Brief overview of radar system characteristics.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"2706",leadTitle:null,fullTitle:"Small-Scale Energy Harvesting",title:"Small-Scale Energy Harvesting",subtitle:null,reviewType:"peer-reviewed",abstract:"The purpose of this book is to provide an up-to-date view of latest research advances in the design of efficient small-scale energy harvesters through contributions of internationally recognized researchers. The book covers the physics of the energy conversion, the elaboration of electroactive materials and their application to the conception of a complete microgenerator, and is organized according to the input energy source.\nI sincerely hope you will find this book as enjoyable to read as it was to edit, and that it will help your research and/or give new ideas in the wide field of energy harvesting.",isbn:null,printIsbn:"978-953-51-0826-9",pdfIsbn:"978-953-51-4267-6",doi:"10.5772/3078",price:139,priceEur:155,priceUsd:179,slug:"small-scale-energy-harvesting",numberOfPages:360,isOpenForSubmission:!1,isInWos:1,isInBkci:!0,hash:"63bc4c27bdf9ec1e00aa20ff6f1d804f",bookSignature:"Mickael Lallart",publishedDate:"October 31st 2012",coverURL:"https://cdn.intechopen.com/books/images_new/2706.jpg",numberOfDownloads:52366,numberOfWosCitations:163,numberOfCrossrefCitations:118,numberOfCrossrefCitationsByBook:18,numberOfDimensionsCitations:199,numberOfDimensionsCitationsByBook:23,hasAltmetrics:1,numberOfTotalCitations:480,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 13th 2011",dateEndSecondStepPublish:"December 16th 2011",dateEndThirdStepPublish:"June 1st 2012",dateEndFourthStepPublish:"July 1st 2012",dateEndFifthStepPublish:"September 1st 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,8",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"10041",title:"Dr.",name:"Mickaël",middleName:null,surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart",profilePictureURL:"https://mts.intechopen.com/storage/users/10041/images/1517_n.png",biography:"Mickaël Lallart graduated from Institut National des Sciences Appliquées de Lyon (INSA Lyon), Lyon, France, in electrical engineering in 2006, and received his Ph.D. in electronics, electrotechnics, and automatics from the same university in 2008, where he worked for the Laboratoire de Génie Electrique et Ferroélectricité (LGEF). After working as a post-doctoral fellow in the Center for Intelligent Material Systems and Structures (CIMSS) in Virginia Tech, Blacksburg, VA, USA in 2009, Dr. Lallart has been hired as an Associate Professor in the Laboratoire de Génie Electrique et Ferroélectricité. His current field of interest focuses on electroactive materials and their applications, vibration damping, energy harvesting and Structural Health Monitoring, as well as autonomous, self-powered wireless systems.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Institut National des Sciences Appliquées de Lyon",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"771",title:"Sustainability Science",slug:"sustainability-science"}],chapters:[{id:"40608",title:"Advances in Photoelectrochemical Fuel Cell Research",doi:"10.5772/50799",slug:"advances-in-photoelectrochemical-fuel-cell-research",totalDownloads:4531,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Kai Ren and Yong X. Gan",downloadPdfUrl:"/chapter/pdf-download/40608",previewPdfUrl:"/chapter/pdf-preview/40608",authors:[{id:"15216",title:"Dr.",name:"Yong",surname:"Gan",slug:"yong-gan",fullName:"Yong Gan"},{id:"148095",title:"Mr.",name:"Kai",surname:"Ren",slug:"kai-ren",fullName:"Kai Ren"}],corrections:null},{id:"40611",title:"Three Dimensional TCAD Simulation of a Thermoelectric Module Suitable for Use in a Thermoelectric Energy Harvesting System",doi:"10.5772/51404",slug:"three-dimensional-tcad-simulation-of-a-thermoelectric-module-suitable-for-use-in-a-thermoelectric-en",totalDownloads:4248,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Chris Gould and Noel Shammas",downloadPdfUrl:"/chapter/pdf-download/40611",previewPdfUrl:"/chapter/pdf-preview/40611",authors:[{id:"3552",title:"Dr.",name:"Chris",surname:"Gould",slug:"chris-gould",fullName:"Chris Gould"},{id:"134025",title:"Prof.",name:"Noel",surname:"Shammas",slug:"noel-shammas",fullName:"Noel Shammas"}],corrections:null},{id:"40606",title:"Thermal Energy Harvesting Using Fluorinated Terpolymers",doi:"10.5772/48066",slug:"thermal-energy-harvesting-using-fluorinated-terpolymers",totalDownloads:3250,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Hongying Zhu, Sébastien Pruvost, Pierre-Jean Cottinet and Daniel Guyomar",downloadPdfUrl:"/chapter/pdf-download/40606",previewPdfUrl:"/chapter/pdf-preview/40606",authors:[{id:"10042",title:"Prof.",name:"Daniel",surname:"Guyomar",slug:"daniel-guyomar",fullName:"Daniel Guyomar"},{id:"12401",title:"Dr.",name:"Pierre-Jean",surname:"Cottinet",slug:"pierre-jean-cottinet",fullName:"Pierre-Jean Cottinet"},{id:"144210",title:"Dr.",name:"Hongying",surname:"Zhu",slug:"hongying-zhu",fullName:"Hongying Zhu"},{id:"144211",title:"Dr.",name:"Sébastien",surname:"Pruvost",slug:"sebastien-pruvost",fullName:"Sébastien Pruvost"}],corrections:null},{id:"40610",title:"High Energy Density Capacitance Microgenerators",doi:"10.5772/48524",slug:"high-energy-density-capacitance-microgenerators",totalDownloads:2135,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Igor L. Baginsky and Edward G. Kostsov",downloadPdfUrl:"/chapter/pdf-download/40610",previewPdfUrl:"/chapter/pdf-preview/40610",authors:[{id:"28620",title:"Dr.",name:"Igor",surname:"Baginsky",slug:"igor-baginsky",fullName:"Igor Baginsky"},{id:"29271",title:"Prof.",name:"Edward G.",surname:"Kostsov",slug:"edward-g.-kostsov",fullName:"Edward G. Kostsov"}],corrections:null},{id:"40640",title:"Electrostatic Conversion for Vibration Energy Harvesting",doi:"10.5772/51360",slug:"electrostatic-conversion-for-vibration-energy-harvesting",totalDownloads:4873,totalCrossrefCites:95,totalDimensionsCites:152,hasAltmetrics:1,abstract:null,signatures:"S. Boisseau, G. Despesse and B. Ahmed Seddik",downloadPdfUrl:"/chapter/pdf-download/40640",previewPdfUrl:"/chapter/pdf-preview/40640",authors:[{id:"139151",title:"Dr.",name:"Ghislain",surname:"Despesse",slug:"ghislain-despesse",fullName:"Ghislain Despesse"},{id:"164277",title:"Dr.",name:"Sebastien",surname:"Boisseau",slug:"sebastien-boisseau",fullName:"Sebastien Boisseau"},{id:"164439",title:"Mr.",name:"Bouhadjar",surname:"Ahmed Seddik",slug:"bouhadjar-ahmed-seddik",fullName:"Bouhadjar Ahmed Seddik"}],corrections:null},{id:"40613",title:"Piezoelectric MEMS Power Generators for Vibration Energy Harvesting",doi:"10.5772/51997",slug:"piezoelectric-mems-power-generators-for-vibration-energy-harvesting",totalDownloads:5882,totalCrossrefCites:1,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Wen Jong Wu and Bor Shiun Lee",downloadPdfUrl:"/chapter/pdf-download/40613",previewPdfUrl:"/chapter/pdf-preview/40613",authors:[{id:"139526",title:"Prof.",name:"Wen-Jong",surname:"Wu",slug:"wen-jong-wu",fullName:"Wen-Jong Wu"}],corrections:null},{id:"40607",title:"Wideband Electromagnetic Energy Harvesting from a Rotating Wheel",doi:"10.5772/50739",slug:"wideband-electromagnetic-energy-harvesting-from-a-rotating-wheel",totalDownloads:5637,totalCrossrefCites:4,totalDimensionsCites:7,hasAltmetrics:1,abstract:null,signatures:"Yu-Jen Wang, Sheng-Chih Shen and Chung-De Chen",downloadPdfUrl:"/chapter/pdf-download/40607",previewPdfUrl:"/chapter/pdf-preview/40607",authors:[{id:"143719",title:"Dr.",name:"Yu-Jen",surname:"Wang",slug:"yu-jen-wang",fullName:"Yu-Jen Wang"},{id:"158998",title:"Prof.",name:"Sheng Chih",surname:"Shen",slug:"sheng-chih-shen",fullName:"Sheng Chih Shen"}],corrections:null},{id:"40642",title:"Electrostrictive Polymers for Vibration Energy Harvesting",doi:"10.5772/50585",slug:"electrostrictive-polymers-for-vibration-energy-harvesting",totalDownloads:3368,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Mickaël Lallart, Pierre-Jean Cottinet, Jean-Fabien Capsal, Laurent Lebrun and Daniel Guyomar",downloadPdfUrl:"/chapter/pdf-download/40642",previewPdfUrl:"/chapter/pdf-preview/40642",authors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"},{id:"10042",title:"Prof.",name:"Daniel",surname:"Guyomar",slug:"daniel-guyomar",fullName:"Daniel Guyomar"},{id:"12401",title:"Dr.",name:"Pierre-Jean",surname:"Cottinet",slug:"pierre-jean-cottinet",fullName:"Pierre-Jean Cottinet"},{id:"12571",title:"Pr.",name:"Laurent",surname:"Lebrun",slug:"laurent-lebrun",fullName:"Laurent Lebrun"},{id:"145265",title:"Dr.",name:"Jean-Fabien",surname:"Capsal",slug:"jean-fabien-capsal",fullName:"Jean-Fabien Capsal"}],corrections:null},{id:"40615",title:"Analysis of Energy Harvesting Using Frequency Up-Conversion by Analytic Approximations",doi:"10.5772/52075",slug:"analysis-of-energy-harvesting-using-frequency-up-conversion-by-analytic-approximations",totalDownloads:2502,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Adam Wickenheiser",downloadPdfUrl:"/chapter/pdf-download/40615",previewPdfUrl:"/chapter/pdf-preview/40615",authors:[{id:"95222",title:"Prof.",name:"Adam",surname:"Wickenheiser",slug:"adam-wickenheiser",fullName:"Adam Wickenheiser"}],corrections:null},{id:"40612",title:"Strategies for Wideband Mechanical Energy Harvester",doi:"10.5772/51898",slug:"strategies-for-wideband-mechanical-energy-harvester",totalDownloads:2893,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"B. Ahmed Seddik, G. Despesse, S. Boisseau and E. Defay",downloadPdfUrl:"/chapter/pdf-download/40612",previewPdfUrl:"/chapter/pdf-preview/40612",authors:[{id:"139151",title:"Dr.",name:"Ghislain",surname:"Despesse",slug:"ghislain-despesse",fullName:"Ghislain Despesse"},{id:"164277",title:"Dr.",name:"Sebastien",surname:"Boisseau",slug:"sebastien-boisseau",fullName:"Sebastien Boisseau"},{id:"164439",title:"Mr.",name:"Bouhadjar",surname:"Ahmed Seddik",slug:"bouhadjar-ahmed-seddik",fullName:"Bouhadjar Ahmed Seddik"},{id:"165359",title:"Dr.",name:"Emmanuel",surname:"Defay",slug:"emmanuel-defay",fullName:"Emmanuel Defay"}],corrections:null},{id:"40614",title:"Microscale Energy Harvesters with Nonlinearities Due to Internal Impacts",doi:"10.5772/52048",slug:"microscale-energy-harvesters-with-nonlinearities-due-to-internal-impacts",totalDownloads:2599,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Cuong Phu Le and Einar Halvorsen",downloadPdfUrl:"/chapter/pdf-download/40614",previewPdfUrl:"/chapter/pdf-preview/40614",authors:[{id:"136905",title:"Prof.",name:"Einar",surname:"Halvorsen",slug:"einar-halvorsen",fullName:"Einar Halvorsen"},{id:"165266",title:"MSc.",name:"Cuong Phu",surname:"Le",slug:"cuong-phu-le",fullName:"Cuong Phu Le"}],corrections:null},{id:"40609",title:"Non-Linear Energy Harvesting with Random Noise and Multiple Harmonics",doi:"10.5772/50727",slug:"non-linear-energy-harvesting-with-random-noise-and-multiple-harmonics",totalDownloads:3012,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ji-Tzuoh Lin, Barclay Lee and Bruce William Alphenaar",downloadPdfUrl:"/chapter/pdf-download/40609",previewPdfUrl:"/chapter/pdf-preview/40609",authors:[{id:"50069",title:"Dr.",name:"Ji-Tzuoh",surname:"Lin",slug:"ji-tzuoh-lin",fullName:"Ji-Tzuoh Lin"},{id:"160837",title:"Prof.",name:"Bruce",surname:"Alphenaar",slug:"bruce-alphenaar",fullName:"Bruce Alphenaar"},{id:"160838",title:"Mr.",name:"Barclay",surname:"Lee",slug:"barclay-lee",fullName:"Barclay Lee"}],corrections:null},{id:"40643",title:"Modeling Aspects of Nonlinear Energy Harvesting for Increased Bandwidth",doi:"10.5772/52232",slug:"modeling-aspects-of-nonlinear-energy-harvesting-for-increased-bandwidth",totalDownloads:2902,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Marcus Neubauer, Jens Twiefel, Henrik Westermann and Jörg Wallaschek",downloadPdfUrl:"/chapter/pdf-download/40643",previewPdfUrl:"/chapter/pdf-preview/40643",authors:[{id:"47918",title:"Dr.",name:"Marcus",surname:"Neubauer",slug:"marcus-neubauer",fullName:"Marcus Neubauer"},{id:"148040",title:"MSc.",name:"Henrik",surname:"Westermann",slug:"henrik-westermann",fullName:"Henrik Westermann"},{id:"165348",title:"Dr.",name:"Jens",surname:"Twiefel",slug:"jens-twiefel",fullName:"Jens Twiefel"},{id:"165349",title:"Prof.",name:"Jörg",surname:"Wallaschek",slug:"jorg-wallaschek",fullName:"Jörg Wallaschek"}],corrections:null},{id:"40638",title:"Self-Powered Electronics for Piezoelectric Energy Harvesting Devices",doi:"10.5772/51211",slug:"self-powered-electronics-for-piezoelectric-energy-harvesting-devices",totalDownloads:4534,totalCrossrefCites:7,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Yuan-Ping Liu and Dejan Vasic",downloadPdfUrl:"/chapter/pdf-download/40638",previewPdfUrl:"/chapter/pdf-preview/40638",authors:[{id:"150107",title:"Dr.",name:"Dejan",surname:"Vasic",slug:"dejan-vasic",fullName:"Dejan Vasic"},{id:"150108",title:"Dr.",name:"Yuan-Ping",surname:"Liu",slug:"yuan-ping-liu",fullName:"Yuan-Ping Liu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"424",title:"Ferroelectrics",subtitle:"Physical Effects",isOpenForSubmission:!1,hash:"d9d8a531dfb92ccd58e2a8b9a426dcd4",slug:"ferroelectrics-physical-effects",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/424.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"174",title:"Ferroelectrics",subtitle:"Material Aspects",isOpenForSubmission:!1,hash:"4489eb7544dc5c1014f4e1280e677371",slug:"ferroelectrics-material-aspects",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/174.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"428",title:"Ferroelectrics",subtitle:"Characterization and Modeling",isOpenForSubmission:!1,hash:null,slug:"ferroelectrics-characterization-and-modeling",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/428.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"429",title:"Ferroelectrics",subtitle:"Applications",isOpenForSubmission:!1,hash:null,slug:"ferroelectrics-applications",bookSignature:"Mickaël Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/429.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3664",title:"Vibration Control",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"vibration-control",bookSignature:"Mickael Lallart",coverURL:"https://cdn.intechopen.com/books/images_new/3664.jpg",editedByType:"Edited by",editors:[{id:"10041",title:"Dr.",name:"Mickaël",surname:"Lallart",slug:"mickael-lallart",fullName:"Mickaël Lallart"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"205",title:"Fundamental and Advanced Topics in Wind Power",subtitle:null,isOpenForSubmission:!1,hash:"b8b5955addb75d98a6bba1c94e3e7a74",slug:"fundamental-and-advanced-topics-in-wind-power",bookSignature:"Rupp Carriveau",coverURL:"https://cdn.intechopen.com/books/images_new/205.jpg",editedByType:"Edited by",editors:[{id:"22234",title:"Dr.",name:"Rupp",surname:"Carriveau",slug:"rupp-carriveau",fullName:"Rupp Carriveau"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"427",title:"Sustainable Energy Harvesting Technologies",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"61a870ec0f3bf63739132a7cf4465ca7",slug:"sustainable-energy-harvesting-technologies-past-present-and-future",bookSignature:"Yen Kheng Tan",coverURL:"https://cdn.intechopen.com/books/images_new/427.jpg",editedByType:"Edited by",editors:[{id:"78857",title:"Dr.",name:"Tan Yen",surname:"Kheng",slug:"tan-yen-kheng",fullName:"Tan Yen Kheng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"115",title:"Wind Turbines",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"wind-turbines",bookSignature:"Ibrahim Al-Bahadly",coverURL:"https://cdn.intechopen.com/books/images_new/115.jpg",editedByType:"Edited by",editors:[{id:"19588",title:"Dr.",name:"Ibrahim H.",surname:"Al-Bahadly",slug:"ibrahim-h.-al-bahadly",fullName:"Ibrahim H. Al-Bahadly"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"13",title:"Paths to Sustainable Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"paths-to-sustainable-energy",bookSignature:"Jatin Nathwani and Artie Ng",coverURL:"https://cdn.intechopen.com/books/images_new/13.jpg",editedByType:"Edited by",editors:[{id:"13730",title:"Dr.",name:"Artie",surname:"Ng",slug:"artie-ng",fullName:"Artie Ng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"212",title:"Energy Storage in the Emerging Era of Smart Grids",subtitle:null,isOpenForSubmission:!1,hash:"8cd6021285906516c727802d02ce0954",slug:"energy-storage-in-the-emerging-era-of-smart-grids",bookSignature:"Rosario Carbone",coverURL:"https://cdn.intechopen.com/books/images_new/212.jpg",editedByType:"Edited by",editors:[{id:"11592",title:"Prof.",name:"Rosario",surname:"Carbone",slug:"rosario-carbone",fullName:"Rosario Carbone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"79597",slug:"corrigendum-to-dry-hydrogen-peroxide-for-viral-inactivation",title:"Corrigendum to: Dry Hydrogen Peroxide for Viral Inactivation",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/79597.pdf",downloadPdfUrl:"/chapter/pdf-download/79597",previewPdfUrl:"/chapter/pdf-preview/79597",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/79597",risUrl:"/chapter/ris/79597",chapter:{id:"78994",slug:"dry-hydrogen-peroxide-for-viral-inactivation",signatures:"Chris Lee and John R. Henneman",dateSubmitted:"August 18th 2021",dateReviewed:"September 14th 2021",datePrePublished:"October 21st 2021",datePublished:"May 18th 2022",book:{id:"11006",title:"Disinfection of Viruses",subtitle:null,fullTitle:"Disinfection of Viruses",slug:"disinfection-of-viruses",publishedDate:"May 18th 2022",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"414666",title:"M.Sc.",name:"Chris",middleName:null,surname:"Lee",fullName:"Chris Lee",slug:"chris-lee",email:"chris96lee@gmail.com",position:null,institution:null},{id:"415444",title:"MSc.",name:"John R.",middleName:null,surname:"Henneman",fullName:"John R. Henneman",slug:"john-r.-henneman",email:"jrh78@bri.ksu.edu",position:null,institution:{name:"Kansas State University",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"78994",slug:"dry-hydrogen-peroxide-for-viral-inactivation",signatures:"Chris Lee and John R. Henneman",dateSubmitted:"August 18th 2021",dateReviewed:"September 14th 2021",datePrePublished:"October 21st 2021",datePublished:"May 18th 2022",book:{id:"11006",title:"Disinfection of Viruses",subtitle:null,fullTitle:"Disinfection of Viruses",slug:"disinfection-of-viruses",publishedDate:"May 18th 2022",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"414666",title:"M.Sc.",name:"Chris",middleName:null,surname:"Lee",fullName:"Chris Lee",slug:"chris-lee",email:"chris96lee@gmail.com",position:null,institution:null},{id:"415444",title:"MSc.",name:"John R.",middleName:null,surname:"Henneman",fullName:"John R. Henneman",slug:"john-r.-henneman",email:"jrh78@bri.ksu.edu",position:null,institution:{name:"Kansas State University",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"11006",title:"Disinfection of Viruses",subtitle:null,fullTitle:"Disinfection of Viruses",slug:"disinfection-of-viruses",publishedDate:"May 18th 2022",bookSignature:"Raymond W. Nims and M. Khalid Ijaz",coverURL:"https://cdn.intechopen.com/books/images_new/11006.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"104702",title:"Dr.",name:"Raymond W.",middleName:null,surname:"Nims",slug:"raymond-w.-nims",fullName:"Raymond W. Nims"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9598",leadTitle:null,title:"Aromatase - Normal Function in Human Body and Associated Disorders",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tAromatase is an enzyme coded by the CYP19 gene located on chromosome 15q21. The enzyme catalyzes the production of estrogen from androgen (ie testosterone and androstenedione) in the form of estrone and 17β-estradiol. Aromatase is normally located in the endoplasmic reticulum of the cells in adrenal glands, ovaries, testes, placenta, fatty tissues, skin, bone, blood vessels, and neurons. The aromatase deficiency and excess both are associated with disorders and diseases. In both conditions (ie deficiency or excess) the result will be androgen imbalance, whereby excess testosterone remains without conversion in case of deficiency and excess production of estrogen in case of the excessive aromatase enzyme. The enzyme has been in limelight due to the utilization of its inhibitors in controlling breast cancer. This book focuses on aromatase enzyme in the normal body and diseases caused by its abnormality. Following topics will be covered in greater detail in the book: Normal molecular structure and function of aromatase; Role of aromatase in embryonic development; Role of aromatase in the nervous system; Aromatase in Breast diseases; Aromatase in uterine diseases; Aromatase in prostate disorders; Medicinal use of aromatase inhibitors.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"17e8f041d9361eeab7b244d38f17ec5f",bookSignature:"Dr. Binafsha Manzoor Syed and Prof. Jawaid Naeem Qureshi",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9598.jpg",keywords:"Aromatase Enzyme, Normal Function, Embryonic Development, Aromatase Enzyme in Nervous System, Neuronal Protection, Aromatase Enzyme in Breast Cancer, Benign Breast Diseases, Aromatase Enzyme in Uterine Diseases, Uterine Fibroid, Aromatase Inhibitors, Bone Diseases",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2019",dateEndSecondStepPublish:"November 5th 2019",dateEndThirdStepPublish:"January 4th 2020",dateEndFourthStepPublish:"March 24th 2020",dateEndFifthStepPublish:"May 23rd 2020",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 years",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"295538",title:"Dr.",name:"Binafsha",middleName:"Manzoor",surname:"Syed",slug:"binafsha-syed",fullName:"Binafsha Syed",profilePictureURL:"https://mts.intechopen.com/storage/users/295538/images/system/295538.png",biography:"BINAFSHA MANZOOR SYED has earned her Bachelor of Medicine, Bachelor of Surgery in 2002 from Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan. She got her PhD in Breast Surgery/Clinical Sciences in 2012 from School of Clinical Sciences, The University of Nottingham, England. She is currently serving as the Director ORIC & MRC, and Head of Clinical Research Division, Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, Pakistan. \r\nDr. Syed’s research interest is mainly focuses on Cancer in particular therapeutic targets. She conducts regular workshops on research subjects. She is also Master trainer for PhD Supervisors training. \r\nShe is principal investigator and lead in two key projects to study: 1) Molecular pattern of Breast cancer in Pakistani population and 2) Biological characterization of colorectal cancers in correlation with clinical parameters and outcome; funded by Higher Education Commission of Pakistan. \r\nShe has published more than 21 papers in international peer-reviewed journals, she a many abstracts presented at International platforms. She is also author of three book chapters on different topics on breast cancer published by International Publishers.",institutionString:"Liaquat University of Medical & Health Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Liaquat University of Medical & Health Sciences",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:{id:"295539",title:"Prof.",name:"Jawaid Naeem",middleName:null,surname:"Qureshi",slug:"jawaid-naeem-qureshi",fullName:"Jawaid Naeem Qureshi",profilePictureURL:"https://mts.intechopen.com/storage/users/295539/images/system/295539.jpg",biography:null,institutionString:"University of Modern Sciences, Tando Mohammad Khan",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"9503",title:"Monitoring Tropical Peat Swamp Deforestation and Hydrological Dynamics by ASAR and PALSAR",doi:"10.5772/8288",slug:"monitoring-tropical-peat-swamp-deforestation-and-hydrological-dynamics-by-asar-and-palsar",body:'\n\t\tThick deposits of peat underneath tropical peat swamp forests are among the world\'s largest reservoirs of carbon. Although occupying only about 0.3% of the global land surface, they contain as much as 20% of the global peat soil carbon stock, representing 63-148 Giga ton of carbon (Rieley and B. Setiadi, 1997, MacDicken, 2002). A value of approximately 70 Giga ton of carbon is cited by (Sabine et al., 2004). This wide range of values illustrates a large uncertainty. The uncertainty is large as peat depth and carbon densities are poorly described. Tropical peat swamp forests have an uneven global distribution. Most of the areas occur in South-East Asia. The carbon stored in South–East Asian peatlands is estimated to be over 42 Giga ton (Hooijer et al., 2007).The tropical peat swamp forests of South-East Asia account for approximately 26.5 million ha of the total tropical resource of approximately 38 million ha, with Indonesia alone contributing an estimated 17-27 million ha (Waldes and Page, 2002).
\n\t\t\tTropical peat swamp forests are threatened by large scale deforestation, canal drainage and forest fire, causing enormous carbon emissions (Goldammer, 1999, IUCN/WWF, 2000, Hooijer et al., 2007, Van der Werf et al., 2008). Large scale conversion of peat swamp forest into, for example, oil palm or Acacia plantations, requires draining. The associated sustained low soil water levels cause oxidation of the peat and, consequently, large emissions of carbon dioxide (e.g. Fargioni et al., 2008). Forest and peat fires are an additional source of carbon dioxide emission. Emissions from peat swamp fires in Indonesia during the strong 1997-1998 El Niño Southern Oscillation (ENSO) event, for example, have been estimated at 0.8-2.5 Giga ton of carbon. This was equivalent to 13-40% of the global annual emission from anthropogenic fossil fuel combustion (Page et al, 2002).
\n\t\t\tDespite the relevance of this ecosystem for biodiversity and climate, relatively little is known about its functioning and existing maps are often outdated and of poor quality. However, unique observing capabilities of L-band satellite radar may provide a powerful tool to observe seasonal dynamics of flooding, the impact of drainage by canals and the condition of the peat swamp forest cover.
\n\t\t\tThe use of L-band radar for wetlands monitoring was first demonstrated on large scale with SAR (Synthetic Aperture Radar) data from the Japanese JERS-1 satellite acquired in the period 1992-1998. For all major tropical rain forest areas of the world multi-temporal (2-3 dates) radar mosaics were created, including South-East Asia (Shimada and Isoguchi, 2002), thus providing a benchmark overview for the past decade. Locally, more data were acquired allowing in-depth studies of tropical forest inundation patters (e.g. Rosenqvist et al., 2002) and tropical coastal vegetation (e.g. Simard et al., 2002). Recently, some first results have been published for tropical peat swamp forests (Hoekman, 2007, Hoekman and Vissers, 2007).
\n\t\t\tWith the launch of the Advanced Land Observing Satellite (ALOS) on January 24, 2006, a new Japanese spaceborne L-band radar system became available. The Phased Array L-band Synthetic Aperture Radar (PALSAR) on-board ALOS has several observations modes. The PALSAR observation strategy has been designed to provide consistent wall-to-wall observations at fine resolution (Fine Beam mode) of all land areas on Earth on a repetitive basis. For the world’s major wetlands areas up to eight additional observations per year in ScanSAR mode are made to capture seasonal dynamics (Rosenqvist et al., 2007a, Rosenqvist et al., 2008). The entire island of Borneo is one of these major wetland areas. Of particular interest is the ability of PALSAR to contribute to objectives of the Ramsar (wetlands) UN convention (Davidson and Finlayson, 2007, Rosenqvist et al., 2007b).
\n\t\t\tIn this chapter methodologies are discussed for mapping biophysical parameters, hydrological modelling and monitoring based on historical JERS-1 radar data, and currently available ALOS PALSAR. Also the use of C-band ENVISAT ASAR, which is off special interest for peat swamp deforestation monitoring, is discussed. Unique features of radar for observation of peat swamp forests are briefly outlined in Section 2. A test site located in the Mawas peat swamp conservation area in Central Kalimantan is used for method development and features a 23 km long research bridge, which crosses an entire intact peat dome. This test site is discussed in Section 3. Sections 4 until 7 discuss various methodologies and results.
\n\t\tThe use of spaceborne radar to map and monitor peat swamp forests has certain unique advantages. In the first place, observation by radar systems is unimpeded by cloud cover, which is an advantage over optical data in the humid tropics. In the second place, radar can penetrate vegetation cover to a certain extent, depending on wavelength. The JERS-1 and ALOS imaging radar (or SAR) systems use a relatively long wavelength (23.5 cm, or 1.275 GHz), also referred to as L-band. It allows observation of flooding under a closed forest canopy. Hence, in principle, seasonal flooding dynamics can be revealed well. The ENVISAT ASAR C-band radar has a shorter wavelength (5.6 cm, or 5.331 GHz) and, compared to L-band, observes higher parts of the vegetation canopy. Though ASAR, for this reason, is less suitable to observe hydrological features of wetlands, it is still of large interest to monitor deforestation for technical reasons to be discussed later.
\n\t\t\tA certain level of understanding of the physical interaction between the radar wave and the terrain is necessary to allow for an accurate interpretation of L-band SAR images. Biomass and flooding are the two main terrain parameters and polarisation is one of the most important radar wave parameters describing this interaction. The effect of biomass is an increase of the radar echo (or backscatter) intensity with increasing biomass up to a level of around 100 ton/ha. Notably the so-called HV-polarisation is sensitive for biomass variation. Above this biomass level the radar image intensity saturates and the radar wave does not penetrate the vegetation well. Below this biomass level, or in open canopies, the effect of flooding is noticeable. In this case the interaction mechanism is somewhat different. Since radar instruments are side-looking and the water surface acts as a mirror, smooth open water surfaces yield no radar return, i.e. these areas appear black in the image. However, when vegetation is present it causes additional reflection (mainly by tree trunks) in the direction of the radar, or the so-called backscatter direction. This effect is particularly strong for the HH-polarisation. In practice, for forested peat domes, the combined effect of flooding and biomass is a variation in the image intensity for which the range of variation is mainly determined by the biomass level (i.e. low biomass areas show large variations in time; high biomass areas small variations) and for which the relative brightness is mainly determined by the intensity of flooding (i.e. dry terrain shows a relatively low intensity; flooded terrain a relatively high intensity). Examples for a variety of vegetation cover will be shown later.
\n\t\t\tBoth PALSAR and ASAR are useful for detection of deforestation. Though the contrast between forest and recently deforested terrain is highest for the L-band with HV-polarisation, also L-band with HH-polarisation and C-band shows a certain level of sensitivity. The contrast also strongly depends on the elapsed time since deforestation. Depending on the vigour of regeneration the contrast fades away quickly in L-band (within approx. 4-6 months), and even faster in C-band (within approx. 2-3 months). The preference for C-band is related to the fact that L-band HV observations are only made once a year, L-band HH observations are less sensitive and ASAR C-band dual-polarisation data (APP mode) can be observed routinely every 35 days. Moreover, ASAR data can be made available very quickly, within two days of satellite overpass, which allows fast response to supposed illegal logging. Table 1 summarises the main characteristics of the radar systems discussed in this chapter.
\n\t\t\t\n\t\t\t\t\t\t | JERS-1 | \n\t\t\t\t\t\tPALSAR Fine beam | \n\t\t\t\t\t\tPALSAR ScanSAR | \n\t\t\t\t\t\tASAR Alternating polarisation | \n\t\t\t\t\t
Centre frequency | \n\t\t\t\t\t\t1275 MHz | \n\t\t\t\t\t\t1270 MHz | \n\t\t\t\t\t\t1270 MHz | \n\t\t\t\t\t\t5331 MHz | \n\t\t\t\t\t
Image mode (Polarisation) | \n\t\t\t\t\t\t(HH) | \n\t\t\t\t\t\tFBS (HH) FBB (HH/HV) | \n\t\t\t\t\t\tWB (HH) \n\t\t\t\t\t\t | \n\t\t\t\t\t\tAPP (VV/HV) | \n\t\t\t\t\t
Incidence angle range | \n\t\t\t\t\t\t36º~42º | \n\t\t\t\t\t\t36.6°~40.9° | \n\t\t\t\t\t\t18.1°~43.0° | \n\t\t\t\t\t\tIS2: 19.2°~26.7° IS4: 31.0°~36.3° | \n\t\t\t\t\t
Swath width | \n\t\t\t\t\t\t75 km | \n\t\t\t\t\t\t70 km | \n\t\t\t\t\t\t360 km | \n\t\t\t\t\t\tIS2: 105 km IS4: 88 km | \n\t\t\t\t\t
Ground resolution | \n\t\t\t\t\t\t~18 m | \n\t\t\t\t\t\t~10 m ~20 m | \n\t\t\t\t\t\t~100 m | \n\t\t\t\t\t\t~30 m \n\t\t\t\t\t\t | \n\t\t\t\t\t
Brief overview of radar system characteristics.
To study peat swamp hydrology, ecology and radar wave interaction in a systematic way a dedicated research station has been established in the Mawas peat swamp forest conservation area, which is located some 80 km east of Palangkaraya, in the province Central Kalimantan. The main feature is a research bridge, 23 km in length, crossing an entire peat dome (Figure 1). Instruments placed along this bridge automatically measure rainfall and water level every hour. In December 2004, an airborne radar survey (the ESA INDREX-2 campaign) was carried out along this bridge to test a variety of advanced imaging radar techniques (Hajnsek et al., 2005; Hajnsek and Hoekman, 2006). The intention is to collect data over an extended period (i.e. 10 years) to develop hydrological modelling, examine relationships between hydrological, soil and vegetation characteristics, study carbon sequestration and to relate biomass and water (flooding) levels to L-band radar observations of the ALOS PALSAR instrument.
\n\t\t\tField photograph of a section of the 23 km long research transect in the Mawas peat swamp conservation area. The transect crosses an entire ombrogenous peat dome. Along the transect ground water level dynamics are recorded.
Peat domes are formed in ombrogenous peat swamp areas, which are purely rain-fed and, consequently, nutrient poor. Vegetation types are located in concentric zones, with the \'poorer\' forest types located towards the centre of the dome. Typically, the outer ring consists of relatively dense and high ‘mixed’ peat swamp forest, which gradually changes in a lower, more open, ‘pole’ peat swamp type. At the top the open ‘padang’ shrubland type may be found. To characterize the hydrology of such a dome, where water is flowing from the top in the centre towards the edges, the water level variation along the flow is monitored. An example result for one of the instruments along the bridge is shown in Figure 2 (Hoekman, 2007).
\n\t\tWater table variation WL-time (solid curve) and peat soil surface roughness (dashed curve). The vertical axis shows water level and soil surface height (both in cm). The horizontal axis shows horizontal distance (in cm) along the soil surface roughness profile (i.e. from -1000 to 1000 cm) as well as time (i.e. from 9-Nov-03 to 14 Mar-04). The position of the water table measurement is at the centre of this profile. These measurements are made every hour. The results for the period 9 Nov2003 until 14 March 2004 are shown (also along the horizontal axis). The three horizontal lines show the maximum (WL-Max), average WL-Ave) and minimum (WL-Min) water level. The percentage terrain flooding, thus, can be deduced from the combined roughness and water table measurements.
Time series of L-band radar data can provide information on hydrology in peat swamps. For many peat swamp areas in Borneo and Sumatra large series of JERS-1 images (i.e. 15-30) collected in the period 1992-1998 exist. Figures 3 and 4 give examples of biophysical characteristics and events observed for the Mawas conservation area and the adjacent Kahiyu area. Figure 3 shows temporal dynamics in flooding, which reveals three large domes. The areas labelled as A are a complex of two flooded domes divided by a river originating from a central depression (B). The feature labelled as C is a relatively flat and wet fringe of a dry dome. Since tropical rainfall can be very localised and surface run-off is fast, the availability of large time series strongly supports proper interpretation.
\n\t\t\tAnother combination of three images, all collected in the dry season, is shown in Figure 4. It shows deforestation caused by excess drainage as the three large blue areas intersected by canals labelled as A and B in the image. These areas appear blue because the radar echo strength in the third image (of this composite time series image) is much higher due to the combined effect of flooding and presence of sparse vegetation, while in the first two images (the red and green channels) the vegetation was still dense. Smaller blue areas labelled as C along rivers relate to fire scars and shifting cultivation in secondary forest.
\n\t\t\tThe large blue area labelled as B in Figure 4 is one of the domes. In this area all trees died of drought and ground fires, which burned the root system causing the remaining trunks to fall down. The dome’s destruction is shown in more detail in the time sequence of events in Figure 5. Until 1996 the dome was still hydrologically intact. In 1997 the construction of a very wide canal is visible. A low-altitude aerial photograph of this canal is shown in Figure 6. In Figure 5(c) (September) the canal is filled with water (the canal becomes black) and a small somewhat brighter area appears. This area grows very fast and becomes even brighter as shown in Figure 5(e) until the destruction is completed (January 1998). The physical interpretation of the radar brightness changes in the dome area can be associated with an initial period of excess drought under a dense canopy, i.e. the area becomes somewhat darker, like in Figure 5(b), followed by a period in which trees collapse and the brightness increases due to direct radar reflections from exposed trunks, like in Figures 5(d-e). It is interesting to note that the spatial extent of the destruction halted at the relatively flat and wet fringe well visible in Figure 3. The obvious cause of the destruction is the huge drainage caused by the wide canal. The coinciding strong El Niño Southern Oscillation (ENSO) period may have accelerated the process.
\n\t\t\tTemporal dynamics in flooding intensity can be related to the hydrology of ombrogenous peat swamp forests and, indirectly, to peat depth. The blue areas labelled as A are flooded parts of the relatively flat tops of a complex of two peat domes, with a river originating from a central depression (B). The feature labelled as C shows the relatively flat and wet fringe of a dry peat dome. Mawas area, Central Kalimantan; JERS-1 SAR multi-temporal composite image (Red 7 Sep 1994; Green 12 Jul 1995; Blue 4 Jan 1996).
Deforestation in Central Kalimantan caused by excess peat swamp forest drainage shows up as the three large blue areas intersected by canals labelled as A and B. Smaller blue areas along rivers labelled as C relate to fire scars and shifting cultivation in secondary forest. JERS-1 SAR multi-temporal composite image (Red 25 Jul 1994; Green 24 Jul 1997; Blue 16 Jul 1998).
JERS-1 SAR time series of the collapse of the peat dome in Kahiyu: (a) 12 Jul 1995; (b) 19 Mar 1997; (c) 11 Sep 1997; (d) 25 Oct 1997; (e) 21 Jan 1998.
Low altitude aerial photograph of the main East-West oriented double canal system passing South of Mawas. It shows the crossing of the Mentangai river, canal blocking activities and stretches of burnt forest areas along the canal, covered with small bushes and ferns. January 2005. Courtesy: Ruandha Agung Sugardiman, Indonesian Ministry of Forestry.
The possibility to observe peat swamp forest hydrology ceased at the end of the lifetime of the JERS-1 SAR instrument in 1998. Only since the year 2006, with the launch of ALOS, a new window of opportunity has been opened. During this eight year time span drastic changes occurred in many of the South-East Asian peatlands. This is illustrated in Figure 7 where new PALSAR observations are compared with the historical JERS-1 SAR data shown in Figs 3 and 4. The most striking features are the wet
Decadal change as observed by PALSAR data in 2007. The black frame outlines the area of
Due to smoke and persistent cloud cover optical satellite sensors fail to detect forest cover area change in a timely manner. To monitor deforestation over large areas in a feasible way, a system using both traditional satellite imagery (i.e. Landsat ETM+) and ASAR APP radar imagery from the European Space Agency’s ENVISAT satellite has been proposed, developed and implemented. This was done for a 60,000 km2 area of peatland in Central-Kalimantan to support peatland restoration and protection activities carried out in the framework of the Central Kalimantan Peat Programme (CKPP, 2009).
\n\t\t\tFor this area more than 90 ENVISAT ASAR APP radar images were collected between 2005 and 2007 and systematically analysed using semi-automated computer techniques to detect change. The approach works best using two polarisations (HH and HV or VV and HV) and incorporates analysis of changes in both the strength and polarisation of the radar return signal both within a small timeframe (every 35 days, which is the revisiting cycle of the satellite) as well as in a large timeframe (1 year). This is necessary to improve accuracy of the changes and reduce false alarms. For this system a relatively small incidence angle was used (IS2; see Table 1; see footnote Though IS2 images were used here, and demonstrated to be suitable for deforestation monitoring, it is noted that IS4 images are even better suited because of a higher incidence angle, which increases the contrast between forest and non-forest. Even higher incidence angles are possible (from IS5-7 modes) but these provide no full coverage at the equator.
\n\t\t\t\tFigure 8 is a low altitude aerial photograph of sub-surface peat forest fires along a canal in the Sebangau National Park. This photograph clearly illustrates the need for radar. Optical observation fails to detect the ground fires because the forest seems intact, and observation is obscured by smoke, haze, and or clouds. Thermal infrared (hot spot) observation, such as from the MODIS, AVHRR or AATSR instruments, fail because the fire is underground and under the forest. L-band radar (HH-polarisation) works because it detects the excess drought in the soil. ENVISAT APP radar detects damage very fast because it registers falling trees directly (with an update frequency of 35 days). Figure 9a shows the cumulative damage for the year 2006 as recorded by ASAR, which was a dry year because of a moderate El Niño. Figure 9b shows fire hot spots which are detectable as soon as the ground fires have developed in open fires. The correspondence is large. Figure 9c shows the first available cloud free Landsat ETM+ scene of the same area after the fire period. It shows the burned forest area (in cyan) at exactly the same locations where ENVISAT already mapped deforestation 10 months (!) earlier.
\n\t\t\tLow altitude aerial photograph of sub-surface peat forest fires along a canal in the Sebangau National Park. 6 September 2004. (Photo: Dirk Hoekman).
South-East section of Sebangau National Park, East-Kalimantan. (a) Cumulative deforestation recorded in the year 2006 by ENVISAT ASAR (Green: forest; Orange: forest loss); (b) Idem, with MODIS hot spot fire detections (small red circles) of the 2006 dry season superimposed; (c) Landsat ETM+ image of 4 July 2007 (RGB: bands 4-5-7). Central Kalimantan Peatlands Programme. ASAR APP data courtesy ESA. Image processing and analysis by SarVision & Wageningen University, 2007.
This unique capability on ASAR APP to follow deforestation patterns nearly real time (i.e. within ±5 weeks) is nicely illustrated in Figure 9. It shows the development of a (probable illegal) road from an already deforested area in the direction of a small rock outcrop in the Sebangau National Park. Already in December 2005 the first section is visible and construction work is proceeding until September 2006. Good trafficability on a road in peat swamp forest requires the construction of canals for drainage on both sides of the road. However, these canals drain a large area of the surrounding peat soil and make it vulnerable to fire. The October-December map sequence shows the damaging effects of forest fire.
\n\t\tASAR Alternating Polarisation radar deforestation time series example showing forest (green), water (blue), non-forest areas (yellow) and recent deforestation (red). The top 3 images show the development of a new road in the forest (period December 2005 until September 2006). The lower 3 images show major deforestation because of forest fires in the dry season along this new road and along the forest boundaries (period October-December 2006). This example covers an area of ~ 30 km by 20 km and is part of a larger area of ~ 300 km x 200 km where this new radar monitoring technique has been applied pre-operationally. Central Kalimantan Peatlands Programme. ASAR APP data courtesy ESA. Image processing and analysis by SarVision & Wageningen University, 2007.
Historical JERS-1 L-band radar data provide insight in the pre-disturbance or early disturbance state of the hydrological functioning of peat domes and may be used as a baseline for restoration planning. In Mawas, in the framework of CKPP, canal blocking was performed. The effect of such activities may be assessed and monitored by PALSAR images, and auxiliary data. An example is given in Figures 11 and 12. In the JERS-1 image of January 1998 (dry period) shown in Figure 11 the area demarcated by the red line is an area within the Mawas area suffering from excess drought. In the PALSAR image of 9 November 2006 (dry period) this area has decreased above the main East-West canal because of the construction of dams in the canal going North (canal Neraka). In the area south of the main East-West canal a large network of canals is still present and the continued drainage has worsened the situation. Note the very low radar backscatter (intense black) caused by very dry bare peat areas and the bright white area, which is a strongly degraded open forest with fire damage. The areas demarcated in blue are hydrologically intact, allowing forests previously damaged to regenerate. The fire damage is visible in the PALSAR area as a very bright area (B) associated with sparse open vegetation with many dead standing trunks. This area is also visible in the ENVISAT deforestation map created directly after the fire damage (Fig.12a) and Landsat ETM+ 10 months later (Fig.12b).
\n\t\t\tPeat swamp degradation (B) and restoration (A) in the Mawas area between 1998 (JERS-1) (a) and 2006 (PALSAR) (b). The red area is degraded; the blue area is intact or regenerating. Courtesy: ALOS K&C © JAXA/METI.
Forest loss south of Mawas during the 2006 moderate El Niño period. (a) ENVISAT ASAR deforestation map (Forest: green; Burnt forest: red); (b) Landsat ETM+ image of 4 July 2007 (RGB: bands 5-4-3). The correspondence between both images is striking. The burnt forest areas mapped by ASAR directly after the fires (September 2006) are also observed in the first available Landsat image acquired 10 months later.
To support peatland restoration efforts knowledge on hydrological dynamics are imperative. The PALSAR ScanSAR mode provides a unique capability to assess these dynamics. As explained before (Section 2) the effect of flooding on the radar image intensity depends on the amount of vegetation and the height of vegetation. This is exemplified in Figure 13 where the temporal signature of HH-polarisation backscatter is plotted for the nine observations made in the period November 2006 until December 2007, as listed in Table 2. Terrain with moderate but high vegetation cover shows a strong increase in backscatter because of flooding. Terrain with low vegetation shows a decrease in backscatter because of flooding. Mangrove, mixed peat swamp forest and pole peat swamp forest show a moderate increase during the wet season. Therefore, it is necessary to make a classification of the area first (this can be done with PALSAR) before thresholding the backscatter intensities (per class) to determine the incidences of flooding. Figure 14 shows a mapping result of the flood frequency or flood duration.
\n\t\t\t11-Nov-2006 27-Dec-2006 11-Feb-2007 | \n\t\t\t\t\t\t29-Mar-2007 14-May-2007 14-Aug-2007 | \n\t\t\t\t\t\t29-Sep-2007 14-Nov-2007 30-Dec-2007 | \n\t\t\t\t\t
ALOS PALSAR ScanSAR HH (WB1) input data of nine consecutive (46 day) cycles used for the production of the Central-Kalimantan flood frequency map.
Temporal signatures of L-band HH-polarisation backscatter for several key vegetation types. The first observation is made at the end of the dry season, at 11 November 2006. During the next wet season terrain with moderate but high vegetation cover shows a strong increase in backscatter because of flooding. Terrain with low vegetation shows a decrease in backscatter because of flooding. Mangrove, mixed peat swamp forest and pole peat swamp forest show a moderate increase during the wet season. Also the return to dry conditions during the 2007 dry season is well visible. PALSAR ScanSAR, period November 2006 until December 2007.
Map of flooding frequency in 2007 for the Ex-Mega Rice Project (EMRP) area and Sebangau National park in Central Kalimantan based on nine PALSAR WB1 HH images. For ease of reference the degraded area indicated in
Many of the tropical peat swamp forests in Borneo and Sumatra are seriously threatened by (illegal and legal) logging and conversion to plantations for the oil palm and pulp and paper industries. In all cases the hydrology is affected by excess drainage, leading to destruction of remaining forests, notably in dry years. Beyond a certain point the hydrological integrity of ombrogenous areas is lost, leading to an irreversible process of total destruction and the combustion and oxidation of the remaining thick peat layers. Unless rigorous measures are taken very soon, this most likely will lead to major negative effects on biodiversity and global climate.
\n\t\t\tMore information is needed to support protection and restoration efforts. The availability of better vegetation and peat depth maps may be very useful. However, the most crucial factors may appear to be the knowledge on the hydrological functioning and the relationships between hydrological and ecological characteristics. These latter points are still poorly understood. Radar, unimpeded by cloud cover, can provide continuous observations which can be related to hydrological characteristics, may become a key instrument in future protection and restoration efforts. Exploitation of PALSAR time series collected by the ALOS satellite may provide important support for peat land management, protection and restoration, such as described in the Ramsar “Guidelines for Global Action on Peatlands (GGAP, 2002)”. Moreover, it may significantly support other international treaties, such as the CBD and the Kyoto Protocol, a possible post-Kyoto protocol, and carbon cycle science.
\n\t\t\tThe methodology may eventually be applied on a large scale using systematic observations of PALSAR and ENVISAT, and its successors PALSAR-2 and SENTINEL-1. The latter two instruments may be available from 2013 onwards, providing continuity of L- and C-band radar observation. PALSAR-2 ScanSAR observations will be even powerful because it uses dual polarisation, providing HV-polarisation in addition, which is important to improve assessment of biomass level dynamics and deforestation. SENTINEL-1 is a major improvement over ENVISAT ASAR because it allows a 4 times higher temporal observation, i.e. (illegal) deforestation may be reported every 8 days, instead of the current 35 days.
\n\t\t\tPALSAR radar proved particularly useful for improving information related to flooded cover types and biomass levels. ASAR deforestation maps provide at least as much accuracy and detail as the best available maps based on visual interpretation of Landsat imagery, however, provide this information near real time. Many of the results shown in this chapter are operationally used by local governmental and non-governmental agencies for spatial planning of sustainable peatland management strategies.
\n\t\tArsenic (As) is a geogenic toxic metalloid found ubiquitously in environmental systems such as lithosphere (earth crusts, soil, rock, and sediment), hydrosphere (surface water, aquifers, deep wells, and oceans), atmosphere and biosphere (food chain and ecosystems) [1]. Arsenic is considered as the 12th most abundant elements in the earth’s crust. Elevated arsenic having been introduced in the ecosystem either by natural routes involve in weathering and other biogeochemical processes or via anthropogenic activities, including mining, and smelting, excessive agricultural utilization of As-based fertilizers and pesticides and irrigation with As-laden groundwater [2, 3, 4]. This problem becomes serious concern because once arsenic is released in the soil and water resources, it is bioaccumulated by the terrestrial and aquatic biota, and subsequently enters in the human or animal food chain [5, 6]. In highly arsenic contaminated (≥0.01 mg L−1) area, the migration of arsenic from soil to water and plant is a serious problem, becoming a major threat to sustainable agriculture practices and food security [7, 8]. Empirical data shows that the concentration of arsenic in contaminated soils lies between 10 mg kg−1 and as high as 30,000 mg/kg [9]. In addition, the reported concentrations of arsenic in all natural waters is between <0.5 μg L−1 and more than 5000 μg L−1, although maximum permissible contaminant total As limits in drinking water by WHO is 10 μg L−1 [1, 10]. Moreover, considering toxicity, the Joint Food and Agriculture Organization and the World Health Organization (FAO/ WHO) Expert Committee on Food Additives proposed that the maximum inorganic arsenic content in food such as polished rice is 0.2 mg kg−1 [11, 12, 13]. Thus, exposure to arsenic (As) in soil-water-plant becomes global public health and the environment concern due to the wide distribution in ecosystem and its close association with numerous adverse effects.
There are more than 100 different arsenic compounds in the soil-water-plant ecosystem [14, 15]. It is well known that the toxicity, bioavailability, physiological and metabolic processes and mobility of arsenic vary greatly depending on the chemical species and oxidative states rather than its total content [16, 17]. Arsenic (As) speciation analysis may specify not only the determination of total As contents but also considering its specific ionic forms in the aqueous solution and the sequential extracted As related to various mineral phases [18]. According to the IUPAC recommendations, “speciation of an element” is defined as “the distribution of an element amongst defined chemical species in a system” rather than fractionation. While speciation analysis is defined as “analytical activity of measuring the quantities of one or more individual chemical species in a sample” [19].
Arsenic exists multiple oxidation states (+III, +V, 0, –III) and various inorganic and organic chemical species. In environmental assessment, it is far from enough to know the total arsenic content in actual samples, because the toxicity of As element is predestined by distinct arsenical species [20]. Generally speaking, trivalent arsenic compounds are usually more toxic than pentavalent arsenic compounds [4] and inorganic species are more toxic than the organic ones. Again, trivalent organic arsenicals can be more toxic than trivalent inorganic arsenicals [21]. The United States Environmental Protection Agency (USEPA) priority pollutants list represents inorganic As is the first category of toxins [22], classified as Group I carcinogens based on human epidemiological data. In addition, the organic species toxicity usually decreases with the increase of methylation. For example, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) are less toxic, arsenobetaine (AsB), arsenocholine (AsC) and other arsenosugars are even considered non- toxic [21]. However, in certain environments, such as in aquatic biomass, AsB can be converted into toxic inorganic arsenicals and enter the food chain [23, 24]. Depending on the source, metals or metalloids may enter the environment, where they may be transformed into another compound. Therefore, As speciation is essential for understanding its distribution, transformation in the environment, toxicity, metabolism, bioavailability and health effects in the natural system [15].
There is a huge difference between the toxicity and distribution of the arsenic species observed in the environment, which heights the importance of detecting and quantifying a single compound. Recently, various techniques have been developed to figure out arsenic species in environmental and biological samples, including soil, water and plants. The establishment of the new arsenic speciation analysis program not only improves our understanding of arsenic biogeochemistry, toxicity and metabolism but also provides a lot of information about exposure biomarkers and arsenic cycling in the natural environment. However, it is still a challenge to completely isolate the target arsenic compound from background interference [25]. Therefore, a quick and simple method is needed to analyze the arsenic species in different matrices. In addition, optimizing the extraction of target arsenic is also crucial for accurate quantification [26]. Determining the exact species of arsenic in biological and environmental samples helps to more accurately assess the environmental impact and health risks caused by arsenic exposure. Appropriate sample pretreatment techniques are necessary to reduce the influence of matrix, to enrich the target species and/or separation of As species for accurate identification. The newly developed As speciation protocols must achieve suitable detection mode, excellent selectivity and sensitivity in various environmental and biological species. Various non-chromatographic and chromatographic methods are involved in the selective separation of the arsenic species.
To date, several study on overall arsenic speciation analysis have been done [15, 27, 28]. Nevertheless, there is still a big knowledge gap in the speciation of arsenic. This overview includes arsenic speciation analysis, species detection systems, key extraction/separation techniques and mechanisms used in the accuracy assessment of speciation methods, and focuses on important strategies for specific arsenic speciation. This study will provide sentinels on comprehensively discuss in the latest developments in arsenic speciation analysis and challenges for further research.
Arsenic is introduced into the environment either naturally or anthropogenically; once released, it cannot be degraded or destroyed. The environmental transformation of arsenic depends on the availability of arsenic in the geological source, as well as their oxidation state, speciation and other environmental factors [29, 30]. There are different forms of arsenic containing mineral in the Earth’s crust. For example, 60% are in arsenate form, 20% are in the form of sulfides and sulfonates, and the remaining 20% are in the form of arsenites, arsenides, silicates, oxides, and elemental As [31]. In the soil and water environments, As can exist in four different oxidation states (As3+, As5+, As0 and As3−), in inorganic as well as in organic forms [4]. The most widespread arsenic species detected in the environment and biological systems are shown in Table 1.
Name | Abbreviation | Chemical structure |
---|---|---|
Arsenite (Arsenous acid) | As (III) | H3AsO3, H2AsO3−, HAsO32−, AsO33− |
Arsenate (arsenic acid) | As (V) | H3AsO4, H2AsO4−, HAsO42−, AsO43− |
Monomethylarsenic acid | MMA | CH3AsO(OH)2 |
Monomethylarsonic acid | MMA(V) | CH3AsO(OH)2 |
Monomethylarsonous acid | MMA(III) | CH3As(OH)2 |
Dimethylarsinic acid | DMA (V) | (CH3)2AsO(OH) |
Dimethylarsinous acid | DMA (III) | (CH3)2AsOH |
Dimethylarsinoyl ethanol | DMAE | (CH3)2AsOCH2 CH2OH |
Trimethylarsine oxide | TMAO | (CH3)3AsO |
Trimethylarsoniopropionate | TMAP | (CH3)3As+CH2CH2COO− |
Tetramethylarsonium ion | TETRA, TMA | (CH3)4As+ |
Arsenobetaine | AsB | (CH3)3As+CH2COOH |
Arsenobetaine 2 | AsB-2 | (CH3)3As+CH2CH2COO− |
Arsenocholine | AsC | (CH3)3As+CH2CH2OH |
Trimethylarsine | TMA (III) | (CH3)3As |
Arsines | AsH3, MeAsH2, Me2AsH | (CH3)xAsH3 − x (x = 0–3) |
Ethylmethylarsines | EtxAsMe3 − x | (CH3CH2)xAs (CH3)3 − x (x = 0–3) |
Dimethylarsinyolacetic acid | DMAA | (CH3)2AsOCH2 COOH |
Phenylarsine oxide | PAO | C6H5AsO |
Phenylarsonic acid | PAA | C6H5AsO(OH)2 |
Arsenosugar 1 (glycerol sugar) | — | R = OH |
Arsenosugar 2 (phosphate sugar) | — | R = OP(O)(O−)OCH2CH(OH)CH2OH |
Arsenosugar 3 (sulphonate sugar) | — | R = SO3− |
Arsenosugar 4 (sulphate sugar) | — | R = OSO3− |
Arsenic species commonly identified in the environment and biological systems.
In natural environment, inorganic arsenic contains two oxygen anions, arsenite As (III) and arsenate As (V) but there are many organic arsenic compounds including monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) is the most common. According to intake and mobility, the toxicity of arsenic compounds decreases in the following sequential order: arsines > inorganic arsenites > organic trivalent compounds (arsenoxides), inorganic arsenates > organic pentavalent compounds > arsonium compounds > elemental arsenic. Arsenobetaine and arsenocholine are considered nontoxic [4]. At the same time, arsenic species exhibit various reaction behaviors and metabolic transformations in soil-water and plant ecosystems. For arsenic risk assessment of environmental samples and detection of appropriate speciation analysis, it is necessary to understand the main forms and metabolic transformations of arsenic compounds.
The various species or chemical forms of As in soil include- free ionic forms, precipitated as solids, adsorbed on soil organic or inorganic constituents, exchangeable, and structural constituent of primary and secondary minerals [32, 33]. There are both inorganic and organic forms (species) of arsenic in the soil. The most common inorganic species are arsenate (AsV) and arsenite (AsIII), while the most common organic species are monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). The order of toxicity of arsenic species is AsIII > AsV > MMA > DMA [34]. In general, minor amount of naturally occurring arsenic in soil exists as a form of amorphous iron and aluminum oxides.
Arsenic can be transformed in the soils through various mechanisms, such as oxidation, reduction, adsorption, dissolution, precipitation, and volatilization. The inorganic species of As, As(III) and As(V), are present in different forms (e.g., fully protonated As acids or arsenous acid) [35]. The main and thermodynamically stable forms of As(V/III) in soil may include H2AsO4−, HAsO42− and H3AsO3. The existence of different As forms in soil largely depends on the texture, organic matter, pH value and redox potential of the surrounding environment. Arsenic exists in aerobic soil (oxidized conditions) in the form of arsenate (AsV) and is rapidly adsorbed on clay minerals and Fe/Mn oxides/hydroxides [2]. However, in reducing soil environment such as paddy fields, the arsenite (AsIII) form of arsenic dominates and its solubility, mobility, and toxicity are about 60 times that of As(V) [2]. In addition, under anaerobic conditions in the presence of sulfides, arsenic may precipitate in the form of arsenic sulfide and release excess arsenic into the environment [36]. Anaerobic bacteria degrade into less toxic volatile forms, such as dimethyl arsenic acid (DMAA) and monomethyl arsenic acid (MMAA) [37]. The oxidation and reduction of arsenic species takes place biologically and chemically in soil and water [38]. In addition, higher concentrations of arsenic were observed in alluvial soils and organic soils, while lower concentrations of arsenic were found in sandy soils [39]. Clay played a leading role in arsenic fixation. Arsenate is mainly adsorbed on clay particles in soils with neutral pH. Soil pH plays a major role in the types of arsenic compounds present in the soil. Under acidic conditions, arsenic tends to form compounds with aluminum and iron (AlAsO4, FeAsO4), whereas under alkaline conditions (limestone soils) Under acidic conditions, arsenic tends to form compounds with aluminum and iron.
Arsenate exists in the form of oxygen anions at neutral pH, while arsenite has a neutral charge at pH 7.0. It leads to the formation of Ca3
The presence of arsenic in water is either dissolved or in particulate form. Arsenic pollution in groundwater mainly occurs due to release of geothermal water, desorption and reductive dissolution of iron oxides and oxidation of sulfide minerals [37]. High levels of arsenic in groundwater have been observed in many countries, such as more than 3000 μg L−1 because As has been released geogenically either by oxidation of arsenopyrite, or by reductive dissolution of arsenic rich ferrous oxyhydroxides in reducing aquifer environment [47, 48]. The most common forms of arsenic in natural waters are arsenite and arsenate. However, the main species found in natural water are forms of inorganic arsenic, namely H2AsO4-, H3AsO3, HAsO4− and As3O43−. The change in the arsenic solubility in sulfidic water promotes the formation of amorphous metal-sulfide complex thioaresenic compounds [49]. Various species of aquatic micro and higher organisms plays important role on biomethylation process of arsenic, which reduces As5+ to soluble As3+ species [37]. Arsenate is the main form of arsenic in seawater. Dimethyl arsenic acid (DMMA) and methylarsenic acid (MMA) are also present in small amounts in seawater [50]. Moreover, the determination of arsenic in saline waters bear much importance due to gaining knowledge on because salinity induced inorganic arsenic specifically arsenite transformation to arsine gas [51].
Arsenic is not essential elements for plants development, although very small amounts of As in plants may have a positive effect on plant species. The concentration of As in plants is usually less than 1.0 mg kg−1 dry weight (DW) [52]. The mechanism by which plants absorb arsenic varies depending on the chemical form of arsenic.
Plants absorb inorganic arsenic through two mechanisms. The first mechanism involves the use of a high-affinity PO4 transporter through phosphate (PO4) transport pathway [53, 54] which uptake As (V) from soil solution and subsequently to aerial parts of the plants [55]. While, the second route for plant roots to absorb arsenic is through the aquaporin channels, which uptake As (III) (silicic acid analog) and methylated As species (MMA and DMA) [56]. In rice root cells, As (III) uses generally Si transporter owing to its similarities with silicic acid. Once in plant cell, As (V) is reduced to As (III) with the help of As reductase, ACR2 [57]. The detoxification of As (III) is achieved by forming complexes with thiol- rich peptides [58]. The form of As in the phloem is considered to be very crucial for the redistribution of As in various tissues in the plant [59].
The methylated arsenic species, such as MMA and DMA, contribute less to the total arsenic in the soil. The organic arsenic substances MMA and DMA have taken up by the intrinsic protein of Oncokin 26. Rabb et al. [60] showed that the absorption efficiency of inorganic As species (AsIII and AsV) in roots is much higher than that of methylated As species (DMA and MMA), but the translocation efficiency of inorganic species in plant stems is much lower than that of methylation As species. The decrease in the As complex formed with ligands (such as glutathione) in the root may be the reason for the better translocation of methylated As species [60]. In rice, As (III) is found to be the most abundant species, followed by DMA. As (V), MMA and two other unidentified As also have found in lower concentrations [61]. A speciation analysis revealed the As (V) as a predominant species in rice straw followed by As (III) and DMA [62]. Meanwhile, in rice grain, As (III) and DMA are the dominant species.
Sample preparation and storage procedures are considered to be a key prerequisite for maintaining the concentration and chemical structure of the original species in the sample during the analysis process to obtain accurate As speciation information. Impractical As speciation data may arise due to losses during sampling, unrepresentative samples [63], contamination, mutual conversion between species, inefficient extraction of the analyte, and the possibility of precipitation and wall effects from the sample container [64]. To obtain reliable arsenic speciation data in soil, water and plant samples, two main strategies should be considered. First, determine appropriate species preservation practices to keep the chemical species of interest unchanged throughout the analysis process through avoiding changes in oxidation state, changes caused by microbial activity, and losses caused by volatilization or adsorption. Secondly, the species can be quantitatively converted into appropriate derivatives for further separation, accumulation and quantification [65]. Microbial transformation of arsenical compounds in contaminated samples is observe through a change in valence (i.e.oxidation/reduction) or chemical form (i.e. solid, liquid and gas) and formed biomethylate arsenic and both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds [66]. To avoid degradation of arsenic speciation, biological samples should be kept in low temperature. To reduce analyte loss, drying in oven used for the stabilization of samples particularly freeze-drying [67].
To avoid arsenic speciation loss during sampling, the soil–plant-water should be collected in polyethylene flip-top bottle/plastic with lock and/or seal lead. Immediately after collection all of the samples should be kept in freezer until sample preparation for analysis. The soil samples were air-dried, gently crushed and sieved through a 2 mm sieve and used for analysis. Meanwhile the plant sample placed in a oven drier at 40°C until constant weight and then grind and sieve the sample and stored in brown glass bottles in a desiccator in order to avoid exposure to light and moisture until required for analysis. Sample preparation for solid samples generally may include procedures such as mincing, freeze drying, milling, grinding, homogenization, and sieving, followed by extraction. For achieving the best extraction efficiency and reproducibility of arsenic speciation in soil and plant sample, the tested sample must dried and homogenized before extraction. Because, particle size plays a crucial role in the extraction efficiency of As [68]. After sampling the fresh plant sample, it should be kept in freezing (−80°C) to avoid species interchange. Moreover, dry and grind plant and soil sample can store at −20°C up to one year [69].
The most reliable method for preserving natural water samples is, therefore, acidification to pH 2, refrigeration and deoxygenation [70]. Preservation of natural water in polypropylene bottles in refrigerator arsenic species in water is stabile under neutral conditions for a period of 4 months [71]. To increases the stability of dissolved As redox species (As (III) and As(V)) of water sample, the samples to be filtered and stored in darkened polythene containers. For longer preservation, water samples are acidified with HCl [72], HNO3 [73], H2SO4 [74] and H3PO4 [75], ascorbic acid [76] ethylene diamine tetraacetic acid [65]. Filtering the sample removes most of the colloidal material and microorganisms; acidification prevents oxidation and precipitation of Fe and Mn hydroxides and EDTA sequesters Fe and inhibits precipitation. Using 10 mM H3PO4 as a preserving agent combined with keeping samples at 6°C in dark, As species remain stable for 3 months, even with high concentrations of Fe and Mn.
The great challenge of As speciation, as it has been highlighted, is to maintain the original characteristics of species during extraction step. Extraction is the first step for speciation of target As species from their matrix (water, soil, sediment, plant, biological tissue or fluid). Determining an appropriate sample preparation method that provides high extraction efficiency for the arsenic species of interest and prevents inter-conversion between arsenic species can be challenging. To achieve maximum extraction competence of arsenic speciation from solid or liquid matrix, the extraction protocols must have three criteria’s, such as (і) the extracting solution must solubilize only the specific form, (іі) reduction of native As (V) to As (III) may not occur during the extraction, and (ііі) oxidation of native As (III) to As (V) should not occur [77]. Extraction procedures employ a range of approaches including solid–liquid extraction [78] liquid– liquid extraction, solid phase extraction (SPE) [79] and solid phase microextraction (SPME) [80]. Enhanced techniques such as soxhlet, [69] sonication, [81] pressurized liquid extraction (PLE), [82] microwave-assisted extraction (MWA) [83] and supercritical fluid extraction (SFE) [84] have also been utilized for the determination of As speciation in soil–plant-water sample. Soil-pant-water sample preparation and extraction methods applied for the arsenic speciation analysis are presented in Table 2.
Matrix | Arsenic species | Sample preparation/extraction | Extraction solution | Detection | References |
---|---|---|---|---|---|
Soil | AS total, ASIII, AS V | Shaking/mixing | 10 M HCl | HGAAS; XRF | [85] |
Soil | AS total, ASIII, AS V | Shaking/mixing | 10 mM phosphate | HPLC | [86] |
Soil | AS total, ASIII, AS V | Micro wave heating + Shaking | 1 M H3PO4 + 0.5 M ascorbic acid (C6H8O6) | LC=UV- HG- AFS | [87] |
Soil | ASIII, AS V, MMAV, DMA V | Ultrasonic, shaking, Microwave heat | 500 mM Phosphate solution | HPLC-HG-AFS | [88] |
Soil | ASIII, AS V | Filtration. Shaking and water bath heat | [BMIM][PF6] | IL-LLME-ETAAS | [89] |
Soil | AS total | Microwave heat | HNO3 + HClO4+ H2SO4 | HGAAS | [90] |
Soil | AS total, ASIII, AS V | Microwave heat | 1 M H3PO4 + 0.1–1 M ascorbic acid | LC–HG–AFS | [91] |
Soil | ASIII, AS V | Shaking/mixing | 2.5 mM CaCl2 | LC–HG–AFS | [21] |
Soil | AS V | Shaking/mixing | 1 M HCl | XRF | [92] |
Soil and plant (chickpea) | ASIII, AS V, MMAV, DMAV | Shaking/mixing | Buffer solution (1.5 mM NaH2PO4+ 0.2 mM Na2EDTA + 3 mM NaNO3,+ 10 mM CH3COONa + 1% C2H5OH; pH 6.0) | ICP-MS | [93] |
Plant | ASIII, AS V, MMAV, DMAV | Shaking/mixing | 0.3 M H3PO4 | HPLC-ICP-MS | [94] |
Plant | ASIII, AS V, MMAV, DMAV | Shaking/mixing | 1% HCOOH | HPLC-ICP-MS- ESI-MS | [95] |
Plant | ASIII, AS V, MMAV, DMAV | Sonication | 2 mM NaH2PO4 + 0.2 mM Na2EDTA (pH 6.0) | HPLC-ICP-MS- ESI-MS. | [95] |
Soil and plant | ASIII, AS V, MMAV, DMAV, AsC | Shaking/mixing + sonication | CH3OH/H2O 1 + 1 v/v | HPLC-ICP-MS | [96] |
Soil and plant | ASIII, AS V, MMAV, DMAV, | Shaking/mixing + sonication | (a) CH3OH/H2O 1 + 1 v/v; (b) 0.1 M HCl | HPLC, AAS and XANES | [97] |
Plant | ASIII, AS V, | MW-heating | 0.33 M sucrose, 50 mM MES, 5 mM EDTA, 5 mM Lascorbate | HPLC-ICP-MS | [98] |
Plant | Total As, ASIII, AS V, | MW-heating | Methanol–water (1: 1) /HNO3 | HPLC-ICP-MS | [99] |
Plant | ASIII, AS V, MMAV, DMAV, | MW-heating | 1% (v/v) HNO3 | HPLC-ICP-MS | [100] |
Plant | ASIII, AS V, MMAV, DMAV, | MW-heating | 0.01 mol/L TMAH | ETAAS | [101] |
Surface/drinking water | ASIII, AS V, MMAV, DMAV | Filtration | EDTA | HPLC-ICP-MS | [102] |
Sea water | AsIII, AsV, MMA, DMA, AsB, TMAO | Shaking/mixing + ulta-sonication | 1% (v/v) HNO3 | HPLC-ICP-MS | [26] |
Several soil-water-plant sample preparation/extraction methods for determination of arsenic speciation.
The solvent extraction technique is often used to determine organic arsenic compounds, especially arsenic compounds in biological samples. The extraction of arsenic substances is usually achieved through mild extraction solvents (ie water, methanol, methanol–water solvent system) and/or rarely uses acetonitrile-water and sequential extraction [15, 103]. Methanol/water mixture 1/1 (v/v) is widely used for the quantification of water-soluble As compounds in environmental samples, followed by centrifugation and filtration [104], while methanol-chloroform or hexane is used in non-polar species [15]. Moreover, extraction with water–methanol (1:1vv−1) had offered easy oxidation of As (III) in basic medium such as soil and the best efficiency was achieved after 20 min of extraction [105]. Extraction efficiency of arsenic species in soil–plant-water samples varied according with the changing the ratio of methanol– water solvent. Nevertheless, the methanol:water extraction solvent ratio of 1:1 provides the best processing and extraction efficiency for the extraction of arsenic species from plant samples, while 1 M phosphoric acid is suitable for soil samples [15]. At the same time, Rahman et al., [98] noticed that addition of extracting agent NH4H2PO4 in edible part of spinach had shown similar extraction efficiency of As (III) and As (V) by water, 50% vv−1water/methanol solution on shaking and microwave techniques. However, As(III) was extracted twice as much by the protein extract, indicating that it is a good extractor. Zheng and Hintelmann [106] pointed out that methanol/water mixture is an effective extractant for organic species, and its efficiency for inorganic species drops sharply. The solvent extraction reagent, tetramethylammonium hydroxide (TMAH) in alkaline medium, is also useful for the determination of AB, DMA and inorganic arsenic form a wide variety of biological matrices. In addition, sequential extraction procedure using different solvents (i.e (NH4)2SO4, (NH)4H2PO4, NH4-oxalate buffer, KOH and hot water) can effectively extract organic and inorganic arsenic species, namely arsenous acid, arsenic acid, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, trimethylarsine oxide and glycerol-ribose in both soil and plant [107, 108]. Larios et al. [109] found that orthophosphoric acid followed by graphite block heating at 90°C for 60 min was provided the best conditions for As speciation in plants grown in contaminated environment. The applied extraction solvent led to an extraction efficiency of 80% for samples without species interconversion and recovery of 95% for leaves As speciation of Arsenic (V), As (III), DMA and MMA.
Biomolecular hydrolysis of complex matrix, enzymes are able to break down specific bonds of the substrate at neutral pH and room temperature, and they allow selective release of the analyte from the sample matrix without chemicalchanges. Enzymes can digest various matrix components, enzyme-assisted reactions usually require several hours of incubation. Microwave-assisted extraction (MAE) is used in combination with the enzyme extraction of pronase E and lipase to effectively extract AsB, As(III), DMA, MMA, and As(V) from seafood, rice, and plants [110, 111]. Viscozyme, was considered the most effective multi-enzyme mixture (consisted of a wide range of carbohydrases, including arabanase, cellulase, glucanase, hemicellulase, and xylanase) useful to extracted arsenic species from algae and terrestrial plant materials [112].
Microwave extraction is a common technique for extracting biological and environmental matrices, which is much faster than traditional Soxhlet extraction procedures. The extraction procedure using dilute acids or organic solvents at low temperatures can be easily achieved in a focused microwave oven. Generally microwave extraction is used to determine inorganic arsenic in food and provided good arsenic speciation extraction efficiencies (generally >90%) for samples of rice and wheat [113]. The method is based on extracting samples with trifluoroacetic acid/H2O2 and measuring arsenate by anion exchange HPLC-ICP-MS using aqueous malonic acid as the mobile phase. By using 2 M trifluoroacetic acid assisted with microwave heating for 6 h at 100°C to hydrolyze rice samples, the conversion between AsIII and AsV was also observed and recovered 83, 88, 100, and 93% of fortified arsenite (100 ng As g−1), arsenate (100 ng As g−1), methylarsonic acid (MMA, 50 ng As g−1), and dimethylarsinic acid (DMA, 200 ng As g−1), respectively [114].
Solid phase extraction (SPE) method is an efficient extraction technique for arsenic speciation from complex environmental and biological matrices. The principle mechanism of SPE is partitioning sorbent and sample matrix phase and may include simple adsorption, chelation, ion exchange or ion-pair solid phase extraction. In recent years, the techniques gaining popularity for As speciation because of its simple operation offers acceptable recovery and pre-concentration efficiency, lower reagent consumption and offer effective combination ability with different on-line and off-line As detection systems.
Several conventional sorbent (i.e ion exchange resin, glass and modified mesoporous silica) based protocols have been developed for inorganic As speciation. To avoid inter-conversion of arsenic species, extraction with anion exchange cartridges prior to the inductively coupled plasma sector field mass spectrometric (ICP-SF-MS) becomes an efficient technique. During on- site separation and speciation of inorganic arsenic (As (III) and As (V)) from high arsenic- groundwater and ferrihydrite removal anaerobic arsenics species, anion-exchange resin (AG 1-X8) adsorbed As(V) in acetate form, while no adsorption to As(V)/As(III) in chloride form [115]. A dual-sorbent SPE protocol, in which the sorbent is composed of strong basic anion exchange (SBAE) resin and hydrate iron oxide particles integrated HY resin, has been adopted successfully for the retention of inorganic arsenic species As (V) and As(III) simultaneously [116]. On-line continuous leaching extraction method is also effective for speciation of bio-accessible As species in plant [108].
The modern technological invention of nanomaterials such as Nanofibers [117], magnetic nanoparticles [118], metal hydroxide precipitation [119], and nano-TiO2 colloid [120] has offered selective and efficient extraction techniques for As speciation from different matrix. Like ammonium pyrroine- dithiocbonate (APDC) have excellent selectivity of As (III) from ground water samples [117]. Moreover, yttrium hydroxide precipitate layer coated cellulose fiber is used as extracting material, [119] of As (III) and As (V) at acidic condition. Multi-wall carbon nanotubes (MWCNTs) modified with branched cationic polyethyleneimine(BPEI)is also proved to be excellent adsorbent with favorable selectivity toward adsorption of As(V) [121] in combined with sequential injection technique. Nano particle TiO2 colloid has effectively extracted ultra-trace As from environmental water sample without agglomeration [120]. Besides, As (III) and As(V)from aqueous solution can be effectively extracted by hematite-coated Fe3O4 particles. Moreover, due to the fact simple and rapid separation capacity of As species, magnetic extraction techniques also gaining much popularity day by day.
A combined SPE procedure for arsenic speciation developed by using three molecular recognition technology (MRT) gel resins, which includes strong base anion exchange (SBAE) and two hybrid (HY) resins, HY–Fe and HY–AgCl, This methods has constructed for simultaneously extraction of four water-soluble arsenic species: arsenite, arsenate, monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) and retain in the SPE columns and separatedly eluted by using different elution [115].
A liquid–liquid extraction generally used dodecane modified with 4% dodecanol containing Aliqua t336 as the extractant has been developed for the extraction of arsenic species in environmental matrices [122]. Here only As (V) is quantitatively transported to organic phase but no transport of As(III) takes place. A rapid in-situ liquid–liquid micro-extraction procedure has been developed for successfully determination of As (III) and As(V) in water samples, food salts, and total As in biological samples [123].
The vital challenge in element speciation is to determine each form independently without interference from other species. Because arsenic could complex with certain derivatizing agents, that hampered the detection. The derivitization process consists of two steps for example. i) reduction of AsV to AsIII and ii) convert to arsine (AsH3) [124]. During measurement, the inert g N2 is pushed by hydride generation (HG) step, reaches the atomic absorption spectrophotometer or ICP-MS and finally produced arsines [125]. The main limitation of derivitization is that it only limits the formation of volatile arsines materials, but it is difficult to separate un-derivatized arsenic species (eg. AsB, AsC, or arsenosugars), using conventional reversed phase liquid chromatography and almost impossible by spectrophotometry or mass spectrometry [126]. In addition, the derivitization process requires control condition In addition, the derivitization process requires control condition. This technique largely depends on the type and concentration of the sample matrix. To overcome obstacle, sodium borohydride is now commonly used for the hydrides synthesis [18]. Arsenic speciation after derivatization can be overcome by combining couple technique with detection techniques such as LC–MS/MS retention in liquid chromatography and ionization in mass spectrometry. Under such circumstances, the hyphenated technique is the most reliable because it includes several facilities like high sensitivity, good reproducibility, short analysis time and reduced risk for species transformation [18].
Usually, two main techniques, namely chromatography (gas and liquid) and capillary electrophoresis are used to separate arsenic from various complex matrices [65]. Based on the complexity of As compounds, sometimes two technologies are introduced simultaneously or cumulatively.
Liquid chromatography generally provides excellent possibilities for the separation of environmental and biological samples [18]. Various commonly used liquid chromatography techniques are high performance liquid chromatography (HPLC), ion chromatography and ion interaction chromatography [127]. Chromatographic separation can be performed by using ion exchange columns to separate metal ions directly or by adsorption (reverse phase or normal phase) liquid chromatography (if the metal species are complexed with organic ligands). Liquid chromatography is connected to many other detection systems, such as ICP-MS, HG-AFS, HG-AAS and GF-AAS [65]. Several liquid chromatography techniques can be used for the organic and inorganic As species, as follows:
Anion exchange chromatography is commonly used for speciation analysis of arsenic in environmental and biological samples. The anionic nature of arsenic species is different (at neutral pH, arsenic acid As(V), monomethylarsonic acid (MMA) and dimethylarsonic acid (DMA) are deprotonated, but As(III)) exists) to make anion exchange chromatography suitable for their separation. Anion exchange chromatography has been used to analyze many arsenic compounds, including As(III), As(V), MMA, DMA, arsenobetaine (AsB), arsenocholine (AsC), oxoarsenic sugar (oxoAsS), thiosulfate Arsenic sugar (thioAsS) and benzene arsenic [27, 28]. The most commonly used column for arsenic speciation analysis is a strong anion exchange column, such as PRP-X100. Generally, the As form of the matrix separated by anion exchange chromatography techniques is detected by inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS).
Cation exchange chromatography works similarly to anion exchange, except that the stationary phase is negatively charged to interact with the cation analyte. However, in cation exchange liquid chromatography, the separation speed of As species is relatively fast. The retention of arsenicals is directly related to the strength of its cationic charge: positively charged analytes have stronger retention. Cation exchange chromatography is commonly used for speciation analysis of positively charged As compounds, such as AsB, AsC, trimethylarsenic oxide (TMAO) and tetramethylarsenic ion (TMA) [15].
Reversed-phase chromatography is the most common HPLC separation technique used to separate compounds that are less hydrophobic or polar. In particular, reversed-phase liquid chromatography is particularly suitable for the analysis of arsenic lipids, including arsenic-containing hydrocarbons, fatty acids, phospholipids, phosphatidylcholines, fatty alcohols, and phosphatidylethanolamines of biological samples [24].
Ion pair chromatography can separate ions and neutral analytes using popular reversed-phase chromatography. It has been widely used for arsenic speciation analysis of various substrates. The reagent of ion pair chromatography reagent comprises with two groups a charged group for interaction with the analyte and a hydrophobic region for interrelates with the stationary phase. Usually, tetraalkylammonium, tetrabutylammonium and tetraethylammonium are used as the ion pair reagents for the separation of anionic and neutral arsenic species, and alkyl sulfonates, such as hexanesulfonic acid and 1-pentane sulfonic acid, for cationic and neutral arsenic species. Two most commonly used organic modifiers, methanol and acetonitrile are added to the mobile phase to decrease retention time [15].
Hydrophilic Interaction Chromatography (HILIC) is an important substitute to RP-HPLC separations of polar compounds. Although the stationary phase is polar, HILIC can separate neutral, cationic and anionic species simultaneously. HILIC has great potential to separate more arsenic species in a single analysis. This separation technique is more useful for organoarsenicals. Xie et al. [128] successfully detected nine kinds of organoarsenicals (I,e MMA, DMA, AsB, AsC, TMAO, phenylarsonic acid (PAA), phenylarsine oxide (PAO), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), and 4-aminophenylarsonic acid (p-arsanilic acid, ASA) using a zwitterionic HILIC column followed by ICP-MS/ ESI-MS detection.
Size-exclusion chromatography (SEC), also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. SEC is very effective for analysis of arsenic interactions with large molecules or macromolecular complexes such as arsenic-protein binding, humic acid-arsenic complexesand industrial polymers. SEC commonly used to separate protein-bound arsenic from free arsenic [129]. This separation method is expensive and useful for biological samples.
Combining a variety of chromatographic columns and separation modes, try to separate a series of arsenic substances. Multidimensional separation has been performed offline or online. These usually involve a cation exchange column and an anion exchange column connected by a switching valve. This combination allows separation of cationic and anionic arsenic species. Applications were demonstrated for the determination of water-soluble arsenic species [20].
Capillary electrophoresis separates As species according to the electrophoretic mobility related to the charge, viscosity, and atomic radius of the molecule, which is controlled by the composition, concentration, and pH of the buffer. This method is applicable for all type of soil–plant-water samples. Capillary electrophoresis can be used in many different detection systems but the most common is ICP-MS [15]. Although, Although capillary electrophoresis separation is simple, cost-effective, fast analysis and a certain degree of matrix independence, the additional complexity of coupling with the detection system makes CE a less common As speciation analysis method.
Several sensitive and element techniques can be used for the detection of arsenic species. Various detection techniques are: atomic mass spectrometry, molecular mass spectrometry, optical spectrometry, X-ray methods and others (voltammetry, potentiometry, conductometry and spectrophotometry), which provide different level of specificity, cost effectiveness and detection limits [21]. Detection methods applied for the arsenic speciation analysis of soil–plant-water samples are assembled in Table 3.
Matrix | Arsenic species | Detection techniques | Coupled with | |
---|---|---|---|---|
Soil | ASIII, AS V | ICP = MS | — | [130] |
Water | ASIII, AS V, MMAV, DMA V | [131] | ||
Soil-water-plant | Total As, ASIII, AS V, | [132] | ||
Water | ASIII, AS V | ICP-SFMS | — | [133] |
Water | ASIII, AS V, MMAV, DMAV, AsB AsC | ICP = MS | HPLC | [134] |
Plant | ASIII, AS V, MMAV, DMAV, AsB | [135] | ||
Soil | ASIII, AS V | [136] | ||
Soil | ASIII, AS V, MMAV, DMA V | ICP-SFMS | HPLC | [137] |
Plant | ASIII, AS V, MMAV, DMA V | [138] | ||
Water | ASIII, AS V, MMAV, DMA V | [139] | ||
Soil | MMAV, DMA V | ICP = MS | GC | [140] |
Soil | ASIII, AS V, MMAV, DMA V, | ICP = MS | CE | [137] |
Soil | PA and AA | ESI-qMS | HPLC | [141] |
Soil -water | PA and AA | ESI-TOF-MS | = | [142] |
Soil–plant | ASIII, AS V, MMAV, DMAV, MMMTA, DMMTA, DMDTA | ESI-qTOF-MS | = | [143] |
Soil–plant | ASIII, AS V, MMAV, DMAV, MMMTA, DMMTA, DMDTA | ESI-qTOF-MS | HPLC | [143] |
Soil | ASIII, AS V, N-AHPAA, 3-AHPAA | ESI-triple quad-MS | = | [144] |
Plant | Arsenolipids | ESI-triple quad-MS | HPLC | [145] |
Water | ASIII, AS V, MMAV, DMAV, TMAO | ESI-Orbitrap-MS | = | [146] |
Plant | Arsenic peptides | ESI-IT-MS | HPLC | [147] |
Plant | PA and AA | EI-MS | GC | [141] |
Plant | AS total, ASIII, AS V | GF-AAS | = | [148] |
Soil | AS total, ASIII, AS V | HG-AAS | = | [85] |
Water | ASIII, AS V, MMAV, DMAV | HG-AAS | HPLC | [127] |
Soil–plant | ASIII, AS V, MMAV, DMAV | [69] | ||
Soil | AS total, ASIII, AS V | HG-AFS | = | [87] |
Soil | ASIII, AS V, MMAV, DMAV | HG-AFS | HPLC | [88] |
Plant | ASIII, AS V, MMAV, DMAV | [149] | ||
Soil and Plant | ASIII, AS V, MMAV, DMAV | XANES | [150] | |
Soil | ASIII, AS V | EXAFS | [151] | |
Soil | ASIII, AS V | STXM | [152] | |
Soil | AS V | XPS | [153] | |
Water | ASIII, AS V, | Voltammetry | = | [154] |
Water | AS V | Potentiometry | = | [155] |
Water | ASIII, AS V | Spectrophotometry | HPLC | [126] |
Examples of detection systems for arsenic speciation analysis of soil-water-plant samples.
Aqueous phenylarsonic acid (PA);
ICP-MS is the most commonly used technique for the detection of multiple arsenic species because of its high sensitivity, high selectivity and wide dynamic range. The coupling of chromatography to ICP-MS has several benefits due to the compatibility of the mobile phase with the behavior of the plasma torch and the carefully determined quality inspection interference. Various techniques have been developed to eliminate or reduce isobaric interference in the detection of arsenic by mass-to-charge ratio. Recently, compared with the traditional single quadrupole ICP-MS, the combination of ICP and triple quadrupole tandem mass spectrometry (ICP-QQQ) helps to eliminate isobaric interference, reduce background, and improve selectivity [156]. Quantification is performed by preparing standard solutions of commercially available substances, such as iAs(III), iAs(V), MA, DMA, and AB. It is generally believed that arsenate is used to calibrate anionic substances, and arsenobetaine is used to calibrate cationic substances [157]. DMA is considered to be the most suitable calibration standard for arsenic lipid quantification [158]. The sensitivity of ICPMS to detect arsenic is limited by its relatively high ionization potential. In order to compensate for this effect, various methods have been used, including adding supplemental methanol or ethanol solution to the spray chamber [159] or after the column via the T-piece [91], and the use of correction response factors. Finally, internal standardization was used to overcome the non-spectral matrix effects and instrumental drift [160].
Recently, molecular mass spectrometry is considered as a forward-looking technique for arsenic speciation analysis, especially for the detection of new organic arsenic species, such as thioarsenosugar [21, 161] and arsenolipids [21, 60, 162]. In this detection technique, the purified part of the extractable sample is introduced by electrospray ionization (ESI), and then mass spectrometry is combined with liquid chromatography. Generally, for the As forms, a simple single quadrupole mass analyzer is used, while tandem mass spectrometry is used for precise structure determination, whether it is a “spatial” triple quadrupole or a quadrupole time combination, or a “time” and Orbitrap system [21]. However, it has been recognized that ESI-MS analysis lacks selectivity for complex matrices, and quantification is more difficult than ICP-MS [163]. Therefore, the most powerful setting for arsenic speciation analysis that combines atomic and mass spectrometers is used as the detector of the same chromatographic system [21, 60, 145].
The optical spectroscopy technique such as atomic absorption spectroscopy (AAS) and atomic fluorescence spectroscopy (AFS) is popular to researcher as an attractive alternative to mass spectrometry. Due to the low purchase and operation cost, high speed, low consumption of organic solvents, high enrichment coefficient, combined with hydride generation provides high sensitivity and reduced matrix effect, this technology has been applied to the determination of arsenic species in environmental samples. Moreover, hydride generation systems (HG-AAS and HG-AFS) facilitate a direct measurement of the more As. Graphite furnace atomic absorption spectroscopy can be an independent facility and does not require AsH3 because of the low level of interference [18]. In fact, the optical spectroscopy is an effective technique, when combined with different separation techniques and chemical modifiers, iAs(III), iAs(V), MA, DMA and TMAO, can be identified, and significant hydride generation of arsenosugars [164] and thioarsenates can be observed [21]. Nevertheless, HGAAS and HG-AFS are mainly used for water samples [150], sediment extracts and soil, [165] and plants [97] mainly contain inorganic arsenic. These techniques are also applicable to biological substrates and more stubborn arsenic Analysis [166].
X-ray method is an important technique for morphological analysis of environmental samples, which can record raw data about the chemical environment of arsenic atoms in situ without sample preparation. X-ray atomic absorption spectroscopy (XAS) is generally divided into two regions: X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). These technologies are mainly used to directly detect solid samples, including sediments, [167] soil [97, 168] and plants [96, 97, 169]. Both XANES and EXAFS have studied abiotic matrices to measure arsenic redox status and geochemical correlation.
In order to obtain precise analytical information about the bioavailability and toxicity of arsenic in the environmental process, it is necessary to carefully consider any possible sources of error during analysis and validate the data. To avoid or minimize the impact of species changes and ensure the reliability and quality of speciation data, mass balance ratio, extraction efficiency, column recovery of arsenic species during separation and standard reference materials quality need to be tracked. The main difficulty of specific analysis of arsenic may occur in the sample preparation stage and species stability. Mass balance data provides information about the distribution of elements in each analysis step (extraction, separation, and species detection) and quantitatively determine the fate of arsenic during speciation [170]. The extraction efficiency can provide some important information about the extraction procedure, the polarity of the extracted species, and help to select the best extraction solvent and separation system. It helps to establish a non-toxic, effective and simple extraction procedure for arsenic speciation analysis. Column recovery is an important aspect of any separation technique. It is critical to eliminate loss and to ensure there is no cross-contamination between analyses. The column recovery compares the total arsenic concentration with the sum of the detected substances, which can provide information about the elution and retention of the analyte. In fact, depending on the type of sample and the concentration of the arsenic species, the column recovery rate of the arsenic species has great variability [171]. The column recovery also affected by the extraction solvent of the column. It is difficult to evaluate the mutual transformation of arsenic species in the actual sample in the column, which is related to the individual arsenic standard. However, the lack of available standards for new arsenic species is the main challenge in studying the inter-conversion of arsenic compounds during separation [15]. For accurate method validation of arsenic speciation, the use of standard reference materials (SRM) and certified reference materials (CRM) is essential. With reference or certified values available, SRM and CRM can be used to test and verify the accuracy of the method. In order to verify the arsenic speciation analysis methods of environmental samples, different types of soil and sediments, natural waters, marine and terrestrial plants and other biological samples are used as reference samples. It should be noted that a single SRM or CRM could not be used to verify method calibration and results [15]. SRM 1640 (NIST) is commonly used to check calibration curves for trace elements in water. The type of CRM used depends on the sample matrix and the type of arsenic studied [1].
Arsenic pollution is a universal problem. The form of arsenic in soil, water, and plants play an important role in understanding arsenic exposure, metabolism and environmental arsenic cycle, and food chain. A crucial requirement for obtaining reliable speciation information is to maintain the concentration of the original chemical species in the sample prior to analysis. In order to determine the total element concentration, the main considerations for sample collection and storage are to prevent contamination and minimize the loss of trace analytes. Research on simple and efficient extraction procedures that use less or non-toxic solvents is very urgent for better arsenic speciation In the case of speciation analysis, the concentration of individual species of the element must be constant through sample handling and processing. Therefore, the time between the extraction procedure and the analysis must be as short as possible to avoid inter-conversion between species. The selection of extraction and sample preparation methods must be complementary and compatible with the separation method in order to perform qualitative and quantitative analysis of arsenic species and its concentration. It may require a combination of multiple extraction methods and multiple separation techniques to achieve a comprehensive arsenic speciation analysis. Several techniques have been used to study arsenic speciation, each with its advantages and disadvantages. However, research efforts are still needed to develop cheap, fast, sensitive, and reproducible methods for arsenic species that can work at low detection limits. However, research efforts are still needed to develop cheap, fast, sensitive, and reproducible methods for arsenic species that can work at low detection limits. In addition, in order to find a unified analysis protocol i.e. at least for the more common matrices, for the prevalent and unidentified arsenic species, advanced investigations and routine measurements are necessary.
The authors declare that they have no conflicting interests.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n9. Types of advertisments:
\\n\\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\\n\\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\\n\\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\\n\\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\\n\\nPolicy last updated: 2021-04-28
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n9. Types of advertisments:
\n\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\n\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\n\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\n\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\nPolicy last updated: 2021-04-28
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11730",title:"Midwifery",subtitle:null,isOpenForSubmission:!0,hash:"95389fcd878d0e929234c441744ba398",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11697",title:"Scoliosis",subtitle:null,isOpenForSubmission:!0,hash:"fa052443744b8f6ba5a87091e373bafe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11697.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11699",title:"Neonatal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"e52adaee8e54f51c2ba4972daeb410f7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11699.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11858",title:"Terahertz Radiation",subtitle:null,isOpenForSubmission:!0,hash:"f08ee0bf20cd8b5fa772b4752081f2fe",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11858.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11843",title:"Abortion Access",subtitle:null,isOpenForSubmission:!0,hash:"e07ed1706ed2bf6ad56aa7399d9edf1a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11843.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11773",title:"Archaeology - Challenges and Updates",subtitle:null,isOpenForSubmission:!0,hash:"17d91462fa926279f65164ac0d5641cd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11773.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11809",title:"Lagomorpha",subtitle:null,isOpenForSubmission:!0,hash:"1e8fd5779205c16e5797b05455dc5be0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11809.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11776",title:"Fashion Industry",subtitle:null,isOpenForSubmission:!0,hash:"e8d53d1029a7bccf825aa55d43fecc68",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11776.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:666},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1411",title:"Oenology",slug:"oenology",parent:{id:"1410",title:"Viticulture",slug:"agricultural-and-biological-sciences-viticulture"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:200,numberOfWosCitations:95,numberOfCrossrefCitations:66,numberOfDimensionsCitations:142,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1411",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8054",title:"Advances in Grape and Wine Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"f6b9b3b3d887ed9e7c0ad09cb07edf2b",slug:"advances-in-grape-and-wine-biotechnology",bookSignature:"Antonio Morata and Iris Loira",coverURL:"https://cdn.intechopen.com/books/images_new/8054.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6077",title:"Grapes and Wines",subtitle:"Advances in Production, Processing, Analysis and Valorization",isOpenForSubmission:!1,hash:"61fe601d66e441800c8ed9503f86280f",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",bookSignature:"António Manuel Jordão and Fernanda Cosme",coverURL:"https://cdn.intechopen.com/books/images_new/6077.jpg",editedByType:"Edited by",editors:[{id:"186821",title:"Prof.",name:"António",middleName:null,surname:"M. Jordão",slug:"antonio-m.-jordao",fullName:"António M. Jordão"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"58633",doi:"10.5772/intechopen.72800",title:"The Evolution of Polyphenols from Grapes to Wines",slug:"the-evolution-of-polyphenols-from-grapes-to-wines",totalDownloads:2062,totalCrossrefCites:6,totalDimensionsCites:14,abstract:"Polyphenols play an important role in the quality of wines, due to their contribution to the wine sensory properties: color, astringency and bitterness. They act as antioxidants, having positive role in human health. They can be divided into non-flavonoid (hydroxybenzoic and hydroxycinnamic acids and stilbenes) and flavonoid compounds (anthocyanins, flavan-3-ols and flavonols). Anthocyanins are responsible for the color of red grapes and wines, hydroxycinnamic and hydroxybenzoic acids act as copigments, stilbenes as antioxidants and the flavan-3-ols are mainly responsible for the astringency, bitterness and structure of wines, being involved also in the color stabilization during aging. This chapter will focus on the chemical structures of the main polyphenols, their identification and quantification in grapes and wines by advanced analytical techniques, highlighting also the maceration and aging impact on the polyphenols evolution. The factors influencing the phenolic accumulation in grapes are also reviewed, emphasizing as well the relationship between phenolic content in grapes versus wine. Polyphenolic changes during the wine making process are highlighted along with the main polyphenol extraction methods and analysis techniques. This research will contribute to the improvement in the knowledge of polyphenols: their presence in grapes, the relationship with wine quality and the influence of the external factors on their evolution.",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Violeta-Carolina Niculescu, Nadia Paun and Roxana-Elena Ionete",authors:[{id:"187102",title:"Dr.",name:"Roxana",middleName:null,surname:"Ionete",slug:"roxana-ionete",fullName:"Roxana Ionete"},{id:"206056",title:"Dr.",name:"Violeta",middleName:"Carolina",surname:"Niculescu",slug:"violeta-niculescu",fullName:"Violeta Niculescu"},{id:"207020",title:"Mrs.",name:"Nadia",middleName:null,surname:"Paun",slug:"nadia-paun",fullName:"Nadia Paun"}]},{id:"58638",doi:"10.5772/intechopen.72823",title:"Occurrence and Analysis of Sulfur Compounds in Wine",slug:"occurrence-and-analysis-of-sulfur-compounds-in-wine",totalDownloads:1977,totalCrossrefCites:4,totalDimensionsCites:11,abstract:"Sulfur compounds play an important role in the sensory characteristics of wine. These molecules can derive from the grape, in which the non-volatile forms are usually present as glycosylated molecules, the metabolic activities of yeast and bacteria, the chemical reactions taking place during the wine aging and storage, and the environment. The sulfur compounds include molecules positively correlated to the aromatic profile of wine, namely the volatile thiols, and are responsible for certain defects, imparting notes described as cabbage, onion, rotten egg, garlic, sulfur and rubber. Due to the low concentration of these molecules in wine, their high reactivity and the matrix complexity, the analytical methods which enable their detection and quantification represent a challenge. The solid phase microextraction (SPME) technique has been developed for sulfur compounds associated with off-flavors. The analysis of volatile thiols usually requires a derivatization followed by gas chromatography (GC)-MS or UPLC-MS methods. Besides the sulfur-containing aromas, another sulfur compound that deserves mention is the reduced glutathione (GSH) which has been widely studied due to its antioxidant properties. The analysis of GSH has been proposed using a liquid chromatography technique (HPLC or UPLC) coupled with fluorescence, MS and UV detectors.",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Daniela Fracassetti and Ileana Vigentini",authors:[{id:"207271",title:"Dr.",name:"Daniela",middleName:null,surname:"Fracassetti",slug:"daniela-fracassetti",fullName:"Daniela Fracassetti"},{id:"220967",title:"Dr.",name:"Ileana",middleName:null,surname:"Vigentini",slug:"ileana-vigentini",fullName:"Ileana Vigentini"}]},{id:"66619",doi:"10.5772/intechopen.85692",title:"Contribution of the Microbiome as a Tool for Estimating Wine’s Fermentation Output and Authentication",slug:"contribution-of-the-microbiome-as-a-tool-for-estimating-wine-s-fermentation-output-and-authenticatio",totalDownloads:1109,totalCrossrefCites:5,totalDimensionsCites:9,abstract:"Wine is the alcoholic beverage which is the product of alcoholic fermentation, usually, of fresh grape must. Grape microbiome is the source of a vastly diverse pool of filamentous fungi, yeast, and bacteria, the combination of which plays a crucial role for the quality of the final product of any grape must fermentation. In recent times, the significance of this pool of microorganisms has been acknowledged by several studies analyzing the microbial ecology of grape berries of different geographical origins, cultural practices, grape varieties, and climatic conditions. Furthermore, the microbial evolution of must during fermentation process has been overstudied. The combination of the microbial evolution along with metabolic and sensorial characterizations of the produced wines could lead to the suggestion of the microbial terroir. These aspects are today leading to open a new horizon for products such as wines, especially in the case of PDO-PGI products. The aims of this review is to describe (a) how the microbiome communities are dynamically differentiated during the process of fermentation from grape to ready-to-drink wine, in order to finalize each wine’s unique sensorial characteristics, and (b) whether the microbiome could be used as a fingerprinting tool for geographical indication, based on high-throughput sequencing (HTS) technologies. Nowadays, it has been strongly indicated that microbiome analysis of grapes and fermenting musts using next-generation sequencing (NGS) could open a new horizon for wine, in the case of protected designation of origin (PDO) and protected geographical indication (PGI) determination.",book:{id:"8054",slug:"advances-in-grape-and-wine-biotechnology",title:"Advances in Grape and Wine Biotechnology",fullTitle:"Advances in Grape and Wine Biotechnology"},signatures:"Dimitrios A. Anagnostopoulos, Eleni Kamilari and Dimitrios Tsaltas",authors:[{id:"180885",title:"Associate Prof.",name:"Dimitris",middleName:null,surname:"Tsaltas",slug:"dimitris-tsaltas",fullName:"Dimitris Tsaltas"},{id:"203761",title:"MSc.",name:"Dimitris",middleName:null,surname:"Anagnostopoulos",slug:"dimitris-anagnostopoulos",fullName:"Dimitris Anagnostopoulos"},{id:"271801",title:"Ms.",name:"Elena",middleName:null,surname:"Kamilari",slug:"elena-kamilari",fullName:"Elena Kamilari"}]},{id:"67444",doi:"10.5772/intechopen.86443",title:"Somatic Variation and Cultivar Innovation in Grapevine",slug:"somatic-variation-and-cultivar-innovation-in-grapevine",totalDownloads:1043,totalCrossrefCites:4,totalDimensionsCites:9,abstract:"Paradoxically, continuous vegetative multiplication of traditional grapevine cultivars aimed to maintain cultivar attributes in this highly heterozygous species ends in the accumulation of considerable somatic variation. This variation has long contributed to cultivar adaptation and evolution under changing environmental and cultivation conditions and has also been a source of novel traits. Understanding how this somatic variation originates provides tools for genetics-assisted tracking of selected variants and breeding. Potentially, the identification of the mutations causing the observed phenotypic variation can now help to direct genome editing approaches to improve the genotype of elite traditional cultivars. Molecular characterization of somatic variants can also generate basic information helping to understand gene biological function. In this chapter, we review the state of the art on somatic variation in grapevine at phenotypic and genome sequence levels, present possible strategies for the study of this variation, and describe a few examples in which the genetic and molecular basis or very relevant grapevine traits were successfully identified.",book:{id:"8054",slug:"advances-in-grape-and-wine-biotechnology",title:"Advances in Grape and Wine Biotechnology",fullTitle:"Advances in Grape and Wine Biotechnology"},signatures:"Pablo Carbonell-Bejerano, Carolina Royo, Nuria Mauri, Javier Ibáñez and José Miguel Martínez Zapater",authors:[{id:"287215",title:"Prof.",name:"Jose Miguel",middleName:null,surname:"Martinez Zapater",slug:"jose-miguel-martinez-zapater",fullName:"Jose Miguel Martinez Zapater"},{id:"287226",title:"Dr.",name:"Javier",middleName:null,surname:"Ibáñez",slug:"javier-ibanez",fullName:"Javier Ibáñez"},{id:"300441",title:"Dr.",name:"Pablo",middleName:null,surname:"Carbonell-Bejerano",slug:"pablo-carbonell-bejerano",fullName:"Pablo Carbonell-Bejerano"},{id:"300442",title:"Dr.",name:"Carolina",middleName:null,surname:"Royo",slug:"carolina-royo",fullName:"Carolina Royo"},{id:"300444",title:"Dr.",name:"Nuria",middleName:null,surname:"Mauri",slug:"nuria-mauri",fullName:"Nuria Mauri"}]},{id:"57946",doi:"10.5772/intechopen.71627",title:"Microbiological, Physical, and Chemical Procedures to Elaborate High-Quality SO2-Free Wines",slug:"microbiological-physical-and-chemical-procedures-to-elaborate-high-quality-so2-free-wines",totalDownloads:1634,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Sulfur dioxide (SO2) is the most preservative used in the wine industry and has been widely applied, as antioxidant and antibacterial agent. However, the use of sulfur dioxide implicates a range of adverse clinical effects. Therefore, the replacement of the SO2 content in wines is one of the most important challenges for scientist and winemakers. This book chapter gives an overview regarding different microbiological, physical, and chemical alternatives to elaborate high-quality SO2-free wines. In the present chapter, original research articles as well as review articles and results obtained by the research group of the Wine Technology Center (VITEC) are shown. This study provides useful information related to this novel and healthy type of wines, highlighting the development of winemaking strategies and procedures.",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Raúl Ferrer-Gallego, Miquel Puxeu, Laura Martín, Enric Nart, Claudio\nHidalgo and Imma Andorrà",authors:[{id:"207221",title:"Dr.",name:"Raúl",middleName:null,surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"},{id:"208597",title:"Dr.",name:"Miquel",middleName:null,surname:"Puxeu",slug:"miquel-puxeu",fullName:"Miquel Puxeu"},{id:"208598",title:"Dr.",name:"Laura",middleName:null,surname:"Martín",slug:"laura-martin",fullName:"Laura Martín"},{id:"208599",title:"Mr.",name:"Enric",middleName:null,surname:"Nart",slug:"enric-nart",fullName:"Enric Nart"},{id:"208600",title:"Dr.",name:"Claudio",middleName:null,surname:"Hidalgo",slug:"claudio-hidalgo",fullName:"Claudio Hidalgo"},{id:"208601",title:"Dr.",name:"Imma",middleName:null,surname:"Andorrà",slug:"imma-andorra",fullName:"Imma Andorrà"}]}],mostDownloadedChaptersLast30Days:[{id:"58638",title:"Occurrence and Analysis of Sulfur Compounds in Wine",slug:"occurrence-and-analysis-of-sulfur-compounds-in-wine",totalDownloads:1977,totalCrossrefCites:4,totalDimensionsCites:11,abstract:"Sulfur compounds play an important role in the sensory characteristics of wine. These molecules can derive from the grape, in which the non-volatile forms are usually present as glycosylated molecules, the metabolic activities of yeast and bacteria, the chemical reactions taking place during the wine aging and storage, and the environment. The sulfur compounds include molecules positively correlated to the aromatic profile of wine, namely the volatile thiols, and are responsible for certain defects, imparting notes described as cabbage, onion, rotten egg, garlic, sulfur and rubber. Due to the low concentration of these molecules in wine, their high reactivity and the matrix complexity, the analytical methods which enable their detection and quantification represent a challenge. The solid phase microextraction (SPME) technique has been developed for sulfur compounds associated with off-flavors. The analysis of volatile thiols usually requires a derivatization followed by gas chromatography (GC)-MS or UPLC-MS methods. Besides the sulfur-containing aromas, another sulfur compound that deserves mention is the reduced glutathione (GSH) which has been widely studied due to its antioxidant properties. The analysis of GSH has been proposed using a liquid chromatography technique (HPLC or UPLC) coupled with fluorescence, MS and UV detectors.",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Daniela Fracassetti and Ileana Vigentini",authors:[{id:"207271",title:"Dr.",name:"Daniela",middleName:null,surname:"Fracassetti",slug:"daniela-fracassetti",fullName:"Daniela Fracassetti"},{id:"220967",title:"Dr.",name:"Ileana",middleName:null,surname:"Vigentini",slug:"ileana-vigentini",fullName:"Ileana Vigentini"}]},{id:"57497",title:"Recovering Ancient Grapevine Varieties: From Genetic Variability to In Vitro Conservation, A Case Study",slug:"recovering-ancient-grapevine-varieties-from-genetic-variability-to-in-vitro-conservation-a-case-stud",totalDownloads:1805,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"A great number of varieties have been described in grapevine; however, few of them are currently in use. The increasing concern on varietal diversity loss has encouraged actions for recovering and preserving grapevine germplasm, which represents valuable resources for breeding as well as for diversification in grapevine-derived products. On the other hand, it is expected that this important crop, which is distributed in warm areas worldwide, will suffer the climate changes. Therefore, it is also convenient the identification of intravarietal variability and the recovery of accessions well adapted to particular environments. In this chapter, we will contribute to highlight the importance of recovering ancient materials, the usefulness of SSR markers to determine their molecular profile, the importance to analyze their virus status, and the possibilities that offer biotechnological tools for virus sanitation and in vitro storage as a complement of field preservation. In this context, we have evaluated different grapevine accessions and developed in vitro culture protocols for micropropagation, sanitation, and storage grapevine cultivars. In this work, we report the results obtained for the historic variety “Valencí Blanc” (or “Beba”) and the historic and endangered variety “Esclafagerres” (“Esclafacherres” or “Esclafacherris”).",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Carmina Gisbert, Rosa Peiró, Tania San Pedro, Antonio Olmos,\nCarles Jiménez and Julio García",authors:[{id:"207745",title:"Dr.",name:"Carmina",middleName:null,surname:"Gisbert",slug:"carmina-gisbert",fullName:"Carmina Gisbert"},{id:"207748",title:"Dr.",name:"Rosa María",middleName:null,surname:"Peiró",slug:"rosa-maria-peiro",fullName:"Rosa María Peiró"},{id:"207749",title:"Ms.",name:"Tania",middleName:null,surname:"San Pedro Galán",slug:"tania-san-pedro-galan",fullName:"Tania San Pedro Galán"},{id:"207750",title:"Dr.",name:"Antonio",middleName:null,surname:"Olmos",slug:"antonio-olmos",fullName:"Antonio Olmos"}]},{id:"58633",title:"The Evolution of Polyphenols from Grapes to Wines",slug:"the-evolution-of-polyphenols-from-grapes-to-wines",totalDownloads:2062,totalCrossrefCites:6,totalDimensionsCites:14,abstract:"Polyphenols play an important role in the quality of wines, due to their contribution to the wine sensory properties: color, astringency and bitterness. They act as antioxidants, having positive role in human health. They can be divided into non-flavonoid (hydroxybenzoic and hydroxycinnamic acids and stilbenes) and flavonoid compounds (anthocyanins, flavan-3-ols and flavonols). Anthocyanins are responsible for the color of red grapes and wines, hydroxycinnamic and hydroxybenzoic acids act as copigments, stilbenes as antioxidants and the flavan-3-ols are mainly responsible for the astringency, bitterness and structure of wines, being involved also in the color stabilization during aging. This chapter will focus on the chemical structures of the main polyphenols, their identification and quantification in grapes and wines by advanced analytical techniques, highlighting also the maceration and aging impact on the polyphenols evolution. The factors influencing the phenolic accumulation in grapes are also reviewed, emphasizing as well the relationship between phenolic content in grapes versus wine. Polyphenolic changes during the wine making process are highlighted along with the main polyphenol extraction methods and analysis techniques. This research will contribute to the improvement in the knowledge of polyphenols: their presence in grapes, the relationship with wine quality and the influence of the external factors on their evolution.",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Violeta-Carolina Niculescu, Nadia Paun and Roxana-Elena Ionete",authors:[{id:"187102",title:"Dr.",name:"Roxana",middleName:null,surname:"Ionete",slug:"roxana-ionete",fullName:"Roxana Ionete"},{id:"206056",title:"Dr.",name:"Violeta",middleName:"Carolina",surname:"Niculescu",slug:"violeta-niculescu",fullName:"Violeta Niculescu"},{id:"207020",title:"Mrs.",name:"Nadia",middleName:null,surname:"Paun",slug:"nadia-paun",fullName:"Nadia Paun"}]},{id:"67760",title:"Production and Marketing of Low-Alcohol Wine",slug:"production-and-marketing-of-low-alcohol-wine",totalDownloads:1316,totalCrossrefCites:3,totalDimensionsCites:6,abstract:"Moderate wine consumption may be associated with specific health benefits and a healthy lifestyle. However, increased amounts of ethanol are cytotoxic and associated with adverse health outcomes. Alcohol reduction in wine might be an avenue to reduce alcohol related harm without forcing consumers to compromise on lifestyle and benefit from positive aspects of moderate consumption. The aim of this review is to give an overview of viticultural and pre and post fermentation methods to produce low-alcohol wine, and to summarize the current evidence on the consumer acceptance and behaviour related to low-alcohol wine. Strategies for the labelling and marketing of wines with reduced alcohol content are discussed.",book:{id:"8054",slug:"advances-in-grape-and-wine-biotechnology",title:"Advances in Grape and Wine Biotechnology",fullTitle:"Advances in Grape and Wine Biotechnology"},signatures:"Tamara Bucher, Kristine Deroover and Creina Stockley",authors:[{id:"289140",title:"Dr.",name:"Creina",middleName:null,surname:"Stockley",slug:"creina-stockley",fullName:"Creina Stockley"},{id:"289141",title:"Dr.",name:"Tamara",middleName:null,surname:"Bucher",slug:"tamara-bucher",fullName:"Tamara Bucher"},{id:"289142",title:"Ms.",name:"Kristine",middleName:null,surname:"Deroover",slug:"kristine-deroover",fullName:"Kristine Deroover"}]},{id:"57946",title:"Microbiological, Physical, and Chemical Procedures to Elaborate High-Quality SO2-Free Wines",slug:"microbiological-physical-and-chemical-procedures-to-elaborate-high-quality-so2-free-wines",totalDownloads:1634,totalCrossrefCites:5,totalDimensionsCites:8,abstract:"Sulfur dioxide (SO2) is the most preservative used in the wine industry and has been widely applied, as antioxidant and antibacterial agent. However, the use of sulfur dioxide implicates a range of adverse clinical effects. Therefore, the replacement of the SO2 content in wines is one of the most important challenges for scientist and winemakers. This book chapter gives an overview regarding different microbiological, physical, and chemical alternatives to elaborate high-quality SO2-free wines. In the present chapter, original research articles as well as review articles and results obtained by the research group of the Wine Technology Center (VITEC) are shown. This study provides useful information related to this novel and healthy type of wines, highlighting the development of winemaking strategies and procedures.",book:{id:"6077",slug:"grapes-and-wines-advances-in-production-processing-analysis-and-valorization",title:"Grapes and Wines",fullTitle:"Grapes and Wines - Advances in Production, Processing, Analysis and Valorization"},signatures:"Raúl Ferrer-Gallego, Miquel Puxeu, Laura Martín, Enric Nart, Claudio\nHidalgo and Imma Andorrà",authors:[{id:"207221",title:"Dr.",name:"Raúl",middleName:null,surname:"Ferrer-Gallego",slug:"raul-ferrer-gallego",fullName:"Raúl Ferrer-Gallego"},{id:"208597",title:"Dr.",name:"Miquel",middleName:null,surname:"Puxeu",slug:"miquel-puxeu",fullName:"Miquel Puxeu"},{id:"208598",title:"Dr.",name:"Laura",middleName:null,surname:"Martín",slug:"laura-martin",fullName:"Laura Martín"},{id:"208599",title:"Mr.",name:"Enric",middleName:null,surname:"Nart",slug:"enric-nart",fullName:"Enric Nart"},{id:"208600",title:"Dr.",name:"Claudio",middleName:null,surname:"Hidalgo",slug:"claudio-hidalgo",fullName:"Claudio Hidalgo"},{id:"208601",title:"Dr.",name:"Imma",middleName:null,surname:"Andorrà",slug:"imma-andorra",fullName:"Imma Andorrà"}]}],onlineFirstChaptersFilter:{topicId:"1411",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 29th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"95",type:"subseries",title:"Urban Planning and Environmental Management",keywords:"Circular economy, Contingency planning and response to disasters, Ecosystem services, Integrated urban water management, Nature-based solutions, Sustainable urban development, Urban green spaces",scope:"