\r\n\t
",isbn:"978-1-83968-570-5",printIsbn:"978-1-83968-569-9",pdfIsbn:"978-1-83968-571-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"abf31c9873fc2d88b8ee05c6adb53a29",bookSignature:"Dr. David Bienvenido-Huertas",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10104.jpg",keywords:"Sustainable Construction, Innovative Construction, Construction Processes, Sustainable Design, Design Optimization, Maintenance Minimization, Energy Efficiency, Energy Conservation Measures, Thermal Comfort, Socio-cultural Integration, Urban Environment, Visual Impact",numberOfDownloads:111,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 26th 2020",dateEndSecondStepPublish:"September 23rd 2020",dateEndThirdStepPublish:"November 22nd 2020",dateEndFourthStepPublish:"February 10th 2021",dateEndFifthStepPublish:"April 11th 2021",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"David Bienvenido-Huertas has completed his Ph.D. as an Architect, currently, he is a researcher of the Building Construction II Department at Universidad de Sevilla, Spain",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320815",title:"Dr.",name:"David",middleName:null,surname:"Bienvenido-Huertas",slug:"david-bienvenido-huertas",fullName:"David Bienvenido-Huertas",profilePictureURL:"https://mts.intechopen.com/storage/users/320815/images/system/320815.jpg",biography:"PhD Architect. Researcher of the Building Construction II Department at Universidad de Sevilla, Spain. Active member of the Research Group TEP970: Technological Innovation, 3d Modeling Systems and Energy Diagnosis in Heritage and Building at the Universidad de Sevilla. His area of expertise covers climate change in the building sector, adaptive thermal comfort, heat transfer, fuel poverty, energy conservation measures, and design of nearly zero energy buildings. He is an author of more than 25 manuscripts and frequently a reviewer of international peer-reviewed journals.",institutionString:"University of Seville",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Seville",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:[{id:"74218",title:"Energy-Efficient Landscape Design",slug:"energy-efficient-landscape-design",totalDownloads:63,totalCrossrefCites:0,authors:[null]},{id:"74629",title:"Rebars for Durable Concrete Construction: Points to Ponder",slug:"rebars-for-durable-concrete-construction-points-to-ponder",totalDownloads:4,totalCrossrefCites:null,authors:[null]},{id:"74653",title:"Architectural Design Canons from Middle Ages and Before: An Inspiration for Modern Sustainable Construction",slug:"architectural-design-canons-from-middle-ages-and-before-an-inspiration-for-modern-sustainable-constr",totalDownloads:17,totalCrossrefCites:0,authors:[null]},{id:"74421",title:"Towards Innovative and Sustainable Construction of Architectural Structures by Employing Self-Consolidating Concrete Reinforced with Polypropylene Fibers",slug:"towards-innovative-and-sustainable-construction-of-architectural-structures-by-employing-self-consol",totalDownloads:30,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58133",title:"Simultaneous Excisions and Extemporary Skin Plastics: New Reconstructive Techniques after Tumor Surgery",doi:"10.5772/intechopen.71691",slug:"simultaneous-excisions-and-extemporary-skin-plastics-new-reconstructive-techniques-after-tumor-surge",body:'The aim of this chapter is to focus on a new way to employ traditional techniques when skin tumors present themselves as multiple and contiguous. In fact, the occurrence of two or more skin lesions closely situated to one another is not so rare in dermatologic surgery daily practice [1]. The frequency of this condition can be greatly influenced by the grade of attention given to the problem; in our personal experience over the last 20 years, this event was observed and treated in 3% of cases. This problem can be solved by multiple excisions in different surgical times after choosing, for the first ablation, the lesion most clinically malignant or localized in the more difficult anatomical site [1, 2, 3]. However, in our opinion the best choice is to find a solution allowing a unique surgical time, giving time-sparing, easier plastic reconstruction, and good esthetic results. This goal can be achieved with a twisted suture line and less skin traction. Many reconstructive possibilities can be found and applied for the best and easier result according to the anatomical disposition [5]. The theory of random pattern flaps can be applied to multiple simultaneous excisions, with all types of flaps.
In the following paragraphs, we present some theoretical considerations on the use of flaps for plastic reconstruction after multiple simultaneous excisions and numerous practical examples. In particular, we describe (i) advancement flaps, (ii) rotation flaps, and (iii) transposition flaps (Figure 1).
The different types of flaps (simple or elaborated) that can be used after simultaneous excision of multiple lesions. (A) Advancement and rotation flaps, (B) interposed transposition flaps, and (C) coaxial transposition flaps.
The advancement flap is one of the most basic and versatile flaps available for the dermatologic surgery. Despite its apparent straightforwardness, the advancement flap, which simply involves the linear advancement of the tissue in one direction, can be used to close a variety of defects, ranging from small defects on the scalp or extremities to large, complicated defects involving multiple cosmetic units on the face. A great deal has been written about advancement flaps, including new and innovative ways to use them [6].
Some of these ways are hereby described. All these flaps give the possibility to perform simultaneous and easier reconstructions with a single plastic, after the removal of multiple contiguous lesions of the skin. We discuss the fundamental principles underlying the advancement flap, as well as the potential uses, advantages, and disadvantages of the various types of advancement flaps in different situations of multiple lesions.
The simplest way to remove cutaneous lesion is the elliptical excision, because it is simple and fast and it leaves a smaller wound than any other technique [5]. When two contiguous lesions cannot be removed with a single elliptical excision, due to the excessive tension that would result from direct suture, it is possible to use two Burow’s triangle advancement flaps. This technique is a variant of the single Burow’s triangle flap [1], in which the secondary triangle (the so-called Burow’s wedge) contains one of the lesions.
In the case of two very close lesions, it is possible to draw two triangle flap variants, as two possible tangential incisions are available. The direction of the tangential incision should be chosen so that it fits well with the creases, folds, and skin tension lines (Figure 2).
Burow’s flap.
The Burow’s triangle advancement flap is functional only when the distance between the lesions does not exceed 2 “diameters” (width of the hypothetical elliptical excision needed to resect a lesion). The resulting suture line is in this case longer than the sum of the two potential elliptical incisions, but the more esthetic Z-shaped incision and the decreased tension are shown in Figure 3. In this case, the distance between the lesions is 1 “diameter,” and the resulting suture line is as long as the sum of the two elliptical excisions; so, the absolute tension is the same as that obtained with a single elliptical excision. However, when the distance between the two skin lesions exceeds 2 diameters, the use of this technique is not recommended, because of the need for extensive undermining and the length of the final closure.
The graphic representation and a clinical example of a Z-shaped incision and the excision of two lesions, with a good esthetic result.
Overall, this technique is excellent for the simultaneous removal of two lesions that are closely approximated, as the resulting tension is comparable to that of two elliptical incisions, with acceptable esthetic results.
The A-T flap, also known as the O-T flap, can be thought as half of a double advancement flap. The basic technique for an A-T flap involves the construction of a triangular or A-shaped defect, superimposed over the primary circular or elliptical wound to be closed. The flap is constructed by making an incision along the base of an ideal triangular defect and then joining the two basal tips of the triangle with the midpoint of the base. This results in an inverted, T-shaped closure (i.e., the “T” is inverted with respect to the “A”) (Figure 4).
The A-T flap scheme.
Obviously, dimensions of the imaginary triangle that guides the formation of this flap are variable, depending to the size of the wound and of the standing cutaneous cone that is formed and to the proximity of adjacent structures. However, in the absence of any such limitations, some authors [6, 7] determined that, in order to minimize the closure tension, the optimal design for an A-T flap includes a height that is twice the defect diameter, a base extension corresponding to one defect diameter on each side, and three defect diameters (measured from the center of the wound) of undermining. The A-T flap should be considered to avoid distortion of anatomical structures near the wound edge. When this condition is needed, the base of the flap should be placed along the border of the structure to be preserved. The A-T flap prevents the damage of important anatomical structures and leads to the formation of esthetically acceptable scars. This flap is particularly useful: (i) on the forehead, where the base incision can be concealed along the eyebrow or hairline; (ii) on the chin, where the base incision can be concealed along the mental crease; (iii) on the lip, where the base incision can be concealed along the vermilion border.
The A-T flap also allows to use Burow’s triangles (that are created at the base of the triangular flaps to facilitate sliding), inserting any contiguous lesions inside them. In this way it is possible to carry out a single reconstructive plastic. This technique is described in Figure 4.
The rectangular advancement flap is realized by tracing a rectangle contiguous to the breach to close. The direction of this triangle is chosen on the basis of the best possible esthetic results, along the lines of Langer or in the direction of greater skin distensibility. The ideal length ratio of the rectangular flap width is from 2:1 to 3:1.
Single advancement flaps are useful to repair defects on the forehead.
Single and double advancement flaps are also advantageous because the resulting scars can be camouflaged within normal anatomic boundary lines (e.g., forehead scalp junction or vermilion border).
One of the major drawbacks to constructing advancement flap is represented by the need to build two Burow’s triangles to eliminate standing cones of redundant tissue. It should be remembered that the removal of each standing cone creates an extra scar. Standing cones can be sometimes eliminated or diminished simply by sewing them out using the “law of halves.” However, this is not always possible. Some authors [4, 5, 6, 7] described a fine modification of the basic advancement flap which prevents the formation of standing cones. A curvilinear incision can be performed along the limb of the flap, to redistribute the redundant tissue along the length of the incision. The result is an advancement without Burow’s triangle. This modification results in a more desirable final scar; however, it has some minor limitations, including a slight narrowing of the flap pedicle and the relinquishment of the additional tissue movement gained by Burow’s triangle excision. When constructing larger flaps, attempts to avoid the excision of Burow’s triangles may lead to extensive stretching and subsequent thinning of the flap. It should be kept in mind that an excessively thinned flap has a poor cosmetic outcome and is more susceptible to necrosis. Hence, avoiding standing cone is not necessarily the best possible approach.
The choice to draw two Burow’s triangles at the base of the rectangular flap to facilitate its advancement is often the best one. Also, this choice allows to remove three lesions with a single rectangular flap as shown in Figure 5 (this figure shows the skin tension lines), when such triangles coincide with other skin lesions.
Rectangular flap scheme.
This theoretical principle can be adapted to the disposition of the contiguous lesions, giving rise to trapezoidal shapes other than rectangular (Figure 6).
Clinical examples of contiguous lesions.
Triangular flap is a useful variant to close a surgical breach through advancing the two opposite sides, when one-on-one advancement is difficult. Sometimes, the two opposite advancements can be obtained with two rectangular flaps (Figure 7).
Opposite triangular flap graphic scheme.
However, to reduce the number of surgical cuts, the two flaps can be transformed into two Burow’s opposite triangles, cutting one side and using Burow’s triangle on each arm. If the two Burow’s triangles can result in other two cutaneous lesions, we will obtain the excision and the simultaneous reconstruction of three injuries with a single broken suture line (Figure 8).
A clinical example for multiple lesions.
A rotation flap is usually taken from more resilient skin regions to fill losses of the tissue from adjacent less-resilient regions. It is usually fan-shaped up to two to four times wider than the excision area, and Burow’s triangle is catted out at its base, to facilitate rotation. In the case of two close lesions, it is possible to obtain a simultaneous excision circumscribing one of them with Burow’s triangle. This technique is similar to that adopted for Burow’s triangle flap (Figure 9).
Fan flap scheme.
Four different variants are possible in this specific situation, allowing the choice of four corresponding types of the final suture based to cosmetic needs. The distance between the lesions can reach a width of 3–4 “diameters” (the width of the hypothetical rhomboid exercise needed to eradicate the lesion) (Figure 10).
Clinical application of fan flap.
A practical example of application of the rotation flap to removal two contiguous lesions from the eyebrow and temporal region is shown in Figure 10.
If the distance between the lesions is about 1 diameter, this rotation flap becomes a variant of the Dufourmentel transposition flap (a flap whose length is 1.5 times longer than the width of the lesion gap) [7]. It is possible, in fact, to cut out a flat between the lesions, whose length-width ratio is 1:1; the rotation of this flap and whose rotation is facilitated by the direct suture of one of the two gaps. In this case, all the four direction variants mentioned above are possible. The wide base makes the flap very vital, and, in contrast to the Dufourmentel flap, only a mild torsion of the peduncle occurs, with a better vascularization. It is noteworthy that this flap variant, although structurally and conceptually similar to the rotation flap, can be more appropriately considered to be a very simple type of transposition flap (Figure 11).
The scheme of the variant of fan flap.
Considerations similar to those reported in Section 2.1 for the double triangular advancement flap can be made for opposing rotational flaps. In this variant, the contour of the flap is curved, and the advancement movement becomes a rotation. At the base, two Burow’s triangles are drawn to facilitate convergent movement. If in these triangles there are two other lesions, we can obtain the simultaneous excision of three lesions (Figure 12).
Opposite rotation flaps schemes.
However, the rotation of the flaps may be divergent, taking advantage of the central breakaway as facilitating the lateral movement of the flaps; in this way a final suture according to the anatomical areas can be easily obtained, with a good esthetic result (Figure 12).
A multidentate rotation flap can be easily modified to fit many defects, including multiple lesions localized along an ideal arcuate line.
It represents the mix of multiple fanlike rotation flaps, each of which facilitates the rotation of the previous: this is possible by using the last excision area as Burow’s triangle and by closing the donor areas directly; the technique diagram is shown in Figure 13 for the excision of three lesions and can also be applied to remove four lesions.
Multidentate rotation flap scheme.
Obviously, the adoption of this flap should be evaluated in each individual case. When this technique is possible, it gives a very good outcome, due to the curved suture lines; a significant portion of the skin is saved, and there is a reduction of the overall surgical time.
The practical application of multidentate flap for four lesions excision is shown in Figure 14.
A clinical application of a multidentate rotation flap.
Also, in multidentate flaps, it is possible to choose between two different directions of rotation, depending on the skin distention and on the desired final esthetic result.
The transposition flap is realized by completely removing the flap from the donor area and transporting it to the receiving site by rotating it on its peduncle and overcoming a portion of healthy skin. The simplest transposition flap is Dufourmentel’s flap; in this case, the flap length is about 1.5 times its width that is equal to the width of the surgical defect that must be covered (Figure 15).
A transposition flap scheme.
A transposition flap can be used when the surgical wound is localized in low-resilient areas, where it is impossible to perform a direct suture. It is obtained by cutting out distant resilient donor areas that can easily be sutured. The rotation of this flap allows the surgeon to skip over the skin, although its base corresponds to the gap. The rotation angle of the flap axis can reach an angle of up to 180° (a limit to the peduncle torsion degree angle), but the rotation is usually not more than about 90°.
In the case of two close lesions, this type of plastic can be used when one of the two gaps is localized in a fairly resilient region. In this case, the flap is cut out with the gap localized in the more resilient area, in order to create a unique gap that is directly suturable, making the flap rotation to the gap easier in the low-resilient area.
In this case, it is a coaxial flap with a surgical breach. Otherwise, if the breaches are spaced apart about one in diameter, the flap can be made between the two ones and rotated to cover one of them, while the other breach (located in the denser skin zone) acts as a rotating facilitator (according to the principle of Burow’s triangle). In this case, the flap can be defined as an interposed transposition flap.
The adoption of this technique depends on the distance between the lesions, which should not exceed 1.0–1.5 diameters, because the length of the flap must be proportional to the receiving wound so as to avoid waste-redundant skin.
This is the simplest form of transposition flap, useful for the closure of two contiguous surgical breaches; it is performed when the distance between the breaches is about 1 diameter (Figure 11). This simple plastic technique can be adapted according to local needs and to different skin drifts in the two breaches; at least two different types of scar can be obtained depending on the direction of flap rotation (Figure 16).
A clinical example of simple transposition flap and a graphic scheme of the direction of tension lines.
The options may even become four by flipping the cutting direction of the flap, as already described above about the simple rotation flap (see Section 3.1 and Figure 10).
A practical excursion of this plastic is summarized in Figure 16.
Starting from this simplest form of flap, it is possible to develop surgical solutions that can solve situations with multiple breaches located in very different ways.
When the second breach is not placed in a sufficiently drifting area, an accessory lobe can be required in the transposition flap; so, a bilobed flap is created. In this case, the donor area for the first breach is closed orthogonal to the direction of rotation, while the donor area of the second flap is closed directly in the direction to the rotation, thus facilitating the movement of the flap itself (Figure 17).
A graphic representation of bilobed flap.
If the distance between the breaches is greater than 1 diameter, a bilobed flap can also be built between them, covering a gap with the first lobe and the donating area of this with the second lobe. The second breach is sutured directly, facilitating in this way the rotation of the flap. In the rotation movement, the advancement of the peduncle facilitates the direct closure of the second donor area (Figure 18).
A graphic representation of interposed bilobed flap.
It represents the extension of the concept expressed in the two previous paragraphs.
The three breaches must be spaced about a diameter and must be arranged in the shape of an arch: the most caudal of the three breaches is reduced spontaneously by the movement of the flap rotation, and the donor areas can be closed for direct suture (Figure 19).
A graphic representation of bilobed flap for three lesions.
The concept of bilobed flap can be further expanded as trilobed flap, for multiple excisions. When the breaches are arranged along an arched line and spaced apart about 1 diameter, the flap lobes are drawn by interposing them at breaches, so that each one facilitates the rotation of the following. This can be done for three cutaneous lesions and also for four lesions (Figure 20).
A graphic representation of trilobed flap and for four lesions.
A practical application of the trilobed transposition flap is shown in Figure 21.
Clinical application of trilobed flap.
An indispensable condition for the realization of this type of plastic is that the arch along which the breach is placed should not be too tight or too large. We underline the affinity of this plastic with the multidentate flap (Figure 13).
In the case of three lesions of a similar size, aligned and spaced of about a diameter, we can perform a closure with a transposition flap that can be applied bilaterally in the same way. On the basis of the skin distensibility and according to the final suture shape, two flaps can be rotated in the opposite direction, exploiting, respectively, the lateral and central breaches as areas for facilitating rotation (Figure 22).
A graphic representation of centripetal and centrifugal opposite transposition flaps.
In case of excisions of multiple lesions, this type of plastic repair can be used when one of the gaps is localized in a fairly resilient region. A flap is cut out with the gap localized at its apex in the more resilient area, in order to create a unique gap that is directly suturable and make the flap rotation easier to the lower-resilient area.
In the case of two close lesions, this type of plastic repair can be used especially when one of the two gaps is localized in a fairly resilient region. The flap is drawn with the gap localized in the more resilient area, in order to create a unique gap easy to close directly (Figure 23). The possibility to adopt this technique depends on the distance between the lesions, which should not exceed 1.0–1.5 diameters; in fact, the length of the flap must be proportional to the receiving wound, to avoid waste of redundant skin. In this technique, two theoretical variants of the direction of the cut are possible in order to achieve the best cosmetic result. This is obtained cutting the flap to the left or to the right of the less-resilient gap (Figure 23).
A graphic representation of coaxial transposition flaps.
Practical examples of the application of this technique are represented with two clinical cases; in the first one, lesions are localized in the temporal region (Figure 24), whereas in the second case, two lesions are localized in the retroauricular region (Figure 25).
Clinical application of coaxial transposition flap in temporal region.
Clinical application of coaxial transposition flap in retroauricolar region.
From the type of flap described above, a variant has been developed; in this case the alignment occurs with a second accessory lobe when the lesions between them are more distant (Figure 26).
A graphic representation of coaxial transposition bilobed flaps.
This variant can also be applied to cases in which the second breach is in a not-sufficiently-distensible area; so, an accessory lobe is needed, to close it together with the donor area of the first lobe. Figure 27 shows a clinical example, in which this technique is applied to the excision of two lesions on the nose.
Clinical application of coaxial transposition bilobed flap.
The technique can also allow to remove three lesions: in this case, the lobes are coaxially plotted with two breaches placed in the most distensible skin areas (Figure 28).
A scheme of a variant of coaxial bilobed flap.
We are aware of the fact that excessive schemes always have the risk of being simplistic.
The extreme variability of the cutaneous lesions areas, dimensions, and relationships between multiple lesions makes difficult to establish general rules, and at each time, the surgeon should evaluate the feasibility and the opportunity of a cutaneous plastic.
However, in this chapter we have tried to provide general guidance for the surgical treatment of multiple skin lesions, considering as many cases as possible.
In our opinion there are few general rules that you always need to keep in mind:
Use the minimum number of cutting lines.
Remove the smallest possible amount of the skin.
Search for the easiest plastic surgery for skin collapse.
Make the flaps using the cutting lines already performed for excision.
Search for the final suture lines respecting as much as possible the esthetic units, wrinkles, and cutaneous furrows.
Whenever possible, use excision areas (like Burow’s triangles) to facilitate sliding of the flaps.
In conclusion, advancement, rotation, and transposition flaps should be considered as good alternatives for the simultaneous removal of close lesions, when multiple direct excisions are not feasible. However, their direction should be carefully studied in terms of distance between lesions, localization, shape, cutaneous resilience, and possible cosmetic results according to the direction of the final suture. The simultaneous ablation of multiple lesions guarantees time and cost-saving and can give better cosmetic results compared to a series of repeated rhomboid excisions. It is not possible to establish precise rules for these flaps due to the extreme variability that two close lesions can display about anatomical site, shape, and distance. For this reason, the surgeon should evaluate the advantages of a simultaneous excision with simple and conservative techniques according to each individual case. Each new case could be unique and could represent the expression of a creative, artistic, and personal intuition.
Plants are the storehouses of multifunctional components with nourishing, healing, refreshing, curing and replenishing qualities. Such chemical constituents are distributed in various parts of plants and their localization is indicative of their therapeutic properties. Even though plants can be classified into medicinal and non-medicinal there is no such distinction in traditional systems such as Ayurveda, which denote that the whole earth with its living and non-living entities have curative properties. Among the vast combination of phytochemicals that are useful for the consumer world there are certain deleterious chemicals or its combinations. The undesirable component in phytochemicals requires to be eliminated either by chemical treatments or simply avoiding its usage. Several of the plant resources are being used as raw materials for medicinal drugs. Therefore the knowledge of ergastic crystals in food and medicinal raw materials and in finished products is expected to bring out furnished products for longevity.
Classifications of cytoplasmic constituents at various levels are available. Ergastic substances represent waste products, which are solid and secondary. Of these secondary products are alkaloids, glycosides, tannins, volatile oil, resins, gums and mucilage. Solid products include calcium oxalate, calcium carbonate, hesperidin, diosmin and silica. Non-living inclusions are classified as ergastic substances [1]. Their categorization into secretory products, excretory products and reserve materials indicate their functional association. The secretary products include nectar, enzymes and coloring matter. Proteins, fats and oils, and carbohydrates represent reserve materials. Excretory products represent alkaloids, tannins, resins, latex, volatile oils and mineral crystals. The common mineral crystals are calcium oxalate, calcium carbonate and silica. According to Esau ergastic substances are products of metabolism the examples being, carbohydrates proteins, fats, tannins and various types of crystals [2]. They are mainly non-protoplasmic components distributed in the vacuoles, in the cell wall and associated with the protoplasmic components. Fahn considers ergastic substances as organic and inorganic by products of metabolism [3]. Crystals of inorganic compounds such as gypsum and silica are less common. Crystals of organic substances such as carotene, berberine and saponin are relatively common.
Ergastic crystals are reported from almost all plant parts such as rhizome, corm, tuber, adventitious roots, leaves, fruits and even in seeds. Calcium oxalate exists in varying crystal shapes and sizes in plants, with raphides being the predominant crystal form [4, 5, 6, 7, 8]. Various types of calcium oxalate crystals exist in the form of prisms, acicular, raphides, clusters, rosettes etc. The shape of crystals may be cuboidal, rhomboidal, octahedral or elongated. Elongated crystals when massive and solitary are known as styloids as found in Iridaceae. When they are compound and cluttered in spherical masses they are called as druses. Small prismatic crystals as well as minute crystals are known as crystal sand. Special crystal containing cells are called idioblasts, which are cells that differ distinctly from surrounding cells in both shape and structure. Raphides are usually found in very large cells which when mature do not contain living protoplast, but are filled with mucilage. Raphides at maturity are dead structures usually filled with mucilage and are reported to be capable of swelling. Parts of the cell wall of such raphide idioblasts remain thin and if the mucilage swells, the thin wall bursts and the raphides are ejected.
Idioblasts with raphides are found in many monocots and also in some dicots such as in the petals of Impatiens balsamina. Silicon salts are often deposited in cell walls as is common in the grasses but they can also be found within the cell. Cystoliths are internal outgrowths of cell wall that are encrusted with Calcium Carbonate or impregnated with minerals. They occur in ground parenchyma and epidermis. In epidermis, they may be formed in hairs, or in special enlarged cells, the lithocytes.
Silica is deposited mostly in cell walls, but sometimes it forms bodies in the lumen of the cells. Poaceae the grass family is a well-known example of the plant group having silica in both the walls and cell lumen [3].
For the temporary mount preparation of free hand sections fresh or preserved materials can be used for light microscopic study that reveals large sized crystals. Russell classifies the light microscopic study for the calcium determination in two groups [9]. They are metal substitution technology and dye lake reactions. Calcium oxalate identification is done by various methods including light microscope, polarizing optics and scanning electron microscopic (SEM) studies. Yasue histochemical method is highly efficient as it can localize calcium oxalate even in plant trichomes [10, 11]. SEM studies reveals crystals of very small size. The application of X-ray diffraction technology and infrared spectra in determination of calcium oxalate reveals both monohydrate and dehydrate forms. The techniques for precipitation in the specimen by reaction procedure methods also contributed in histological identification and confirmation for the presence of ergastic crystals [9].
Ergastic crystals and related substances have well defined economic importance that includes protective, defensive and remedial properties. Applying ergastic substances in taxonomic consideration can be of considerable importance for review of existing taxonomic delimitation for clearer circumscription and evolutionary history of the taxa [12]. Diversity relationship of five genuses in the family Polygonaceae based on ergastic evidences has been worked out by Conrad and Idu [13].
Inulin as a carbohydrate is considered indigestible, which necessitates extensive processing (i.e., roasting) prior to consumption, hence the above effect if unprocessed or form a large percentage of diet [14]. Tannins are usually non-bioavailable and like inulin show some degree of anti-nutritive properties as they can bind and precipitate proteins and carbohydrates [15].
Raphide crystals play a role in reducing metal toxicity. This suggestion has largely been based on the observation that such crystals can have many other divalents [16, 17, 18]. Quantity of oxalic acid content in plants is different in different parts i.e. in many cases rhizomes are observed to with higher content than in leaves or tender parts [19]. Oxaloacetic acid is component in functioning of guard cells in plants, which follow Hatch and Slack pathway Oxalates provide tolerance to aluminum toxicity. According to Rajendra and Shivay, oxalates have involvement in phytoremediation of soils rendered toxic by heavy metals like lead, cadmium and zinc [20]. Oxalic acid is also reported to help in the accumulation of heavy metals, cadmium, nickel, zinc, etc. by hyper- accumulators that are being utilized in phytoremediation of soils affected by toxicity of these heavy metals [21, 22, 23].
Of the five types of calcium oxalate crystals, raphides are prominent ones in terms of size and quantity as it can occur intercellular and intracellular. Calcium oxalates gets incorporated in human body through plant-based food. These along with the endogenously synthesized content contribute to kidney problems. Studies reveal that calcium oxalates are present in algae, fungi and lichens in addition to their presence in higher plants. Out of all the three forms of calcium oxalate, the monohydrate form is the one widely reported to cause kidney problems [24].
Calcium oxalate, a potential causative agent of human kidney stones, can range from 3 to 80% of the dry weight of various plants [25, 26] and it can contribute up to 70 or 75% of the composition of kidney stones [27]. Deleterious influence of raphides includes promoting kidney stone formation, irritation to throat, mouth and skin [28, 29, 30, 31, 32]. Excess presence of raphides, in conjugation with cytotoxic compounds [5, 33], can render the food poisonous and is responsible for mentionable fatalities every year [34, 35].
Crystallized calcium oxalates that appear, as bundles of needles under light microscopes are usually raphides [28, 36]. It is believed that herbivory enhances raphide production in plant cells and the coexisting cysteine proteases together with other defensive chemicals promote protection against grazing animals. The needle like raphides cause bruising the alimentary tract lining of herbivores and also causes irritation due to presence of cysteine proteases [31]. The additive effect of irritants such as cysteine proteases and raphides has been proved in larvae and caterpillar [37].
The distribution and characterization of ergastic crystals indicate that they are unique entities in the circumscription and delimitation of various taxa. A review of the calcium oxalate crystals in plants is presented in detail [30]. Calcium oxalate crystals are widely distributed and enlisted in 215 plant families [38]. Systematic significance of the formation, occurrence and distribution of crystals were studied in leaves of 22 species of Combretum [39]. Studies on anther anatomy of 167 species of Fabaceae plant family and wood anatomy of 139 species of Verbenaceae plant family reported several types of crystals [40, 41]. The wood anatomy of the plant family Lauraceae revealed the presence of significant prismatic crystals while the plant family Tiliaceae shows the presence of conglomerate crystals [42].
Christina reviewed the structure and systematics of calcium crystals in monocotyledons especially their occurrence of these crystal types, with respect to current systematics [43]. The three main types of calcium oxalate crystal that occur in monocotyledons are raphides, styloids and druses, although intermediates are sometimes recorded. It is inferred that the presence or absence of the different crystal types may represent ‘useful’ taxonomic characters. Further, styloids are characteristic of some families of Asparagales, notably Iridaceae, where raphides are entirely absent. Raphides are predominant in Monocots mainly seen in leaf petiole of Araceae [42, 44] Styloids are seen in Agavaceae [45]. In Dracaena sanderiana (Liliaceae) two types of intracellular calcium oxalate deposits are reported: calcium oxalate monohydrate raphides and solitary calcium oxalate dihydrate crystals [46]. Archeological significance of raphides in Araceae is studied by [6].
In Gymnosperms, druses, prismatic crystals and solitary crystals are observed. Druses are seen in the leaf vascular tissue of Ginkgo biloba [47]. In Pinaceae, wood CaOx ray cells and cork of stem contain solitary and prismatic crystals. Calcium oxalate crystals are considered to enhance internal source of carbon dioxide in plants [48]. This is recorded in Amaranthus hybridus (Amaranthaceae), Dianthus chinensis (Caryophyllaceae), Pelargonium peltatum (Gesneriaceae) and Portulacaria afra (Portulacaceae). Occurrence, type and location of calcium oxalate crystals have been investigated in Achyranthes aspera (Amaranthaceae), Adhatoda zeylanica (Acanthaceae), Aerva lanata (Amaranthaceae), Asparagus racemosus (Asparagaceae), Atalantia monophylla (Rutaceae). Bridelia crenulata (Euphorbiaceae) Carica papaya (Caricaceae) Carissa spinarum (Apocynaceae), Plumeria rubra (Apocynaceae) Monochoria vaginalis (Pontederiaceae) [49].
The types and distribution of calcium oxalate crystals in leaves and stems of some species of poisonous plants have been studied. Crystal sands and prismatic crystals were of rare occurrences. Prismatic crystals were observed in the leaf mesophyll cells of Nerium oleander and Cynanchum acutum. It was concluded that there is no absolute correlation between the presence and type of calcium oxalate crystals and toxic plant organs.
An extensive enumeration of calcium oxalate crystal reports has been done [28] in 215 plant families including genus Sida of Malvaceae. Further, the relation between herbivory and calcium concentration has been recorded in the leaves of Sida species. Cell mediated crystallization of calcium oxalate is reported by Webb [25]. The structures of cystoliths in selected taxa of the genus Ficus L. (Moraceae) in the Malaysia Peninsular have been investigated [50]. The characteristics of the cystoliths may not suitably be used as a taxonomic marker but it can be useful as additional character for group identification in Ficus.
New and unusual forms of calcium oxalate raphide crystals in the plant kingdom [51] from the tubers of Dioscorea polystachya—six-sided needles with pointed ends and four-sided needles with beveled ends. The production of calcium oxalate crystals has a long evolutionary history and probably evolved independently in major clades of symbiotic fungi and several times in the plantae, as part of the overall process of bio-mineralization [29].
Even though the nature of control of crystal shape and composition phenomena is yet fully unknown the taxonomic value of crystal shape assumes that it is under genetic control. The scanty knowledge about the mechanisms regulating production and crystal formation is another reason to establish the genetic contribution. Leaves from a chemically mutagenized Medicago truncatula population were visually screened for alterations in calcium oxalate crystal formation was performed by Nakata and Mc Conn and seven different classes of calcium oxalate defective mutants were identified. Genetic analysis suggested that crystal formation is a complex process involving more than seven loci [52]. Oxalate-producing plants, which include many crop plants, accumulate oxalate in the range of 3–80% (w/w) of their dry weight [25].
Of the several metabolic pathways proposed, cleavage of ascorbic acid appears to be the most appreciable [53]. According to this view, once produced the oxalate combines with calcium to generate variety of crystal shapes and sizes. Further studies are required to identify the pathway(s) of oxalate production and calcium oxalate crystal formation.
A genetic approach would circumvent such technical limitations (e.g. idioblast number) and is a proven complement of biochemical and cellular investigations. Although the specific genes that have been altered are not yet to be identified it is understood that the control of crystal morphology is complex and under strict genetic control. As suggested by studies in other systems, mutations affecting protein, lipid, or polysaccharide function could contribute to alterations in crystal size or shape. Roles in ion balance (e.g. calcium regulation), in tissue support, in plant defense, in light gathering and reflection, and in detoxification have all been proposed [30]. Calcium oxalate crystals rapidly increase in size and number as the concentration of calcium in the plant environment is increased [54].
Nutritional studies have shown that oxalate is an anti-nutrient that sequesters calcium in a state that renders it unavailable for nutritional absorption by humans. Even though increasing nutritional quality by biotechnological method is fast in progress attempts to reduce or nullify the amount or effect of potential anti-nutritional agents from the economically useful plants is important.
Correct taxonomic identification of plants is most important before proceeding to any analytical procedure and utilization. Comparative approach on morphological and anatomical features provides distinguishable features for species to species, which is well established in identification of some medicinally useful plants [19]. Morphological features of vegetative parts with qualitative value vary with respect to habitat change and growing regions when cultivars are considered. As flowers fruits and seeds are produced seasonally and when the economically important part is leaves rhizome, corm or tuber identification based on reliable anatomical characteristics may be useful for making differentiation. Ergastic crystals can serve as an important diagnostic tool for the identification of economically important species. Presence of characteristic cuboidal ergastic crystal in the leaves of several plant species including Costus speciosus has been well reported [1, 55]. Cuboidal crystals of calcium oxalate are present in the mesophyll cells of Costus speciosus and are not reported in mesophyll cell of Costus pictus leaves, it can become a consistent and easily identifiable characteristic between these two species. Calcium oxalate crystal is smaller in size towards the tip of the aerial shoot in Costus pictus but bigger towards the base of the aerial stem. The crystal size in underground rhizome was found comparatively bigger than those in aerial shoot [19]. So the presence of ergastic crystals from various plant parts, its size and structure is an important taxonomic key for the making difference between medicinally important species Costus pictus and Costus speciosus.
Land resources are blessed with numerable plants, which are of multifarious use. The combined effect of plant introduction and cultivation has largely accelerated the interest of scientists and industrialists to focus on herbal medicine and other economic products. For the sake of consumption of various plants with diverse phyto combinations processing of various level is suggestive. Even though modern biotechnological methods for analyzing and ensuring standards for stabilizing ergastic crystal concentration in raw, prepared food and herbal medicine is not available; traditional methods such as heating, boiling, frying, baking, battering, mashing, fermentation and sun drying, likely work by neutralization of cysteine proteases or through release of raphides from idioblasts or both. Neutralization of calcium oxalate from the dietary compounds still remains a bigger health question than the neutralization of specific crystal form of raphides. A traditional approach of avoiding plant pericarp rich in calcium oxalate and multilayered skin with lignified walls has beneficial effects. Discovery of fungi and bacteria that can break down calcium oxalate and plant genes that regulate calcium oxalate formation and crystallization have offered hope to counteract calcium oxalate toxicity.
License
\n\nBook Chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen maintains a very flexible Copyright Policy that ensures that there is no copyright transfer to the publisher. Therefore, Authors retain exclusive copyright to their work. All Monographs are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
\n\n',metaTitle:"Open Access Statement",metaDescription:"Book chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0)",metaKeywords:null,canonicalURL:"/page/open-access-statement/",contentRaw:'[{"type":"htmlEditorComponent","content":"Formats
\\n\\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\\n\\nPeer Review Policies
\\n\\nAll scientific Works are subject to Peer Review prior to publishing.
\\n\\n\\n\\nCosts
\\n\\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\\n\\n\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Formats
\n\nBased on your preferences and the stage of your scientific projects, you have multiple options for publishing your scientific research with IntechOpen:
\n\nPeer Review Policies
\n\nAll scientific Works are subject to Peer Review prior to publishing.
\n\n\n\nCosts
\n\nThe Open Access publishing model followed by IntechOpen eliminates subscription charges and pay-per-view fees, thus enabling readers to access research at no cost to themselves. In order to sustain these operations, and keep our publications freely accessible, we levy an Open Access Publishing Fee on all manuscripts accepted for publication to help cover the costs of editorial work and the production of books.
\n\n\n\nDigital Archiving Policy
\n\nIntechOpen is dedicated to ensuring the long-term preservation and availability of the scholarly research it publishes.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5681},{group:"region",caption:"Middle and South America",value:2,count:5160},{group:"region",caption:"Africa",value:3,count:1683},{group:"region",caption:"Asia",value:4,count:10200},{group:"region",caption:"Australia and Oceania",value:5,count:886},{group:"region",caption:"Europe",value:6,count:15608}],offset:12,limit:12,total:117095},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"127"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:12},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:17},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:6},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:69},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9534",title:"Banking and Finance",subtitle:null,isOpenForSubmission:!1,hash:"af14229738af402c3b595d7e124dce82",slug:"banking-and-finance",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",editors:[{id:"206517",title:"Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5124},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7796",title:"Human 4.0",subtitle:"From Biology to Cybernetic",isOpenForSubmission:!1,hash:"5ac5c052d3a593d5c4f4df66d005e5af",slug:"human-4-0-from-biology-to-cybernetic",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7796.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10178",title:"Environmental Emissions",subtitle:null,isOpenForSubmission:!1,hash:"febf21ec717bfe20ae25a9dab9b5d438",slug:"environmental-emissions",bookSignature:"Richard Viskup",coverURL:"https://cdn.intechopen.com/books/images_new/10178.jpg",editors:[{id:"103742",title:"Dr.",name:"Richard",middleName:null,surname:"Viskup",slug:"richard-viskup",fullName:"Richard Viskup"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8468",title:"Sheep Farming",subtitle:"An Approach to Feed, Growth and Sanity",isOpenForSubmission:!1,hash:"838f08594850bc04aa14ec873ed1b96f",slug:"sheep-farming-an-approach-to-feed-growth-and-sanity",bookSignature:"António Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/8468.jpg",editedByType:"Edited by",editors:[{id:"190314",title:"Prof.",name:"António",middleName:"Cardoso",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9523",title:"Oral and Maxillofacial Surgery",subtitle:null,isOpenForSubmission:!1,hash:"5eb6ec2db961a6c8965d11180a58d5c1",slug:"oral-and-maxillofacial-surgery",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/9523.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",middleName:null,surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editedByType:"Edited by",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9018",title:"Some RNA Viruses",subtitle:null,isOpenForSubmission:!1,hash:"a5cae846dbe3692495fc4add2f60fd84",slug:"some-rna-viruses",bookSignature:"Yogendra Shah and Eltayb Abuelzein",coverURL:"https://cdn.intechopen.com/books/images_new/9018.jpg",editedByType:"Edited by",editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",middleName:null,surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8816",title:"Financial Crises",subtitle:"A Selection of Readings",isOpenForSubmission:!1,hash:"6f2f49fb903656e4e54280c79fabd10c",slug:"financial-crises-a-selection-of-readings",bookSignature:"Stelios Markoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8816.jpg",editedByType:"Edited by",editors:[{id:"237863",title:"Dr.",name:"Stelios",middleName:null,surname:"Markoulis",slug:"stelios-markoulis",fullName:"Stelios Markoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9585",title:"Advances in Complex Valvular Disease",subtitle:null,isOpenForSubmission:!1,hash:"ef64f11e211621ecfe69c46e60e7ca3d",slug:"advances-in-complex-valvular-disease",bookSignature:"Michael S. Firstenberg and Imran Khan",coverURL:"https://cdn.intechopen.com/books/images_new/9585.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10150",title:"Smart Manufacturing",subtitle:"When Artificial Intelligence Meets the Internet of Things",isOpenForSubmission:!1,hash:"87004a19de13702d042f8ff96d454698",slug:"smart-manufacturing-when-artificial-intelligence-meets-the-internet-of-things",bookSignature:"Tan Yen Kheng",coverURL:"https://cdn.intechopen.com/books/images_new/10150.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",middleName:null,surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9386",title:"Direct Numerical Simulations",subtitle:"An Introduction and Applications",isOpenForSubmission:!1,hash:"158a3a0fdba295d21ff23326f5a072d5",slug:"direct-numerical-simulations-an-introduction-and-applications",bookSignature:"Srinivasa Rao",coverURL:"https://cdn.intechopen.com/books/images_new/9386.jpg",editedByType:"Edited by",editors:[{id:"6897",title:"Dr.",name:"Srinivasa",middleName:"P",surname:"Rao",slug:"srinivasa-rao",fullName:"Srinivasa Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editedByType:"Edited by",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editedByType:"Edited by",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"990",title:"Stem Cell Research",slug:"medicine-cell-biology-stem-cell-research",parent:{title:"Cell Biology",slug:"medicine-cell-biology"},numberOfBooks:22,numberOfAuthorsAndEditors:880,numberOfWosCitations:378,numberOfCrossrefCitations:209,numberOfDimensionsCitations:543,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-cell-biology-stem-cell-research",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8026",title:"Update on Mesenchymal and Induced Pluripotent Stem Cells",subtitle:null,isOpenForSubmission:!1,hash:"48115afa72bcce1bde1e5b0e6c45f1b8",slug:"update-on-mesenchymal-and-induced-pluripotent-stem-cells",bookSignature:"Khalid Ahmed Al-Anazi",coverURL:"https://cdn.intechopen.com/books/images_new/8026.jpg",editedByType:"Edited by",editors:[{id:"37255",title:"Dr.",name:"Khalid Ahmed",middleName:null,surname:"Al-Anazi",slug:"khalid-ahmed-al-anazi",fullName:"Khalid Ahmed Al-Anazi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6913",title:"Innovations in Cell Research and Therapy",subtitle:null,isOpenForSubmission:!1,hash:"5a2a92efd1c7a2ecb4c396b61b6ffb4f",slug:"innovations-in-cell-research-and-therapy",bookSignature:"Zvi Loewy",coverURL:"https://cdn.intechopen.com/books/images_new/6913.jpg",editedByType:"Edited by",editors:[{id:"235950",title:"Ph.D.",name:"Zvi",middleName:null,surname:"Loewy",slug:"zvi-loewy",fullName:"Zvi Loewy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6658",title:"Stromal Cells",subtitle:"Structure, Function, and Therapeutic Implications",isOpenForSubmission:!1,hash:"c215f02d4268e4b7cccdaea141ec8647",slug:"stromal-cells-structure-function-and-therapeutic-implications",bookSignature:"Mani T. Valarmathi",coverURL:"https://cdn.intechopen.com/books/images_new/6658.jpg",editedByType:"Edited by",editors:[{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5369",title:"Umbilical Cord Blood Banking for Clinical Application and Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"711421bf3bdb0e540fc84267b82b1995",slug:"umbilical-cord-blood-banking-for-clinical-application-and-regenerative-medicine",bookSignature:"Ana Colette Mauricio",coverURL:"https://cdn.intechopen.com/books/images_new/5369.jpg",editedByType:"Edited by",editors:[{id:"56285",title:"Prof.",name:"Ana Colette",middleName:null,surname:"Maurício",slug:"ana-colette-mauricio",fullName:"Ana Colette Maurício"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5207",title:"Pluripotent Stem Cells",subtitle:"From the Bench to the Clinic",isOpenForSubmission:!1,hash:"f29f98ebea5d3e1789f5fb5db827f40c",slug:"pluripotent-stem-cells-from-the-bench-to-the-clinic",bookSignature:"Minoru Tomizawa",coverURL:"https://cdn.intechopen.com/books/images_new/5207.jpg",editedByType:"Edited by",editors:[{id:"156161",title:"Dr.",name:"Minoru",middleName:null,surname:"Tomizawa",slug:"minoru-tomizawa",fullName:"Minoru Tomizawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4609",title:"Progress in Stem Cell Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"abbff25d9b960e013b0623b89cdf7367",slug:"progress-in-stem-cell-transplantation",bookSignature:"Taner Demirer",coverURL:"https://cdn.intechopen.com/books/images_new/4609.jpg",editedByType:"Edited by",editors:[{id:"67350",title:"Prof.",name:"Taner",middleName:null,surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3861",title:"Adult Stem Cell Niches",subtitle:null,isOpenForSubmission:!1,hash:"fa94a08bfdd9319c91079f1c6926f57a",slug:"adult-stem-cell-niches",bookSignature:"Sabine Wislet-Gendebien",coverURL:"https://cdn.intechopen.com/books/images_new/3861.jpg",editedByType:"Edited by",editors:[{id:"65329",title:"Dr.",name:"Sabine",middleName:null,surname:"Wislet",slug:"sabine-wislet",fullName:"Sabine Wislet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3827",title:"Pluripotent Stem Cell Biology",subtitle:"Advances in Mechanisms, Methods and Models",isOpenForSubmission:!1,hash:"cefa40b44f921d8f66661757ee394474",slug:"pluripotent-stem-cell-biology-advances-in-mechanisms-methods-and-models",bookSignature:"Craig S. Atwood and Sivan Vadakkadath Meethal",coverURL:"https://cdn.intechopen.com/books/images_new/3827.jpg",editedByType:"Edited by",editors:[{id:"16945",title:"Prof.",name:"Craig",middleName:"S",surname:"Atwood",slug:"craig-atwood",fullName:"Craig Atwood"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3263",title:"Pluripotent Stem Cells",subtitle:null,isOpenForSubmission:!1,hash:"8e3646a06bb8ba1da33cb5ccb0867062",slug:"pluripotent-stem-cells",bookSignature:"Deepa Bhartiya and Nibedita Lenka",coverURL:"https://cdn.intechopen.com/books/images_new/3263.jpg",editedByType:"Edited by",editors:[{id:"139427",title:"Dr.",name:"Deepa",middleName:null,surname:"Bhartiya",slug:"deepa-bhartiya",fullName:"Deepa Bhartiya"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3354",title:"Stem Cell Biology in Normal Life and Diseases",subtitle:null,isOpenForSubmission:!1,hash:"0bbdc22389f4c4ea94547dec65f9b69e",slug:"stem-cell-biology-in-normal-life-and-diseases",bookSignature:"Kamran Alimoghaddam",coverURL:"https://cdn.intechopen.com/books/images_new/3354.jpg",editedByType:"Edited by",editors:[{id:"89450",title:"Prof.",name:"Kamran",middleName:null,surname:"Alimoghaddam",slug:"kamran-alimoghaddam",fullName:"Kamran Alimoghaddam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3427",title:"Neural Stem Cells",subtitle:"New Perspectives",isOpenForSubmission:!1,hash:"43e043afc3a3af46076832b4f784dcca",slug:"neural-stem-cells-new-perspectives",bookSignature:"Luca Bonfanti",coverURL:"https://cdn.intechopen.com/books/images_new/3427.jpg",editedByType:"Edited by",editors:[{id:"154282",title:"Dr.",name:"Luca",middleName:null,surname:"Bonfanti",slug:"luca-bonfanti",fullName:"Luca Bonfanti"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3458",title:"Innovations in Stem Cell Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"09f5e6c6ce440ef556de7c8a02f257e8",slug:"innovations-in-stem-cell-transplantation",bookSignature:"Taner Demirer",coverURL:"https://cdn.intechopen.com/books/images_new/3458.jpg",editedByType:"Edited by",editors:[{id:"84241",title:"Prof.",name:"Taner",middleName:null,surname:"Demirer",slug:"taner-demirer",fullName:"Taner Demirer"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:22,mostCitedChapters:[{id:"34558",doi:"10.5772/35847",title:"The Epididymis: Embryology, Structure, Function and Its Role in Fertilization and Infertility",slug:"the-epididymis-embryology-structure-function-and-its-role-in-fertilization-and-infertility",totalDownloads:12776,totalCrossrefCites:8,totalDimensionsCites:13,book:{slug:"embryology-updates-and-highlights-on-classic-topics",title:"Embryology",fullTitle:"Embryology - Updates and Highlights on Classic Topics"},signatures:"Kélen Fabiola Arrotéia, Patrick Vianna Garcia, Mainara Ferreira Barbieri, Marilia Lopes Justino and Luís Antonio Violin Pereira",authors:[{id:"106080",title:"Prof.",name:"Luis",middleName:"Antonio",surname:"Violin Pereira",slug:"luis-violin-pereira",fullName:"Luis Violin Pereira"},{id:"112722",title:"Dr.",name:"Kélen",middleName:null,surname:"Arrotéia",slug:"kelen-arroteia",fullName:"Kélen Arrotéia"},{id:"112724",title:"MSc.",name:"Patrick",middleName:null,surname:"Garcia",slug:"patrick-garcia",fullName:"Patrick Garcia"},{id:"112726",title:"BSc.",name:"Mainara",middleName:null,surname:"Barbieri",slug:"mainara-barbieri",fullName:"Mainara Barbieri"},{id:"112727",title:"BSc.",name:"Marília",middleName:null,surname:"Justino",slug:"marilia-justino",fullName:"Marília Justino"}]},{id:"18220",doi:"10.5772/17574",title:"How do Mesenchymal Stem Cells Repair?",slug:"how-do-mesenchymal-stem-cells-repair-",totalDownloads:4490,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Patricia Semedo, Marina Burgos-Silva, Cassiano Donizetti-Oliveira and Niels Olsen Saraiva Camara",authors:[{id:"28751",title:"Prof.",name:"Niels",middleName:"Olsen Saraiva",surname:"Camara",slug:"niels-camara",fullName:"Niels Camara"},{id:"30464",title:"Prof.",name:"Patricia",middleName:null,surname:"Semedo",slug:"patricia-semedo",fullName:"Patricia Semedo"},{id:"30465",title:"BSc.",name:"Cassiano",middleName:null,surname:"Donizetti-Oliveira",slug:"cassiano-donizetti-oliveira",fullName:"Cassiano Donizetti-Oliveira"},{id:"30466",title:"BSc.",name:"Marina",middleName:null,surname:"Burgos-Silva",slug:"marina-burgos-silva",fullName:"Marina Burgos-Silva"}]},{id:"26987",doi:"10.5772/32381",title:"Markers for Hematopoietic Stem Cells: Histories and Recent Achievements",slug:"endothelial-cell-selective-adhesion-molecule-esam-a-novel-hsc-marker",totalDownloads:6648,totalCrossrefCites:7,totalDimensionsCites:11,book:{slug:"advances-in-hematopoietic-stem-cell-research",title:"Advances in Hematopoietic Stem Cell Research",fullTitle:"Advances in Hematopoietic Stem Cell Research"},signatures:"Takafumi Yokota, Kenji Oritani, Stefan Butz, Stephan Ewers, Dietmar Vestweber and Yuzuru Kanakura",authors:[{id:"91282",title:"Dr.",name:"Takafumi",middleName:null,surname:"Yokota",slug:"takafumi-yokota",fullName:"Takafumi Yokota"},{id:"97447",title:"Dr.",name:"Takao",middleName:null,surname:"Sudo",slug:"takao-sudo",fullName:"Takao Sudo"},{id:"97448",title:"Dr.",name:"Kenji",middleName:null,surname:"Oritani",slug:"kenji-oritani",fullName:"Kenji Oritani"},{id:"97450",title:"Prof.",name:"Yuzuru",middleName:null,surname:"Kanakura",slug:"yuzuru-kanakura",fullName:"Yuzuru Kanakura"}]}],mostDownloadedChaptersLast30Days:[{id:"42668",title:"Hematopoietic Stem Cells in Chronic Myeloid Leukemia",slug:"hematopoietic-stem-cells-in-chronic-myeloid-leukemia",totalDownloads:3850,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"stem-cell-biology-in-normal-life-and-diseases",title:"Stem Cell Biology in Normal Life and Diseases",fullTitle:"Stem Cell Biology in Normal Life and Diseases"},signatures:"Antonieta Chávez-González, Sócrates Avilés-Vázquez, Dafne\nMoreno-Lorenzana and Héctor Mayani",authors:[{id:"159656",title:"Dr.",name:"Antonieta",middleName:null,surname:"Chavez-Gonzalez",slug:"antonieta-chavez-gonzalez",fullName:"Antonieta Chavez-Gonzalez"},{id:"160310",title:"Dr",name:"Dafne",middleName:null,surname:"Moreno-Lorenzana",slug:"dafne-moreno-lorenzana",fullName:"Dafne Moreno-Lorenzana"},{id:"160311",title:"Mr.",name:"Socrates",middleName:null,surname:"Aviles-Vazquez",slug:"socrates-aviles-vazquez",fullName:"Socrates Aviles-Vazquez"},{id:"160312",title:"Dr.",name:"Hector",middleName:null,surname:"Mayani",slug:"hector-mayani",fullName:"Hector Mayani"}]},{id:"18241",title:"Periodontal Ligament Stem Cells",slug:"periodontal-ligament-stem-cells",totalDownloads:5943,totalCrossrefCites:5,totalDimensionsCites:5,book:{slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Hidefumi Maeda, Naohisa Wada, Shinsuke Fujii, Atsushi Tomokiyo and Akifumi Akamine",authors:[{id:"53534",title:"Prof.",name:"Hidefumi",middleName:null,surname:"Maeda",slug:"hidefumi-maeda",fullName:"Hidefumi Maeda"},{id:"53542",title:"Dr.",name:"Naohisa",middleName:null,surname:"Wada",slug:"naohisa-wada",fullName:"Naohisa Wada"},{id:"53543",title:"Prof.",name:"Akifumi",middleName:null,surname:"Akamine",slug:"akifumi-akamine",fullName:"Akifumi Akamine"},{id:"53544",title:"Dr.",name:"Shinsuke",middleName:null,surname:"Fujii",slug:"shinsuke-fujii",fullName:"Shinsuke Fujii"},{id:"53547",title:"Dr.",name:"Atsushi",middleName:null,surname:"Tomokiyo",slug:"atsushi-tomokiyo",fullName:"Atsushi Tomokiyo"}]},{id:"68800",title:"Induced Pluripotent Stem Cells for Clinical Use",slug:"induced-pluripotent-stem-cells-for-clinical-use-1",totalDownloads:743,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"update-on-mesenchymal-and-induced-pluripotent-stem-cells",title:"Update on Mesenchymal and Induced Pluripotent Stem Cells",fullTitle:"Update on Mesenchymal and Induced Pluripotent Stem Cells"},signatures:"Valérie Vanneaux",authors:null},{id:"50619",title:"Rejuvenation on the Road to Pluripotency",slug:"rejuvenation-on-the-road-to-pluripotency",totalDownloads:1142,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"pluripotent-stem-cells-from-the-bench-to-the-clinic",title:"Pluripotent Stem Cells",fullTitle:"Pluripotent Stem Cells - From the Bench to the Clinic"},signatures:"Tapash Jay Sarkar and Vittorio Sebastiano",authors:[{id:"180522",title:"Prof.",name:"Vittorio",middleName:null,surname:"Sebastiano",slug:"vittorio-sebastiano",fullName:"Vittorio Sebastiano"},{id:"186553",title:"BSc.",name:"Tapash Jay",middleName:null,surname:"Sarkar",slug:"tapash-jay-sarkar",fullName:"Tapash Jay Sarkar"}]},{id:"42648",title:"Recent Advances in Hematopoietic Stem Cell Gene Therapy",slug:"recent-advances-in-hematopoietic-stem-cell-gene-therapy",totalDownloads:3056,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"innovations-in-stem-cell-transplantation",title:"Innovations in Stem Cell Transplantation",fullTitle:"Innovations in Stem Cell Transplantation"},signatures:"Toshihisa Tsuruta",authors:[{id:"64743",title:"Dr.",name:"Toshihisa",middleName:null,surname:"Tsuruta",slug:"toshihisa-tsuruta",fullName:"Toshihisa Tsuruta"}]},{id:"18220",title:"How do Mesenchymal Stem Cells Repair?",slug:"how-do-mesenchymal-stem-cells-repair-",totalDownloads:4490,totalCrossrefCites:6,totalDimensionsCites:11,book:{slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Patricia Semedo, Marina Burgos-Silva, Cassiano Donizetti-Oliveira and Niels Olsen Saraiva Camara",authors:[{id:"28751",title:"Prof.",name:"Niels",middleName:"Olsen Saraiva",surname:"Camara",slug:"niels-camara",fullName:"Niels Camara"},{id:"30464",title:"Prof.",name:"Patricia",middleName:null,surname:"Semedo",slug:"patricia-semedo",fullName:"Patricia Semedo"},{id:"30465",title:"BSc.",name:"Cassiano",middleName:null,surname:"Donizetti-Oliveira",slug:"cassiano-donizetti-oliveira",fullName:"Cassiano Donizetti-Oliveira"},{id:"30466",title:"BSc.",name:"Marina",middleName:null,surname:"Burgos-Silva",slug:"marina-burgos-silva",fullName:"Marina Burgos-Silva"}]},{id:"18242",title:"Clinical Stem Cell Imaging and In vivo Tracking",slug:"clinical-stem-cell-imaging-and-in-vivo-tracking",totalDownloads:3338,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Sahar Mirpour and Ali Gholamrezanezhad",authors:[{id:"28966",title:"Dr.",name:"Sahar",middleName:null,surname:"Mirpour",slug:"sahar-mirpour",fullName:"Sahar Mirpour"},{id:"29557",title:"Dr.",name:"Ali",middleName:null,surname:"Gholamrezanezhad",slug:"ali-gholamrezanezhad",fullName:"Ali Gholamrezanezhad"}]},{id:"45128",title:"Stem Cells in Tissue Engineering",slug:"stem-cells-in-tissue-engineering",totalDownloads:3487,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"pluripotent-stem-cells",title:"Pluripotent Stem Cells",fullTitle:"Pluripotent Stem Cells"},signatures:"Shohreh Mashayekhan, Maryam Hajiabbas and Ali Fallah",authors:[{id:"23351",title:"Dr.",name:"Shohreh",middleName:null,surname:"Mashayekhan",slug:"shohreh-mashayekhan",fullName:"Shohreh Mashayekhan"}]},{id:"50685",title:"States of Pluripotency: Naïve and Primed Pluripotent Stem Cells",slug:"states-of-pluripotency-na-ve-and-primed-pluripotent-stem-cells",totalDownloads:2970,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"pluripotent-stem-cells-from-the-bench-to-the-clinic",title:"Pluripotent Stem Cells",fullTitle:"Pluripotent Stem Cells - From the Bench to the Clinic"},signatures:"Daman Kumari",authors:[{id:"180527",title:"Dr.",name:"Daman",middleName:null,surname:"Kumari",slug:"daman-kumari",fullName:"Daman Kumari"}]},{id:"18217",title:"Stem Cells: General Features and Characteristics",slug:"stem-cells-general-features-and-characteristics",totalDownloads:9027,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"stem-cells-in-clinic-and-research",title:"Stem Cells in Clinic and Research",fullTitle:"Stem Cells in Clinic and Research"},signatures:"Hongxiang Hui, Yongming Tang, Min Hu and Xiaoning Zhao",authors:[{id:"53560",title:"Dr.",name:"Hongxiang",middleName:null,surname:"Hui",slug:"hongxiang-hui",fullName:"Hongxiang Hui"},{id:"59235",title:"Mr",name:"Xiaoning",middleName:null,surname:"Zhao",slug:"xiaoning-zhao",fullName:"Xiaoning Zhao"},{id:"59236",title:"Mr",name:"Yongming",middleName:null,surname:"Tang",slug:"yongming-tang",fullName:"Yongming Tang"},{id:"118970",title:"Dr.",name:"Min",middleName:null,surname:"Hu",slug:"min-hu",fullName:"Min Hu"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-cell-biology-stem-cell-research",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/53095/beatriz-blanco",hash:"",query:{},params:{id:"53095",slug:"beatriz-blanco"},fullPath:"/profiles/53095/beatriz-blanco",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()