Type of plastics [plastic Europe – Online].
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6132",leadTitle:null,fullTitle:"Advanced Casting Technologies",title:"Advanced Casting Technologies",subtitle:null,reviewType:"peer-reviewed",abstract:"Major casting processing advancements have been made in experimental and simulation areas. Newly developed advanced casting technologies allow foundry researchers to explore detailed phenomena associated with new casting process parameters helping to produce defect-free castings with good quality. Moreover, increased computational power allows foundry technologists to simulate advanced casting processes to reduce casting defects. In view of rapid expansion of knowledge and capability in the exciting field of casting technology, it is possible to develop new casting techniques. This book is intended to discuss many casting processing technologies. It is devoted to advanced casting processing technologies like ductile casting production and thermal analysis, casting of metal matrix composites by vortex stir casting technique, aluminum DC casting, evaporative casting process, and so on. This book entitled Advanced Casting Technologies has been organized into seven chapters and categorized into four sections. Section 1 discusses the production of ductile iron casting and thermal analysis. Section 2 depicts aluminum casting. Section 3 describes the casting manufacturing aspects of functionally graded materials and evaporative casting process. Section 4 explains about the vortex stir casting technique to process metal matrix composite castings. All the chapters discussed in detail the processing steps, process parameters involved in the individual casting technique, and also its applications. The goal of the book is to provide details on the recent casting technologies.",isbn:"978-1-78923-033-8",printIsbn:"978-1-78923-032-1",pdfIsbn:"978-1-83881-297-3",doi:"10.5772/intechopen.68254",price:119,priceEur:129,priceUsd:155,slug:"advanced-casting-technologies",numberOfPages:136,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"f2da423c1b74b321e5302adaaf888495",bookSignature:"T.R. Vijayaram",publishedDate:"May 2nd 2018",coverURL:"https://cdn.intechopen.com/books/images_new/6132.jpg",numberOfDownloads:9431,numberOfWosCitations:31,numberOfCrossrefCitations:32,numberOfCrossrefCitationsByBook:1,numberOfDimensionsCitations:48,numberOfDimensionsCitationsByBook:1,hasAltmetrics:1,numberOfTotalCitations:111,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 28th 2017",dateEndSecondStepPublish:"April 18th 2017",dateEndThirdStepPublish:"November 19th 2017",dateEndFourthStepPublish:"December 19th 2017",dateEndFifthStepPublish:"February 19th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",middleName:"Raghavan",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram",profilePictureURL:"https://mts.intechopen.com/storage/users/139338/images/system/139338.jpg",biography:"Dr. T. R. Vijayaram is a Senior Professor in the Department of Mechanical Engineering at the School of Mechanical Engineering, BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH (BIHER), Chennai, India. He is an expert in the fields of materials and metallurgical, manufacturing, and mechanical engineering. He received his B.E. degree in Mechanical Engineering from Madurai Kamaraj University, followed by an M.E. degree in Industrial Metallurgy from PSG College of Technology, Bharathiyar University. He obtained his Ph.D. research degree in Mechanical Engineering from Universiti Putra Malaysia, Malaysia. Afterward, he worked as a rector researcher in metallurgy at DCCI, Genoa University, Italy. His passion for academics, research, and education led him to obtain an MBA in Educational Management and an MA in Sociology from the University of Madras. He is also a chartered engineer (India) and a member of several professional and scientific bodies in India and abroad like ISTE (Life Member), IEI, IIF, and SAE (USA). He is also a Fellow of the Institution of Engineers, FIE, India. Recently, Dr. T. R. Vijayaram received the Distinguished Scientist Award in Metallurgical and Materials Engineering for his outstanding contribution to metallurgy. He has published more than 210 papers in international and national journals, conferences, broadsheets, and magazines. His areas of research include materials engineering, metallurgical engineering, manufacturing engineering, and mechanical engineering. He is also actively involved in research in the areas of metal matrix composites, polymer matrix composites, foundry technology, ladle metallurgy and molten metal treatment, metal casting solidification and simulation, special casting techniques, squeeze casting technology and computer simulation of casting solidification, new materials and process development (especially aerospace engineering materials), ferrous and non-ferrous metallurgy, powder metallurgy, NDT, materials characterization and mechanical testing of materials, heat treatment of metals and alloys, solidification processing of metals, alloys, and composites, microgravity solidification, die casting, die design, metallography, and microstructure-property correlation. For his work, he obtained one crore Indian Rupees in research funds from international research funding agencies.",institutionString:"Bharath University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"944",title:"Metallurgy",slug:"metals-and-nonmetals-metallurgy"}],chapters:[{id:"57999",title:"Thin Wall Ductile Iron Castings",doi:"10.5772/intechopen.72117",slug:"thin-wall-ductile-iron-castings",totalDownloads:989,totalCrossrefCites:2,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The use of austempered ductile iron (ADI) as an alternative material has increased, and it is predicted that it will reach 300,000 tons by the year of 2020 due to its characteristics especially design flexibility. When the reduction in weight is considered as a parameter for energy saving, ADI is presented as thin wall austempered ductile iron (TWADI). To produce a good quality TWADI, a good quality thin wall ductile iron (TWDI) must be used as a raw material. Good quality TWDI is produced by casting design. This chapter discusses the production of thin wall ductile iron, including its characterisation and defect. The discussion includes the background of thin wall casting (TWC) and TWDI, applying TWC in general casting, the problems in producing TWDI, characterisation of the TWDI and specific defects.",signatures:"Rianti Dewi Sulamet-Ariobimo, Johny Wahyuadi Soedarsono and\nTresna Priyana Soemardi",downloadPdfUrl:"/chapter/pdf-download/57999",previewPdfUrl:"/chapter/pdf-preview/57999",authors:[{id:"208291",title:"Dr.",name:"Rianti",surname:"Sulamet-Ariobimo",slug:"rianti-sulamet-ariobimo",fullName:"Rianti Sulamet-Ariobimo"}],corrections:null},{id:"57825",title:"Thermal Analysis of Ductile Iron Casting",doi:"10.5772/intechopen.72030",slug:"thermal-analysis-of-ductile-iron-casting",totalDownloads:1481,totalCrossrefCites:3,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Pure metals solidify with a solidification front that is very well defined and a clearly delineated solid-liquid interface. Ductile cast iron solidification is characterised by a very thin solidified skin and appearance of different phases. The outer skin is formed being very thin in ductile iron; the expansion occurs due to graphite nucleation into the casting forces to the mould walls. With proper care taken while designing and during melt processing stage, quality ductile iron castings can be produced with minimal risering. With recent developments in sensing and storing instruments, it is now possible to see and measure structural transformations within the solidification in ductile iron castings very precisely. The shape of a cooling curve measured by a thermocouple mounted on a thermal analysis sample cup reflects the solidification process of the melted cast alloy for the given solidification conditions. By analysing particular cooling curve, the solidification start, eutectic arrests, recalescence, amount of undercooling and end of freezing temperature temperatures are generated. The thermal analysis data so generated will be used to study composition, soundness, chill and microstructure by analysis of cooling curve. The cooling rates measured in degrees per second at different stages of solidification sequence will be analysed and correlated with the properties of the castings to be produced from the same melt.",signatures:"Vasudev D. Shinde",downloadPdfUrl:"/chapter/pdf-download/57825",previewPdfUrl:"/chapter/pdf-preview/57825",authors:[{id:"208778",title:"Prof.",name:"Vasudev",surname:"Shinde",slug:"vasudev-shinde",fullName:"Vasudev Shinde"}],corrections:null},{id:"57796",title:"Depicting Aluminium DC Casting by Means of Dimensionless Numbers",doi:"10.5772/intechopen.71893",slug:"depicting-aluminium-dc-casting-by-means-of-dimensionless-numbers",totalDownloads:1079,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"DC casting of aluminium and its alloys is a controlled heat removal solidification process. The rate of heat extraction has strong effects on the microstructure and mechanical properties of the solidified alloy ingots. In view of this strict temperature, control over the ingot as it solidifies should be implemented in order to achieve metal with the best possible properties. In situ direct temperature measurements are complicated; so in this report, the use of dimensionless analysis to predict temperature distributions on the ingots as they are casted is proposed. It is reported that the dimensionless groups that better represent the impact of process variables on the solidification of aluminium and its alloys are the Péclet (Pe) and Biot (Bi) numbers.",signatures:"José C. Méndez, Ricardo R. Ambriz, David Jaramillo and Gabriel\nPlascencia",downloadPdfUrl:"/chapter/pdf-download/57796",previewPdfUrl:"/chapter/pdf-preview/57796",authors:[{id:"46960",title:"Prof.",name:"Gabriel",surname:"Plascencia",slug:"gabriel-plascencia",fullName:"Gabriel Plascencia"},{id:"85573",title:"Dr.",name:"Ricardo Rafael",surname:"Ambriz",slug:"ricardo-rafael-ambriz",fullName:"Ricardo Rafael Ambriz"},{id:"170247",title:"Dr.",name:"David",surname:"Jaramillo",slug:"david-jaramillo",fullName:"David Jaramillo"},{id:"208155",title:"Prof.",name:"Claudio",surname:"Méndez",slug:"claudio-mendez",fullName:"Claudio Méndez"}],corrections:null},{id:"58487",title:"Castability and Characteristics of High Cerium Aluminum Alloys",doi:"10.5772/intechopen.72830",slug:"castability-and-characteristics-of-high-cerium-aluminum-alloys",totalDownloads:968,totalCrossrefCites:6,totalDimensionsCites:12,hasAltmetrics:0,abstract:"This chapter describes the development and the castability of near eutectic aluminum-cerium (Al-Ce) alloy systems. These alloys have good mechanical properties at high temperatures and are very castable. The castability of the binary systems is as good or better than the aluminum-silicon system with some deterioration as additional alloying elements are added. In alloy systems that use cerium in combination with common aluminum alloying elements such as silicon, magnesium, and/or copper, the casting characteristics are generally better than the aluminum-copper system. Alloying with magnesium increases room temperature strength considerably.",signatures:"David Weiss",downloadPdfUrl:"/chapter/pdf-download/58487",previewPdfUrl:"/chapter/pdf-preview/58487",authors:[{id:"206168",title:"Mr.",name:"David",surname:"Weiss",slug:"david-weiss",fullName:"David Weiss"}],corrections:null},{id:"57524",title:"Casting and Applications of Functionally Graded Metal Matrix Composites",doi:"10.5772/intechopen.71225",slug:"casting-and-applications-of-functionally-graded-metal-matrix-composites",totalDownloads:1470,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"This chapter discusses the concepts, casting techniques and applications of functionally graded materials metal matrix composites (FGMMCs). Considerations were given to bulk functionally graded aluminium matrix composites (FGAACs) production processes. Liquid-metal forging processes of FGAACs fabrication, such as infiltration process, squeeze casting, friction casting or compocasting, stir, and centrifugal casting were discussed. The chapter provides basic concepts of the processes and overview of their processing parameters, such as mould rotational speed; reinforcement particles size and volume; degassing method; melting and pouring temperatures; pressure; and stirrer. The study notes that functionally graded materials (FGMs) are commonly used in automotive, aircraft, aviation, chemical, medical, engineering, renewable energy, nuclear energy, and optics electronics industries.",signatures:"Williams S. Ebhota and Tien-Chen Jen",downloadPdfUrl:"/chapter/pdf-download/57524",previewPdfUrl:"/chapter/pdf-preview/57524",authors:[{id:"206268",title:"Dr.",name:"Williams",surname:"Ebhota",slug:"williams-ebhota",fullName:"Williams Ebhota"},{id:"214786",title:"Prof.",name:"Tien-Chien",surname:"Jen",slug:"tien-chien-jen",fullName:"Tien-Chien Jen"}],corrections:null},{id:"59140",title:"Evaporative Pattern Casting (EPC) Process",doi:"10.5772/intechopen.73526",slug:"evaporative-pattern-casting-epc-process",totalDownloads:1193,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"The chapter provides details of operations and activities in evaporative pattern casting (EPC) Process. The process was developed in the year 1956 to tackle some of the inadequacies of the traditional sand casting processes but has in itself some challenges that should be taken care of if sound castings would be obtained. The challenges come mainly from the evaporative pattern employed as pattern material in the process. The material makes the process to be sensitive to process variables such that proper and adequate control should be ensured to have castings of sound integrity. Some of the known process variables are pouring temperature, refractory coating, vibration and pattern and molding materials. In the whole the EPC is known to have edge over the traditional sand casting methods.",signatures:"Babatunde Victor Omidiji",downloadPdfUrl:"/chapter/pdf-download/59140",previewPdfUrl:"/chapter/pdf-preview/59140",authors:[{id:"228410",title:"Dr.",name:"Victor",surname:"Omidiji",slug:"victor-omidiji",fullName:"Victor Omidiji"}],corrections:null},{id:"58816",title:"Fabrication of Aluminum Matrix Composites by Stir Casting Technique and Stirring Process Parameters Optimization",doi:"10.5772/intechopen.73485",slug:"fabrication-of-aluminum-matrix-composites-by-stir-casting-technique-and-stirring-process-parameters-",totalDownloads:2252,totalCrossrefCites:19,totalDimensionsCites:27,hasAltmetrics:1,abstract:"Aluminum matrix composites (AMCs) and hybrid aluminum matrix composites (HAMCs) becomes choice for automobile and aerospace industries due to its tunable mechanical properties such as very high strength to weight ratio, superior wear resistance, greater stiffness, better fatigue resistance, controlled co-efficient of thermal expansion and good stability at elevated temperature. Stir casting is an appropriate method for composite fabrication and widely used industrial fabrication of AMCs and HAMCs due to flexibility, cost-effectiveness and best suitable for mass production. Distribution of the reinforcement particles in the final prepared composite regulates the anticipated properties of AMCs and HAMCs. However, distribution of reinforcements is governed by stirring process parameters. The study of effect of stirring parameters in the particle distribution and optimal selection of these is still a challenge for the ever-growing industries and research. In this chapter accurate and precise attempts were taken to explore the effect of stirring parameters in stir casting process rigorously. Further, Optimal values of stirring parameters were suggested which may be helpful for the researchers for the development of AMCs and HAMCs. This chapter may also provide a better vision towards the selection of stirring parameters for industrial production of AMCs and HAMCs comprising superior mechanical properties.",signatures:"Mohit Kumar Sahu and Raj Kumar Sahu",downloadPdfUrl:"/chapter/pdf-download/58816",previewPdfUrl:"/chapter/pdf-preview/58816",authors:[{id:"200118",title:"Dr.",name:"Raj",surname:"Sahu",slug:"raj-sahu",fullName:"Raj Sahu"},{id:"225730",title:"Mr.",name:"Mohit",surname:"Sahu",slug:"mohit-sahu",fullName:"Mohit Sahu"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"3817",title:"Developments in Corrosion Protection",subtitle:null,isOpenForSubmission:!1,hash:"8ff86fac7ac8bce142fdc3c0e5a79f30",slug:"developments-in-corrosion-protection",bookSignature:"M. Aliofkhazraei",coverURL:"https://cdn.intechopen.com/books/images_new/3817.jpg",editedByType:"Edited by",editors:[{id:"155413",title:"Dr.",name:"Mahmood",surname:"Aliofkhazraei",slug:"mahmood-aliofkhazraei",fullName:"Mahmood Aliofkhazraei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"27",title:"Magnesium Alloys",subtitle:"Design, Processing and Properties",isOpenForSubmission:!1,hash:null,slug:"magnesium-alloys-design-processing-and-properties",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/27.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3494",title:"Titanium Alloys",subtitle:"Advances in Properties Control",isOpenForSubmission:!1,hash:"83dc0b49b280c4df33cb4cac06fc3660",slug:"titanium-alloys-advances-in-properties-control",bookSignature:"Jan Sieniawski and Waldemar Ziaja",coverURL:"https://cdn.intechopen.com/books/images_new/3494.jpg",editedByType:"Edited by",editors:[{id:"109232",title:"Prof.",name:"Jan",surname:"Sieniawski",slug:"jan-sieniawski",fullName:"Jan Sieniawski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3844",title:"Light Metal Alloys Applications",subtitle:null,isOpenForSubmission:!1,hash:"6ddeae36c90447289dd3320146d31861",slug:"light-metal-alloys-applications",bookSignature:"Waldemar A. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/3844.jpg",editedByType:"Edited by",editors:[{id:"118821",title:"Dr.",name:"Waldemar Alfredo",surname:"Monteiro",slug:"waldemar-alfredo-monteiro",fullName:"Waldemar Alfredo Monteiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"217",title:"Recent Trends in Processing and Degradation of Aluminium Alloys",subtitle:null,isOpenForSubmission:!1,hash:"6b334709c43320a6e92eb9c574a8d44d",slug:"recent-trends-in-processing-and-degradation-of-aluminium-alloys",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/217.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"920",title:"Magnesium Alloys",subtitle:"Corrosion and Surface Treatments",isOpenForSubmission:!1,hash:"33740111d2545ae64a3b2c3d938fc432",slug:"magnesium-alloys-corrosion-and-surface-treatments",bookSignature:"Frank Czerwinski",coverURL:"https://cdn.intechopen.com/books/images_new/920.jpg",editedByType:"Edited by",editors:[{id:"16295",title:"Dr.",name:"Frank",surname:"Czerwinski",slug:"frank-czerwinski",fullName:"Frank Czerwinski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"44",title:"Aluminium Alloys",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"aluminium-alloys-theory-and-applications",bookSignature:"Tibor Kvackaj",coverURL:"https://cdn.intechopen.com/books/images_new/44.jpg",editedByType:"Edited by",editors:[{id:"17752",title:"Prof.",name:"Tibor",surname:"Kvackaj",slug:"tibor-kvackaj",fullName:"Tibor Kvackaj"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1471",title:"Titanium Alloys",subtitle:"Towards Achieving Enhanced Properties for Diversified Applications",isOpenForSubmission:!1,hash:"dcdcf80b9cadfb4e2797127a5cf85700",slug:"titanium-alloys-towards-achieving-enhanced-properties-for-diversified-applications",bookSignature:"A.K.M. Nurul Amin",coverURL:"https://cdn.intechopen.com/books/images_new/1471.jpg",editedByType:"Edited by",editors:[{id:"112624",title:"Dr.",name:"A.K.M. Nurul",surname:"Amin",slug:"a.k.m.-nurul-amin",fullName:"A.K.M. Nurul Amin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3053",title:"Aluminium Alloys",subtitle:"New Trends in Fabrication and Applications",isOpenForSubmission:!1,hash:"2b3d8fcf0bcf5e05087c7fce9c799ecf",slug:"aluminium-alloys-new-trends-in-fabrication-and-applications",bookSignature:"Zaki Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/3053.jpg",editedByType:"Edited by",editors:[{id:"52898",title:"Prof.",name:"Zaki",surname:"Ahmad",slug:"zaki-ahmad",fullName:"Zaki Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1465",title:"Powder Metallurgy",subtitle:null,isOpenForSubmission:!1,hash:"30724bbd30130a71450f323924aee932",slug:"powder-metallurgy",bookSignature:"Katsuyoshi Kondoh",coverURL:"https://cdn.intechopen.com/books/images_new/1465.jpg",editedByType:"Edited by",editors:[{id:"111029",title:"Dr.",name:"Katsuyoshi",surname:"Kondoh",slug:"katsuyoshi-kondoh",fullName:"Katsuyoshi Kondoh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74511",slug:"corrigendum-to-has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-de",title:"Corrigendum to: Has the Yield Curve Accurately Predicted the Malaysian Economy in the Previous Two Decades?",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74511.pdf",downloadPdfUrl:"/chapter/pdf-download/74511",previewPdfUrl:"/chapter/pdf-preview/74511",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74511",risUrl:"/chapter/ris/74511",chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]}},chapter:{id:"72452",slug:"has-the-yield-curve-accurately-predicted-the-malaysian-economy-in-the-previous-two-decades-",signatures:"Maya Puspa Rahman",dateSubmitted:"December 9th 2019",dateReviewed:"March 21st 2020",datePrePublished:"June 11th 2020",datePublished:"December 23rd 2020",book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"316535",title:"Associate Prof.",name:"Maya Puspa",middleName:null,surname:"Rahman",fullName:"Maya Puspa Rahman",slug:"maya-puspa-rahman",email:"mayapuspa@iium.edu.my",position:null,institution:null}]},book:{id:"9534",title:"Banking and Finance",subtitle:null,fullTitle:"Banking and Finance",slug:"banking-and-finance",publishedDate:"December 23rd 2020",bookSignature:"Razali Haron, Maizaitulaidawati Md Husin and Michael Murg",coverURL:"https://cdn.intechopen.com/books/images_new/9534.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"206517",title:"Associate Prof.",name:"Razali",middleName:null,surname:"Haron",slug:"razali-haron",fullName:"Razali Haron"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12030",leadTitle:null,title:"Remote Sensing",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"4c72e8ef86d70bb4f35a3b70ff698427",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12030.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 28th 2022",dateEndSecondStepPublish:"March 21st 2022",dateEndThirdStepPublish:"May 20th 2022",dateEndFourthStepPublish:"August 8th 2022",dateEndFifthStepPublish:"October 7th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"18733",title:"Innovations in Agricultural Biotechnology in Response to Climate Change",doi:"10.5772/23024",slug:"innovations-in-agricultural-biotechnology-in-response-to-climate-change",body:'\n\t\t
Food security for all will be a prominent issue for the next century. Today one billion people of the world are undernourished and more than a third are malnourished (Godfray et al., 2010). The chronically hungry have compromised immune systems and succumb to easily preventable infections. As the world’s population continues to increase, ensuring that the earth has enough food that is nutritious will be a difficult task enough. However, the looming threat of climate change will exasperate the situation even further. The impact of climate change on the world’s food supply is predicted to be far-reaching. At high risk is sub-Saharan Africa, a drought-prone continent with a little under 10% of current land designated to have agricultural potential predicted to turn into desert within the next 50-70 years (Global Hunger Index)(Figure 1).
\n\t\t\tPermission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License. Arable land percentage by country, as listed on CIA factbook, accessed June 2006.
Drought is also anticipated for Asia, as an accumulative result of climate change. Rice crops tend to be vulnerable to lengthy hot, dry seasons. Himalayan glaciers, which feed the rivers and streams of both China and India, are predicted to lose as much as 80 per cent of their volume within the next quarter century (Global Hunger Index). Meanwhile, temperate zones in other parts of the world such as North America and Europe will encounter extreme weather conditions, such as hurricanes and floods. Different patterns of rainfall in a particular habitat will impact the ecosystem of that region, altering biodiversity and changing the growing seasons of particular crop types.
\n\t\t\tEven without taking the advance of climate change into account, the burgeoning world population will continue to grow to an estimated 9 billion people by 2050 (Ejeta, 2010).Food prices are predicted to continue to fluctuate wildly as the demand for food increases. The situation is confounded even further by a competition for land and water between crops grown for food and crops grown for energy, in the form of first generation biofuels.
\n\t\t\tIn summation, agricultural productivity must clearly improve by significant amounts in order to meet the world’s needs and address environmental stresses brought about by climate change. For example, we must change the way we think about the use of fossil fuels as fertilizers for agricultural production. Climate change will also impact water availability, and crops must be designed with this in mind. Even concerns such as pest management will be affected by climate change in ways that are too unpredictable to determine.
\n\t\tThe world’s most food insecure often are rural farmers, subsisting on small farms in developing countries (Figure 2). Also falling under the category of the world’s poorest, these farmers cannot afford modern irrigation systems or fertilizers and pesticides. As a result, the soil quality of these farms tends to be nutrient exhausted and susceptible to insects and other pests. These facts set the stage for even greater hardships. The world’s food requirements are expected to double by 2050 (Barrett, C.B. 2010). At the same time, the total acreage of arable land that could support agricultural use is already near its limits, and may even decrease over the next few years due to salination and desertification patterns resulting from climate change (CIA Factbook). Fresh water available for agricultural use will increasingly become scarce, and changing weather patterns will impact growing conditions. Without radical changes in agricultural practices, the future could not look any more bleak for the world’s poor.
\n\t\t\tThere is a silver lining, however, to all of this gloom and doom. Clearly, changing the way we think about crop production must take place on multiple levels. New varieties of crops must be developed which can produce higher crop yields with less water and fewer agricultural inputs. Besides this, the crops themselves must have improved nutritional qualities or become biofortified in order to reduce the chances of ‘hidden hunger’ resulting from malnourishment. The use of plants to produce therapeutic proteins, for example, will result in affordable medicines which can better address a burgeoning global population.Furthermore, more arable land can be recovered from polluted regions through phytoremediation and related technologies involving the plant sciences. Agricultural technologies currently under development will renovate our world to one that can comfortably address the new directions our planet will take as a result of climate change.
\n\t\t\tThis file is made available under the Creative Commons CCO 1.0 Universal Public Domain Dedication.The person who associated a work with this deed has dedicated the work to the public domain by waiving all of his or her rights to the work worldwide under copyrightlaw, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, allwithout asking permission. creativecommons.org/publicdomain/zero/1.0/deed.enCCOCreative Commons Zero, Public Domain DedicationtruefalseGlobal hunger index scores by severity.
It is difficult to envision the optimum way to increase crop production using a single uniform strategy. Instead, a variety of approaches must be employed and tailored for any particular agricultural setting. New technologies must be developed to improve crop yield, reduce damage due to pests and minimize food waste, yet also use less land, fertilizer and water. This ‘sustainable intensification’ includes the marriage of conventionalplant breeding with plant biotechnology, including genetic modification(GM) to achieve these goals (Timmmer, 2003, Christou &Twyman 2004).
\n\t\t\tThe world’s rural poor have much to benefit by the use of agricultural biotechnology. Genetically modified crops are under construction which are nutrient rich and disease resistant. Transgenic crops are being generated which can thrive in poor soils, tolerate extreme conditions such as drought and heat, and accumulate much needed minerals and vitamins in edible plant parts. Other plants can be generated which will extract heavy metals and pollutants from contaminated soils, providing more arable land.New crops that are designed to be more adaptable to the upcoming ordeals of climate change will make food security far more achievable. The following section describes some of these up-and-coming technologies.
\n\t\t\tMuch attention has been placed on generating crops which are tolerant to heat, drought and other environmental stresses. Plant varieties are required which are capable of surviving and even thriving in a variety of rapidly changing and extreme environmental conditions. Sub-Saharan Africa, for example, a continent already hungry, will face even more heat and desertification. Some regions of Asia, on the other hand, may find high salinity a challenge for crop growth. The methods by which scientists are addressing this challenge are creative to say the least. Plant architecture, for example, can be modified to enable plants to resist adverse environmental conditions. The shape, distribution and consistency of plant roots and leaves can be designed to better catch and retain water in times of extreme drought. Roots can be altered for shallow growth so that they remain close to the surface, the better to collect dew and runoff from precipitation. Similarly, leaves can be modified to trap moisture from escaping by strictly controlling their stomata (pores) (Somvanshi, 2009, Bhatnagar-Mathur et al., 2008, Tester, & Langridge, 2010). Plants with modified photosynthetic machinery can be tailored to be more receptive to changing weather patterns.
\n\t\t\tAs a result of climate change, plants which exhibit tolerance to high salt content in soils will be essential. High salinity currently affects one fifth of irrigated land, resulting at the least in inhibition of crop growth, and at the most, death. Other plant types have developed tactics to respond to high salt conditions; these techniques can be exploited to help today’s crops cope with this unique stress. For example, some plants have developed the ability to sequester sodium ions into cell vacuoles or even block sodium ions from entering plant cells. The genes involved in these diverse mechanisms have been identified and have been transferred to crop plants such as rice, which lack these characteristics. Crops modified in this fashion can then thrive in regions which were previously unsuitable for growth (Tuteja, 2007, Uddin et al.,2008).
\n\t\t\tThe requirement of crop plants for nitrogen through the use of fertilizers may also be impacted as a consequence of climate change. In sub-Saharan Africa, for example, access to artificial fertilizers is poor to non-existent. Yet nitrogen continues to be a necessary staple in agriculture for the industrialized world, and causes problems with respect to runoff into waterways or release to the atmosphere in the form of greenhouse gases. A principal concern is the fact that artificial fertilizers are actually produced from fossil fuels, further entwining industrialized countries to petroleum production, and the dependence which lies therein. Crops which are efficient in nitrogen usage and/or have lower nitrogen requirements are much needed. For example, rice crops have been developed which have the ability to uptake nitrogen from the soil with improved efficiency, thus relieving the intense requirement for nitrogen from fertilizers. Since these plants exhibit an improvement in nitrogen uptake, they can achieve a desired biomass and seed yield with a reduced need for high levels of nitrogen application through fertilizers. Other means by which to reduce the requirement for nitrogen is the generation of corn and other crops which can fix their own nitrogen, through the modification of current nitrogen-fixing bacteria (www.eurekalert.org). These novel technologies will facilitate crop growth in the absence of fertilizers, and could help those in Africa who have limited access to nitrogen-based fertilizers yet will soon face the greatest environmental impact due to climate change.
\n\t\t\tGlobal warming will bring about a change in biodiversity in many of the world’s microclimates. Insects and other plant pathogens will eventually bridge gaps in their geographical locations and host ranges as never before. As a result, the introduction of both old and new plant pests will bring about a change in management strategies. Just as the prospect of global warming is predicted to bring about increases in mosquito production, and most likely increases in vigorously fought deadly diseases such as malaria and Dengue fever, plant pathogens will also most likely make an appearance in plant hosts where they were unable to gain an advantage before. Plant pathologists will be required to be ever more vigilant in their surveillance of newly emerging epidemics caused by plant pathogens as a result of global warming. The spruce budworm for example, in the boreal forests of North America, has been able to take advantage of the warmer summers and longer growing seasons to reproduce more rapidly each year, resulting in deadly forest infestations. These infestations affect both the natural ecosystems of the forests themselves, as well as the lumber industry, a prime economic engine of the area (canadaforests.nrcan.gc.ca). New disease resistant plants will be required by incorporating molecular breeding strategies with genetic modification. Many crop plants have now been engineered which utilize a number of novel techniques to exhibit resistance against a variety of pathogens, including viruses, bacteria, fungi and nematodes. Some of these techniques involve using gene products from pathogens themselves, as in the case of virus resistant cassava or insect resistant corn. Others will take advantage of evoking systemic defence pathways already inherent in the plant (Gonsalves, 2002, Lay et al., 2003, Gill et al., 1992). Pathogen detection and disease resistance will also be managed by nanotechnology. For example, nanosensors can be utilized to detect plant pathogens, and nanoparticles can encapsulate pesticides and release them on crops or in insects upon consumption in a controlled fashion (google.com/site/isinanoicarnaip/).
\n\t\tOne way to address the ever growing need for more food crops is to nutritionally enhance those crops which are currently considered to be staples for the world’s poor. By producing biofortified rice, wheat and corn, the principal grains which feed much of the human race today, with increased mineral and vitamin content, the nutritional status for those who have little variety available in their diet can be improved. The generation of plants with enhanced micronutrient content can thus be a means to support those whose food supply may dwindle with respect to diversity in the face of climate change. For example, vitamin A deficiency causes approximately 500,000 cases of blindness in children. By increasing the vitamin A content of rice and other staple crops, this number can be greatly reduced (Mayer, 2007). Other examples of biofortification strategies include zinc and iron enriched corn, cassava and rice, or calcium-enriched carrots and tomatoes (Cockell, 2007, Morris, et al., 2008, Naqvi et al., 2009).
\n\t\t\tBiofortified foods can be produced either through the generation of transgenic plants which possess additional biosynthetic pathways, such as vitamin A-enriched ‘Golden Rice’ or by altering the general physiology of the plant in such a way that it is able to extract more micro-nutrients from the soil, such as iron-enriched wheat (Figure 3). The design and generation of plants which accumulate more vitamins and minerals can also be beneficial for the health of the plant itself. Plants which are nutrient-rich are better able to weather more extreme environmental conditions imposed by climate change. Plants which are nutrient rich exhibit vigorous growth, better yield and more resistance to diseases as well (Welch, & Graham, 2004, Bouis, 2003). Biofortified foods can be easily incorporated into the dietary habits and farming programs of the rural poor of developing countries. People who would have access to biofortified foods may very well be better prepared to withstand deleterious effects on their livelihoods due to climate change (Hotz&McClafferty, 2007, King 2002, Gilani&Nasim,. 2007, Nestel, et al.,2006, Zhu, et al., 2007, Jeong, & Guerinot, 2008).
\n\t\t\t\n\t\t\t\t\t\t
Climate change is predicted to bring more drought, greater salinity, and higher temperatures to countries where people are most vulnerable. A significant proportion of people in these countries are malnourished today, and more problems in this regard can be expected as food prices fluctuate and food security becomes more and more difficult to achieve. People who are undernourished or malnourished are less likely to fend off infectious diseases, and the challenge of providing sufficient vaccines and other medicines is already difficult to meet. Plants can help to rise to this challenge through their ability to act as production platforms for biopharmaceuticals. Indeed, both food and non-food crops are currently being used to produce vaccine proteins against these infectious diseases which are the greatest causes of infant mortality in the Third World today (Hefferon, 2009). Plant made vaccines which target common diarrheal diseases such as Norwalk Virus, enterotoxigenic
Newer varieties of plants which are more disease resistant, more nutritious, and better able to withstand droughts, high temperature, and high salinity environments are required immediately to prevent humanitarian disaster in the face of climate change. Modern plant breeding strategies have enabled agricultural researchers to develop new strategies to search for and identify traits which could help crop plants withstand extreme environmental conditions. For example, examination of the genetic material from wild relatives of crops has resulted in the recovery of a number of useful genes which have been lost over the course of crop evolution. Retrieval of these old ‘wild’ genes and their re-incorporation into current crops may facilitate the ability of these crops to adapt and flourish in a rapidly changing environment (Pennisi, 2010). The selection of novel plant traits has been further hastened by the use of autonomated breeding systems (www.lemnatec.com). Through robotics, young plants can be exposed to a specific set of environmental conditions and then be selected for their ability to tolerate stress, maintain high yield, etc., without the requirement of lengthy field tests. Furthermore, new genomics approaches such as marker assisted selection enables desired traits that would help future crops overcome environmental stresses to be identified and followed through breeding strategies (Pennisi, 2010, Baulcombe, 2010).
\n\t\t\tThere are other means by which to increase crop production besides changing the traits of the crops themselves. Precision agriculture, for example, refers to new farming methods based on optimizing resources and minimizing inputs, including water and fertilizer. Precision agriculture can include sophisticated devices such as GPS to identify factors ranging from moisture and nutrient content of soils to pest infestation of a given crop (Figure 4). Using this approach, optimal inputs can be applied to a specific region of a given crop when required, rather than uniformally and at predetermined times across the entire field, whether the crop requires inputs or not. The great advantage of this technique is the avoidance of overuse of pesticides, herbicides, fertilizer and water(earthobservatory.nasa.gov, www.ghcc.msfc.nasa.gov).
\n\t\t\tThe same principles of precision farming can also be applied to developing countries, without the requirement of advanced technologies.For example, the concept of drip irrigation, a practice by which small amounts of water are applied to plant root systems by a network of irrigation pipes, has been demonstrated to work successfully for drought-prone areas (Figure 5). Similarly, some resource-poor countries utilize a farming technique whereby tiny amounts of fertilizer are applied to the roots of crops at specific times in the growing season. These low-tech farming practices have enabled farmers who have poor access to water or artificial fertilizers to make the most of their crop yield (Mara Hvistendahl, 2010, Nature Editorial 2010).
\n\t\t\tBetter management of the high percentage of food that currently goes to waste could also have a beneficial impact on achieving food security. While excess food waste in the supermarket is clearly a problem in industrialized countries, in the Third World, food crops are often spoiled in the field before they are harvested, infected with insects or mold while stored in primitive facilities, or over-ripen during inefficient transport to the marketplace. All of these bottlenecks need to be addressed to prevent excess food waste and improve food availability (Parfitt et al., 2010).
\n\t\t\tThese three false-color images demonstrate some of the applications of remote sensing in precision farming. The goal of precision farming is to improve farmers’ profits and harvest yields while reducing the negative impacts of farming on the environment that come from over-application of chemicals. The images were acquired by the Daedalus sensor aboard a NASA aircraft flying over the Maricopa Agricultural Center in Arizona. The top image (vegetation density) shows the color variations determined by crop density (also referred to as "Normalized Difference Vegetation Index", or NDVI), where dark blues and greens indicate lush vegetation and reds show areas of bare soil.The middle image (water deficit) is a map of water deficit, derived from the Daedalus’ reflectance and temperature measurements. Greens and blues indicate wet soil and reds are dry soil.The bottom image (crop stress) shows where crops are under serious stress, as is particularly the case in Fields 120 and 119 (indicated by red and yellow pixels). These fields were due to be irrigated the following day. This file is in the public domain because it was created by NASA. NASA copyright policy states that "NASA material is not protected by copyright unless noted".Precision Farming.
Drip Irrigation.
Non-food crops are also being examined as a means to address climate change. The use of biofuel as an alternative energy source is at the height of controversy. While ethanol production from crops such as corn may indeed provide a substitute for fossil fuels, they unfortunately also compete with corn grown as a food crop and in fact drive up food prices, thus adding to the misery of the world’s poor. One option is to use other non-food plants for biofuel production. Switchgrass, for example, can be grown on suboptimal land that cannot be used by corn or other food crops, and produces fuel less expensively than either petroleum or corn (Figure 6) (Bouton, 2007). Algae is another plant source for biofuel which would not negatively impact the world’s food supply. These examples represent up-and-coming technologies which will soon move up to the forefront of alternative energy development (Beer et al., 2009).
\n\t\t\tOther non-food crops address the reduction in arable land acreage available as a result of climate change; these plants are under development for phytoremediation purposes. Man-made pollutants such as heavy metals which have been added to soil and water have reduced the availability of much needed fertile land. Some plant species have the capacity to uptake heavy metals through their root systems and accumulate them in foliage or other tissues. These plants can then be harvested to rid the land of contaminants, thus providing an increase in valuable, arable farmland (Figure 7) (Wu et al., 2007, Memon &Schröder, 2009].
\n\t\t\tThis work has been released into the public domain by its author, Chhe at the wikipedia project. This applies worldwide.Switchgrass.
\n\t\t\t\t\t\t
Climate change brings with it some daunting challenges. More food must be produced on less arable land than is available today. New agricultural technologies and farming practices must be developed and implemented. This chapter has attempted to address some of the strategies currently under development in the agricultural sciences. One way to achieve global food security requires the utilization of novel plant breeding strategies which will quickly find helpful traits that enable plants to thrive under adverse environmental conditions. Biotechnology will play a paramount role in these approaches. Revolutionary farming techniques, led by precision agriculture, will keep crop yields high while maintaining water, pesticide and nitrogen inputs to a minimum. Key food crops have already been biofortified with micronutrients such as iron and vitamin A. Plants are also being actively pursued as production platforms for biopharmaceuticals, and may very well turn out to be a viable solution for providing medicines to those in remote communities. Innovative uses for non-crop plants in biofuel and phytoremediation will also offer alternatives. With these and other strategies in place, the world will be better prepared to address the future challenges that will result from climate change.
\n\t\tSynthetic polymers appeared at the end of the nineteenth century around the 1860s, but it was not until after World War II that the “rise of plastics” really began [1]. Plastic has become one of the most ubiquitous materials since its inception as a phenol-formaldehyde resin (i.e., bakelite) [2]. Basically, plastic was designed to improve the conditions of human life, but today it is becoming a real environmental concern [1].
Nowadays, plastic is ubiquitous in all environmental compartments (air, water, and soil) [3]. Simonneau et al., [4] report that rain and snow contain a significant number of MP, invisible to the naked eye and less than 5 mm in size. The presence of MP in soil ecosystems has been detected [5, 6]. Scientific literature reports the environmental occurrence of MP in surface waters [7], coastal sediments [8], beach sands [9], freshwater sediments [10], and deep-sea environments [11]. Indeed, the intensive exploitation of plastic associated with poor performance of waste management systems, including end-of-life collection and capture, have resulted in a massive accumulation of plastic waste in the environment [12]. The release of plastic materials into the environment is recognized as an important pollution related issue [13, 14, 15].
The proliferation of MP in the environment causes serious pollution all over the world [16]. According to their characteristics, namely, synthetic materials with a high content of polymers, solid particles, less than 5 mm, insoluble in water, and not degradable, they are easily introduced into the environment and persist there due to their low solubility [17]. Food chains are subject to significant pollution from the release of hydrophobic organic chemicals [18, 19, 20, 21, 22]. Being present in different aquatic ecosystems (surface water, oceans, estuarine waters, etc.), organisms are directly or indirectly exposed to microplatiscs [17]. Scientific literature reports negative impacts of microplastics on benthic organisms [23, 24]. The toxic effects of these pollutants have been studied on the feeding habits, growth and reproductive systems of several aquatic species [25, 26, 27, 28, 29]. Human beings are therefore exposed through the consumption of seafood, fish and crustaceans [30].
The purpose of this paper is: (i) to do a bibliographical review of the physical and chemical properties, as well as the toxicological profile of MP, (ii) to identify the environmental hazards associated with MP contained in urban waste in the metropolitan area of Port-au-Prince.
Scientific and technical information from several world-wide documentation databases was used. Academic social networks, scientific databases such as Google Scholar, PubMed, academia.edu, researchgate.net, academic presses (springer.com, sciendirect.com, Wiley Online Library, ACS Publications, etc.) were consulted in this way as electronic data available on the sites of certain research universities. The search equations launched on the various sites consulted were implemented from the crossing of the following keywords: “Microplastics”, “Microplastics (and) definition”, “Microplastics (and) plastics”, “Microplastics (and) thermodynamics”, “Microplastics (and) Epidemiology”, “Microplastics (and) physical and chemical properties”, “Toxicological profile of microplastics”, “Microplastics (and) Human health effects” , “Microplastics (and) Environment” , “Microplastics (and)) partition coefficient” , “Microplastics (and) Haiti”, “Haiti (and) solid waste” , “Fate and Microplastics” , “Microplastics (and) Ocean” , etc.
The results obtained have been the subject of a critical examination. Each article read, referred the authors of this study for the reading of another article cited in the list of his references. We considered articles that were published from 2005 to 2021. The number of times cited (citations analysis).
The term plastic refers to “a material which contains as an essential ingredient a high polymer and which, at some stage of its transformation into finished products, can be shaped by flow,” [31]. However, elastomeric materials (also shaped by flow) are generally not considered plastics [32, 33].
Plastics are mainly produced from non-renewable substances, extracted from petroleum and natural gas [1, 34, 35], or renewable like sugar cane, starch, or vegetable oil or even of mineral origin like salt [36]. The evolution of plastic, correlated with its major strengths, makes it a substitute material, to the detriment of metals, for example [37]. Thus, the increase in plastic, and its multiple applications, place it at the forefront of market share, ahead of traditional materials [38].
The International Organization for Standardization (ISO) [31] recommends the use of the term “macromolecule” for individual molecules, the term “polymer” being reserved for a substance consisting of macromolecules, further stipulating that the term “high polymer” or more generally “polymer” denotes a product consisting of molecules characterized by a large number of repeats of one or more species of atoms or groups of atoms (constitutional units), linked in sufficient quantity to lead to a set of properties which hardly vary with the addition or elimination of a single or a small number of constituent motifs [31]. The denomination of “plastics” comes from the characteristic plasticity property of many polymer materials which can be deformed at will under the effect of temperature (the notion of temperature is relative here: certain plastics are deformable at room temperature) [39]. Thus, most of the plastic materials placed on the market result from complex formulation steps intended to give the macromolecules the desired properties of use. Adjuvants such as stabilizers and additives will be used to limit the degradation of the chains under the effect of heat, radiation, abrasion (antioxidants, mineral fillers, etc.) and give them specific properties (plasticizers, dyes, flame retardants, reinforcements …) [39].
A main classification of plastics is based on the durability or non-durability of their shapes, or whether they are thermosets or thermoplastics [40]. According to Plastics Europe [36], plastics can be classified into various types. A typology of plastic as well as their applications and benefits are published on the website of this institution, which is an association of plastic manufacturers in Europe (Table 1).
Jiang et al. [40] note that the degradation of plastic waste generates microplastic (MP) or nanoplastic particles (NP); this division is based on the diameter of the plastic fragments or particles, MP being less than 5 mm in diameter and NP being 1 to 100 or 1000 nm in diameter [40]. The scientific literature on the diameter of plastic particles provides several information and divisions of microplastics. Arthur et al. [41] report when it was reported in 2004, the term microplastics was used to describe fragments of plastic approximately 20 μm in diameter. However, while these early reports referred to truly microscopic particles, they did not provide a specific definition of microplastic. In 2008, the United States National Oceanographic and Atmospheric Agency (NOAA) hosted the first International Microplastics Workshop in Washington and, as part of that meeting, formulated a broader working definition to include all particles. Less than 5 mm in diameter [41]. Other authors consider that particles>5 mm are macroplastics, mesoplastics 5 to>1 mm, microplastics 1 mm to>0.1 μm and nanoplastics as 0.1 μm [5].
Microplastics samples are usually sorted into different shapes according to observed morphology. The Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) [42] recommends five general categories of recommends, including fragment, foam, film, line, and pellet. Figure 1 presents the standardized size and color sorting system (SCS) for categorizing microplastics [43]. It is recommended the original data in these finer subdivisions with the recognition that subdivisions can be combined for ease of harmonizing and comparing data [42].
The standardized size and color sorting (SCS) system [
According to Crawford et al. [43], the SCS system generates unique codes to process microplastic abundance data, requiring an efficient categorization system. Table 2 presents a categorization of plastic according to size, while the Table 3 gives the categorization of microplastics according to morphology.
Plastics | Description |
---|---|
Fluoropolymers | |
Type of plastics [plastic Europe – Online].
Category | Abbreviation | Size | Size definition |
---|---|---|---|
Macroplastic | MAP | ≥25 mm | Any piece of plastic equal to or larger than 25 mm in size along its longest dimension |
Mesoplastic | MEP | <25 mm–5 mm | Any piece of plastic less than 25 mm–5 mm in size along its longest dimension |
Plasticle | PLT | <5 mm | All pieces of plastic less than 5 mm in size along their longest dimension |
Microplastic | MP | <5 mm–1 mm | Any piece of plastic less than 5 mm–1 mm in size along its longest dimension |
Mini-microplastic | MP | <1 mm–1 μm | Any piece of plastic less than 1 mm–1 μm in size along its longest dimension |
Nanoplastic | NP | <1 μm | Any piece of plastic less than 1 μm in size along its longest dimension |
Categorization of pieces of plastic based on size [43].
Abbreviation | Type | Size | Definition |
---|---|---|---|
PT | Pellet | <5 mm–1 mm | A small spherical piece of plastic less than 5 mm to 1 mm in diameter |
MBD | Microbead | <1 mm–1 μm | A small spherical piece of plastic less than 1 mm to 1 μm in diameter |
FR | Fragment | <5 mm–1 mm | An irregular shaped piece of plastic less than 5 mm to 1 mm in size along its longest dimension |
MFR | Microfragment | <1 mm–1 μm | An irregular shaped piece of plastic less than 1 mm to 1 μm in size along its longest dimension |
FB | Fiber | <5 mm–1 mm | A strand or filament of plastic less than 5 mm to 1 mm in size along its longest dimension |
MFB | Microfibre | <1 mm–1 μm | A strand or filament of plastic less than 1 mm to 1 μm in size along its longest dimension |
FI | Film | <5 mm–1 mm | A thin sheet or membrane-like piece of plastic less than 5 mm to 1 mm in size along its longest dimension |
MFI | Microfilm | <1 mm–1 μm | A thin sheet or membrane-like piece of plastic less than 1 mm to 1 μm in size along its longest dimension |
FM | Foam | <5 mm–1 mm | A piece of sponge, foam, or foam-like plastic material less than 5 mm to 1 mm in size along its longest dimension |
MFM | Microfoam | <1 mm–1 μm | A piece of sponge, foam, or foam-like plastic material less than 1 mm to 1 μm in size along its longest dimension |
Categorization of microplastics based on morphology [43].
There are many hundreds of different types of polymer and mixtures of polymer in commercial production, but the market is dominated by: polyethylene (as both high-density HDPE, and low-density LDPE), polypropylene (PP), polyvinyl chloride (PVC), polyurethane (PUR), polystyrene (PS), and polyethylene terephthalate (PET). These six polymers make up about 80% of plastics production and are likely to form a large proportion of most marine litter (GESAMP, 2019). The most common human-produced and petroleum-derived polymers found in microplastics are listed in Table 4.
Main polymers found in microplastics [32].
According to Lambert, et al. [16], “Microplastic” is an umbrella term that covers many particle shapes, sizes, and polymer types, and as such the physical and chemical properties of environmental microplastics will differ from the primary microbeads commonly used for ecotoxicity testing. In the Figure 2 is presented the physical and chemical properties of MP, by concentrating particle size, particle shape, surface area and crystallinity, as well as chemical composition, while considering the type of polymer, additive compounds, and changes in surface properties) [16].
Different microplastic physical and chemical properties to be considered in a prioritization framework [
Microplastics are subdivided into two groups: primary microplastics and secondary microplastics [26]. The distinction between primary and secondary microplastics is based on whether the particles were originally manufactured to be that size (primary) or whether they have resulted from the breakdown of larger items (secondary) [44]. It is a useful distinction because it can help to indicate potential sources and identify mitigation measures to reduce their input to the environment. Primary microplastics include industrial ‘scrubbers’ used to blast clean surfaces, plastic powders used in molding, micro-beads in cosmetic formulation, and plastic nanoparticles used in a variety of industrial processes [44, 45]. In addition, spherical or cylindrical virgin resin pellets, typically around 5 mm in diameter, are widely used during plastics manufacture and transport of the basic resin ‘feedstock’ prior to production of plastic products. Secondary microplastics result from the fragmentation and weathering of larger plastic items. This can happen during the use phase of products such as textiles, paint, and tires, or once the items have been released into the environment [44]. The rate of fragmentation is controlled by several factors [46].
Plastics can be lost to the environment across their entire value chain [47], which creates different opportunities (and challenges) to prevent leakage into technical and natural systems [48]. In this context, it is useful to frame the separate but interconnected issues of plastic pollution, which are nestled into one another [47]. A list of microplastic sources entering the environment is presented in Figure 3.
Environmental sources of pollution by microplastic [
Some sources and pathways are interconnected (e.g., mechanical stress, plastic waste, plasticulture) and some sources are stand-alone (e.g., primary microplastics in products, targeted applications, or transportation losses), but collectively all sources are part of the puzzle of how microplastic enters the environment.
Microplastics in the environment are generally supposed to be a heterogeneous aggregate of particles, which can be of both primary and/or secondary origins. However, whatever the group to which they belong, depending on their physical and chemical properties, the size and shape of the particles, the crystallinity, the surface chemistry and the composition of the polymers and additives, the toxicity of microplastics can be crucial for the environment [49]. In a critical review on the sources and instruments of microplastics in marine ecosystems, Wang & al [50] present a figure in which the landbased origins of primary and secondary MP are well explained (Figure 4).
Sources of microplastics in natural ecosystems [
Although there is no specific international marine legislation regarding microplastics so far, many proactive countermeasures have been taken – voluntary or legally binding practices at international, regional, and national levels [47]. Indeed, the available literature on marine pollution reports the existence of three global international conventions that deal with the problem of plastic waste in the marine environment at the beginning of the 1970s: (i) the United Nations Convention (UN) on the Law of the Sea [51], (ii) the International Convention for the Prevention of Pollution from Ships (1973) as amended by the Protocol of 1978 (MARPOL 73/78) [52] and (iii) the Convention for the Prevention of Pollution by Dumping of Wastes and Other Matter (London Convention or LC, 1972) [53].
Table 5 shows an overview of current legislation, regulations and instruments related to microplastics. Considering the abundance of microplastics in the environment, their ability to absorb pollutants, their impact on living organisms, the health and environmental authorities in several countries have applied the precautionary principle by adopting a legal framework on MP. However, uncertainties and gaps in the evidence regarding the effects of microplastics on the environment and on human health prevent the adoption of more restrictive measures, with the precautionary principle - in line to the World Trade Organization (WTO) obligations on international trade - only playing a minor role [54]. Available information on current regional and national instruments related to microplastics is discussed in Wang & al. [50].
International instruments | Period | Specific contents |
---|---|---|
United Nations Convention on the Law of the Sea | 1982 | Part XII (Articles 192–237): protection and control of marine pollution from sea−/ land-based sources |
MARPOL 73/78 | 1973 | Annex V prohibits “the disposal into the sea of all plastics, cargo residues, fishing gear including but not limited to synthetic ropes, synthetic fishing nets and plastic garbage bags”. (revised in 2011 and come into force in 2013) |
London Convention | 1972 | To prevent the “deliberate disposal at sea of wastes and other matter from vessels, aircraft and other structures, including the vessels themselves”. (Annex I, paragraph 2) |
London Protocol | 1996 | To prohibit the dumping of any wastes or other matter including the export of waste to countries for dumping and incineration at sea except for the materials listed in Annex I. (Article 4.1.1, 5 and 6) |
Basel Convention | 1989 | Include plastic waste and microplastics issues into the Basel Convention workstream at COP 13 (Plastic waste in Annex II Y 46 (Household wastes) and Annex VIII (Non-hazardous wastes)) |
United Nations Environment Programme – Regional Seas Programme and Global Programme of Action | 2003 | Regional activities in 12 regional seas |
Manila Declaration | 2012 | Prevent marine litter from land-based sources and agree to establish a Global Partnership on Marine Litter (GPML) |
G7 Summit | 2014 | G7 Marine Litter Action Plan |
G20 Summit | 2017 | G20 Marine Litter Action Plan |
United Nations Environment Assembly (UNEA) I | 2014 | Resolutions 1/6: put forward the issue of “Marine plastic debris and microplastics”. |
UNEA II | 2016 | Resolutions 2/11: measures to reduce marine plastic litter and microplastics |
UNEA III | 2017 | Resolutions 3/7: combating the spread of marine plastic litter and microplastics. |
Overview of current legislation, regulations and instruments related to microplastics [50].
The global plastics production has increased from 1.5 million tons in the 1950s to 335 million tons in 2016, with plastics discharged into virtually all components of the environment [55]. The MPs present in the environment result from the successive breakdown of larger plastic pieces or from the direct input of micro- and nano-sized particles used in various industries and products available to consumers [56]. Indeed, during their production, industrial and domestic use, and after such processes, a considerable part of the plastics produced globally end up in the environment. Moreover, Plastics rarely biodegrade but through different processes they fragment into microplastics and nanoplastics, which have been reported as ubiquitous pollutants in all marine environments worldwide [55]. In fact, plastics represent one of the fastest-growing portions of the urban waste contributing to environmental contamination and pollution, with plastic debris accounting for approximately 60–80% of all marine litter, reaching 90–95% in some areas [55, 57, 58, 59].
According to Lambert et al. [5] “Upon their release to the environment MPs are transported and distributed to various environmental compartments. The distances that an individual item will travel depends on its size and weight. Lightweight materials can be readily transported long distances via a windblown route or carried by freshwater to eventually accumulate in the oceans. During heavy rainfall events, roadside litter can be washed into drains and gullies, and, where the topography is favorable for it, can be carried to the sea”. Figure 5 shows a conceptual model illustrating degradation pathways for polymer materials [5].
Conceptual model illustrating degradation pathways for polymer materials [
Once in the environment MPs are degraded through abiotic or biotic factors working together or in sequence; these processes cause the polymer matrix to disintegrate, resulting in the formation of fragmented particles of various sizes and leached additives [5]. According to Lambert et al. [5] “there is a broad literature dealing with the degradation of various polymer types under various conditions. Most of these studies were performed in the laboratory and had a major focus on samples exposed to high-energy UV irradiation”.
In the environment, MPs constitute a matrix of pollutants, composed of several monomers and polymers (PE, PP, EPS, PET, PMMA, PTFE, PA, PU, etc.), metal catalysts, additives: phthalates, retardants. Flame, bisphenols A and F, etc.), loading materials (talc, Ti dioxide), adsorbed environmental pollutants (organic and inorganic, pathogenic agents, etc. The exposure of living organisms to MPs leads to consider the interactions between the combined effects of different pollutants. The characterization of exposure to microplastics will depend on: (i) the number of particles; (ii) size distribution, shape, surface properties, polymer composition and particle density; (iii) the duration of the exposure; (iv) the kinetics of absorption and desorption of contaminants, vis-à-vis the plastic and the organism; and (v) the biology of the organism [44].
Microplastics have been detected in sediments, surface waters, estuarine and marine waters [60, 61, 62]. The negative effects of microplastics on algae, mussels, fish, and other organisms have been the subject of several studies and have shown [20, 63, 64, 65, 66]. Given the difficulty for large filter-feeding organisms (fins, whales, ..) and zooplankton to differentiate between microplastics and food itself [27, 67], cellular intoxication has been documented by ingestion by inadvertently adhered microplastics with other pollutants [26, 25]. Flame retardants (chemicals derived from plastics) have been found in birds [29] and phthalates in whales and filter-feeding sharks [27]. Microplastics can affect growth and reproduction in daphnids [28].
Alimba and Faggio [55] observed effects of MPs on marine vertebrates and invertebrates, including asphyxiation by drowning, restricted diet and increased starvation, skin abrasions and skeletal injuries (which are the basis of intestinal mucosal damage, morbidity, and mortality), oxidative stress, altered immunological responses, genomic instability, endocrine disruption, neurotoxicity, reproductive abnormalities, embryotoxicity and transgenerational toxicity [55].
Present in an environment, MPs can mimic the natural food sources of living species [5]. 135 species of marine vertebrates and 8 species of invertebrates susceptible to entanglement, and 111 species of seabirds have been identified, among others, among the species that ingest plastic objects [67]. Other studies have shown that MPs wrapping loops are a threat to sea lions in California and fur seals in Australia, respectively [68, 69]. Plastic bags have been identified as the main type of debris ingested by sea turtles [70]. Figure 6 shows a conceptual model illustrating the potential effects produced during the degradation of polymer-based materials [5].
Conceptual model illustrating the potential effects produced during the degradation of polymer-based materials [
The primary route of human exposure to MPs is the ingestion of foodstuffs, in particular seafood which has ingested microplastics [30], processed commercial fish [71], sea salt [72], honey [73], beer, food components [73]. Most of these food products are sometimes contaminated by the presence of impurities in processing materials and contaminants in packaging [74]. The second route of exposure is inhalation of air and dust containing MPs [30]. Due to their nutritional value, seafood plays an important role in human nutrition. Indeed, the consumption of seafood represents 6.7% of all protein and about 17% of animal protein in 2015 [75]. The risk of exposure is therefore great and increases with small fish eaten whole [46].
Several studies have highlighted the evidence for the presence of microplastics in several commercial aquatic species such as mussels, oysters, crabs, sea cucumbers and fish [76, 77, 78]. The results of this work suggest that humans are exposed to microplastics through their diet and the presence of microplastics in seafood could pose a threat to food safety [76]. The potential accumulation of microplastics in the food chain, especially in fish and shellfish (species of mollusks, crustaceans, and echinoderms) could have consequences for the health of human consumers [44]. In this trophic context, the fate and toxicity of microplastics in humans constitutes a major lack of knowledge which deserves special attention. The potential accumulation of microplastics in food chains, particularly in fish and crustaceans (mollusks, crustaceans, and echinoderms), appears to be the main source of human exposure to microplastics [44]. Contamination of food products with MP could have consequences for the health of human consumers. In this trophic context, the fate and toxicity of microplastics in humans constitutes a major lack of knowledge which deserves special attention.
The translocation of microplastics from the intestine to the circulatory system and various tissues and cells in humans has been studied by several authors [44]. Indeed, Hussain et al. [79] have shown the absorption of PE particles captured in the lymph and the circulatory system from the gastrointestinal tract. Exposure of human macrophages to fluorescent microspheres of PS (1, 0.2 and 0.078 μm), demonstrated particle capture driven by non-endocytic processes (diffusion or adhesive interactions) [44].
Urban cleanliness and its variations over time reflect the aspects of each civilization, […], the capacity of societies to legislate, to mobilize techniques and to organize the complexity of urban services [80]. In developing countries (DCs), however, the issue of urban cleanliness a priori highlights the weakness of urban managers and institutions in terms of their capacity to manage the growing and very heterogeneous flow of waste produced [81].
In Port-au-Prince, the capital of Haiti, solid waste management is practiced in a context of rapid population growth and extreme urban poverty [82]. Indeed, urban cleanliness and its variations over time highlight a clear discrepancy between the objective of the waste management service (making and maintaining the city clean) and the realities on the ground. The combination of the low rate of garbage collection and high human densities accentuates unsanitary conditions in the city and represents a risk factor not only in terms of human health but also of the environment. Also, vacant spaces, voids in the urban fabric of Port-au-Prince very quickly become public landfill spaces [81]. In this urban space, notes Lacour [83], urban cleanliness is established in the mix of most urban waste management systems where state and private services coexist, as well as public funds and international funding, through development organizations. In addition, the negative impacts (pollution, nuisance, proliferation of rodents and insects, risk of disease, etc.), linked to the size, nature, and unsuitable management methods of organic waste (landfill with other categories, combustion, etc.), are generally very pronounced [83].
The characteristics of the waste management system in Haiti have been defined as follows [84]:
“At source, the general behavior tends to immediately remove unsorted waste. Consequently, the nearest (common) public space becomes the preferred outlet. This reflex is particularly predominant in rural and peri-urban areas and the precarious neighborhoods of so-called “low-standing” urban areas.
The existence of an informal circuit, said to be rather pragmatic, compensates for the absence of an institutional waste management service in rural areas or the dysfunction of this service in urban areas. This circuit is characterized by a pre-collection by voluntary contribution, an individual (rural and peri-urban) or private (urban “medium standing” and “high standing”) collection, waste disposal in non-dedicated spaces (vacant lots, gullies, etc.) spontaneously transformed into wild dumps.
The total absence of a landfill site that meets environmental standards, in terms of waste categorization, development work for the control of discharges and the recovery of leachate and biogas, odor management, animal control, etc.
The practices of recycling organic waste, by feeding pets and livestock (free and rope) are quite frequent at the level of pre-collection and collection points.
The lack of information relating to the deposits of waste, in terms of their masses, their compositions and their bio-physico-chemical characteristics, through the seasons and rural, peri-urban and urban spaces, constitutes an obstacle to the implementation, the monitoring and anticipation of management strategies” [84].
According to the World Bank (2019) [85], in the Caribbean and elsewhere in the world, marine pollution is linked to poor waste management on land: illegal dumping, open burning or dumping of waste in streams. In addition, the quantity of plastics reaches a concentration of 200,000 pieces of debris per square kilometer in the northeast of the Caribbean. In this region of the world, about 85% of wastewater is discharged into the ocean without having been previously treated; and, in island countries more particularly - Bahamas, Greater Antilles (Cuba, Dominican Republic, Haiti, Jamaica and Puerto Rico) and Lesser Antilles - approximately 52% of households are not connected to sewers. However, 14 Caribbean countries (more than a third) have banned single-use plastic bags and / or styrofoam containers (Figure 7).
Caribbean countries that have banned single-use plastic bags and/or expanded polystyrene containers [
In Haiti, the government issued on August 9, 2012, a decree prohibiting the production, import, marketing, and use, in any form whatsoever, of polyethylene bags and expanded polystyrene objects (PSE or PS or Styrofoam) for single food use, such as trays, trays, bottles, sachets, cups and plates. On July 10, 2013, a second decree was issued to ban once again “the importation, production or sale of expanded polystyrene articles for food use”. In support of the second decree, the ministries of the Environment, Justice and Public Security, Trade, and Industry as well as Economy and Finance announced in a note published in January 2018 that brigade’s specialists will be deployed on the territory to force the application of the said decree.
To better approach the problem of plastic and microplastic waste management in Port-au-Prince, it is important to look at the waste management system. In Haiti, the National Solid Waste Management Service (
In the agglomeration of Port-au-Prince, there is a single space that has been officially designated to receive any type of waste. Due to the insufficient capacity of public actors to collect all waste, it ends up in different types of space according to different logics [86]. The uncontrolled presence of waste induces a certain number of potential nuisances. It is therefore necessary to consider the health risk classically associated with waste [87], as a vector of pathology and contamination of natural resources [86]. Beyond the environmental dangers generated by chemical substances and pathogenic microorganisms present in solid waste, the latter not only obstruct traffic routes, but are also a source of flooding by blocking irrigation canals and gullies (Figure 8).
Uncontrolled presence of waste in public spaces in Port-au-Prince. (left illustration - unauthorized deposit of household waste along a road [
Port-au-Prince’s marine ecosystem is liable to suffer locally profoundly serious damages caused by the direct discharge of urban effluents [88]. Indeed, the discharge of contaminants in natural ecosystems, by example water bodies pose a significant concern to water quality and to the health of aquatic organism because of not only the varied types of pollutants that impact these systems, also because of the many ways pollutants can affect the health of aquatic organism [89].
With the tropical temperature of Haiti and the average daily duration (12 hours / day), the plastics present in the urban water canals could degrade more quickly by generating microplastics. Their discharge in the bay of Port-au-Prince exposes this ecosystem to environmental dangers [90], that of pollutants contained in wastewater, and that of climatic hazards, in particular the acidification of the oceans. The stress of benthic organisms (coral reefs, bivalves) should then be observed and monitored.
The presence of microplastics in the environment first and foremost generates environmental health hazards, which need to be increasingly identified and assessed. Most of the research in the field of environmental pollution from microplastics has been carried out on aquatic ecosystems. There then arises the need to initiate research programs on terrestrial ecosystems.
The future of MPs in the environment represents real research challenges. Indeed, there is a lack of knowledge at the local and national level of the different flows. At the global level, the toxicological reference values have not yet been obtained. Human dose–response relationships need to be investigated on the basis of still possible animal species exposures.
The field of environmental assessment of MPs, in the Caribbean for example, a priori calls for transdisciplinary approaches. Indeed, this region of the world, thanks to its tropical climate and the Caribbean Sea, makes tourism one of its main development niches. Pollution from plastic waste exposes its economy to a risk of economic imbalance. In the case of Haiti, beyond the urgent need to review its public policies in terms of urban water and solid waste management, the pollution of ecosystems by MPs highlights the need to initiate real research work. in the field of marine ecotoxicology.
The authors are thankful to the “One Health” University Space of Quisqueya University, FOKAL-Open Society Foundation Haiti, the Agence universitaire de la Francophonie (AUF), the Representation of the Institute of Research for Development (IRD) in Mexico, Cuba, and Haiti, the SCAC (Service de Coopération et d’Action Culturelle) of the France Embassy in Haiti, and the AOG (Association Communautaire Paysanne des Originaires de Grande Plaine), for their support in carrying out this study.
The Edited Volume, also known as the IntechOpen Book, is an IntechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters.
",metaTitle:"Edited Volumes",metaDescription:"The Edited Volume, also known as the InTechOpen Book, is an InTechOpen pioneered publishing product. Edited Volumes make up the core of our business - and as pioneers and developers of this Open Access book publishing format, we have helped change the way scholars and scientists publish their scientific papers - as scientific chapters. ",metaKeywords:null,canonicalURL:"/pages/edited-volumes",contentRaw:'[{"type":"htmlEditorComponent","content":"WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\\n\\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nQUALITY CONTENT
\\n\\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\\n\\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\\n\\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\\n\\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\\n\\nACCESS
\\n\\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\\n\\nYOUR WORK, YOUR COPYRIGHT
\\n\\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\\n\\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\\n\\nOur Open Access book collection includes:
\\n\\n3,332 OPEN ACCESS BOOKS
\\n\\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\\n\\n113+ MILLION DOWNLOADS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview of all publishing process steps and descriptions here.
\\n\\nCURRENT PROJECTS
\\n\\nTo view current Open Access book projects that are Open for Submissions visit us here.
\\n\\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'WHY PUBLISH IN AN INTECHOPEN EDITED VOLUME?
\n\nOut of all of the publishing options available to researchers, why choose to contribute your research to an IntechOpen Edited Volume? The reasons are simple. IntechOpen has worked exceptionally hard over the past years to fine tune the Open Access book publishing process and we continue to work hard to deliver the best for all of our contributors. The quality of published content is of utmost importance to us, followed closely by speed, and of course, availability and accessibility. To view current Open Access book projects that are Open for Submissions visit us here.
\n\nQUALITY CONTENT
\n\nOver the years we have learned what is important. What makes a difference to the researchers that work with us, what they value. Something that is very high not only on their lists, but our own, is the quality of the published content.
\n\nOur books contain scientific content written by two Nobel Prize winners, two Breakthrough Prize winners and 73 authors who are in the top 1% Most Cited.
\n\nWith regular submission for coverage in the single most important database, the Book Citation Index in the Web of Science™ Core Collection (BKCI), and no rejected submissions to date, over 43% of all Open Access books indexed in the BKCI are IntechOpen published books.
\n\nIn addition to BKCI, IntechOpen covers a number of important discipline specific databases as well, such as Thomson Reuters’ BIOSIS Previews.
\n\nACCESS
\n\nThe need for up to date information available at the click of a mouse is one thing that sets IntechOpen apart. By developing our own technologies in order to streamline the publishing process, we are able to minimize the amount of time from initial submission of a manuscript to its final publication date, without compromising the rigor of the editorial and peer review process. This means that the research published stays relevant, and in this fast paced world, this is very important.
\n\nYOUR WORK, YOUR COPYRIGHT
\n\nThe utilization of CC licenses allow researchers to retain copyright to their work. Researchers are free to use, adapt and share all content they publish with us. You will never have to pay permission fees to reuse a part of an experiment that you worked so hard to complete and are free to build upon your own research and the research of others. The Edited Volume helps bring together research from all over the world and compiles that research into one book - accessible for all. The research presented in chapter one can inspire the author of chapter three to take his or her research to the next level. It is about sharing ideas, insights and knowledge.
\n\nCan collaboration be inspired by a publishing format? At IntechOpen, the answer is yes. The way the research is published, the way it is accessed, it’s all part of our mission to help academics make a greater impact by giving readers free access to all published work.
\n\nOur Open Access book collection includes:
\n\n3,332 OPEN ACCESS BOOKS
\n\n107,564 INTERNATIONAL AUTHORS AND ACADEMIC EDITORS
\n\n113+ MILLION DOWNLOADS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview of all publishing process steps and descriptions here.
\n\nCURRENT PROJECTS
\n\nTo view current Open Access book projects that are Open for Submissions visit us here.
\n\nNot sure if this is the right publishing option for you? Feel free to contact us at book.department@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6602},{group:"region",caption:"Middle and South America",value:2,count:5908},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12542},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:12,limit:12,total:132766},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"14"},books:[{type:"book",id:"11988",title:"Magnesium Alloys",subtitle:null,isOpenForSubmission:!0,hash:"4da7079fb57ccc6aa9f8323d8d42bda6",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11988.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11990",title:"Iron Ores and Iron Oxide",subtitle:null,isOpenForSubmission:!0,hash:"20cbec723d56ff06096e08d93750ad58",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11990.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11991",title:"Trace Metals in the Environment",subtitle:null,isOpenForSubmission:!0,hash:"668c7f042fb58587e82ac90c32a22447",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11991.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11993",title:"Reinforced Concrete",subtitle:null,isOpenForSubmission:!0,hash:"74188d8583c4569b6cf7755128a311be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11993.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11995",title:"Elastomers",subtitle:null,isOpenForSubmission:!0,hash:"e37c2de13a51e358b06c9cf637b55d33",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11995.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11996",title:"Granite",subtitle:null,isOpenForSubmission:!0,hash:"03b9e834fd0abe7ffef7ef85e7c02426",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11996.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites",subtitle:null,isOpenForSubmission:!0,hash:"31d8afbb8256b34918ddc7ce910cc6e5",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12264",title:"Polyaniline",subtitle:null,isOpenForSubmission:!0,hash:"2e0710de2d17485e9d56a87461a2b0b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12264.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12265",title:"Silk-based Materials",subtitle:null,isOpenForSubmission:!0,hash:"7f580af2140c873052c6e12f9318ee95",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12265.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12261",title:"Sol-gel Method",subtitle:null,isOpenForSubmission:!0,hash:"5d96c89299217a36052ad1b8031be001",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12261.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12263",title:"Geosynthetic Materials and Products",subtitle:null,isOpenForSubmission:!0,hash:"9f1b26209b356040678d896248f51215",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12263.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:100},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[],latestBooks:[]},subject:{topic:{id:"33",title:"Bromatology",slug:"agricultural-and-biological-sciences-bromatology",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:73,numberOfSeries:0,numberOfAuthorsAndEditors:2402,numberOfWosCitations:3602,numberOfCrossrefCitations:2067,numberOfDimensionsCitations:5346,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"33",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9710",title:"Olive Oil",subtitle:"New Perspectives and Applications",isOpenForSubmission:!1,hash:"2f673efc0d0213f2d937fc89e65a24df",slug:"olive-oil-new-perspectives-and-applications",bookSignature:"Muhammad Akram",coverURL:"https://cdn.intechopen.com/books/images_new/9710.jpg",editedByType:"Edited by",editors:[{id:"215436",title:"Dr.",name:"Muhammad",middleName:null,surname:"Akram",slug:"muhammad-akram",fullName:"Muhammad Akram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10888",title:"Dietary Fibers",subtitle:null,isOpenForSubmission:!1,hash:"341227ed81a866eb05390bc26f2e5ad7",slug:"dietary-fibers",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/10888.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9651",title:"Cereal Grains",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"918540a77975243ee748770aea1f4af2",slug:"cereal-grains-volume-1",bookSignature:"Aakash Kumar Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/9651.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash K.",middleName:null,surname:"Goyal",slug:"aakash-k.-goyal",fullName:"Aakash K. Goyal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10440",title:"Nuts and Nut Products in Human Health and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"4a103c51832749a8c5e73020dcc46194",slug:"nuts-and-nut-products-in-human-health-and-nutrition",bookSignature:"Venketeshwer Rao, Leticia Rao, Md Ahiduzzaman and A. K. M. Aminul Islam",coverURL:"https://cdn.intechopen.com/books/images_new/10440.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",middleName:null,surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10637",title:"Functional Foods",subtitle:"Phytochemicals and Health Promoting Potential",isOpenForSubmission:!1,hash:"a4aa0abf066e78deed1f65312ff24b22",slug:"functional-foods-phytochemicals-and-health-promoting-potential",bookSignature:"Muhammad Sajid Arshad and Muhammad Haseeb Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10637.jpg",editedByType:"Edited by",editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",middleName:null,surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8493",title:"Meat and Nutrition",subtitle:null,isOpenForSubmission:!1,hash:"fa7ad96f9b9e63093c9091fb0b93a5f4",slug:"meat-and-nutrition",bookSignature:"Chhabi Lal Ranabhat",coverURL:"https://cdn.intechopen.com/books/images_new/8493.jpg",editedByType:"Edited by",editors:[{id:"230681",title:"Dr.",name:"Chhabi Lal",middleName:null,surname:"Ranabhat",slug:"chhabi-lal-ranabhat",fullName:"Chhabi Lal Ranabhat"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8935",title:"Mineral Deficiencies",subtitle:"Electrolyte Disturbances, Genes, Diet and Disease Interface",isOpenForSubmission:!1,hash:"8bc7bd085801296d26c5ea58a7154de3",slug:"mineral-deficiencies-electrolyte-disturbances-genes-diet-and-disease-interface",bookSignature:"Gyula Mózsik and Gonzalo Díaz-Soto",coverURL:"https://cdn.intechopen.com/books/images_new/8935.jpg",editedByType:"Edited by",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9699",title:"Grain and Seed Proteins Functionality",subtitle:null,isOpenForSubmission:!1,hash:"9268519d1e294c5edf8e964a122e4c91",slug:"grain-and-seed-proteins-functionality",bookSignature:"Jose Carlos Jimenez-Lopez",coverURL:"https://cdn.intechopen.com/books/images_new/9699.jpg",editedByType:"Edited by",editors:[{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:null,name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9722",title:"Milk Substitutes",subtitle:"Selected Aspects",isOpenForSubmission:!1,hash:"cc91d4cfca40c9ba47bbe34b2f8e8a3e",slug:"milk-substitutes-selected-aspects",bookSignature:"Małgorzata Ziarno",coverURL:"https://cdn.intechopen.com/books/images_new/9722.jpg",editedByType:"Edited by",editors:[{id:"303881",title:"Prof.",name:"Małgorzata",middleName:null,surname:"Ziarno",slug:"malgorzata-ziarno",fullName:"Małgorzata Ziarno"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editedByType:"Edited by",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:73,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"42000",doi:"10.5772/53159",title:"Valorisation of Cheese Whey, a By-Product from the Dairy Industry",slug:"valorisation-of-cheese-whey-a-by-product-from-the-dairy-industry",totalDownloads:6987,totalCrossrefCites:56,totalDimensionsCites:121,abstract:null,book:{id:"3424",slug:"food-industry",title:"Food Industry",fullTitle:"Food Industry"},signatures:"Chiara Mollea, Luca Marmo and Francesca Bosco",authors:[{id:"93865",title:"Dr.",name:"Francesca",middleName:null,surname:"Bosco",slug:"francesca-bosco",fullName:"Francesca Bosco"},{id:"96159",title:"Dr.",name:"Chiara",middleName:null,surname:"Mollea",slug:"chiara-mollea",fullName:"Chiara Mollea"},{id:"166295",title:"Prof.",name:"Luca",middleName:null,surname:"Marmo",slug:"luca-marmo",fullName:"Luca Marmo"}]},{id:"29151",doi:"10.5772/32358",title:"Hydrocolloids in Food Industry",slug:"hydrocolloids-in-food-industry",totalDownloads:30583,totalCrossrefCites:30,totalDimensionsCites:109,abstract:null,book:{id:"2082",slug:"food-industrial-processes-methods-and-equipment",title:"Food Industrial Processes",fullTitle:"Food Industrial Processes - Methods and Equipment"},signatures:"Jafar Milani and Gisoo Maleki",authors:[{id:"91158",title:"Associate Prof.",name:"Jafar",middleName:"Mohammadzadeh",surname:"Milani",slug:"jafar-milani",fullName:"Jafar Milani"},{id:"124058",title:"Ph.D. Student",name:"Gisoo",middleName:null,surname:"Maleki",slug:"gisoo-maleki",fullName:"Gisoo Maleki"}]},{id:"41694",doi:"10.5772/53172",title:"Seaweeds for Food and Industrial Applications",slug:"seaweeds-for-food-and-industrial-applications",totalDownloads:8243,totalCrossrefCites:30,totalDimensionsCites:96,abstract:null,book:{id:"3424",slug:"food-industry",title:"Food Industry",fullTitle:"Food Industry"},signatures:"Berna Kılınç, Semra Cirik, Gamze Turan, Hatice Tekogul and Edis Koru",authors:[{id:"88972",title:"Dr.",name:"Edis",middleName:null,surname:"Koru",slug:"edis-koru",fullName:"Edis Koru"},{id:"161688",title:"Dr.",name:"Berna",middleName:null,surname:"Kılınç",slug:"berna-kilinc",fullName:"Berna Kılınç"}]},{id:"40180",doi:"10.5772/50568",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66291,totalCrossrefCites:42,totalDimensionsCites:87,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"53601",doi:"10.5772/66840",title:"Chitosan in Agriculture: A New Challenge for Managing Plant Disease",slug:"chitosan-in-agriculture-a-new-challenge-for-managing-plant-disease",totalDownloads:5634,totalCrossrefCites:31,totalDimensionsCites:66,abstract:"In recent years, environmental-friendly measures have been developed for managing crop diseases as alternative to chemical pesticides, including the use of natural compounds such as chitosan. In this chapter, the common uses of this natural product in agriculture and its potential uses in plant disease control are reviewed. The last advanced researches as seed coating, plant resistance elicitation and soil amendment applications are also described. Chitosan is a deacetylated derivative of chitin that is naturally present in the fungal cell wall and in crustacean shells from which it can be easily extracted. Chitosan has been reported to possess antifungal and antibacterial activity and it showed to be effective against seedborne pathogens when applied as seed treatment. It can form physical barriers (film) around the seed surface, and it can vehicular other antimicrobial compounds that could be added to the seed treatments. Chitosan behaves as a resistance elicitor inducing both local and systemic plant defence responses even when applied to the seeds. The chitosan used as soil amendment was shown to give many benefits to different plant species by reducing the pathogen attack and infection. Concluding, the chitosan is an active molecule that finds many possibilities for application in agriculture, including plant disease control.",book:{id:"5412",slug:"biological-activities-and-application-of-marine-polysaccharides",title:"Biological Activities and Application of Marine Polysaccharides",fullTitle:"Biological Activities and Application of Marine Polysaccharides"},signatures:"Laura Orzali, Beatrice Corsi, Cinzia Forni and Luca Riccioni",authors:[{id:"189361",title:"Ph.D.",name:"Laura",middleName:null,surname:"Orzali",slug:"laura-orzali",fullName:"Laura Orzali"},{id:"189612",title:"Dr.",name:"Luca",middleName:null,surname:"Riccioni",slug:"luca-riccioni",fullName:"Luca Riccioni"},{id:"189614",title:"Dr.",name:"Beatrice",middleName:null,surname:"Corsi",slug:"beatrice-corsi",fullName:"Beatrice Corsi"},{id:"189615",title:"Prof.",name:"Cinzia",middleName:null,surname:"Forni",slug:"cinzia-forni",fullName:"Cinzia Forni"}]}],mostDownloadedChaptersLast30Days:[{id:"64570",title:"Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications",slug:"banana-pseudo-stem-fiber-preparation-characteristics-and-applications",totalDownloads:9295,totalCrossrefCites:14,totalDimensionsCites:18,abstract:"Banana is one of the most well-known and useful plants in the world. Almost all the parts of this plant, that are, fruit, leaves, flower bud, trunk, and pseudo-stem, can be utilized. This chapter deals with the fiber extracted from the pseudo-stem of the banana plant. It discusses the production of banana pseudo-stem fiber, which includes plantation and harvesting; extraction of banana pseudo-stem fiber; retting; and degumming of the fiber. It also deals with the characteristics of the banana pseudo-stem fiber, such as morphological, physical and mechanical, durability, degradability, thermal, chemical, and antibacterial properties. Several potential applications of this fiber are also mentioned, such as the use of this fiber to fabricate rope, place mats, paper cardboard, string thread, tea bags, high-quality textile materials, absorbent, polymer/fiber composites, etc.",book:{id:"7544",slug:"banana-nutrition-function-and-processing-kinetics",title:"Banana Nutrition",fullTitle:"Banana Nutrition - Function and Processing Kinetics"},signatures:"Asmanto Subagyo and Achmad Chafidz",authors:[{id:"257742",title:"M.Sc.",name:"Achmad",middleName:null,surname:"Chafidz",slug:"achmad-chafidz",fullName:"Achmad Chafidz"},{id:"268400",title:"Mr.",name:"Asmanto",middleName:null,surname:"Subagyo",slug:"asmanto-subagyo",fullName:"Asmanto Subagyo"}]},{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66304,totalCrossrefCites:42,totalDimensionsCites:87,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"68437",title:"Chemical Properties of Starch and Its Application in the Food Industry",slug:"chemical-properties-of-starch-and-its-application-in-the-food-industry",totalDownloads:4650,totalCrossrefCites:17,totalDimensionsCites:47,abstract:"Starch is an important food product and a versatile biomaterial used world-wide for different purposes in many industrial sectors including foods, health, textile, chemical and engineering sector. Starch versatility in industrial applications is largely defined by its physicochemical properties and functionality. Starch in its native form has limited functionality and application. But advancements in biotechnology and chemical technological have led to wide-range modification of starch for different purposes. The objective of this chapter is to examine the different chemical reactions of starch and expose the food applications of the modification products. Several literatures on starch and reaction chemistry including online journals and books were analyzed, harmonized and rationalized. The reactions and mechanisms presented are explained based on the principles of reaction chemistry. Chemical modification of starch is based on the chemical reactivity of the constituent glucose monomers which are polyhydroxyl and can undergo several reactions. Starch can undergo reactions such as hydrolysis, esterification, etherification and oxidation. These reactions give modified starches which can be used in baked foods, confectionaries, soups and salad dressings. This chapter discusses the different chemical reactions of starch, the associated changes in functionality, as well as the applications of chemically modified starches in the food industry.",book:{id:"8170",slug:"chemical-properties-of-starch",title:"Chemical Properties of Starch",fullTitle:"Chemical Properties of Starch"},signatures:"Henry Omoregie Egharevba",authors:[{id:"300976",title:"Associate Prof.",name:"Henry",middleName:"Omoregie",surname:"Egharevba",slug:"henry-egharevba",fullName:"Henry Egharevba"}]},{id:"63169",title:"The Dairy Industry: Process, Monitoring, Standards, and Quality",slug:"the-dairy-industry-process-monitoring-standards-and-quality",totalDownloads:8973,totalCrossrefCites:11,totalDimensionsCites:27,abstract:"Sampling and analysis occur along the milk processing train: from collection at farm level, to intake at the diary plant, the processing steps, and the end products. Milk has a short shelf life; however, products such as milk powders have allowed a global industry to be developed. Quality control tests are vital to support activities for hygiene and food standards to meet regulatory and customer demands. Multiples of chemical and microbiological contamination tests are undertaken. Hazard analysis testing strategies are necessary, but some tests may be redundant; it is therefore vital to identify product optimization quality control strategies. The time taken to undergo testing and turnaround time are rarely measured. The dairy industry is a traditional industry with a low margin commodity. Industry 4.0 vision for dairy manufacturing is to introduce the aspects of operational excellence and implementation of information and communications technologies. The dairy industries’ reply to Industry 4.0 is represented predominantly by proactive maintenance and optimization of production and logistical chains, such as robotic milking machines and processing and packaging line automation reinforced by sensors for rapid chemical and microbial analysis with improved and real-time data management. This chapter reviews the processing trains with suggestions for improved optimization.",book:{id:"6817",slug:"descriptive-food-science",title:"Descriptive Food Science",fullTitle:"Descriptive Food Science"},signatures:"Niamh Burke, Krzysztof A. Zacharski, Mark Southern, Paul Hogan,\nMichael P. Ryan and Catherine C. Adley",authors:[{id:"243276",title:"Dr.",name:"Michael P",middleName:null,surname:"Ryan",slug:"michael-p-ryan",fullName:"Michael P Ryan"},{id:"246153",title:"Prof.",name:"Catherine",middleName:null,surname:"Adley",slug:"catherine-adley",fullName:"Catherine Adley"},{id:"264302",title:"Ms.",name:"Niamh",middleName:null,surname:"Burke",slug:"niamh-burke",fullName:"Niamh Burke"},{id:"264304",title:"Mr.",name:"Krzysztof A",middleName:null,surname:"Zacharski",slug:"krzysztof-a-zacharski",fullName:"Krzysztof A Zacharski"},{id:"264305",title:"Mr.",name:"Paul",middleName:null,surname:"Hogan",slug:"paul-hogan",fullName:"Paul Hogan"},{id:"264306",title:"Dr.",name:"Mark",middleName:null,surname:"Southern",slug:"mark-southern",fullName:"Mark Southern"}]},{id:"40181",title:"Plant Tissue Culture Media",slug:"plant-tissue-culture-media",totalDownloads:104949,totalCrossrefCites:7,totalDimensionsCites:28,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Abobkar I.M. Saad and Ahmed M. Elshahed",authors:[{id:"144204",title:"Prof.",name:"Abobkar",middleName:null,surname:"Mohamed",slug:"abobkar-mohamed",fullName:"Abobkar Mohamed"}]}],onlineFirstChaptersFilter:{topicId:"33",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81528",title:"Effects of High Ambient Temperature on Milk Protein Synthesis in Dairy Cows and Goats: Insights from the Molecular Mechanism Studies",slug:"effects-of-high-ambient-temperature-on-milk-protein-synthesis-in-dairy-cows-and-goats-insights-from-",totalDownloads:14,totalDimensionsCites:0,doi:"10.5772/intechopen.104563",abstract:"Milk protein is well accepted for nutritional value compared with other sources of protein. Detailed understanding of the natural factors that can determine milk protein subcomponent (i.e., casein) not only fulfill the knowledge of protein synthesis but also provide the potential idea to improve milk quality. The variation in milk protein content from dairy cows and goats fed in tropical areas may determine the added value of milk from this region. Under prolonged high ambient temperature (HTa), dairy cows and goats are at the stage of heat stress. This physiological condition produces a negative effect on dairy cows and goats, i.e., food intake and milk yield. However, the higher milk protein content during summer is demonstrated in dairy goats in our condition. Likewise, an increase in heat shock protein 70 (Hsp70) gene expression from mammary epithelium cells isolated from either in vivo (summer and winter periods) and in vitro conditions suggests the direct effect of HTa on mammary gland and perhaps on milk protein synthesis. The intracellular effect of Hsp70 on milk protein synthesis has been proposed in regard to the endoplasmic reticulum and Golgi apparatus protein transportation and with the subcomponent of casein micelle. The present information reveals the molecular mechanism of HTa on milk protein synthesis.",book:{id:"11360",title:"Milk Protein - New Research Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg"},signatures:"Sumpun Thammacharoen, Nungnuch Saipin, Thiet Nguyen and Narongsak Chaiyabutr"},{id:"81333",title:"Pseudocereals: A Novel Path towards Healthy Eating",slug:"pseudocereals-a-novel-path-towards-healthy-eating",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.103708",abstract:"Nowadays, interest in research about pseudocereals has increased worldwide. Pseudocereals can be defined as seeds or fruits of non-grass species that can be consumed similarly to cereals. The most extensively used pseudocereals include quinoa, chia, buckwheat, amaranth, and so on. All of them, have good nutritional and bioactive compounds such as essential amino acids, essential fatty acids, phenolic acids, flavonoids, minerals, and vitamins. Food and Agriculture Organization (FAO) has also reported that there is a buddle of plants that are under-utilized that significantly contribute to improving nutrition and health as well as enhancing food basket and livelihoods of the individual; contributing to future food security and sustainability. Earlier studies also reported that pseudocereals protein-derived peptides have anti-cancerous, anti-inflammatory, anti-hypertensive, hypocholesterolemic, and antioxidant properties. The presence of these interesting properties in pseudocereals enhances the interest to carry out extensive research regarding their health benefits and the way to incorporate them into the diet. In this chapter, we portray different types of pseudocereals with their nutritional benefits for living a healthy and active life.",book:{id:"11354",title:"Pseudocereals",coverURL:"https://cdn.intechopen.com/books/images_new/11354.jpg"},signatures:"Upasana and Latika Yadav"},{id:"80610",title:"Compare the Effects of Ultrasound versus Taping in Lactating Mothers with Breast Engorgement",slug:"compare-the-effects-of-ultrasound-versus-taping-in-lactating-mothers-with-breast-engorgement",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.102359",abstract:"Human milk has hundreds of milk proteins, which provides many benefits on breastfeeding. Breastfeeding is a mother’s gift to herself, her baby, and the earth, there is no substitute for mother’s milk. Milk protein is most important for baby’s growth, development and protects the baby from different illness. Colostrum is produced during early days immediately after child birth, which contains important nutrients and antibodies. Breast engorgement is a problem that is commonly encountered in breastfeeding mothers, which is to be addressed and treated to provide good milk proteins to baby, by relieving discomforts of lactating mothers. A randomized controlled trial was conducted with 30 subjects based on inclusion and exclusion criteria where the subjects are divided into two groups, which contain 15 lactating mothers in each group. The control group that is group-A was treated with ultrasound, and the experimental group that is group-B was treated with ultrasound and Taping Technique. The result of the study showed that there was a significant difference between the pre- and posttest intervention, and we conclude that the ultrasound therapy and Kinesio taping was effective in treating lactating mothers with breast engorgement.",book:{id:"11360",title:"Milk Protein - New Research Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg"},signatures:"Dasarapu Indrani, Jagatheesan Alagesan, Prathap Suganthirababu, M.V. Sowmya and Dubba NagaRaju"},{id:"80780",title:"Omics, the New Technological Approaches to the Milk Protein Researches",slug:"omics-the-new-technological-approaches-to-the-milk-protein-researches",totalDownloads:29,totalDimensionsCites:0,doi:"10.5772/intechopen.102490",abstract:"With the development of technological approaches, the perturbations of biological information in gene, mRNA, proteins, and metabolites have been gathered to broaden the cognition of synthesis processes during lactation. While omics, the series of application including genomics, transcriptomics, proteomics, and metabolomics, are mostly preferred and conducted in the investigation of lactation especially the milk protein. These new technological approaches provide a complete view of the molecular regulation pathways and make it possible to systematically investigate the lactation. The aim of this chapter is to comprehensively review the advances in knowledge regarding the great progress in milk protein synthesis as well as lactation physiology and pathology mainly in dairy cows obtained from omics technologies, meanwhile the milk proteins as well as their attributes are illustrated.",book:{id:"11360",title:"Milk Protein - New Research Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg"},signatures:"Zitai Guo, Lu Ma and Dengpan Bu"},{id:"80943",title:"Colostrum and Milk in Sow",slug:"colostrum-and-milk-in-sow",totalDownloads:33,totalDimensionsCites:0,doi:"10.5772/intechopen.102890",abstract:"Both colostrum and milk quality and quantity can influence piglet survival and growth, especially in a highly prolific sow. The Danish Landrace × Yorkshire crossbred was selected for high prolificacy and challenged to provide enough colostrum and milk of high quality to all piglets. This chapter reviewed the mechanism of colostrum and milk production, basic information of colostrum, and milk quality (immunoglobulin, fat, protein, lactose, etc.) and quantity. The importance of colostrum and milk in modern sows on piglet performance and survival was addressed. Since the sow immunoglobulin cannot pass epitheliochorial placenta in the sow to the piglet’s bloodstream. Therefore, colostrum is a crucial role in piglet survival and growth. However, the amount of colostrum and milk production in hyperprolific sow still improve from high litter size. The knowledge about the factors influencing colostrum and milk quality and quantity, such as parity number, piglet, the environment in hyperprolific sows, may support veterinarians and farmers in the commercial swine farms for increasing pig production. Moreover, the technique to improve colostrum and milk quality and quantity were explained, such as feed supplementation in gestating and lactating sows.",book:{id:"11360",title:"Milk Protein - New Research Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg"},signatures:"Morakot Nuntapaitoon"},{id:"79873",title:"Review on Pseudo-Cereals of India",slug:"review-on-pseudo-cereals-of-india",totalDownloads:30,totalDimensionsCites:0,doi:"10.5772/intechopen.101834",abstract:"Pseudo-cereals are non-grass, wild plants whose seeds are used in the same manner as cereals, but are underutilized due to the dominance of conventional cereal crops. Pseudo-cereals have varied adaptability. They are climatically more resilient and nutritionally richer than major cereal crops. They are enriched with essential amino acids and their protein content is either similar or greater than that of cereals. They contain adequate amounts of dietary fibers that help improve lipid metabolism. They also contain saponins, polyphenols, betalains, flavonoids, antioxidants, vitamins, and other important phytochemical compounds that help detoxify ROS and cope up with the diseases. Interest in the research of pseudo-cereals is growing among the research community due to its extraordinary nutritional and phytochemical profile and its potential in the development of gluten-free products. It can serve as an alternative food source against staple cereal crops under harsh environmental conditions and if cultivated sustainably, can resolve hunger issues in many countries. Pseudo-cereals form an integral part of the biodiversity due to its widespread usage by the tribals. Wild plants of many angiosperm families are used by tribal communities, but in this review, we will only focus on members of Amaranthceae and Chenopodiaceae families.",book:{id:"11354",title:"Pseudocereals",coverURL:"https://cdn.intechopen.com/books/images_new/11354.jpg"},signatures:"Padamnabhi Nagar, Riya Engineer and Krishna Rajput"}],onlineFirstChaptersTotal:15},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:288,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188",scope:"This series will provide a comprehensive overview of recent research trends in various Infectious Diseases (as per the most recent Baltimore classification). Topics will include general overviews of infections, immunopathology, diagnosis, treatment, epidemiology, etiology, and current clinical recommendations for managing infectious diseases. Ongoing issues, recent advances, and future diagnostic approaches and therapeutic strategies will also be discussed. This book series will focus on various aspects and properties of infectious diseases whose deep understanding is essential for safeguarding the human race from losing resources and economies due to pathogens.",coverUrl:"https://cdn.intechopen.com/series/covers/6.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:13,editor:{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"3",title:"Bacterial Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/3.jpg",isOpenForSubmission:!1,editor:null,editorTwo:null,editorThree:null},{id:"4",title:"Fungal Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",isOpenForSubmission:!0,editor:{id:"174134",title:"Dr.",name:"Yuping",middleName:null,surname:"Ran",slug:"yuping-ran",fullName:"Yuping Ran",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9d6QAC/Profile_Picture_1630330675373",biography:"Dr. Yuping Ran, Professor, Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China. Completed the Course Medical Mycology, the Centraalbureau voor Schimmelcultures (CBS), Fungal Biodiversity Centre, Netherlands (2006). International Union of Microbiological Societies (IUMS) Fellow, and International Emerging Infectious Diseases (IEID) Fellow, Centers for Diseases Control and Prevention (CDC), Atlanta, USA. Diploma of Dermatological Scientist, Japanese Society for Investigative Dermatology. Ph.D. of Juntendo University, Japan. Bachelor’s and Master’s degree, Medicine, West China University of Medical Sciences. Chair of Sichuan Medical Association Dermatology Committee. General Secretary of The 19th Annual Meeting of Chinese Society of Dermatology and the Asia Pacific Society for Medical Mycology (2013). In charge of the Annual Medical Mycology Course over 20-years authorized by National Continue Medical Education Committee of China. Member of the board of directors of the Asia-Pacific Society for Medical Mycology (APSMM). Associate editor of Mycopathologia. Vice-chief of the editorial board of Chinses Journal of Mycology, China. Board Member and Chair of Mycology Group of Chinese Society of Dermatology.",institutionString:null,institution:{name:"Sichuan University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"5",title:"Parasitic Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",isOpenForSubmission:!0,editor:{id:"67907",title:"Dr.",name:"Amidou",middleName:null,surname:"Samie",slug:"amidou-samie",fullName:"Amidou Samie",profilePictureURL:"https://mts.intechopen.com/storage/users/67907/images/system/67907.jpg",biography:"Dr. Amidou Samie is an Associate Professor of Microbiology at the University of Venda, in South Africa, where he graduated for his PhD in May 2008. He joined the Department of Microbiology the same year and has been giving lectures on topics covering parasitology, immunology, molecular biology and industrial microbiology. He is currently a rated researcher by the National Research Foundation of South Africa at category C2. He has published widely in the field of infectious diseases and has overseen several MSc’s and PhDs. His research activities mostly cover topics on infectious diseases from epidemiology to control. His particular interest lies in the study of intestinal protozoan parasites and opportunistic infections among HIV patients as well as the potential impact of childhood diarrhoea on growth and child development. He also conducts research on water-borne diseases and water quality and is involved in the evaluation of point-of-use water treatment technologies using silver and copper nanoparticles in collaboration with the University of Virginia, USA. He also studies the use of medicinal plants for the control of infectious diseases as well as antimicrobial drug resistance.",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},{id:"6",title:"Viral Infectious Diseases",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",isOpenForSubmission:!0,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:4,paginationItems:[{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},overviewPagePublishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}]},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}]},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",biography:"Dr. Kasenga is a graduate of Tumaini University, Kilimanjaro Christian Medical College, Moshi, Tanzania and Umeå University, Sweden. He obtained a Master’s degree in Public Health and PhD in Public Health and Epidemiology. He has a background in Clinical Medicine and has taken courses at higher diploma levels in public health from University of Transkei, Republic of South Africa, and African Medical and Research Foundation (AMREF) in Nairobi, Kenya. Dr. Kasenga worked in different places in and outside Malawi, and has held various positions, such as Licensed Medical Officer, HIV/AIDS Programme Officer, HIV/AIDS resource person in the International Department of Diakonhjemet College, Oslo, Norway. He also managed an Integrated HIV/AIDS Prevention programme for over 5 years. He is currently working as a Director for the Health Ministries Department of Malawi Union of the Seventh Day Adventist Church. Dr. Kasenga has published over 5 articles on HIV/AIDS issues focusing on Prevention of Mother to Child Transmission of HIV (PMTCT), including a book chapter on HIV testing counseling (currently in press). Dr. Kasenga is married to Grace and blessed with three children, a son and two daughters: Happy, Lettice and Sungani.",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}]}]},openForSubmissionBooks:{},onlineFirstChapters:{},subseriesFiltersForOFChapters:[],publishedBooks:{},subseriesFiltersForPublishedBooks:[],publicationYearFilters:[],authors:{}},subseries:{item:{id:"41",type:"subseries",title:"Water Science",keywords:"Water, Water resources, Freshwater, Hydrological processes, Utilization, Protection",scope:"