\r\n\t2) The divergence between the levels of reliability required (twelve-9’s are not uncommon requirements) and the ability to identify or test failure modes that are increasingly unknown and unknowable
\r\n\t3) The divergence between the vulnerability of critical systems and the amount of damage that an individual ‘bad actor’ is able to inflict.
\r\n\t
\r\n\tThe book examines pioneering work to address these challenges and to ensure the timely arrival of antifragile critical systems into a world that currently sees humanity at the edge of a precipice.
Four hundred years back, Paracelsus stated that, “All substances are poisons; there is none which is not a poison.” If the right dose is taken, it could become a remedy, otherwise poisonous [1, 2]. The therapeutic index or ratio, i.e., LD50/ED50, tells whether the chemical is safe or not.
Poisons are generally found in cases of homicides, suicides, or accidents. They have a significant role to play as the silent weapon to destroy life mysteriously and secretively.
Every poison has almost similar action on the victim’s body. In many cases, they either stop the transfer of O2 to the tissues or create an obstacle in the respiratory system by inhibition of enzymes which are associated with the process. In this, the myoneural junction and the ganglions and synapses are the sites of action. In some cases of insecticidal poisoning, hyperexcitement of voluntary and involuntary muscles can cause death. There are four categories of action of poisons—(i) local action, (ii) remote action, (iii) local and remote actions, and (iv) general action.
Local action: Local action means direct action on the affected site of the body. Examples include irritation and inflammation in strong mineral acids and alkalis, congestion and inflammation by irritants, the effect on motor and sensory nerves, etc.
Remote action: Remote action affects the person due to absorption of that poison into the system of that person. For example, alcohol is absorbed in the system and then it affects the person.
Local and remote actions: Some poisons can affect both local and remote organs. Thus, they not only affect the area with contact to the poison but also cause toxic effect after absorption into the system, for example, oxalic acid.
General action: General action means the absorbed poison affects more than one system of the body, for example, mercury, arsenic, etc.
Toxicity of a poison depends upon its inherent properties such as physiochemical as well as pharmacological properties.
The action of poisons mainly depends upon the following factors discussed below:
Forms of poison: There are three forms of poison:
Physical form: Gaseous/volatile/vaporous forms of poisons act faster than liquid poisons as they are quickly absorbed. Similarly, liquid poisons act faster than solid poisons.
Gaseous or volatile > liquid > solid.
For solid poisons, powdered poisons act quickly than the lumps. For example, there are certain seeds that escape the gastrointestinal tract as they are solid, but when crushed, they can be fatal.
For solids: powdered > lumps
Chemical form: Few substances like mercury or arsenic are not poisonous as they are insoluble and cannot be absorbed when they are in combination with other substances like mercuric chloride, arsenic oxide, etc.
In other cases, the action is vice versa. For example, there are some substances that become inert in combination with silver nitrate and hydrochloric acid and are deadly and poisonous when present in pure forms.
Mechanical combination: The effect of poisons is significantly altered when they are combined with inert substances.
Quantity: Large doses of toxin cause much lethal effect. But this statement is not always true. For example, sometimes when a toxin is taken in very large amount, the body produces a mechanism against it such as vomiting, and thus the intensity of the toxin is reduced.
Concentration: The absorption speed of poison is dependent on concentration; thus poison of higher concentration is fatal. However, there are still some exceptions. For example, a dilute oxalic acid is less corrosive, but the absorption rate is high and so it is more dangerous.
Methods of administration: It has a unique role in the process of absorption. It is fastest through inhalation and then through injection as compared to the oral mode.
Condition of the body: Different persons react differently when exposed to a poison. It is because the condition of our body is also responsible for the increase or decrease of the effect of a poison on the body:
Age: Children and older people are more affected than an adult by the same quantity of toxin.
Sleep: The body functions are slower during sleep; thus toxin circulation in the body is also slower.
Health: Healthy persons can tolerate a toxin better than a weak or ill person.
Dosage: The effect of the poison depends upon its dosage. It is said that the dose determines whether a substance is a poison or remedy. A substance is usually considered a poison after a certain fixed quantity. Although this quantity is not fixed for all people, it is considered according to the average effect on the population. There are two considerable effects of poison on the body of a person; these are the subtle long-term chronic toxicity and immediate fatality.
Some poisons are lethal in microquantities, while others can affect in large doses. The significance of a dose can be understood by taking an example of a metal essential in the food, for example, iron, copper, manganese, zinc, etc.; if its dose is higher than the body requires, it can be lethal.
Effective dose (ED): The effective dose is the quantity of a substance at which it shows its effect in the population. In most cases, ED50 is measured as a dose which induces a response in half of the targeted population.
Lethal dose: The lethal dose (LD) 50 is the amount of drug which is expected to cause death of 50% population.
Hypersensitivity: It is basically the type of reaction initiated by the body against any other substances. Sometimes, it could be related to allergy. There is an assumption that hypersensitivity does not depend on wrong doses. Every person who is hypersensitive to a particular substance has a dose related that defines the quantity required to cause hypersensitivity to that person. The allergic response is actually a toxic response and can be sometimes fatal.
Idiosyncrasy: It is defined as a reaction produced by the body to a chemical genetically. It is a type of person that affects only those people who are genetically sensitized to that particular chemical or substance but will show no effect on others. In such cases, the person experiences discomfort for several hours or if the dose is high can be fatal also. For example- peanut allergy in some people.
Tolerance: It is the capability of a person to not produce any effect against a chemical that usually causes reaction to normal persons. It is a state of reduced or no reaction to a chemical. There are basically two types of mechanism that induces tolerance. First is when the toxin reaches the effective site, its quantity is very less. This is called dispositional tolerance. The second is because the tissues show reduced response to the toxin.
Tolerance can also be achieved if a drug is taken in a small quantity on a regular basis. This can be explained by taking the example of alcohol. When any human consume alcohol for the first time, he/she will show an effect even when the quantity is small, but eventually the effect will decrease and the person can tolerate a large amount also.
Individual susceptibility: It is defined as the different kinds of responses produced by different individuals to a particular harmful compound. It can be due to occupational or environmental factors and exposures. It is determined by complex genetic factors. Its effect depends upon the intensity of exposure. There is a gene uniqueness that varies from person to person; thus the same amount of exposure can show no effect in one individual, cause illness to other individual, and also could be fatal to someone as well.
The route of administration is the path through which a drug, toxin, or poison is taken or administered into the body of a person which is distinguished by the location where any drug is applied. It is mostly classified on the basis of its target:
Topical—which has a local effect
Enteral—which has a wide effect, i.e., affect the whole system
Parental—which follows a systemic action
Poisons are given or taken so that death can occur at once by shock due to stoppage of body’s vital systems. Drug addicts take drugs through inhalation or injection.
Route of administration plays a very important role in determination of death by poison as time in which death occurs are fastest in inhaled poisons, relatively slow in injected and lastly when ingested orally.
Some important features that are considered during the administration of poisons and can make a poison fatal are:
Rate of dissolution of the poison that depends upon the physical form of the poison, i.e., gaseous, vapors, liquid, solid, etc.
The surface area affected at the site of administration of the poison
The circulation rate of blood in that route
The solubility of the poison, i.e., lipid soluble or water soluble
The concentration of the poison
The time required by the poison to be absorbed completely from the site of administration
Routes of administration can be classified into two categories:
Enteral routes/gastrointestinal routes.
Parenteral routes.
Enteral routes: When the drug is administered through the gastrointestinal tract, it is defined as an enteral route. It has both oral and rectal routes. It also includes sublingual and sublabial routes. It is comparatively a slower mode of action for absorption of drugs:
Oral route: Generally absorption takes place in the tongue and the gums of the oral passage. The pH of the buccal cavity and mouth ranges from 4 to 5. Sublingual and supralingual routes have a significant role in absorption. The sublingual absorption is faster as the toxin is transformed directly to the heart, but it takes more time.
Rectal route: Administration of drugs can be done through anus which directly absorbed in bloodstream through membrane of mucous. This administration can cause the burning of tissues or bleeding in rectum as the area is very sensitive.
Parental route: It includes all the other routes that does not involve the gastrointestinal tract. It has a systemic effect on the body. It has the following categories of administration:
Intradermal: Here, the administration of drugs takes place from surface of skin. This type of poisoning is mostly found in chronic poisoning cases.
Intravenous: It is one of the fastest modes of drug administration as the injection is directly taken and the drug is transferred directly into the veins and thus is directly circulated into the blood quickly. Immediate death might be caused by this type of drug.
Intraosseous: It involves an administration of a drug directly into the bone marrow. This mode is actually used for administration of drugs for medical purposes.
Intra-arterial: It involves an administration of a drug into the artery directly through injection. It is a fast mode of administration.
Intramuscular: In this mode, the drug or poison is administered into the muscle of the thigh, upper arm, or buttock. The time required in this mode is greater than other parental modes.
Subcutaneous: In this mode, the drug is injected into the layer beneath the skin, i.e., the subcutaneous layer. The drug then goes to the small blood vessels and then to the bloodstream. This mode is used for mostly those protein drugs that would be destroyed if administered through the gastrointestinal tract.
Inhalation: In this mode, the nose is the primary path. Because of the presence of mucous membrane, the nasal aperture is very absorptive. The microparticles of poisons are easily absorbed and transported quickly to the lungs. From the lungs, they are circulated into the blood.
Poisons are classified into two ways:
Based on their action on the body.
Based on their physical and chemical properties [1].
Classification based upon the effect of poison on the body:
Corrosive: The poisons burn the tissues or organs when they come in contact with them, e.g.:
Strong acids such as H2SO4, HNO3, HCL, etc.
Strong alkalis such as hydroxides of Na, K, NH4, etc.
Irritants: The poisons irritate the tissues or organs when they come in contact with them [3]:
Inorganic:
Nonmetallic phosphorous, chlorine, bromine, iodine, etc.
Metallic salts of arsenic, antimony, mercury, copper, lead, zinc, etc.
Organic:
Vegetable—castor oil, madar, croton oil, etc.
Animals—snake venom, cantharides, insect bites, etc.
Mechanical—glass powder, needles, diamond dust, hair, etc.
Neurotics: Poisons affect the nervous system and the brain [3]:
Cerebral:
Narcotic—opium and its alkaloids
Inebriant (depressant)—alcohol, ether, chloroform, and chloral hydrate
Spinal:
Excitant (stimulants)—nux vomica and strychnine
Depressant—gelsemium
Cardiorespiratory:
Cardiac—aconite, digitalis, oleander, and hydrocyanic acid (HCN)
Asphyxiants—carbon monoxide, carbon dioxide, and hydrogen sulfide
Miscellaneous: A number of chemicals having diverse actions on their body are included in this group [4]:
Animal poisons
Curare (an arrow poison)
Poisonous food articles
Industrial poisons—methyl isocyanate (MIC)
Fuels—petroleum and kerosene
Insecticides—endrin, dichlorodiphenyltrichloroethane (DDT), and
naphthalene
Radioactive substances
Classification of poisons based upon their properties:
Inorganic poisons
Metallic poisons:
Arsenic: It has been the most known and exclusively used throughout
the ages to poison men and animals [1].
It is a white tasteless powder and a pinch of the poisons can kill two adult persons.
Arsenic for homicidal purposes is mixed with various food articles, e.g., cooked food, milk, tea, liquors, or medicines.
Arsenic in a metal form is not poisonous; its oxides are highly poisonous. It is extensively used in insecticides, etc. [5].
Mercury: Chloride and nitrites of mercury are highly poisonous. They
are used in chemical industry and as fungicides.
Lead: Most of its compounds are poisonous. This is a slow poison,
e.g., Sindoor adulterated with red lead oxide.
Copper: Its salts are used in electroplating; copper sulfate is a poison.
Thallium: Thallium salt is used as rat poison [6].
Antimony: Its effect is like that of arsenic.
Nonmetallic poisons:
Cyanides: Cyanides of potassium and sodium are extremely
poisonous, even in small quantities. They react with the acid of
gastric juices in the stomach to form hydrocyanic acid, which
paralyzes the respiratory center in the brain resulting in death due to
respiratory failure [4].
Yellow phosphorus: In olden days it was used in match industry and
several times proved highly poisonous.
Iodine: Only elemental iodine in high quantity is poisonous.
Strong acids and alkalis: These are highly poisonous with corrosive
effects, e.g., sulfuric acid, nitric acid, sodium, potassium
hydroxides, etc.
Gases: Phosphine gas kills rats when used on the rat holes and is
poisonous for infants. MIC killed over 2000 persons and invalidated
several others in a gas leak tragedy in Bhopal in 1984. Some other
poisonous gases are HCN, carbon monoxide, hydrogen sulfide,
arsine, etc. [3].
Organic poisons
Volatile poisons:
Ethyl alcohol: It is poisonous if taken in excess.
Other alcohols: Methyl alcohol and isopropyl alcohol are poisonous.
Methanol, used in polish and chemical industries, is used in illicit
liquor, and its intake causes paralysis, blindness, and death [3].
Phenol: Phenol or carbolic acid could be poisonous. It is mostly used
as a disinfectant [6].
Miscellaneous substances: Various industrial chemicals like
chlorinated hydrocarbons, benzene, chloral hydrate, etc. are
poisonous. In several cases of poisoning, chloral hydrate could be
used in illicit liquors.
Nonvolatile substances:
Alkaloids: Several narcotics and vegetable poisons contain alkaloids,
e.g., strychnine, morphine, cocaine, nicotine, etc.
Barbiturates: These drugs are synthetic and induce sleep [1].
Glycosides: These drugs can cause cardiac arrest and could be fatal
such as aconite, oleander digitalis, etc.
Insecticides and pesticides
Poisoning: It is known as the injurious effect caused by the action of a poison or a detrimental chemical substance. It leads to the development of adverse reaction toward the harmful chemicals or drugs. It is basically differentiated in three categories: suicidal, homicidal, and accidental. Cattle poisoning is the poisoning related to animals. Accidental poisoning is caused by negligence and carelessness. Homicidal poisoning includes the killing of a person due to the poison. Suicidal poisoning refers to the use of toxic chemicals in order to kill oneself.
Corrosive poisoning: It is caused by poisons such as acids and alkalis. They produce a corrosive action on the human body by causing ulcers and acute inflammation.
Metallic poisoning: Metals such as arsenic, mercury, lead, etc., when ingested, cause a deleterious effect. This is known as metallic poisoning.
Plant poison: The study of plant poisons is known as phytotoxicology. Plant poisons, or phytotoxins, comprise a vast range of biologically active chemical substances, such as alkaloids, polypeptides, amines, glycosides, oxalates, resins, toxalbumins, etc.
An alcohol is a drink that contains ethanol. Ethanol is made by fermentation of grains, fruits, and some resources of sugar. Chemically, it is a group of compounds whose saturated carbon chain has a “-OH” group. Alcohol is also a depressant, and in low dose, it can reduce tension, cause euphoria, and improve sociability, but in high dose it can cause stupor, drunkenness, and even death. Regular alcohol intake can cause cancer, alcoholism, dependency, etc. 33% of the total people in the world consumes alcohol. Drinks containing alcohol are broadly classified into three classes, i.e., beer, spirit, and wine, whose alcohol content varies between 3% and 50%. When diluted, alcohol has nearly sweet taste, but when concentrated it gives a burning sensation. 90% of the absorbed alcohol is metabolized by the liver and broken down into less toxic metabolites. Alcohol acts on the central nervous system (CNS) as a depressant on the cells of the cerebral cortex. Its adverse effects like a decrease in cognitive and psychomotive skills are well documented. Alcohol percentage (ABV) differs from one brand to another, for example, beers contain 5%, wines contain typically 13.5%, fortified wines contain 15–22%, spirits contain 30–40%, fruit juice contains less than 0.1%, and cider/wine coolers contain 4–8% ABV [1].
The goal of blood alcohol test is to check the concentration of alcohol in the body. This test result is known as blood alcohol concentration (BAC) which indicates alcohol % in the blood. It is directly proportional to the alcohol in the body, and alcohol hinders with people’s decision, control on them and other characteristics [3]. This test can tell the presence of alcohol in blood for 12 hours [4]. Blood quickly absorbs alcohol and is measured within minutes of consuming alcoholic drink. The highest level of BAC result can be reached within an hour of consuming alcohol. Intake of food can vary the result. Liver breaks down almost 90% of alcohol and rest are given out from exhalation and urine [5].
In case of deaths due to alcoholic intoxication, the viscera is collected and preserved in saturated saline. Preservation of sample is very important as if wrongly preserved it can ruin the examination. Generally, urine and blood are taken as samples.
A sterile needle must be cleaned up by the swab of a nonalcoholic disinfectant like aqueous mercuric chloride and aqueous benzalkonium chloride (Zephiran) before the suspect’s skin is punctured with it. The use of an alcoholic disinfectant either may give false-positive results or may contribute to falsely high alcohol contents of blood. About 5–10 ml of the sample (blood) is taken in a test tube; an anticoagulant such as potassium oxide and EDTA and a preservative such as NaF are added and stored in the refrigerator at 40°C. The anticoagulant will prevent blood from clotting, and the preservative will inhibit the presence of microorganisms. The urine sample is also collected in the usual manner and preserved with 30 mg of phenyl mercuric nitrate for every 10 ml of urine [6].
Ethyl alcohol is isolated from biological materials by acid distillation. Viscera, vomit, stomach contents, and other materials should be analyzed separately. About 50–100 g of the viscera is taken and is finally minced by thin gruel and adding water (3–5 times) and sulfuric acid. It is passed to steam distillation which is generally heating it on the water bath. The condenser and the receiving flask should be well cooled with ice especially in the hot season, the outlet of the condenser being dipped in little water or NaOH solution. Some pieces of pumice stone are stored in the flask to avoid bumping. It is better to collect the distillate in 4–5 fractions, out of which the first one should not exceed 20 ml and the remaining fractions should be 50 ml each. The distillate contains alcohol and other volatile acids, etc. [6].
There are some tests which show the presence of ethyl alcohol in the exhibits.
Also known as triiodomethane reaction, it is used in the detection of CH3CH (OH) which is present in alcohol. There are mainly two types of different mixtures used in this reaction which are mainly chemically equivalent. A pale yellow precipitate occurs if the result is positive [6].
In the above structure, “R” can be hydrogen or alkyl group or any other hydrocarbon group. In case when R denotes hydrogen, then the compound we have the possibility to find is primary alcohol ethanol. Ethanol is the only alcohol that gives an iodoform reaction. In case R is any hydrocarbon group, then it gives secondary alcohol groups. Tertiary alcohol is not able to contain R group because of the absence of hydrogen atom [7].
In 1 ml of distillate, a few drops of 10% NaOH are added dropwise till the solution becomes brown and warmed for a few minutes. A few drops of iodoform solution are added to change the color to yellow. The mixture has to be again heated on low flame/water bath; a yellow-colored precipitate is formed on standing. The precipitate has to be observed under a microscope. Characteristic hexagonal crystals of iodoform are seen which usually shows the presence of ethanol, acetaldehyde, isopropanol which on standing for long time breaks into flower like structure. This test initially involves oxidation followed by substitution and hydrolysis [6].
Add 1 gm of molybdic acid in 25 ml of a concentrated sulfuric acid which has the reagent. Mix 2 ml of this reagent when hot and with 2 ml of distillate. At the junction of both liquids, a ring will be formed which is deep blue in color. On shaking, the whole mixture will become deep blue which is due to ethyl alcohol. This test is very sensitive and it gives a negative result with acetone, acetaldehyde, and dilute solution of methyl alcohol. Only the strong solution of methyl alcohol gives a light blue color after several minutes [6].
Mix two drops of benzoyl chloride with 2 ml of the distillate. Add 10% of sodium hydroxide drop by drop till the solution becomes alkaline. By providing heat the irritating smell of benzoyl chloride will be replaced by sweet fruity odor of ethyl benzoate. Methyl alcohol gives this test also but not the iodoform test [6].
In case of drunkenness, alcohol detection in the body is very important. Observing behavioral abnormalities of the suspect is the best method, but analyzing the breath, blood, and urine is the only way of confirming it. The analysis of breath alcohol can be performed on the spot with the help of breath-analyzer instruments like Alco-Sensor, Breathalyzer, etc. However, the alcohol content of the blood could be determined by using the modified version of the Kozelka and Hine/Cavett method [6].
In recent years, several methods in determining the alcohol in body fluids are described. Kent-Jones and Taylor reported the results of an investigation into the merits of two methods—the micro Cavett and that of Kozelka and Hine. The micro Cavett method is more accurate, but it suffered from serious inconsistencies in reproducibility, but the Kozelka and Hine method is less accurate and more time-consuming but gives good reproducibility.
Nickolls modified the micro Cavett method which appears to give a more accurate result in comparison with the unmodified method. The simplicity of this procedure increases its use for routine work in laboratory [8].
The principle behind this method is the oxidation of alcohol, which is easy with acetic acid in the presence of oxidizing agents such as sulfuric acid and potassium dichromate. Reduction of each mL of N/20 potassium dichromate solution takes place that is equivalent to 0.575 mg of alcohol [6].
This formula is used to estimate the amount in which alcohol is present in the body.
a. For blood analysis
Here, a = Total amount of alcohol absorbed in the body; p = Weight of the person; c = Concentration of alcohol in the blood; r = Constant which is 0.5 in women and 0.68 in men
b. In urine analysis.
Here, a = Total alcohol content present in the body; p = Total weight of the person; q = Alcohol concentration in the urine; r = Constant, namely, 0.68 for men and 0.5 in women [6].
There are several methods in determining ethanol in the blood, urine, and serum. One of the most important methods is gas chromatography (GC). The sample is injected in a heating chamber, and due to its high temperature, alcohol converts in vapors which are carried by inert carrier gas such as nitrogen through the column which is packed by an adsorbent material. Separation of different types of components depends on their different affinity, i.e., partition coefficient toward adsorbent phase which is stationary and later detected as shown in the figure below. A chromatogram so obtained helps in qualitative as well as quantitative analysis [6].
Various components of gas chromatography are [9]:
Carrier gas
Flow regulator
Injector
Column
Stationary phase
Oven
Detectors
Display device
The area covered by the peak represents the amount and position of a particular type of compound [6].
Operating conditions [10]:
Column: Porapak polymer bead 80–100 mesh or its equivalent, which can separate or resolve the ethanol.
Column temperature: 1600°C.
Carrier gas: Nitrogen.
Rate of gas flow: 50 ml/minute.
Detector: Flame ionization detector.
Alternative operating conditions:
Column: 0.3% Carbowax 20 M on 80–100 mesh Carbopak C, 2 m × 2 mm ID or its equivalent.
Column temperature: 350°C for 2 minutes and then programmed at 50°C per minute to 1750°C and hold for at least 8 minutes.
Carrier gas: Nitrogen at 30 ml/minute [6].
The purpose of this chapter is to discuss the mode of action and function of poisons once they reached in the human body. The impacts of poisons are severe and even cause death if not treated properly.
Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.
",metaTitle:"IntechOpen Women in Science Program",metaDescription:"Supporting women in scientific research and encouraging more women to pursue careers in STEM fields has been an issue on the global agenda for many years. But there is still much to be done. And IntechOpen wants to help.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\\n\\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\\n\\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\\n\\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\\n\\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\\n\\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\\n\\nAdvantages of Publishing with IntechOpen
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, we’re laying the foundations for the future by publishing the best research by women in STEM – Open Access and available to all. Our Women in Science program already includes six books in progress by award-winning women scientists on topics ranging from physics to robotics, medicine to environmental science. Our editors come from all over the globe and include L’Oreal–UNESCO For Women in Science award-winners and National Science Foundation and European Commission grant recipients.
\n\nWe aim to publish 100 books in our Women in Science program over the next three years. We are looking for books written, edited, or co-edited by women. Contributing chapters by men are welcome. As always, the quality of the research we publish is paramount.
\n\nAll project proposals go through a two-stage peer review process and are selected based on the following criteria:
\n\nPlus, we want this project to have an impact beyond scientific circles. We will publicize the research in the Women in Science program for a wider general audience through:
\n\nInterested? If you have an idea for an edited volume or a monograph, we’d love to hear from you! Contact Ana Pantar at book.idea@intechopen.com.
\n\n“My scientific path has given me the opportunity to work with colleagues all over Europe, including Germany, France, and Norway. Editing the book Graph Theory: Advanced Algorithms and Applications with IntechOpen emphasized for me the importance of providing valuable, Open Access literature to our scientific colleagues around the world. So I am highly enthusiastic about the Women in Science book collection, which will highlight the outstanding accomplishments of women scientists and encourage others to walk the challenging path to becoming a recognized scientist." Beril Sirmacek, TU Delft, The Netherlands
\n\n\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10652",title:"Visual Object Tracking",subtitle:null,isOpenForSubmission:!0,hash:"96f3ee634a7ba49fa195e50475412af4",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10653",title:"Optimization Algorithms",subtitle:null,isOpenForSubmission:!0,hash:"753812dbb9a6f6b57645431063114f6c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10653.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10655",title:"Motion Planning",subtitle:null,isOpenForSubmission:!0,hash:"809b5e290cf2dade9e7e0a5ae0ef3df0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10655.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10673",title:"The Psychology of Trust",subtitle:null,isOpenForSubmission:!0,hash:"1f6cac41fd145f718ac0866264499cc8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10673.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10684",title:"Biorefineries",subtitle:null,isOpenForSubmission:!0,hash:"23962c6b77348bcbf247c673d34562f6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10684.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:187},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1175",title:"Neuroplasticity",slug:"neuroplasticity",parent:{title:"Neurobiology",slug:"life-sciences-neuroscience-neurobiology"},numberOfBooks:3,numberOfAuthorsAndEditors:70,numberOfWosCitations:20,numberOfCrossrefCitations:14,numberOfDimensionsCitations:43,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"neuroplasticity",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6250",title:"The Hippocampus",subtitle:"Plasticity and Functions",isOpenForSubmission:!1,hash:"78f1e57726307f003f39510c175c3102",slug:"the-hippocampus-plasticity-and-functions",bookSignature:"Ales Stuchlik",coverURL:"https://cdn.intechopen.com/books/images_new/6250.jpg",editedByType:"Edited by",editors:[{id:"207908",title:"Dr.",name:"Ales",middleName:null,surname:"Stuchlik",slug:"ales-stuchlik",fullName:"Ales Stuchlik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6092",title:"Neuroplasticity",subtitle:"Insights of Neural Reorganization",isOpenForSubmission:!1,hash:"1003fc63680b1c04e9135f3dea18a8c3",slug:"neuroplasticity-insights-of-neural-reorganization",bookSignature:"Victor V. Chaban",coverURL:"https://cdn.intechopen.com/books/images_new/6092.jpg",editedByType:"Edited by",editors:[{id:"83427",title:"Prof.",name:"Victor",middleName:null,surname:"Chaban",slug:"victor-chaban",fullName:"Victor Chaban"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5521",title:"Synaptic Plasticity",subtitle:null,isOpenForSubmission:!1,hash:"9eea3c7f926cd466ddd14ab777b663d8",slug:"synaptic-plasticity",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/5521.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"59437",doi:"10.5772/intechopen.74318",title:"Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations",slug:"music-and-brain-plasticity-how-sounds-trigger-neurogenerative-adaptations",totalDownloads:1392,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Mark Reybrouck, Peter Vuust and Elvira Brattico",authors:[{id:"196698",title:"Prof.",name:"Mark",middleName:null,surname:"Reybrouck",slug:"mark-reybrouck",fullName:"Mark Reybrouck"},{id:"209976",title:"Prof.",name:"Elvira",middleName:null,surname:"Brattico",slug:"elvira-brattico",fullName:"Elvira Brattico"},{id:"209977",title:"Prof.",name:"Peter",middleName:null,surname:"Vuust",slug:"peter-vuust",fullName:"Peter Vuust"}]},{id:"57827",doi:"10.5772/intechopen.71165",title:"A Role for the Longitudinal Axis of the Hippocampus in Multiscale Representations of Large and Complex Spatial Environments and Mnemonic Hierarchies",slug:"a-role-for-the-longitudinal-axis-of-the-hippocampus-in-multiscale-representations-of-large-and-compl",totalDownloads:734,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Bruce Harland, Marcos Contreras and Jean-Marc Fellous",authors:[{id:"210681",title:"Dr.",name:"Bruce",middleName:null,surname:"Harland",slug:"bruce-harland",fullName:"Bruce Harland"},{id:"210682",title:"Dr.",name:"Marco",middleName:null,surname:"Contreras",slug:"marco-contreras",fullName:"Marco Contreras"},{id:"210683",title:"Prof.",name:"Jean-Marc",middleName:null,surname:"Fellous",slug:"jean-marc-fellous",fullName:"Jean-Marc Fellous"}]},{id:"54143",doi:"10.5772/67127",title:"Plasticity of Dendritic Spines. Not Only for Cognitive Processes",slug:"plasticity-of-dendritic-spines-not-only-for-cognitive-processes",totalDownloads:974,totalCrossrefCites:0,totalDimensionsCites:6,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Ignacio González-Burgos, Dulce A. Velázquez-Zamora, David\nGonzález-Tapia, Nallely Vázquez-Hernández and Néstor I. Martínez-\nTorres",authors:[{id:"190521",title:"Dr.",name:"Ignacio",middleName:null,surname:"Gonzalez-Burgos",slug:"ignacio-gonzalez-burgos",fullName:"Ignacio Gonzalez-Burgos"},{id:"196267",title:"Dr.",name:"Dulce A",middleName:null,surname:"Velázquez-Zamora",slug:"dulce-a-velazquez-zamora",fullName:"Dulce A Velázquez-Zamora"},{id:"196269",title:"MSc.",name:"David",middleName:null,surname:"González-Tapia",slug:"david-gonzalez-tapia",fullName:"David González-Tapia"},{id:"196270",title:"MSc.",name:"Nallely",middleName:null,surname:"Vázquez-Hernández",slug:"nallely-vazquez-hernandez",fullName:"Nallely Vázquez-Hernández"},{id:"196271",title:"MSc.",name:"Nestor I",middleName:null,surname:"Martínez-Torres",slug:"nestor-i-martinez-torres",fullName:"Nestor I Martínez-Torres"}]}],mostDownloadedChaptersLast30Days:[{id:"59437",title:"Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations",slug:"music-and-brain-plasticity-how-sounds-trigger-neurogenerative-adaptations",totalDownloads:1390,totalCrossrefCites:2,totalDimensionsCites:6,book:{slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Mark Reybrouck, Peter Vuust and Elvira Brattico",authors:[{id:"196698",title:"Prof.",name:"Mark",middleName:null,surname:"Reybrouck",slug:"mark-reybrouck",fullName:"Mark Reybrouck"},{id:"209976",title:"Prof.",name:"Elvira",middleName:null,surname:"Brattico",slug:"elvira-brattico",fullName:"Elvira Brattico"},{id:"209977",title:"Prof.",name:"Peter",middleName:null,surname:"Vuust",slug:"peter-vuust",fullName:"Peter Vuust"}]},{id:"57312",title:"The Hippocampus as a Neural Link between Negative Affect and Vulnerability for Psychostimulant Relapse",slug:"the-hippocampus-as-a-neural-link-between-negative-affect-and-vulnerability-for-psychostimulant-relap",totalDownloads:944,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Jeffrey L. Barr, Brenna Bray and Gina L. Forster",authors:[{id:"145620",title:"Dr.",name:"Gina",middleName:null,surname:"Forster",slug:"gina-forster",fullName:"Gina Forster"},{id:"219827",title:"Dr.",name:"Jeffrey",middleName:null,surname:"Barr",slug:"jeffrey-barr",fullName:"Jeffrey Barr"},{id:"219828",title:"BSc.",name:"Brenna",middleName:null,surname:"Bray",slug:"brenna-bray",fullName:"Brenna Bray"}]},{id:"52720",title:"The Ghrelin Receptor Regulates Dendritic Spines and the NMDA Receptor–Mediated Synaptic Transmission in the Hippocampus",slug:"the-ghrelin-receptor-regulates-dendritic-spines-and-the-nmda-receptor-mediated-synaptic-transmission",totalDownloads:932,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Masako Isokawa",authors:[{id:"191467",title:"Prof.",name:"Masako",middleName:null,surname:"Isokawa",slug:"masako-isokawa",fullName:"Masako Isokawa"}]},{id:"54566",title:"Introductory Chapter: Mechanisms and Function of Synaptic Plasticity",slug:"introductory-chapter-mechanisms-and-function-of-synaptic-plasticity",totalDownloads:1652,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Thomas Heinbockel",authors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}]},{id:"58530",title:"Sleep Disorders in Multiple Sclerosis",slug:"sleep-disorders-in-multiple-sclerosis",totalDownloads:580,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Montserrat González Platas and María Yaiza Pérez Martin",authors:[{id:"202099",title:"Dr.",name:"Montserrat",middleName:null,surname:"Gonzalez Platas",slug:"montserrat-gonzalez-platas",fullName:"Montserrat Gonzalez Platas"},{id:"231355",title:"Dr.",name:"Maria Yaiza",middleName:null,surname:"Perez Martín",slug:"maria-yaiza-perez-martin",fullName:"Maria Yaiza Perez Martín"}]},{id:"54067",title:"Neuroplasticity in Bipolar Disorder: Insights from Neuroimaging",slug:"neuroplasticity-in-bipolar-disorder-insights-from-neuroimaging",totalDownloads:1056,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Marlos Vasconcelos Rocha, Fabiana Nery, Amanda Galvão-de-\nAlmeida, Lucas de Castro Quarantini and Ângela Miranda-Scippa",authors:[{id:"192139",title:"Ph.D.",name:"Marlos",middleName:"Vasconcelos",surname:"Rocha",slug:"marlos-rocha",fullName:"Marlos Rocha"},{id:"192876",title:"Dr.",name:"Fabiana",middleName:null,surname:"Nery-Fernandes",slug:"fabiana-nery-fernandes",fullName:"Fabiana Nery-Fernandes"},{id:"192877",title:"Prof.",name:"Ângela",middleName:null,surname:"Miranda-Scippa",slug:"angela-miranda-scippa",fullName:"Ângela Miranda-Scippa"},{id:"192878",title:"Prof.",name:"Lucas",middleName:null,surname:"De Castro Quarantini",slug:"lucas-de-castro-quarantini",fullName:"Lucas De Castro Quarantini"},{id:"192879",title:"Dr.",name:"Giovanna",middleName:null,surname:"Ladeia-Rocha",slug:"giovanna-ladeia-rocha",fullName:"Giovanna Ladeia-Rocha"},{id:"192880",title:"Prof.",name:"Amanda",middleName:null,surname:"Galvão-de Almeida",slug:"amanda-galvao-de-almeida",fullName:"Amanda Galvão-de Almeida"}]},{id:"55453",title:"Synaptic Plasticity by Afferent Electrical Stimulation",slug:"synaptic-plasticity-by-afferent-electrical-stimulation",totalDownloads:1038,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Stefan Golaszewski",authors:[{id:"54888",title:"Prof.",name:"Stefan",middleName:null,surname:"Golaszewski",slug:"stefan-golaszewski",fullName:"Stefan Golaszewski"}]},{id:"53848",title:"Plasticity in Damaged Multisensory Networks",slug:"plasticity-in-damaged-multisensory-networks",totalDownloads:988,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Karolina A Bearss and Joseph FX DeSouza",authors:[{id:"192667",title:"Prof.",name:"Joseph",middleName:null,surname:"DeSouza",slug:"joseph-desouza",fullName:"Joseph DeSouza"},{id:"192780",title:"Ph.D.",name:"Karolina",middleName:"Anna",surname:"Bearss",slug:"karolina-bearss",fullName:"Karolina Bearss"}]},{id:"53927",title:"GABAergic Synapse Dysfunction and Repair in Temporal Lobe Epilepsy",slug:"gabaergic-synapse-dysfunction-and-repair-in-temporal-lobe-epilepsy",totalDownloads:1139,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"synaptic-plasticity",title:"Synaptic Plasticity",fullTitle:"Synaptic Plasticity"},signatures:"Meghan A. Van Zandt and Janice R. Naegele",authors:[{id:"154904",title:"Prof.",name:"Janice",middleName:null,surname:"Naegele",slug:"janice-naegele",fullName:"Janice Naegele"},{id:"194530",title:"Ph.D. Student",name:"Meghan",middleName:null,surname:"Van Zandt",slug:"meghan-van-zandt",fullName:"Meghan Van Zandt"}]},{id:"57827",title:"A Role for the Longitudinal Axis of the Hippocampus in Multiscale Representations of Large and Complex Spatial Environments and Mnemonic Hierarchies",slug:"a-role-for-the-longitudinal-axis-of-the-hippocampus-in-multiscale-representations-of-large-and-compl",totalDownloads:732,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Bruce Harland, Marcos Contreras and Jean-Marc Fellous",authors:[{id:"210681",title:"Dr.",name:"Bruce",middleName:null,surname:"Harland",slug:"bruce-harland",fullName:"Bruce Harland"},{id:"210682",title:"Dr.",name:"Marco",middleName:null,surname:"Contreras",slug:"marco-contreras",fullName:"Marco Contreras"},{id:"210683",title:"Prof.",name:"Jean-Marc",middleName:null,surname:"Fellous",slug:"jean-marc-fellous",fullName:"Jean-Marc Fellous"}]}],onlineFirstChaptersFilter:{topicSlug:"neuroplasticity",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/46814/luiz-neto",hash:"",query:{},params:{id:"46814",slug:"luiz-neto"},fullPath:"/profiles/46814/luiz-neto",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()