology, Antibiotic Resistance and Therapeutic Approach",slug:"staphylococcus-aureus-overview-of-bacteriology-clinical-diseases-epidemiology-antibiotic-resistance-",totalDownloads:7214,totalCrossrefCites:14,totalDimensionsCites:26,abstract:"Staphylococcus aureus is an important human pathogen that causes wide range of infectious conditions both in nosocomial and community settings. The Gram-positive pathogen is armed with battery of virulence factors that facilitate to establish infections in the hosts. The organism is well known for its ability to acquire resistance to various antibiotic classes. The emergence and spread of methicillin-resistant S. aureus (MRSA) strains which are often multi-drug resistant in hospitals and subsequently in community resulted in significant mortality and morbidity. The epidemiology of MRSA has been evolving since its initial outbreak which necessitates a comprehensive medical approach to tackle this pathogen. Vancomycin has been the drug of choice for years but its utility was challenged by the emergence of resistance. In the last 10 years or so, newer anti-MRSA antibiotics were approved for clinical use. However, being notorious for developing antibiotic resistance, there is a continuous need for exploring novel anti-MRSA agents from various sources including plants and evaluation of non-antibiotic approaches.",book:{id:"5471",slug:"frontiers-in-i-staphylococcus-aureus-i-",title:"Frontiers in Staphylococcus aureus",fullTitle:"Frontiers in Staphylococcus aureus"},signatures:"Arumugam Gnanamani, Periasamy Hariharan and Maneesh Paul-\nSatyaseela",authors:[{id:"192829",title:"Dr.",name:"Arumugam",middleName:null,surname:"Gnanamani",slug:"arumugam-gnanamani",fullName:"Arumugam Gnanamani"},{id:"204388",title:"Dr.",name:"Periasamy",middleName:null,surname:"Hariharan",slug:"periasamy-hariharan",fullName:"Periasamy Hariharan"},{id:"204389",title:"Dr.",name:"Maneesh",middleName:null,surname:"Paul-Satyaseela",slug:"maneesh-paul-satyaseela",fullName:"Maneesh Paul-Satyaseela"}]},{id:"55437",title:"Biological Control of Parasites",slug:"biological-control-of-parasites-2017-07",totalDownloads:4322,totalCrossrefCites:7,totalDimensionsCites:7,abstract:"Parasites (ectoparasites or endoparasites) are a major cause of diseases in man, his livestock and crops, leading to poor yield and great economic loss. To overcome some of the major limitations of chemical control methods such as rising resistance, environmental and health risks, and the adverse effect on non‐target organisms, biological control (biocontrol) is now at the forefront of parasite (pests) control. Biocontrol is now a core component of the integrated pest management. Biocontrol is defined as “the study and uses of parasites, predators and pathogens for the regulation of host (pest) densities”. Considerable successes have been achieved in the implementation of biocontrol strategies in the past. This chapter presents a review of the history of biocontrol, its advantages and disadvantages; the different types of biological control agents (BCAs) including predators, parasites (parasitoids) and pathogens (fungi, bacteria, viruses and virus‐like particles, protozoa and nematodes); the effect of biocontrol on native biodiversity; a few case studies of the successful implementation of biocontrol methods and the challenges encountered with the implementation of biocontrol and future perspectives.",book:{id:"5527",slug:"natural-remedies-in-the-fight-against-parasites",title:"Natural Remedies in the Fight Against Parasites",fullTitle:"Natural Remedies in the Fight Against Parasites"},signatures:"Tebit Emmanuel Kwenti",authors:[{id:"191763",title:"Dr.",name:"Tebit Emmanuel",middleName:null,surname:"Kwenti",slug:"tebit-emmanuel-kwenti",fullName:"Tebit Emmanuel Kwenti"}]},{id:"70336",title:"Plastics Polymers Degradation by Fungi",slug:"plastics-polymers-degradation-by-fungi",totalDownloads:1453,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"The studies on plastic degradation are very important for the development of biodegradable plastics, and for reduction of pollution, since plastic waste can remain in the environment for decades or centuries. We have showed the degradation of oxo-biodegradable plastic bags and green polyethylene by Pleurotus ostreatus. This fungus can also produce mushrooms using these plastics. The plastic degradation was possibly by three reasons: (a) presence of pro-oxidant ions or plant polymer, (b) low specificity of the lignocellulolytic enzymes, and (c) the presence of endomycotic nitrogen-fixing microorganisms. In this chapter, the plastic bags’ degradation by abiotic and microbial process using the exposure to sunlight and the use of a white-rot fungus will described. The physical, chemical, and biological alterations of plastic were analyzed after each process of degradation. The degradation of plastic bags was more effective when the abiotic and biotic degradations were combined.",book:{id:"8997",slug:"microorganisms",title:"Microorganisms",fullTitle:"Microorganisms"},signatures:"José Maria Rodrigues da Luz, Marliane de Cássia Soares da Silva, Leonardo Ferreira dos Santos and Maria Catarina Megumi Kasuya",authors:[{id:"217699",title:"Dr.",name:"Jose Maria",middleName:null,surname:"Da Luz",slug:"jose-maria-da-luz",fullName:"Jose Maria Da Luz"}]}],onlineFirstChaptersFilter:{topicId:"151",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"August 2nd, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:33,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,annualVolume:11411,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,annualVolume:11413,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,annualVolume:11414,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:10,paginationItems:[{id:"82858",title:"Corporate Social Responsibility a Case of the Provision of Recreational Facilities",doi:"10.5772/intechopen.105608",signatures:"Peter Musa Wash, Shida Irwana Omar, Badaruddin Mohamed and Mohd Ismail Isa",slug:"corporate-social-responsibility-a-case-of-the-provision-of-recreational-facilities",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82786",title:"Discussion of Purchasing Virtual Digital Nature and Tourism",doi:"10.5772/intechopen.105869",signatures:"Hiroko Oe and Yasuyuki Yamaoka",slug:"discussion-of-purchasing-virtual-digital-nature-and-tourism",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",hash:"86a6d33cf601587e591064ce92effc02",volumeInSeries:1,fullTitle:"Leadership in a Changing World - A Multidimensional Perspective",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038UqSfQAK/Profile_Picture_2022-05-13T10:39:03.jpg",biography:"Dr. Muhammad Mohiuddin is an Associate Professor of International Business at Laval University, Canada. He has taught at Thompson Rivers University, Canada; University of Paris-Est, France; Osnabruck University of Applied Science, Germany; and Shanghai Institute of Technology and Tianjin University of Technology, China. He has published research in Research Policy, Applied Economics, Review of Economic Philosophy, Strategic Change, International Journal of Logistics, Sustainability, Journal of Environmental Management, Journal of Global Information Management, Journal of Cleaner Production, M@N@GEMENT, and more. He is a member of CEDIMES Institut (France), Academy of International Business (AIB), Strategic Management Society (SMS), Academy of Management (AOM), Administrative Science Association of Canada (ASAC), and Canadian council of small business and entrepreneurship (CCSBE). He is currently the director of the Research Group on Contemporary Asia (GERAC) at Laval University. He is also co-managing editor of Transnational Corporations Review and a guest editor for Electronic Commerce Research and Journal of Internet Technology.",institutionString:"Université Laval",institution:{name:"Université Laval",institutionURL:null,country:{name:"Canada"}}}]}]},openForSubmissionBooks:{paginationCount:2,paginationItems:[{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:42,paginationItems:[{id:"82914",title:"Glance on the Critical Role of IL-23 Receptor Gene Variations in Inflammation-Induced Carcinogenesis",doi:"10.5772/intechopen.105049",signatures:"Mohammed El-Gedamy",slug:"glance-on-the-critical-role-of-il-23-receptor-gene-variations-in-inflammation-induced-carcinogenesis",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"82875",title:"Lipidomics as a Tool in the Diagnosis and Clinical Therapy",doi:"10.5772/intechopen.105857",signatures:"María Elizbeth Alvarez Sánchez, Erick Nolasco Ontiveros, Rodrigo Arreola, Adriana Montserrat Espinosa González, Ana María García Bores, Roberto Eduardo López Urrutia, Ignacio Peñalosa Castro, María del Socorro Sánchez Correa and Edgar Antonio Estrella Parra",slug:"lipidomics-as-a-tool-in-the-diagnosis-and-clinical-therapy",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82440",title:"Lipid Metabolism and Associated Molecular Signaling Events in Autoimmune Disease",doi:"10.5772/intechopen.105746",signatures:"Mohan Vanditha, Sonu Das and Mathew John",slug:"lipid-metabolism-and-associated-molecular-signaling-events-in-autoimmune-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82483",title:"Oxidative Stress in Cardiovascular Diseases",doi:"10.5772/intechopen.105891",signatures:"Laura Mourino-Alvarez, Tamara Sastre-Oliva, Nerea Corbacho-Alonso and Maria G. Barderas",slug:"oxidative-stress-in-cardiovascular-diseases",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"82751",title:"Mitochondria-Endoplasmic Reticulum Interaction in Central Neurons",doi:"10.5772/intechopen.105738",signatures:"Liliya Kushnireva and Eduard Korkotian",slug:"mitochondria-endoplasmic-reticulum-interaction-in-central-neurons",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82709",title:"Fatty Acid Metabolism as a Tumor Marker",doi:"10.5772/intechopen.106072",signatures:"Gatot Nyarumenteng Adhipurnawan Winarno",slug:"fatty-acid-metabolism-as-a-tumor-marker",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82716",title:"Advanced glycation end product induced endothelial dysfunction through ER stress: Unravelling the role of Paraoxonase 2",doi:"10.5772/intechopen.106018",signatures:"Ramya Ravi and Bharathidevi Subramaniam Rajesh",slug:"advanced-glycation-end-product-induced-endothelial-dysfunction-through-er-stress-unravelling-the-rol",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82388",title:"Epigenetics: Science of Changes without Change in DNA Sequences",doi:"10.5772/intechopen.105039",signatures:"Jayisha Dhargawe, Rita Lakkakul and Pradip Hirapure",slug:"epigenetics-science-of-changes-without-change-in-dna-sequences",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"82583",title:"Leukaemia: The Purinergic System and Small Extracellular Vesicles",doi:"10.5772/intechopen.104326",signatures:"Arinzechukwu Ude and Kelechi Okeke",slug:"leukaemia-the-purinergic-system-and-small-extracellular-vesicles",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82531",title:"Abnormal Iron Metabolism and Its Effect on Dentistry",doi:"10.5772/intechopen.104502",signatures:"Chinmayee Dahihandekar and Sweta Kale Pisulkar",slug:"abnormal-iron-metabolism-and-its-effect-on-dentistry",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - A Double-Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Chemical Biology",value:15,count:2,group:"subseries"},{caption:"Proteomics",value:18,count:2,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:17,group:"subseries"},{caption:"Metabolism",value:17,count:18,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:250,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University. His research interests include computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, intelligent systems, information technology, and information systems. Prof. Sarfraz has been a keynote/invited speaker on various platforms around the globe. He has advised various students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He is a member of various professional societies and a chair and member of the International Advisory Committees and Organizing Committees of various international conferences. Prof. Sarfraz is also an editor-in-chief and editor of various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/267434/images/system/267434.jpg",biography:"Dr. Rohit Raja received Ph.D. in Computer Science and Engineering from Dr. CVRAMAN University in 2016. His main research interest includes Face recognition and Identification, Digital Image Processing, Signal Processing, and Networking. Presently he is working as Associate Professor in IT Department, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (CG), India. He has authored several Journal and Conference Papers. He has good Academics & Research experience in various areas of CSE and IT. He has filed and successfully published 27 Patents. He has received many time invitations to be a Guest at IEEE Conferences. He has published 100 research papers in various International/National Journals (including IEEE, Springer, etc.) and Proceedings of the reputed International/ National Conferences (including Springer and IEEE). He has been nominated to the board of editors/reviewers of many peer-reviewed and refereed Journals (including IEEE, Springer).",institutionString:"Guru Ghasidas Vishwavidyalaya",institution:{name:"Guru Ghasidas Vishwavidyalaya",country:{name:"India"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:null,institution:{name:"Beijing University of Technology",country:{name:"China"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:{name:"Medical University Plovdiv",country:{name:"Bulgaria"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Igor Victorovich Lakhno was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPh.D. – 1999, Kharkiv National Medical Univesity.\nDSC – 2019, PL Shupik National Academy of Postgraduate Education \nProfessor – 2021, Department of Obstetrics and Gynecology of VN Karazin Kharkiv National University\nHead of Department – 2021, Department of Perinatology, Obstetrics and gynecology of Kharkiv Medical Academy of Postgraduate Education\nIgor Lakhno has been graduated from international training courses on reproductive medicine and family planning held at Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor in the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics, and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s been a professor in the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics, and gynecology department. He’s affiliated with Kharkiv Medical Academy of Postgraduate Education as a Head of Department from November 2021. Igor Lakhno has participated in several international projects on fetal non-invasive electrocardiography (with Dr. J. A. Behar (Technion), Prof. D. Hoyer (Jena University), and José Alejandro Díaz Méndez (National Institute of Astrophysics, Optics, and Electronics, Mexico). He’s an author of about 200 printed works and there are 31 of them in Scopus or Web of Science databases. Igor Lakhno is a member of the Editorial Board of Reproductive Health of Woman, Emergency Medicine, and Technology Transfer Innovative Solutions in Medicine (Estonia). He is a medical Editor of “Z turbotoyu pro zhinku”. Igor Lakhno is a reviewer of the Journal of Obstetrics and Gynaecology (Taylor and Francis), British Journal of Obstetrics and Gynecology (Wiley), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for a DSc degree “Pre-eclampsia: prediction, prevention, and treatment”. Three years ago Igor Lakhno has participated in a training course on innovative technologies in medical education at Lublin Medical University (Poland). Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: are obstetrics, women’s health, fetal medicine, and cardiovascular medicine. \nIgor Lakhno is a consultant at Kharkiv municipal perinatal center. He’s graduated from training courses on endoscopy in gynecology. He has 28 years of practical experience in the field.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"243698",title:"Dr.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:null,institution:null},{id:"7227",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Matsui",slug:"hiroaki-matsui",fullName:"Hiroaki Matsui",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Tokyo",country:{name:"Japan"}}},{id:"312999",title:"Dr.",name:"Bernard O.",middleName:null,surname:"Asimeng",slug:"bernard-o.-asimeng",fullName:"Bernard O. Asimeng",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}}]}},subseries:{item:{id:"7",type:"subseries",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11403,editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",slug:"slawomir-wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",biography:"Professor Sławomir Wilczyński, Head of the Chair of Department of Basic Biomedical Sciences, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, Poland. His research interests are focused on modern imaging methods used in medicine and pharmacy, including in particular hyperspectral imaging, dynamic thermovision analysis, high-resolution ultrasound, as well as other techniques such as EPR, NMR and hemispheric directional reflectance. Author of over 100 scientific works, patents and industrial designs. Expert of the Polish National Center for Research and Development, Member of the Investment Committee in the Bridge Alfa NCBiR program, expert of the Polish Ministry of Funds and Regional Policy, Polish Medical Research Agency. Editor-in-chief of the journal in the field of aesthetic medicine and dermatology - Aesthetica.",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",slug:"alexandros-tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",slug:"lulu-wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},onlineFirstChapters:{paginationCount:22,paginationItems:[{id:"82938",title:"Trauma from Occlusion: Practical Management Guidelines",doi:"10.5772/intechopen.105960",signatures:"Prashanth Shetty, Shweta Hegde, Shubham Chelkar, Rahul Chaturvedi, Shruti Pochhi, Aakanksha Shrivastava, Dudala Lakshmi, Shreya Mukherjee, Pankaj Bajaj and Shahzada Asif Raza",slug:"trauma-from-occlusion-practical-management-guidelines",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82608",title:"Early Management of Dental Trauma in the Era of COVID-19",doi:"10.5772/intechopen.105992",signatures:"Khairul Bariah Chi Adam, Haszelini Hassan, Pram Kumar Subramaniam, Izzati Nabilah Ismail, Nor Adilah Harun and Naziyah Shaban Mustafa",slug:"early-management-of-dental-trauma-in-the-era-of-covid-19",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82767",title:"Teeth Avulsion",doi:"10.5772/intechopen.105846",signatures:"Manal Abdalla Eltahir, Randa Fath Elrahman Ibrahim and Hanan Alharbi",slug:"teeth-avulsion",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"82288",title:"Dental Emergency and Conditions",doi:"10.5772/intechopen.105495",signatures:"Navneet Kaur",slug:"dental-emergency-and-conditions",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"81961",title:"Antioxidants as an Adjuncts to Periodontal Therapy",doi:"10.5772/intechopen.105016",signatures:"Sura Dakhil Jassim and Ali Abbas Abdulkareem",slug:"antioxidants-as-an-adjuncts-to-periodontal-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Dental Trauma",coverURL:"https://cdn.intechopen.com/books/images_new/11567.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80963",title:"Pain Perception in Patients Treated with Ligating/Self-Ligating Brackets versus Patients Treated with Aligners",doi:"10.5772/intechopen.102796",signatures:"Farid Bourzgui, Rania Fastani, Salwa Khairat, Samir Diouny, Mohamed El Had, Zineb Serhier and Mohamed Bennani Othmani",slug:"pain-perception-in-patients-treated-with-ligating-self-ligating-brackets-versus-patients-treated-wit",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80223",title:"Bridging the Gap: Nasoalveolar Moulding in Early Cleft Palate Rehabilitation",doi:"10.5772/intechopen.101986",signatures:"Amanda Nadia Ferreira",slug:"bridging-the-gap-nasoalveolar-moulding-in-early-cleft-palate-rehabilitation",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"80186",title:"Effects of Various Dentofacial Orthopedic and Orthognathic Treatment Modalities on Pharyngeal Airway",doi:"10.5772/intechopen.101719",signatures:"Tejashri Pradhan and Aarti Sethia",slug:"effects-of-various-dentofacial-orthopedic-and-orthognathic-treatment-modalities-on-pharyngeal-airway",totalDownloads:99,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78834",title:"Current Methods for Acceleration of Orthodontic Tooth Movement",doi:"10.5772/intechopen.100221",signatures:"Mehmet Akin and Leyla Cime Akbaydogan",slug:"current-methods-for-acceleration-of-orthodontic-tooth-movement",totalDownloads:138,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79100",title:"Orthodontics and the Periodontium: A Symbiotic Relationship",doi:"10.5772/intechopen.100801",signatures:"Betsy Sara Thomas and Mohan Alexander",slug:"orthodontics-and-the-periodontium-a-symbiotic-relationship",totalDownloads:78,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79680",title:"Digital Workflow for Homemade Aligner",doi:"10.5772/intechopen.100347",signatures:"Dalal Elmoutawakkil and Nabil Hacib",slug:"digital-workflow-for-homemade-aligner",totalDownloads:215,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79584",title:"Orthodontic Management of Adult Sleep Apnea: Clinical Case Reports",doi:"10.5772/intechopen.101193",signatures:"Lahcen Ousehal, Soukaina Sahim, Hajar Bouzid, Hakima Aghoutan, Asmaa El Mabrak, Mohamed Mahtar and Mohamed El Fatmi Kadri Hassani",slug:"orthodontic-management-of-adult-sleep-apnea-clinical-case-reports",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79334",title:"Orthodontic Therapeutic Biomarkers in Saliva and Gingival Crevicular Fluid",doi:"10.5772/intechopen.100733",signatures:"Sagar S. Bhat, Ameet V. Revankar and Shrinivas M. Basavaraddi",slug:"orthodontic-therapeutic-biomarkers-in-saliva-and-gingival-crevicular-fluid",totalDownloads:138,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"78964",title:"The Value of Self-Ligating Brackets in Orthodontics: About the Damon Protocol",doi:"10.5772/intechopen.100536",signatures:"Suvetha Siva, Shreya Kishore, Suganya Dhanapal, Janani Ravi and Chandhini Suresh",slug:"the-value-of-self-ligating-brackets-in-orthodontics-about-the-damon-protocol",totalDownloads:227,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79125",title:"Accidental Aspiration of Orthodontic Components or Appliances",doi:"10.5772/intechopen.100397",signatures:"Siddharth Sonwane",slug:"accidental-aspiration-of-orthodontic-components-or-appliances",totalDownloads:81,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}},{id:"79068",title:"Interdisciplinary Reverse Planning in Orthodontics",doi:"10.5772/intechopen.100414",signatures:"Guilherme Nakagawa dos Santos, Charles Lenzi de Araujo and Romeu Cassiano Pucci da Silva Ramos",slug:"interdisciplinary-reverse-planning-in-orthodontics",totalDownloads:116,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Current Trends in Orthodontics",coverURL:"https://cdn.intechopen.com/books/images_new/10780.jpg",subseries:{id:"2",title:"Prosthodontics and Implant Dentistry"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"10796",title:"Extracellular Vesicles",subtitle:"Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",slug:"extracellular-vesicles-role-in-diseases-pathogenesis-and-therapy",publishedDate:"July 20th 2022",editedByType:"Edited by",bookSignature:"Manash K. Paul",hash:"eb5407fcf93baff7bca3fae5640153a2",volumeInSeries:13,fullTitle:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",editors:[{id:"319365",title:"Assistant Prof.",name:"Manash K.",middleName:null,surname:"Paul",slug:"manash-k.-paul",fullName:"Manash K. Paul",profilePictureURL:"https://mts.intechopen.com/storage/users/319365/images/system/319365.png",institutionString:"University of California Los Angeles",institution:{name:"University of California Los Angeles",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:33,numberOfPublishedChapters:330,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:14,numberOfPublishedChapters:145,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:9,numberOfPublishedChapters:139,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:122,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:112,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:21,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:"2753-6580",doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"August 3rd, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:107,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:"Shenzhen Technology University",institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",fullName:"Reda R. Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/54317",hash:"",query:{},params:{id:"54317"},fullPath:"/profiles/54317",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()