Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\n
This achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\n
We are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\n
Thank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"6889",leadTitle:null,fullTitle:"Algae",title:"Algae",subtitle:null,reviewType:"peer-reviewed",abstract:'This Edited Volume "Algae" is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Agricultural and Biological Sciences. The book comprises single chapters authored by various researchers and edited by an expert active in the Agricultural and Biological Sciences research area. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on Agricultural and Biological Sciences, and open new possible research paths for further novel developments.',isbn:"978-1-83880-563-0",printIsbn:"978-1-83880-562-3",pdfIsbn:"978-1-83880-723-8",doi:"10.5772/intechopen.73417",price:100,priceEur:109,priceUsd:129,slug:"algae",numberOfPages:70,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"13797d037dd9bd0c3f7a232fff1c759d",bookSignature:"Yee Keung Wong",publishedDate:"May 29th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/6889.jpg",numberOfDownloads:7289,numberOfWosCitations:8,numberOfCrossrefCitations:13,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:35,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:56,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 20th 2018",dateEndSecondStepPublish:"April 10th 2018",dateEndThirdStepPublish:"June 9th 2018",dateEndFourthStepPublish:"August 28th 2018",dateEndFifthStepPublish:"October 27th 2018",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"227706",title:"Dr.",name:"Yee Keung",middleName:null,surname:"Wong",slug:"yee-keung-wong",fullName:"Yee Keung Wong",profilePictureURL:"https://mts.intechopen.com/storage/users/227706/images/system/227706.jpg",biography:"Dr. Wong Yee Keung is currently Assistant Professor in the Applied Science and Environmental Studies Team, School of Science & Technology, The Open University of Hong Kong. Moreover, he is Director of the “Centre of Excellence in Water Quality & Algal Research”. Besides, Dr. Wong is a Fellow of Institute of Biomedical Science (FIBMS), member of the Institution of Environmental Sciences (IEnvSc), Royal Society of Biology (RSB), International Water Association (IWA), Association of Environmental Engineering and Science Professors (AEESP) and Hong Kong Biotechnology Organization (HKBIO). He is also Editorial Board Member of Current Research in Hydrology and Water Resources (Gavin Publishers) and Advances in Bioscience & Bioengineering (SciencePG). He published over 90 international conference papers, peer-reviewed journals, monographs, etc.",institutionString:"The Open University of Hong Kong",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Open University of Hong Kong",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"424",title:"Phycology",slug:"phycology"}],chapters:[{id:"63929",title:"Bioremediation of Biophilic Radionuclides by Algae",doi:"10.5772/intechopen.81492",slug:"bioremediation-of-biophilic-radionuclides-by-algae",totalDownloads:1196,totalCrossrefCites:2,totalDimensionsCites:8,hasAltmetrics:0,abstract:"High amounts of radionuclides were released into the environment by the nuclear power plant accident of 2011 in Japan. Among the radioactive material, cesium, iodine, and strontium were especially dangerous because of their biophilic characteristics that allowed them to accumulate in living organisms, either as essential elements for iodine or analogs of potassium and calcium for cesium and strontium, respectively. As a result, there was a high social demand for decontamination to avoid exposure to these elements. The authors screened around 200 strains of algae and plants for their ability to absorb radioactive nuclides. The eustigmatophycean algae Vacuoliviride crystalliferum and the cyanophytes Stigonema ocellatum and Nostoc commune showed the highest bioaccumulation activity for the removal of cesium, strontium, and iodine from the environment, respectively. In addition to these strains, the authors also found that the extremophilic unicellular red algae Galdieria sulphuraria could remove high levels of dissolved cesium from media in mixotrophic growth conditions. In this chapter, the intake mechanism of cesium, iodine, and strontium is reviewed. Recent findings on the absorption of these elements by algae are discussed to highlight the possibility of decontaminating polluted land and water at nuclear sites by phytoremediation.",signatures:"Koji Iwamoto and Ayumi Minoda",downloadPdfUrl:"/chapter/pdf-download/63929",previewPdfUrl:"/chapter/pdf-preview/63929",authors:[{id:"254164",title:"Dr.",name:"Koji",surname:"Iwamoto",slug:"koji-iwamoto",fullName:"Koji Iwamoto"},{id:"263425",title:"Dr.",name:"Ayumi",surname:"Minoda",slug:"ayumi-minoda",fullName:"Ayumi Minoda"}],corrections:null},{id:"64156",title:"Cyanobacteria Growth Kinetics",doi:"10.5772/intechopen.81545",slug:"cyanobacteria-growth-kinetics",totalDownloads:1800,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:0,abstract:"Harmful cyanobacterial blooms are a global problem for freshwater ecosystems used for drinking water supply and recreational purposes. Cyanobacteria also produce a wide variety of toxic secondary metabolites, called cyanotoxins. High water temperatures have been known to lead to cyanobacterial bloom development in temperate and semiarid regions. Increased temperatures as a result of climate change could therefore favor the growth of cyanobacteria, thus augmenting the risks associated with the blooms. Though temperature is the main factor affecting the growth kinetics of bacteria, the availability of nutrients such as nitrogen and phosphorus also plays a significant role. This chapter studies the growth kinetics of toxin-producing Microcystis aeruginosa and evaluates potential risks to the population in scenarios of climate change and the presence of nutrients. The most suitable control methods for mitigation are also evaluated.",signatures:"Leda Giannuzzi",downloadPdfUrl:"/chapter/pdf-download/64156",previewPdfUrl:"/chapter/pdf-preview/64156",authors:[{id:"252117",title:"Dr.",name:"Leda",surname:"Giannuzzi",slug:"leda-giannuzzi",fullName:"Leda Giannuzzi"}],corrections:null},{id:"64455",title:"Cyanobacteria for PHB Bioplastics Production: A Review",doi:"10.5772/intechopen.81536",slug:"cyanobacteria-for-phb-bioplastics-production-a-review",totalDownloads:2190,totalCrossrefCites:4,totalDimensionsCites:11,hasAltmetrics:1,abstract:"Cyanobacteria, or blue-green algae, can be used as host to produce polyhydroxyalkanoates (PHA), which are promising bioplastic raw materials. The most important material thereof is polyhydroxybutyrate (PHB), which can replace the commodity polymer polypropylene (PP) in many applications, yielding a bio-based, biodegradable alternative solution. The advantage from using cyanobacteria to make PHB over the standard fermentation processes, with sugar or other organic (waste) materials as feedstock, is that the sustainability is better (compare first-generation biofuels with the feed vs. fuel debate), with CO2 being the only carbon source and sunlight being the sole energy source. In this review article, the state of the art of cyanobacterial PHB production and its outlook is discussed. Thirty-seven percent of dry cell weight of PHB could be obtained in 2018, which is getting close to up to 78% of PHB dry cell weight in heterotrophic microorganisms in fermentation reactors. A good potential for cyanobacterial PHB is seen throughout the literature.",signatures:"Erich Markl, Hannes Grünbichler and Maximilian Lackner",downloadPdfUrl:"/chapter/pdf-download/64455",previewPdfUrl:"/chapter/pdf-preview/64455",authors:[{id:"251081",title:"Dr.",name:"Maximilian",surname:"Lackner",slug:"maximilian-lackner",fullName:"Maximilian Lackner"},{id:"255232",title:"Prof.",name:"Erich",surname:"Markl",slug:"erich-markl",fullName:"Erich Markl"},{id:"277237",title:"Dr.",name:"Hannes",surname:"Grünbichler",slug:"hannes-grunbichler",fullName:"Hannes Grünbichler"}],corrections:null},{id:"65952",title:"CO2 Capture for Industries by Algae",doi:"10.5772/intechopen.81800",slug:"co-sub-2-sub-capture-for-industries-by-algae",totalDownloads:2103,totalCrossrefCites:5,totalDimensionsCites:11,hasAltmetrics:1,abstract:"The increased usage of fossil fuels has led to increase in the concentration of CO2, which is a greenhouse gas responsible for global warming. Algae-based CO2 conversion is a cost-effective option for reducing carbon footprint. In addition, algae-based CO2 mitigation strategy has the potential to obtain valuable products at the end of the process. In the present study, freshwater algal species were isolated and identified for CO2 capture, such as Hydrodictyon, Spirogyra, Oscillatoria, Oedogonium, and Chlorella. The algal strains were screened based on different parameters like fast growth rate, high rate of photosynthesis, strong tolerance to the trace constituents of other gases (gaseous hydrocarbons, NOx, SOx, etc.), high temperature tolerance, and possibility to produce high value products, etc. The study involves integrated methods for utilizing 90–99% CO2 from a natural gas processing industry (GAIL India, Ltd.) as well as 13–15% of CO2 from flue gas of thermal power plants (Chandrapura and Santaldih Thermal Power Station) as carbon nutrient source along with the additional nutritional supplements. A 400-ml and 25-l flat panel photo-bioreactor (PSI Photo-bioreactors) was used for CO2 capture. After CO2 capture, the algal biomass was used to extract value-added products such as amino acid rich feed, algal oil, algal pellets, etc.",signatures:"Vetrivel Anguselvi, Reginald Ebhin Masto, Ashis Mukherjee and Pradeep Kumar Singh",downloadPdfUrl:"/chapter/pdf-download/65952",previewPdfUrl:"/chapter/pdf-preview/65952",authors:[{id:"255851",title:"Dr.",name:"Vetrivel",surname:"Anguselvi",slug:"vetrivel-anguselvi",fullName:"Vetrivel Anguselvi"},{id:"269996",title:"Dr.",name:"R E",surname:"Masto",slug:"r-e-masto",fullName:"R E Masto"},{id:"269997",title:"Dr.",name:"Ashis",surname:"Mukherjee",slug:"ashis-mukherjee",fullName:"Ashis Mukherjee"},{id:"270059",title:"Dr.",name:"P K",surname:"Singh",slug:"p-k-singh",fullName:"P K Singh"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"5128",title:"Algae",subtitle:"Organisms for Imminent Biotechnology",isOpenForSubmission:!1,hash:"01a35d1259dcce526d25cf3f23237696",slug:"algae-organisms-for-imminent-biotechnology",bookSignature:"Nooruddin Thajuddin and Dharumadurai Dhanasekaran",coverURL:"https://cdn.intechopen.com/books/images_new/5128.jpg",editedByType:"Edited by",editors:[{id:"89852",title:"Dr.",name:"Nooruddin",surname:"Thajuddin",slug:"nooruddin-thajuddin",fullName:"Nooruddin Thajuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9354",title:"Microalgae",subtitle:"From Physiology to Application",isOpenForSubmission:!1,hash:"affa344272fbd8d5cd80cab53f814303",slug:"microalgae-from-physiology-to-application",bookSignature:"Milada Vítová",coverURL:"https://cdn.intechopen.com/books/images_new/9354.jpg",editedByType:"Edited by",editors:[{id:"253951",title:"Dr.",name:"Milada",surname:"Vítová",slug:"milada-vitova",fullName:"Milada Vítová"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66063",slug:"corrigendum-to-introductory-chapter-historical-perspective-and-brief-overview-of-insulin",title:"Corrigendum to: Introductory Chapter: Historical Perspective and Brief Overview of Insulin",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66063.pdf",downloadPdfUrl:"/chapter/pdf-download/66063",previewPdfUrl:"/chapter/pdf-preview/66063",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66063",risUrl:"/chapter/ris/66063",chapter:{id:"63640",slug:"introductory-chapter-historical-perspective-and-brief-overview-of-insulin",signatures:"Gaffar Sarwar Zaman",dateSubmitted:"June 29th 2018",dateReviewed:"August 28th 2018",datePrePublished:"November 5th 2018",datePublished:"February 6th 2019",book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",fullName:"Gaffar Zaman",slug:"gaffar-zaman",email:"gffrzaman@gmail.com",position:null,institution:null}]}},chapter:{id:"63640",slug:"introductory-chapter-historical-perspective-and-brief-overview-of-insulin",signatures:"Gaffar Sarwar Zaman",dateSubmitted:"June 29th 2018",dateReviewed:"August 28th 2018",datePrePublished:"November 5th 2018",datePublished:"February 6th 2019",book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",fullName:"Gaffar Zaman",slug:"gaffar-zaman",email:"gffrzaman@gmail.com",position:null,institution:null}]},book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12081",leadTitle:null,title:"Dyes and Pigments - Insights and Applications",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tColour, which contributes so much to the beauty of nature, is vital to the attraction and acceptability of most products used by modern society; as long ago as the 25th century BC, man colored his surroundings and clothes using a limited range of natural colorants of both animal (Cochineal) and vegetable (Indigo, Alizarin, Tyrian purple) origin. Dyes and pigments are substances that, once applied to a substrate, lead to cause selective reflection or the transmission of incident daylight. Most natural dyes are found in the roots, barks, leaves, bracts, flowers, skins, and shells of plants. They are categorized as organometallic and organic compounds and exhibit low solubility in organic solvents. As a result, they are essentially found in the solid-state during processing and when applied to the substrate. \r\n\tThus, we call for research and review papers on the chemistry and physics of dyes, pigments, and their intermediates, including chemical constituents, spectroscopic aspects, surface, solution, crystal formation, photochemical, and ecological or biological properties. The book will be of interest to a wide variety of researchers worldwide whose work involves various fields of activity such as dyes and pigment synthesis, imaging, sensor, energy, medicine, polymers, food product, toxicological properties, etc.
",isbn:"978-1-83768-114-3",printIsbn:"978-1-83768-113-6",pdfIsbn:"978-1-83768-115-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"fcd069956c2e931195925b19a74ce9a3",bookSignature:"Dr. Brajesh Kumar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12081.jpg",keywords:"Heterocycles Pigments, Azo, Nitro, Indigo, Alizarin, Chromophores, Chromophores, Photochemical, Sulphonation, Diazotisation, UV-Vis Spectroscopy, Metal-Ligand",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 19th 2022",dateEndSecondStepPublish:"June 16th 2022",dateEndThirdStepPublish:"August 15th 2022",dateEndFourthStepPublish:"November 3rd 2022",dateEndFifthStepPublish:"January 2nd 2023",remainingDaysToSecondStep:"24 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"Dr. Brajesh Kumar has worked as a faculty member in various universities in India, Ecuador, and South Korea. He has published numerous SCI/SCIE/Scopus research articles and is an active reviewer of more than 50 Journals. Dr. Kumar is a member of the American Chemical Society, the Indian Society of Chemists and Biologists, and the Indian Science Congress Association and holder of two registered patents. He is included in the top 2% of the scientist list prepared by experts at Stanford University,",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar",profilePictureURL:"https://mts.intechopen.com/storage/users/176093/images/system/176093.JPG",biography:"Dr. Brajesh Kumar is currently working as an Assistant Professor and Head in the Post Graduate Department of Chemistry, TATA College, Chaibasa, India. He received a Ph.D. in Chemistry from the University of Delhi, India. His research interest is in the development of sustainable and eco-friendly techniques for (a) nanoparticles synthesis and their applications for environmental remediation, (b) active films of organic solar cells, (c) nanomedicine, (d) sensors, (e) natural product extraction, purification, and analysis,(f) natural polymers, (g) peptide chemistry, (h) microwave and ultrasound-assisted organic synthesis and (i) organic synthesis. Dr. Brajesh Kumar has been credited for different national and international fellowships and he has also worked as a faculty member in various universities of India, Ecuador, and South Korea. He has also published numerous SCI/ SCIE/ Scopus research articles (h index = 28, Citations 2690) and is also an active reviewer of more than 50 Journals. He is also included in the top 2% of the scientist list prepared by experts at Stanford University, USA.",institutionString:"TATA College, Kolhan University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"8",title:"Chemistry",slug:"chemistry"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"444318",firstName:"Nika",lastName:"Karamatic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/444318/images/20011_n.jpg",email:"nika@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"66006",title:"Fourier Transform in Ultrafast Spectroscopy",doi:"10.5772/intechopen.84897",slug:"fourier-transform-in-ultrafast-spectroscopy",body:'\n
\n
1. Introduction
\n
The theoretical description of light and molecular motion using Fourier Transform (FT) dates back to a century ago, with the development of quantum mechanics and its famous relation to the uncertainty principle [1]. However, it is only since the early 80’s that FT found practical applications in molecular spectroscopy thanks to the development of femto-second pulsed lasers, which enabled the pioneering investigations of molecular dynamics in the femto-second regime by Prof. Zewail [2]. Ever since, the development in ultrafast laser systems has been closely followed by the development of new spectroscopic techniques. For example, lasers are now able to generate high harmonics radiations up to the soft X-ray regime and enables spectroscopies with an atto-second resolution [3].
\n
The developments in lasers and spectroscopy techniques would however not be feasible without the use of FT. Indeed, time-resolved spectroscopy is the study of spectra (i.e. frequencies) over time. Thus, by linking the time domain to the frequency domain, FT provides the theoretical background to conceptualize the spectroscopic techniques. Furthermore, FT is used to describe short pulses of light as well as molecular motions, and how both, light and molecules, interact with each other. FT is consequently at the heart of ultrafast optical spectroscopy.
\n
Optical spectroscopy is not the only type of spectroscopy that uses FT. The most well-known field that has been transformed using FT is probably that of nuclear magnetic resonance (NMR); where FT considerably reduced the acquisition time and resolution, to the point of rendering non-FT NMR techniques obsolete. Similarly, FT enhances optical spectroscopies by increasing the data acquisition speed and the amount of information acquired from the sample. In this sense, FT revolutionizes the field of optical spectroscopy.
\n
The goal of this chapter is to appreciate the central role that FT plays in optical spectroscopy. In particular, this chapter focuses on femto-second spectroscopy because such systems are now commercially available and are becoming an essential tool to study molecular dynamics. In this aim, the first section illustrates how FT is used to model and characterize short pulses of light. The second section describes two increasingly common experimental techniques and how they make use of FT. The third section shows how FT is used to extract molecular dynamics from the acquired data. In order to remain accessible to non-specialist, this chapter takes a conceptual approach. The mathematical formalism and technical subtilities are left available in the different cited works.
\n
\n
\n
2. Fourier transform in the experimental setup
\n
With the recent development of laser technology, spectroscopic techniques have reached unprecedented precision. In particular, in the field of optical spectroscopy, the use of pulsed lasers allows to monitor chemical reactions as they are taking place. Commercially available ultrafast spectroscopic systems are now able to generate femto-second-long pulses of light. In this time scale, these setups enable researchers to investigate energy, electronic and nuclear dynamics of specific molecular and atomic structures. Such precision would however not be possible without a complete understanding of light and its manipulation. This section will thus illustrate the role that FT plays in conceptualizing and modeling light pulses.
\n
\n
2.1 Light pulse representation by FT
\n
Light can be considered as an electro-magnetic wave [4]. As shown in Figure 1, a ray of light can be characterized by the amplitude of the (ℜeal part of complex) electric field \n\nE\n\nx\nt\n\n\n, its wavelength\n\n\nλ\n\n or period T of oscillation (which defines its color or energy), and phase \n\nφ\n\n (which is the shift of the oscillatory pattern of the electric field with respect to an arbitrary reference point).
\n
Figure 1.
Representation of light as an electromagnetic (plane) wave. E 0 is the amplitude of the electric field component, \n\nλ\n\n is the wavelength in unit distance, \n\n\nk\n\n\n is the wave vector in radiant per unit distance, \n\n\nT\n\n\n is the period in unit time, \n\nω\n\n is the angular frequency in radiant per unit time, \n\nφ\n\n is the phase shift in radiant; with \n\n\n\nλ\n/\nT\n=\nω\n/\nk\n=\nc\n\n\n\n, the speed of light, in vacuum. ℜe and ℐm stands for the real and imaginary part of the complex electric field.
\n
Laser-light differs from sun light and common light bulbs by the phase and spectrum of the emitted wavelengths. In a laser, all wavelengths have the same phase and belong to a narrow spectral range. Pulsed lasers differ from continuous lasers by the fact that they produced short bursts of light. These pulses are generated when laser-light is trapped in a cavity. The most popular pulsed lasers to date are based on a titanium-doped sapphire (Ti:S) crystal. The crystal is placed between two mirrors, which form a cavity [5]. The titanium atoms are continuously excited (typically, by a frequency-doubled 532-nm Nd:YAG laser) and relax by emitting a range of wavelength around 800 nm. One way to look at the emitted light being trapped in the cavity, of length L, is that each generated wavelength \n\nλ\n\n that satisfies the condition \n\n\n\nL\n=\nm\nλ\n/\n2\n,\n\n\n\n where m is an integer number, creates a standing wave. The different standing waves will interfere with each other. They interfere constructively only in a restricted region of space, and destructively anywhere else, as illustrated in Figure 2. The highly localized oscillations represent a series of wave packets (WP) or pulses of light.
\n
Figure 2.
Superposition of 20 standing waves (colored curves) rendering a series of pulses (black curve).
\n
In a typical Ti:S cavity, the number of allowed modes (i.e. wavelengths emitted by a Ti:S crystal that satisfy the above standing wave condition) is in the order of 105, which results in pulse duration of few 10’s of femto-seconds.
\n
The time-evolution of each standing waves will displace the WP within the cavity as if it was traveling back and forth between the two mirrors [6]. Each time the WP goes through the Ti:S crystal, it will trigger the in-phase stimulated emission of the excited titanium atoms, which will add to the magnitude of the WP. From a particle point of view, the WP indicates the region of space where we have the highest chance of finding the actual photons that comprises this pulse of light. The photons travel together and bounce back and forth between the two mirrors of the cavity, and each time they pass through the Ti:S crystal, they stimulate the emission of new photons.
\n
If one of the cavity mirrors is only partially reflective, it will allow the WP to leak out of the cavity, which generates a train of identical and equally spaced pulses. Each WP contains a range of frequencies (defined by the Ti:S crystal, also called the gain medium) that can be resolved via FT. The different frequencies produced within a cavity follow an approximate Gaussian distribution. The time-dependent Gaussian wave packet,\n\n\nψ\n\nx\nt\n\n\n, can be described by the FT of its spectral components as follow (excluding normalization factors):
and \n\n\n\nω\n\nk\n\n=\nkc\n/\nn\n\nk\n\n\n\n\n for plane-waves, with c, the speed of light and \n\nn\n\nk\n\n\n, the index of refraction [4].
\n
The WP, or pulse, is defined by its central frequency \n\nω\n\n\nk\n0\n\n\n\n and variance \n\n\nσ\n2\n\n\n\n(full width at half maximum (FWHM) = \n\n2\n\n\n2\nln\n2\n\n\nσ\n\n). Typical Ti:S lasers produce pulses with a frequency of ~80 MHz and centered around 800 nm with a FWHM of ~35 nm [7].
\n
Technically, in order to resolve the spectral components comprising the pulse, the pulse is passed onto a spectrometer. The spectrometer includes a grating that will reflect each wavelength at slightly different angle, as illustrated in Figure 3.
\n
Figure 3.
Light diffraction by a grating.
\n
It is said that the grating performs a FT on the pulse [8] (Ch4.1), i.e. the temporal structure of the pulse’s electric field, \n\nE\n\nt\n\n\n, is destroyed to allow the monitoring of its spectral components, \n\nE\n\nω\n\n\n. Both \n\nE\n\nt\n\n\n and \n\nE\n\nω\n\n\n are linked by FT as follow: [9].
As shown in Eq. (1), the FT links the duration of a pulse with its spectral component. A FT-limited (or bandwidth-limited) pulse is then defined as a pulse that has the minimum possible duration for a given spectral bandwidth. FT-limited pulses have a constant phase across all frequencies.
\n
However, the air and the different optical components, through which the pulse propagates, have an index of refraction, \n\nn\n\nk\n\n\n, that affect each frequency differently, as indicated in Eqs. (1) and (2). By traveling through such dispersive medium the pulse broadens [4, 10]. For spectroscopic purposes, in order to achieve the best temporal resolution, the phase of each wavelength that comprises the pulses must be manipulated so that the FT-limit is obtained at the sample position. As depicted in Figure 1, the relative phase between two light rays is defined as a difference in angle at specific time and position. Hence a phase shift can be introduced either by modulating the distance traveled by one of the rays or the speed at which the ray goes through a given medium. Consequently, different technique can be employed to obtain FT pulses. Most adaptative methods require to spectrally decompose the pulse so that the entire spectrum is split in narrow frequency ranges whose phase can be modified independently. In this aim, the pulse is passed onto a grating, which performs an FT on the pulse, as seen previously. Figure 4 shows that the diffracted beam will be recollimated and either be reflected by a deformable mirror, [11] or passed through a spatial light modulator (SLM) [12].
\n
Figure 4.
Schematic of pulse shaping device using (a) deformable mirror, DM, and (b) spatial light modulator, SLM. FT and FT−1 stands for Fourier Transform and inverse Fourier Transform, respectively.
\n
In the case of the deformable mirror, the phase of the light is modulated by displacing the surface of the mirror backward or forward by means of piezo-electric components, therefore retarding or advancing certain wavelength with respect to others. In the case of the SLM, the phase of the light is modulated by changing the relative orientation of each liquid crystal domains. The changes in orientation induce changes in refractive index of the medium, which, in turns, affects the speed at which the light travels through. Once modulated, the different spectral components are recombined by means of a second grating, which thus performs an inverse FT. Such adaptative methods are useful when the actual phase of the pulse in not known. When governed by (genetic or evolutionary) algorithms, they can achieve FT-limit by iteration, automatically [13]. Other passive methods will make use, for example, of grating and prism pairs, or chirp-mirrors to induce or compensate a pre-defined phase structure.
\n
In order to characterize the actual pulse, any diffractive method will distort the actual phase and temporal structure. Hence, to retrieve these characteristics, a reference pulse is used, and both are made to interfere. The interference signal, which can be clearly distinguished from any background signals, contains information about both pulses. If the reference pulse is well-defined, the spectral components and relative phase of the other pulse can be deduced by means of FT. One of the most common methods employed is the frequency-resolved optical gating (FROG) [14]. FROG is a type of autocorrelation in the sense that the reference is played by the replicate of the actual pulse. However, the autocorrelation method implies that the reference is unknown and that the solution has to be guessed. In order to monitor the complex electric field of the pulse and its replicate in FROG, both are made to interact into a non-linear crystal (BBO). The response signal is then passed onto a spectrometer which performs a FT, as shown in Figure 5, so that the signal can be resolved spectrally.
\n
Figure 5.
Scheme of a FROG setup. The inset represents a typical FROG trace.
\n
A spectrogram of the response signal is recorded for each time delay, \n\nτ\n\n, to build a so-called FROG trace: a 2D time-frequency map of the non-linear signal intensity. In the case where the non-linear signal is the second harmonic (SHG FROG), the frequency and time dependent signal, \n\n\nI\n\nSHG\n\nFROG\n\n\n\nω\nτ\n\n\n, can be fully written in the time domain via the FT expression as follow:
with \n\nE\n\nt\n\n\n and \n\nE\n\n\nt\n−\nτ\n\n\n\n being the time-dependent electric field of the pulse and that of its delayed duplicate (reference).
\n
As mentioned, the reference is unknown and the exact solution for \n\nE\n\nt\n\n\n and \n\nE\n\n\nt\n−\nτ\n\n\n\n that reproduces the specific FROG trace is retrieved by iterative algorithm guesses [14]. Fortunately, a typical FROG trace contains many more data points (and thus equations) than unknown variables, which means that the guesses are well informed. The conversion of the algorithm results in the retrieved spectral, temporal and phase information of the initial pulse. There exists variations of the FROG and other ways to characterize the temporal structure, phase and spectral component of ultrashort pulses of light, all of which will make use of FT [15, 16].
\n
\n
\n
\n
3. Fourier transform in data processing
\n
Whenever a molecule is investigated by light, whether it is in the X-ray, ultra-violet, visible or infra-red regime, the desired information is often extracted by means of FT. In the field of spectroscopy, FT is either performed by using optical components, often through a grating, and/or numerically, after acquisition of the signal. In this section we will describe two types of UV–visible spectroscopy techniques in which FT plays a central role: absorption spectroscopy and 2D-FT electronic spectroscopy, also called photon echo or four wave-mixing spectroscopy.
\n
\n
3.1 Linear absorption spectroscopy
\n
In (steady-state) absorption spectroscopy, the continuous probe beam acquires information about the sample by passing through it. The probe is modulated by the sample’s absorption. In order to visualize these spectral modulations, the probe beam is diffracted by a grating and the full spectrum is compared to a reference spectrum, as illustrated in Figure 6a. The comparison (log of the ratio) of both beams yields the absorption spectrum of the sample.
\n
Figure 6.
Scheme of (a) steady-state spectrometer and (b) pump-probe spectroscopy setup. The insets represent typical data acquired (from the Photosystem I molecular complex) with each setup, along with the equation used to compute the absorbance, \n\nA\n\n, and changes in absorbance, \n\nΔA\n\n, in function of the intensity of light, \n\nI\n\n.
\n
Similarly, in ultrafast transient absorption spectroscopy, the sample is probed by a short pulse of light, after excitation by the pump pulse, [17] as shown in Figure 6. Each probe pulse thus contains information about the excited states of the sample. If the duration of the pump and probe pulses is shorter than the relaxation or chemical reaction taking place, the probe will contain the information about that specific transient molecular state. The pulses are then FT by means of a grating and spectrally resolved. By varying the delay between pump and probe, we can spectrally resolve all intermediate states, from the instant of the excitation all the way to the recovery of the ground state. Since the delay between pump and probe can be precisely controlled (sub-femto-second precision) by simple elongation of the path of light (via a delay stage), the temporal resolution of the technique is limited by the duration of the pulses themselves (10’s of femto-seconds). In these time scales, we can monitor intra- and inter-molecular energy transfers, electronic transitions, charge transfer and molecular vibrations [18].
\n
\n
\n
3.2 2D-FT spectroscopy
\n
In comparison to pump-probe spectroscopy, which has only one excitation pulse, the desired photon echo in 2D-FT electronic spectroscopy is a result of three consecutive laser interactions with the sample. The photon echo is consequently called a third order signal, as shown in Figure 7a. The 2D-FT electronic spectroscopy is the ultimate third order experiment in the sense that it harvests the maximal amount of information about the sample given the number of excitation pulses [19]. In such experiment, the data is acquired, and the information is retrieved by a series of FTs.
\n
Figure 7.
(a) Scheme of a 2D-FT electronic spectroscopy in a so-called box-CARS geometry [21] with \n\nτ\n\n being the coherence time, \n\nT\n\n the population time and \n\n\nt\nLO\n\n\n the delay between the third pulse that triggers the emission of the photon echo and the local oscillator (LO). (b) Typical data acquired (from dye molecule). (c)–(e) Signal processing. FT−1 stands for inverse FT.
\n
The generation of the photon echo is conceptually similar to that of the free induction decay in pulsed NMR spectroscopy. However, due to the slow response of the detectors, direct recording of the photon echo would result in integrating its fast oscillating electric field over time. This is called homodyne or integrated detection [19]. However, such configuration would not allow to retrieve the time and phase structure of the photon echo. Furthermore, the amplitude of the photon echo is typically weak and comparable to the noise amplitude [20]. In order to properly resolve the photon echo, it is made to interfere with a reference pulse called local oscillator (LO). The condition for interferences to take place is that both, the photon echo and the LO, are colinear, have similar spectrum and are within pico-second from each other. In such configuration, the photon echo is said to be heterodyned.
\n
The heterodyned photon echo is then passed onto a spectrometer, which performs the first FT (via a grating) and is imaged, in the frequency domain, as depicted in Figure 7b. While the signal is FTed by the spectrometer, the detector does an intensity measurement, which corresponds to the square of the signal’s electric field. The monitored signal is now composed of 3 components: the (negligible) spectral intensity of the photon echo, that of the LO and the interference term that contains the desired information: the autocorrelation function [16] or spectral interferogram [19]. Once acquired, the interferogram signal is FTed from the frequency back to the time domain, as shown in Figure 7c: the FT of the spectral intensities of photon echo and LO gives signal around 0, while the interferogram gives signal at +/− the time delay between the two pulses (tLO-t).
\n
By selecting the non-zero signal at positive times only (for causation), one can filter out most of the noise and retrieve, via FT, the phase and intensity of the photon echo at particular coherence time \n\nτ\n\n and population time \n\nT\n\n, as illustrated in Figure 7d. Incrementing the coherence time \n\nτ\n\n enables to acquire the desired full 2D spectrum, for particular population times \n\nT\n\n. The experience is then repeated for different population times in order to monitor the evolution of the 2D spectrum (Figure 7e).
\n
In summary, the heterodyned FT technique allows to monitor weak signals, such as a photon echo, to filter out most noise contributions and to retrieve the desired temporal and phase information of the signal.
\n
\n
\n
\n
4. Fourier transform in data analysis
\n
FT-based laser spectroscopic techniques enable to acquire first and third order responses, as seen previously, and even up to the fifth order optical response [22]. But the use of FT is not bound to the acquisition of the signals. Once the optical response signal of the sample is resolved over time, FT can also help analyze and extract the dynamics of the sample. In particular, when the duration of the laser pulses used are shorter than the oscillation period of the molecular vibration, one can resolve, using these techniques, the optical modulations caused by the vibration of the molecule. The use of FT thus helps distinguish between the different modes of vibration present in the optical signal, as illustrated in Figure 8.
\n
Figure 8.
(a) Kinetic trace (for free-based tetraphenyl porphyrin excited by a 500-nm 40-fs pulse) and (b) its FT and corresponding Raman analysis. Possible representation of (c) wave packet (d) nuclear dynamics. * and **, the frequencies reported from transient absorption and resonance Raman experiments are taken from, [23, 24] respectively.
\n
Normal modes of vibrations in a molecule, in either the ground or excited electronic states, can be represented by Morse-like potential curves along the reaction coordinate [25]. In the inflection of each potential curve lies a stack of vibrational levels. In this picture, the molecule can be described by a time-dependent wave function. The amplitude of the square of that wave function forms a wave packet, as illustrated in Figure 8c. In this context, the spread of the WP represents the uncertainty of finding the molecule at a particular position along the reaction coordinate at a certain time [10].
\n
We can picture this wave packet as traveling on a particular energy level back and forth along the reaction coordinate, as delimited by the Morse-like potential curve, i.e. the molecule vibrates [6, 10].
\n
Typical UV–vis (steady state) spectroscopy probes all (vertical) transitions that can take place in between two vibronic (e.g. that involve vibrational and electronic) levels. Similarly, in ultrafast transient spectroscopy, the probe pulse interrogates the excited molecules and “sees” all transitions that are available to the traveling wave packet, at a specific time. The energy of a particular electronic transitions (e.g. from excited to ground state) thus fluctuates in time, as depicted in Figure 8c for the emission of an excited molecule. Similarly, the absorption of an excited molecule will also be modulated, depending on the relative position between the different electronic states. In molecules, it is often the case that a single laser pulse excites many normal modes of vibrations [25]. Accordingly, the amplitude of the probe signal reflects the oscillations of all WPs. The frequencies of each normal mode of vibration present in the probe signal can be extracted by means of FT.
\n
In the case of molecules, the solvent and other molecular interactions imply that each molecule has slightly different vibrational energy levels, thus slightly different oscillation frequencies. Furthermore, each excited molecule will lose energy over time, which can be depicted by the WP going down the vibrational ladder within a particular electronic state. Differences in environment and vibrational relaxation will also modulate the frequency of oscillation. Hence, specific normal modes of vibration will lose their coherence and the oscillations present in the probe signal will be damped (Figure 8a). Competing with decoherence is the exponential decay of the excited state population. Both, the life time of the excited state and decoherence mechanisms restricts the monitoring of the wave packet dynamics, generally, to the first few picoseconds after excitation.
\n
In practice, the oscillatory pattern is first extracted from the usually much larger population state signal via exponential fit of the kinetic trace. FT of the first few picoseconds is then performed on the residual signal to retrieve the different frequencies present (Figure 8b). The phase associated with each normal mode of vibration is indicative of the electronic state from which the oscillation originates [23]. Alternative fitting method such as the Linear Predictive Singular Value Decomposition (LPSVD) can also be used to extract damped oscillations [26]. The resulting amplitude spectrum of the FT or LPSVD power spectrum can then be compared to the low frequency Raman spectrum in the region around 200–400 cm−1 [23, 24]. It is worth mentioning that Raman spectroscopy usually does not resolve vibrations bellow 100 cm−1. Thus, the advantage of using kinetic traces to retrieve the normal modes of oscillations is to resolve vibration in the frequency range from 0 to 100 cm−1.
\n
\n
\n
5. Conclusion
\n
In conclusion, this chapter illustrates how FT helps conceptualize light and helps to characterize laser pulses. It is the use of these well characterized laser pulses that opens the door to time-resolved optical spectroscopy. FT is especially important in the field of ultrafast spectroscopy because it enables new types of molecular dynamic investigations. In brief, FT allows to resolve the spectral, temporal and phase information of optical response signals. While FT allows spectroscopic techniques to develop, from typical pump-probe to multi-pulse experiments, the data analysis is also enhanced by FT. In the case of molecules, for example, FT enables retrieval of the phase and frequency of molecular wave packets in a frequency range that is not accessible by other common tools. Furthermore, FT helps to distinguish between the different normal modes of vibration and assign them to specific electronic states. Because FTs are present in all stages of ultrafast spectroscopy, from conception to data acquisition and data analysis, FT is inherent to the field of ultrafast spectroscopy. Accordingly, FT helps to better understand and control the world in which we live.
\n
\n
Acknowledgments
\n
The author is grateful to Dr. André Al Haddad for his initiation to FT spectroscopies and analysis, as well as to professor Majed Chergui, in whose laboratory the 2D-FT technique, here described, [21] has been developed and used.
\n
Conflict of interest
The author declares that there is no conflict of interest.
\n
Other declarations
\n
This chapter is dedicated to Dr. Joseph Salomon, who first introduced me to Fourier Transforms by showing me the diffraction pattern of a street lamp-post through the grid of my bedroom’s curtains, while I was a child.
\n
\n',keywords:"Fourier transform, ultrafast spectroscopy, pulsed laser, wave packet, molecular dynamics",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/66006.pdf",chapterXML:"https://mts.intechopen.com/source/xml/66006.xml",downloadPdfUrl:"/chapter/pdf-download/66006",previewPdfUrl:"/chapter/pdf-preview/66006",totalDownloads:957,totalViews:0,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:36,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"September 19th 2018",dateReviewed:"February 1st 2019",datePrePublished:"March 15th 2019",datePublished:"December 4th 2019",dateFinished:"March 6th 2019",readingETA:"0",abstract:"Laser technology allows to generate femtoseconds-long pulses of light. These light pulses can be used to learn about the molecules with which they interact. Consequently, pulsed laser spectroscopy has become an important tool for investigating and characterizing electronic and nuclear structure of protein complexes. These spectroscopic techniques can either be performed in the time or frequency domain. Both the time and frequency domain are linked by Fourier Transform (FT) and thus, FT plays a central role in optical spectroscopy. Ultimately, FT is used to explain how light behaves. It is used to explain spectroscopic techniques and enables the development of new techniques. Finally, FT is used to process and analyze data. This chapter thus illustrates the centrality of FT in ultrafast optical spectroscopy.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/66006",risUrl:"/chapter/ris/66006",book:{id:"7614",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations"},signatures:"Adrien A.P. Chauvet",authors:[{id:"177016",title:"Dr.",name:"Adrien",middleName:null,surname:"Chauvet",fullName:"Adrien Chauvet",slug:"adrien-chauvet",email:"adrien.chauvet@gmail.com",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"University of Sheffield",institutionURL:null,country:{name:"United Kingdom"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Fourier transform in the experimental setup",level:"1"},{id:"sec_2_2",title:"2.1 Light pulse representation by FT",level:"2"},{id:"sec_3_2",title:"2.2 FT limited pulse and characterization",level:"2"},{id:"sec_5",title:"3. Fourier transform in data processing",level:"1"},{id:"sec_5_2",title:"3.1 Linear absorption spectroscopy",level:"2"},{id:"sec_6_2",title:"3.2 2D-FT spectroscopy",level:"2"},{id:"sec_8",title:"4. Fourier transform in data analysis",level:"1"},{id:"sec_9",title:"5. Conclusion",level:"1"},{id:"sec_10",title:"Acknowledgments",level:"1"},{id:"sec_13",title:"Conflict of interest",level:"1"},{id:"sec_10",title:"Other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'Heisenberg W. Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik. Zeitschrift für Physik. 1927;43(3):172-198\n'},{id:"B2",body:'Scherer NF, Knee JL, Smith DD, Zewail AH. Femtosecond photofragment spectroscopy: The reaction icn → cn + i. The Journal of Physical Chemistry. 1985;89(24):5141-5143\n'},{id:"B3",body:'Gallmann L, Cirelli C, Keller U. Attosecond science: Recent highlights and future trends. Annual Review of Physical Chemistry. 2012;63(1):447-469\n'},{id:"B4",body:'Jackson JD. Classical Electrodynamics. 3rd ed. United States of America: Wiley; 1999\n'},{id:"B5",body:'Yefet S, Pe\'er A. A Review of Cavity Design for Kerr Lens Mode-Locked Solid-State Lasers. eprint arXiv:150101158;2015\n'},{id:"B6",body:'Cresser JD. Wave mechanics. In: Quantum Physics Notes [Internet]. Sydney: Macquaire University; 2005. Available from: http://physics.mq.edu.au/~jcresser/Phys301/Chapters/\n\n'},{id:"B7",body:'Nava-Palomares E, Acosta-Barbosa F, Camacho-López S, Fernández-Guasti M. Femtosecond laser cavity characterization. In: Peshko I, editor. Laser Pulses: Theory, Technology, and Applications. IntechOpen; 2012\n'},{id:"B8",body:'Hamm P, Zanni M. Concepts and Methods of 2d Infrared Spectroscopy. Cambridge: Cambridge University Press; 2011\n'},{id:"B9",body:'Boyd RW. Nonlinear Optics. 2nd ed. United States of America: Elsevier; 2003\n'},{id:"B10",body:'Garraway BM, Suominen KA.Wave-packet dynamics: New physics and chemistry in femto-time. Reports on Progress in Physics. 1995;58(4):365\n'},{id:"B11",body:'Zeek E, Maginnis K, Backus S, Russek U, Murnane M, Mourou G, et al. Pulse compression by use of deformable mirrors. Optics Letters. 1999;24(7):493-495\n'},{id:"B12",body:'Weiner AM. Femtosecond pulse shaping using spatial light modulators. Review of Scientific Instruments. 2000;71(5):1929-1960\n'},{id:"B13",body:'Baumert T, Brixner T, Seyfried V, Strehle M, Gerber G. Femtosecond pulse shaping by an evolutionary algorithm with feedback. Applied Physics B. 1997;65(6):779-782\n'},{id:"B14",body:'DeLong KW, Trebino R, Hunter J, White WE. Frequency-resolved optical gating with the use of second-harmonic generation. Journal of the Optical Society of America B: Optical Physics 1994;11(11):2206-2215\n'},{id:"B15",body:'Trebino R, DeLong KW, Fittinghoff DN, Sweetser JN, Krumbügel MA, Richman BA, et al. Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Review of Scientific Instruments. 1997;68(9):3277-3295\n'},{id:"B16",body:'Dorrer C, Joffre M. Characterization of the spectral phase of ultrashort light pulses. Comptes Rendus de l\'Académie des Sciences - Series IV - Physics. 2001;2(10):1415-1426\n'},{id:"B17",body:'Glezer EN. Techniques of ultrafast spectroscopy. In: Di Bartolo B, editor. Spectroscopy and Dynamics of Collective Excitations in Solids. NATO ASI Series. New York, London: Plenum Press; 1996\n'},{id:"B18",body:'Berera R, van Grondelle R, Kennis JTM. Ultrafast transient absorption spectroscopy: Principles and application to photosynthetic systems. Photosynthesis Research. 2009;101:105-118\n'},{id:"B19",body:'Hamm P, Zanni M. Concepts and Methods of 2d Infrared Spectroscopy. Cambridge: Cambridge University Press; 2011\n'},{id:"B20",body:'Brixner T, Mančal T, Stiopkin IV, Fleming GR. Phase-stabilized two-dimensional electronic spectroscopy. The Journal of Chemical Physics. 2004;121(9):4221-4236\n'},{id:"B21",body:'Al Haddad A, Chauvet A, Ojeda J, Arrell CA, van Mourik F, Auböck G, et al. Set-up for broadband fourier-transform multidimensional electronic spectroscopy. Optics Letters. 2015;40(3):312-315\n'},{id:"B22",body:'Steffen T, Duppen K. Time resolved four- and six-wave mixing in liquids. Ii. Experiments. The Journal of Chemical Physics. 1997;106(10):3854-3864\n'},{id:"B23",body:'Al Haddad A. 2d Fourier Transform Spectroscopy Setup and Ultrafast Dynamics of Porphyrins. Lausanne, EPFL: Ecole Polytechnique Fédérale de Lausanne; 2015\n'},{id:"B24",body:'Saini GS. Resonance raman study of free-base tetraphenylporphine and its dication. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy. 2006;64(4):981-986\n'},{id:"B25",body:'Hollas JM. Modern Spectroscopy. Wiley; 2004\n'},{id:"B26",body:'Wang W, Ye X, Demidov AA, Rosca F, Sjodin T, Cao WX, et al. Femtosecond multicolor pump-probe spectroscopy of ferrous cytochrome c. The Journal of Physical Chemistry. B. 2000;104:10789-10801\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Adrien A.P. Chauvet",address:"adrien.chauvet@gmail.com",affiliation:'
Corrosion is a spontaneous disintegration of materials owing to their reactions with chemical constituents of the surroundings. Materials in this context may include metals, polymers and ceramics [1, 2]. However, corrosion is mostly used to refer to undesirable destruction of metals and alloys due to interactions with surrounding environment. The interactions or reactions as used here could be chemical or electrochemical in nature. More concisely, for the purpose of this chapter, corrosion would be described as chemical or electrochemical reaction between a metal and constituents of its environment. Emphasis will be placed on corrosion of metal in aqueous environments. Corrosion is a “favoured” process, requiring little or no energy input for its occurrence. Despite being naturally favoured, corrosion imposes a lot of economic strain, health and safety threat on human and society. It is a naturally favoured and an unavoidable process, yet, undesirable by man.
Corrosion is a way by which a metal assumes a low energy state, by combining with some other elements such as oxygen, hydrogen and sulphur. Metals are naturally not favoured to exist in free states. They are found in combined forms, often as ores. Pure metals are extracted from their respective ores with a lot of energy input. No wonder corrosion is also touted as “retro-extractive metallurgy” [3], as depicted in Eq. (1).
Corrosion of metals is essentially an electrochemical process. A metal could assume an immune, active or a passive state when exposed to the environment, depending on the nature of the metal and the environment [1]. An index of the possible state of a metal in an environment is its electrochemical/redox potential (Er). The half-cell equation for the reduction of a metal (M) could be written as:
Mn+aq+ne−⇌MsE=ErVoltsE2
Metals with highly positive Er are naturally immune to oxidation, examples include Au and Pt. Those with negative Er are active in the environment. Some of them may assume an active-passive state, depending on the nature of the environment and the properties of their corrosive products.
Understanding the thermodynamics and kinetics of metal corrosion would make corrosion science students to appreciate why corrosion occurs and how its rate could be mitigated. It would also help corrosion science tutors to lay a good foundation of the course for their students.
2. The fate of a metal in an environment
The behaviour of a metal upon exposure to an environment depends on the nature of the metal and the conditions of the environment. A metal exposed to a corrosive environment could behave in one of the following ways [1]:
Immune behaviour: the metal may be immune to an environment, such that it does not react in the environment. That is, the metal does not corrode. Such a metal is said to be thermodynamically stable in such an environment and would not undergo spontaneous corrosion. Metals with immune behaviour are very noble. They are un-reactive in virtually all environments. Examples include Au, Ag, Pt, and Pd.
Active behaviour: a metal is said to be of active behaviour in an environment when it reacts with the environment and thereby corrodes. If the environment is an aqueous solution, such a metal dissolves in solution and forms soluble non-protective corrosion products. Since the corrosion product is soluble and non-protective, the dissolution of such a metal is continuous. A metal with active behaviour suffers significant weight loss in an aggressive solution. Examples include Fe, Al, Zn, Mg, Cu etc. Activity of metals may vary with environmental conditions such as corrosive ions, immersion time, temperature, etc. In a recent study, Dong et al. [4] compared the corrosion rates of Zn, Fe and Mg in simulated physiological solutions and found that Mg exhibited the highest corrosion rate. The study also illustrates how corrosion rate could vary with immersion time.
Passive behaviour: a metal that exhibits passive behaviour might corrode at some instances but assume a non-responsive state over a period. Upon exposure to the corrosive environment, a metal with passive behaviour forms insoluble protective corrosion products, which cover the surface of the metal and shield it from further exposure to the corrosive environment. The protective film slows down further reaction with the environment. The films are usually more stable (less reactive) than the metals themselves. However, if the passive film is broken or dissolved, then the metal can revert to the active state, at which instance rapid dissolution of the metal could occur. In some cases, repassivation could follow the breakdown of passive film. Various factors could be responsible for passive film breakdown or instability. Among them are film thickness, nature of corrosive ions, pH, anodic potentials and so on. Feng et al. [5] observed that increased strain magnitude could also increase instability of passive film on carbon steel. A more detailed overview on the passivity of metals could be found in literature [6].
It is noteworthy that the behaviour of a metal depends on its “micro-environment”. The natural or real practical environments are characterized by variable factors. The conditions of the environment may change with time. There could be a change in the cell pH, fluid flow rate, and temperature. Some reactions in the environmental might also result in solid deposits. The actual environment to which a metal responds is the immediate local environment at or near its surface. It is this micro-environment that determines the behaviour of the metal. Though some metals exhibit nearly universal behaviour irrespective of the environmental conditions. Metals such as Au, Pt and Ag typically exhibit noble or immune behaviour regardless of the environment, while metals like Na, K and Mg are generally active in nearly all aqueous environments. Metals likes titanium and tantalum assume passive state in a wide range of aqueous environments, though reactive in some other environments. Aluminium and zinc are very reactive metals and often exhibit active behaviour. However, they form stable protective passive films in some environments. The behaviour of such metals could be described as “active-passive” – active in some environments at some instances, and sometimes passive. The subsequent passivity is due to the change in the local environment at the surface of the metal, being occupied by the insoluble passive corrosion products.
Active-passive behaviour of iron in nitric acid was first observed in 1790 by Keir [7]. The thickness of passive films may vary with environmental conditions. Susceptibility of the film to breakdown also depends on the thickness [6]. Sato et al. [8] also reported that the composition and thickness of passive films on iron immersed a borate solution could change with change in potentials. Luo et al. [9] observed that alloy 59 (a Ni-Cr-Mo alloy with the least Fe content and highest Cr-Mo content) develops thicker passive film in air than sulphuric acid solution, and the constituents of the film vary in the two environments.
3. Corrosion: thermodynamic driving force
As pointed out earlier, corrosion of a metal is a spontaneous process. A metal in its pure state has a considerably higher energy than its corresponding ore. Metal corrodes in an attempt to minimize its energy, while assuming a more stable state. Corrosion is therefore a means of energy minimization as a metal tends to return to its combined form in which it exists naturally. A basic illustration of this energy minimization is the exothermic nature of the formation of metal oxides, sulphides and hydroxides (Table 1). Formation of hematite (the world most important ore of iron) is accompanied by the release of a huge amount of energy (825.50 kJ/mol). Meanwhile, the relative energy of a free Fe atom is 0 kJ/mol. The same applies to other metals and their minerals.
3.1 Corrosion: electrochemical cell and electrode potential
Corrosion of metals is essentially an electrochemical process, involving both anodic oxidation and cathodic reduction reactions. A micro-electrochemical cell is established on the surface of a corroding metal. Perhaps for the sake of emphasis, electrochemical corrosion cell is a galvanic (or voltaic) cell. The progress of corrosion reaction is accompanied by flow of electric current (i), which has to do with movement of an electric charge across a potential difference. A corroding metal in an aqueous solution sets up a galvanic cell system comprising the metal (M) in contact with its metal ion (Mn+) such that an equilibrium is established. The site on the metal surface where dissolution of metal into its ion occurs is the anodic site. The cathodic site is set up not far from the anodic site. Each site constitutes a half-electrode reaction system, making up two half-cells, like that of a galvanic cell. The difference between the electrode potentials of the two half-cells can be expressed as:
Ecell=Ecathode–EanodeE3
In Eq. (3), both Ecathode and Eanode are reduction potentials. Since we are considering corrosion, the Ecell is equivalent to the corrosion potential, Ecorr. For a spontaneous cell reaction as we have in corrosion, Eanode is always more negative than Ecathode, such that Ecell is always positive.
For a typical case of iron (Fe) corroding in an aerated aqueous solution as:
Fes+H2Ol+½O2⇌FeOH2gE4
The half-cell reactions equations can be expressed as:
Anode:Fes⇌Fe2+aq+2e−E0ox=+0.409VE5
Cathode:½O2g+H2Ol+2e−⇌2OH−aqE0red=+0.20VE6
In this case, Ecell = (0.2 + 0.409) V = 0.609 V. The more positive the Ecell, the more feasible the corrosion of the metal. Practically, the Ecell or Ecorr is measured using a potentiostat. In such measurements, a half-cell must be chosen as a reference, e.g. standard hydrogen electrode (SHE). Electrode potential for SHE is set at 0 V (EH+/H2). The electrode is made up of 1 M hydrogen ion (H+) and hydrogen gas (H2) at 1 atm, supported with a platinum plate. When coupled with an half-cell of unknown E, the cell potential recorded by the potentiometer is the electrode potential of the system with unknown E.
Potentiostats with three-electrode system are often used to measure electrochemical corrosion parameters. The three-electrode system consists of the working electrode, WE (the metal or alloy whose corrosion is being studied), reference electrode, RE (against which the corrosion potential of the metal/alloy is measured), and auxiliary/counter electrode, CE, which supports or protects the reference electrode against passage of current. Commonly used reference electrodes include calomel electrode, which composed of Hg/Hg2Cl2, sat’d. KCl, and silver-silver chloride electrode (Ag/AgCl, sat’d KCl). The latter is mostly used because of its relatively cheap cost and less toxicity compared to the mercury-based electrode.
Electrode potentials depend on concentrations of the species and temperature. Under the standard conditions of 25°C and 1 M concentration or 1 atm pressure of the species, it is referred to as the standard electrode potential. The standard electrode potentials (standard reduction potentials), E0 for some species are listed in Table 2. The dependence of electrode potentials on concentrations of the species and temperature is expressed in the form of the Nernst equation, whose general form is:
Minerals or Ores
Constituent metal oxide, hydroxide or Sulphide
∆Hf (kJ/mol)
Hematite
Fe2O3
−825.50
Bauxite
Al2O3
−1675.69
Zincite
ZnO
−350.46
Sphalerite
ZnS
−206.00
Brucite
Mg(OH)2
−924.66
Chalcocite
Cu2S
−79.50
Table 1.
Minerals or ores of some common metals, their chemical formulas and standard heats of formation.
Reduction half-reactions
E0red (V)
O3 + 2 H+ + 2 e− ⇌ O2 + H2O
2.07
H2O2 + 2 H+ + 2e− ⇌ 2 H2O
1.776
Au3+ + 3 e− ⇌ Au
1.68
PbO2 + 4 H+ + 2e− ⇌ Pb2+ + 2 H2O
1.467
Cl2 + 2 e− ⇌ 2 Cl−
1.3583
O2 + 4 H+ + 4 e− ⇌ 2 H2O
1.229
Pt2+ + 2 e− ⇌ Pt
1.20
H2O2 + 2e− ⇌ 2 OH-
0.88
Hg22+ + 2 e− ⇌ Hg
0.7961
Cu+ + e− ⇌ Cu
0.522
O2 + 2 H2O + 4 e− ⇌ 4 OH−
0.401
Cu2+ + 2e− ⇌ Cu
0.3402
2 H+ + 2 e− ⇌ H2
0.000
Fe3+ + 3 e− ⇌ Fe
−0.036
Pb2+ + 2 e− ⇌ Pb
−0.1263
Sn2+ + 2 e− ⇌ Sn
−0.1364
Ni2+ + 2 e− ⇌ Ni
−0.23
Co2+ + 2 e− ⇌ Co
−0.28
Fe2+ + 2 e− ⇌ Fe
−0.409
Cr3+ + 3 e− ⇌ Cr
−0.74
Zn2+ + 2 e− ⇌ Zn
−0.7628
Mn2+ + 2 e− ⇌ Mn
−1.04
Al3+ + 3 e− ⇌ Al
−1.706
Mg2+ + 2 e− ⇌ Mg
−2.375
Na+ + e− ⇌ Na
−2.7109
K+ + e− ⇌ K
−2.924
Table 2.
Standard half-cell reduction potentials for reactions.
Er=Er0−RTnFlnredoxiE7
where n is the number of electrons transferred in the redox reaction, F is the Faraday constant, R is the gas constant and T is absolute temperature; [red] and [oxi] are the concentrations of the reduced and oxidized species, respectively.
3.2 Gibb’s free energy and electrode potentials
Corrosion is characterized by lowering of Gibb’s free energy or increasing electrochemical cell potential. For a corroding metal, a micro-electrochemical cell is created on the surface. The progress of metal corrosion is proportional to flow of current in the electrochemical cell. Thermodynamic parameters can be expressed for electrochemical systems. Since corrosion of metals is a constant pressure process, the Gibb’s free energy (∆G) is a good thermodynamic parameter for predicting its spontaneity. A spontaneous reaction is accompanied by energy minimization, which implies a negative ∆G, while a positive ∆G connotes non-spontaneous process. A non-spontaneous reaction requires energy input to proceed. For a system at equilibrium, ∆G = 0. Corrosion being a spontaneous process has a negative ∆G. Thermodynamic favourability of metal corrosion could readily be predicted from the electrode potentials of the metal concerned. The change in Gibb’s free energy (∆G) per mole of an electrochemically reacting species is related to the electrode potentials as:
∆G=−nFEE8
where n is the valence of the species (number of electrons transferred), F is the Faraday’s constant (1 F = 96,485 C) and E is the electrode potential (Volts). For a typical case of anodic dissolution of iron as it oxidizes from Fe to Fe2+ by losing two electrons (Fe ⇌ Fe2+ + 2 e−); n = 2.
3.3 Impracticability of equilibrium electrochemical corrosion potentials
Corrosion involves both anodic and cathodic reactions. Each of these reactions is reversible and has associated electrode potential (E), which tends to attain an equilibrium value. At equilibrium, ∆G = E = 0. However, attainment of this value is impracticable.
Practically, a bare (an oxide-free) metal surface releases metal ion into an aqueous solution (dissolution), leaving negatively charged electrons on the surface. This leads to an increase in the potential difference between the metal and the solution. The electrode potential becomes more negative. For the anodic dissolution of a metal, M, the half-cell reaction equation could be written as:
M⇌Mn++ne−E9
A more negative potential tends to retard dissolution but promotes deposition, according to Eq. (8) (i.e. ∆G is more positive for a more negative E). Since the process is reversible, continuous dissolution and/or deposition might lead to a stable (reversible) potential, Er, which can be expressed in the form of Nernst Equation (for the reaction in Eq. (9)) as:
Er,Mn+/M=Er,Mn+/M0+RTnFlnaMn+E10
If a stable Er,Mn+/M is attained, dissolution would stop. However, in practice, Er,Mn+/M is never attained because electrons generated in Eq. (9) are always removed from the surface by the accompanied cathodic half-cell reaction, such as:
2H+aq+2e−⇌H2gE11
Or
½O2g+H2Ol+2e−⇌2OH−aqE12
in an acidic or basic medium respectively. The Nernst equation-type expressions for the reversible potential (Er) for the cathodic reactions in Eqs. (11) and (12) respectively are:
Er,H+/H2=Er,H+/H20−RTFlnPH212aH+E13
Er,O2/OH−=Er,O2/OH−0−RT4FlnaOH−4PO2E14
where Eqs. (13) and (14) correspond to stoichiometrically adjusted forms of Eqs. (11) and (12) by multiplying the coefficients by ½ and 2 respectively for reduction of 1 mole of H+ and O2.
If Er could be attained for reactions depicted by Eqs. (11) or (12), then Er would be attained in Eq. (10). However, Er in Eq. (13) or (14) is never stable due to continuous discharge of H2 or consumption of O2. Hence, attainment of a stable Er,Mn+/M is practically impossible and corrosion of metal, M is continuous.
3.4 Corrosion tendency based on electrochemical potentials and pH
Thermodynamics of electrochemical corrosion could be described as a function of electrode potential and hydrogen ions concentration (pH). This is often chatted as potential-pH diagram, popularly called the Pourbaix diagram, named after the original inventor. Pourbaix, a Belgium electrochemist and corrosion scientist invented the potential-pH diagram in 1963 for the description of thermodynamics of electrochemical corrosion. Pourbaix diagrams provide theoretical description of stability of a phase of metal/electrolyte system at a particular pH and potential. It is a kind of phase equilibrium diagram, though with different axes parameters compared to thermodynamics phase equilibrium diagram. Potential-pH diagram is often plotted at 25°C, 1 atm, and 10−6 M concentration of the ionic species. A typical Pourbaix plot comprises the redox potential on the vertical axis and the pH on the horizontal axis. Potential-pH diagram for iron in aqueous environment is shown in Figure 1. The diagram clearly shows the stable and passive regions for iron, based on the combination of potential and pH. At the very top of the diagram is corrosive region, where the potential is highly positive (above 1.8 V). At this region, iron would corrode at any combination of potential and pH. The region marked immunity at the lower portion of the diagram indicates the area where iron does not corrode. This region spans over a wide range of pH, and a limited range of highly negative potentials. Within this region, iron is immune to corrosion at various combinations of potentials and pH. In-between the two extreme top and bottom regions are regions where corrosion and/or passivity could occur, depending on the operating potentials and pH. The region marked “corrosion” between lines 1 and 2 covers a large area compared to the one at lower right-hand side. This implies that corrosion of iron at intermediate potentials between −500 mV and 1000 mV would progress more favourably in acidic pH than neutral and alkaline pH. At moderately positive potentials and neutral or alkaline pH, iron forms passive oxide film on the surface, which blocks further corrosion.
Figure 1.
Potential-pH diagram for iron in aqueous medium [10].
Pourbaix diagram could be used as a route to first principle corrosion simulation [11], a model for optimizing corrosiveness of a medium and designing materials with desired corrosion resistance. In a recent study, Nave and Kornev [12] constructed and applied 3D Pourbaix profile to establish the conditions for thermodynamic stability of tungsten-based compounds and describe the anodic dissolution of tungsten in aqueous solutions of potassium hydroxide. Beyond pure metals, Pourbaix profiles for multielement system such as Ni-Ti alloys having different ratios of the element have been proposed [13]. In an effort to overcome the challenges associated with developing Pourbaix profiles for complex compounds, a recent study by Patel et al. [14] introduced a more robust algorithm for modelling Pourbaix diagram for multicomponent materials.
4. Corrosion kinetics
Having discussed the propensity of metals to corrode, it is important to also highlight the rate at which metals corrode and mechanisms of corrosion reactions.
4.1 Corrosion rate
In a general term, corrosion rate (CR) refers to the amount of metal loss to corrosion per unit time. The rate at which a metal corrodes can be monitored by various methods. This also determines the kind of CR expression and units. Both the methods and expression (together with units) are in turn dependent on the technical system and type of corrosion being investigated. These methods may be classified as chemical, electrochemical, spectroscopic, and surface analysis based methods. Basically, corrosion rate (CR) may be monitored by measuring any parameter that changes as corrosion reactions occur. For example:
monitoring the change in weight of the metal upon corrosion (weight loss measurements);
pressure of gas evolved (e.g. monitoring the H2 gas evolution level);
change in temperature upon corrosion reactions (thermometric measurement);
spectroscopic analysis of amount of metal that goes into solution upon corrosion (e.g. AAS analysis of Fe in solution);
amount of current that flows in the system (electrochemical measurements).
Each of these methods have associated merits and demerits. Corrosion rate may expressed as weight-loss of a metal per unit time per unit area according to the equation:
CR=∆wAtE15
where ∆w is the weight difference of the metallic block or plate at a set time interval (exposure time), t, and A is the exposed area of the metal. Being an analytical measurement, the ideal practice is to conduct repetitive measurements of ∆w and utilize the average value in Eq. (15). This measurement is mainly applicable to general or uniform corrosion. However, it is the most used measurement of corrosion rate. For corrosion systems in which the metal/environment composition vary significantly with time and non-uniformity over the sites on corroding surface, measurement of CR using Eq. (15) may be deficient. The results of such measurements must at least be supported with additional information such as the type of corrosion, dependence of corrosion rate on time and other relevant factors that prevail during the experiment. Eq. (15) is the simplest form of such expression, for which the units of ∆w (g or nearest mg), A (nearest cm2), and t (nearest h) would give the units of CR as gcm−2 h−1 or mgcm−2 h−1. These units may not be applicable in reporting CR in some other technical reports, for example, if CR is to be expressed in the form of penetration rate (depth per unit time).
In an electrochemical experiment, corrosion rate could be measured as corrosion current density, in the form of corrosion current (mA) per unit area (cm2) of corroding metal, i.e. mAcm−2. Conversion factors from one CR unit to another are listed in Table 3.
n = number of electrons freed by the corrosion reaction
M = atomic mass
d = density
e.g.: 1 mA cm−2 = (3.28 M/nd) mm y−1 = (129 M/nd) mpy = (8.95 M/n) g m−2 day−1
4.2 Factors affecting corrosion rate
Besides basic requirements for electrochemical corrosion to occur, which include the presence of anodic and cathodic sites, electrolyte and connectivity between the sites (to promote ionic conduction), there are secondary factors that affect corrosion rate. These factors are briefly discussed as follow.
Concentrations of dissolved oxygen (i.e. oxygen and oxidizers): corrosion rate and mechanism could be affected by the amount of dissolved oxygen. This is because, both anodic dissolution of metal and cathodic reactions are oxygen dependent. Generally, the higher the concentration of dissolved oxygen the higher the corrosion rate. Since anodic dissolution is an oxidation reaction, increased oxygen content in the microenvironment would increase the rate of metal oxidation. More so, when oxygen reduction predominates the cathodic reaction, dissolved oxygen increases the rate of cathodic reaction, which in turn speeds up the anodic reaction for charge balancing purpose. In other words, the rate of metal dissolution is directly proportional to the rate of oxygen reduction. A limited oxygen reduction or dissolved oxygen would lead to a decrease in metal dissolution and overall corrosion rate. Hydroxide and oxide deposits and protective film reduce the rate of oxygen diffusion onto the metal surface. They also tend to prevent conduction of metal ions from metal-oxide interface to oxide-liquid interface. Hence, they reduce corrosion rate, usually by passivation.
Concentration of dissolved salts: dissolved salt increases conductivity of an electrolyte system. Since a requirement for corrosion to progress in ion mobility, increase in conductivity of the electrolyte due to dissolved salt increase corrosion rate. Generally, corrosion rates tend to increase when water conductivity increases. For this reason, corrosion rate is higher in saline water than freshwater. The corrosion rate in seawater is a function of numerous mutually dependent factors. However, according to Kirk and Pikul (1990) [16], if salinity exceeds 3%, water corrosivity decreases. This is due to decrease in oxygen solubility is in water with > 3% salinity, as posited by Weiss (1970) [17].
Temperature and pressure: Generally, temperature increases the rate of metal corrosion, so does pressure. Just like every other electrochemical reactions, increase in temperature increases fluid flow and ionic mobility. Temperature can also affect scale formation and gas fugacity, which indirectly affect corrosion rate. Most corrosion models are accurate only within prescribed temperature ranges. For corrosive involving gases such as CO2 and H2S increase in operating pressure could increase the partial pressure of the corrosive gases. It should be noted that the reduction potential of the metal is dependent on fugacity of the gases present, according to the Nernst Equation. The dependence of corrosion rate (CR) on temperature could be expressed in the form of Arrhenius equation as:
CR=Aex(−Ea/RT)E16
where A is the pre-exponential factor, Ea is the activation energy, R is the gas constant and T is temperature.
Associated fluid dynamics: increase in fluid flow rate increases the rate of metal loss. Fluid flow rate the reason for the particular type of corrosion, the “Flow-Accelerated Corrosion”. Accelerated fluid drives corrosive ions to the reactive sites faster than a stagnant or unstirred solution. Fluid flow also has mechanical effects on passive films or deposits by driving them out of site, exposing the metal surface to direct attack of corrosive ions. Flow-accelerated corrosion is usually found at high flow rates around pipe/tube blockages, tube inlet ends, or in pump impellers.
Concentration of corrosive electrolyte: generally the higher the concentration of corrosive electrolyte the higher the rate of metal corrosion. Though, change in concentration of corrosive electrolyte often lead to change in pH of the medium, which can affect corrosion rate and mechanism in different ways.
pH of the medium: this affects the kind of reactions that take place at the cathode. For instance, in acidic pH, hydrogen ion reduction/hydrogen gas evolution predominates at the cathode. Oxygen reduction could also occur if the medium is aerated. Oxygen reduction is the primary cathodic reaction in neutral/basic solutions.
4.3 Corrosion mechanism
Corrosion, like many other chemical reactions usually involve more than one definable step. Interests often lie in the slowest step. Electrochemical corrosion involves release of ions and movement of electrons. Corrosion requires presence and movement of ions and electrons. A typical mechanism of corrosion of Fe in acidic medium is:
Fes⇌Fe2+aq+2e−Anodic dissolution of metalE17
2H+aq+2e−⇌H2gCathodic reaction–H2gasevolutionE18
The process is often more complex such that, metal ions may go into solution as complexes or even; precipitate as hydroxides, oxides, sulphides etc.
Electrochemical corrosion mechanism of an active metal in an aqueous environment can be expressed generally as [18]:
Ms⇌Mm+aq+me−E19
mH+aq+me−⇌m/2H2gE20
Overall:Ms+mH+aq⇌Mm+aq+m/2H2gE21
In a deaerated acidic medium. Or.
Ms⇌Mm+aq+me−E22
mH2Ol+me−⇌mOH−aq+m/2H2gE23
Overall:Ms+mH2Ol⇌Mm+aq+mOH−aq+m/2H2gE24
In a deaerated neutral/basic medium.
In an aerated environment, oxygen plays a prominent role in the reaction and the mechanisms look like [18]:
As contained in the previous sections, whether a material would corrode or not depends on a number of factors. The extent and rate of corrosion also varies, depending on the nature of the metal or alloy, corrosive medium, pH, temperature and so on. While it may be difficult to “work against nature”, to completely stop metal corrosion, several methods of abating corrosion damage have been identified. Most of these methods reduce corrosion rate, rather than “inverting” the thermodynamics. Although, thermodynamic susceptibility might be influenced in some instances. Choosing a suitable corrosion control method requires proper understanding of corrosion type and mechanism. No particular method had been adjudged universally effective to mitigate all forms of corrosion. Common corrosion control methods are highlighted below.
Material selection: this method entails careful selection of metal or alloy that is immune to corrosion in an environment. While this sounds as a good idea, such materials do not often possess the desired mechanical properties for prospective technological design. Besides, using such materials for engineering purposes could be very expensive. In other words, striking a balance between material cost, mechanical properties and corrosion resistance is not a straightforward task.
Engineering design: careful structural design might reduce or eliminate certain forms of corrosion. A design that eliminate accumulation of water on metal surface might reduce the rate of top-of-line corrosion (TLC), which is greatly associated with water accumulation [19]. Crevice corrosion could be minimized if engineering design minimizes stagnation of fluids and adopts welded rather than bolted joint. Design that eliminates or reduces turbulence flow could reduce the rate of erosion corrosion [20]. The major limitation to using engineering design to control corrosion is that the choice of a design might not meet other important criteria of the structure, aside reducing corrosion propensity of the material. A wrong design might be costly and yet not suitable for optimum application of the structure [21, 22].
Cathodic and anodic protection: electrochemical potentials of a metal could be modified to suppress cathodic or anodic corrosion by shifting the potential cathodically or anodically, respectively. This could be achieved via impressed current system [23]. Cathodic shift increases the immunity of the metal by reducing electron uptake for the cathodic reaction [24]. A more positive or anodic shift of the potential increases the passivity behaviour of the metal [22, 25]. The use of sacrificial materials known as sacrificial anode/cathode is also a known practice. A more active metal (sacrificial anode) could be used to protect a metal of interest. Parthiban et al. [26] reported the use of magnesium alloy anode for the cathodic protection of steel embedded in concrete. It was observed that the mechanism of cathodic protection with the sacrificial anode could be correlated to the removal of corrosive ions such as chloride from the vicinity of steel.
Protective coatings: organic or inorganic coatings are often used to protect the surface of active metals. Such coatings could serve as barrier protection and/or chemical inhibition. Besides corrosion mitigation, special coating materials could provide aesthetic functions, improving the surface appearance of the metal [27]. An extensive review on protective coating on magnesium alloy is available in literature [28].
Corrosion inhibitors: chemical substances could be added to corrosive solution in trace quantities to reduce corrosion rate of metal. These additives, which often reduce the rate of metal corrosion by adsorbing as thin film on metallic surface are called corrosion inhibitors. Several corrosion inhibitors have been designed. Notable among them are benzotriazole (a popular inhibitor of copper corrosion) [29], quinoxalines [30, 31, 32], benzimidazoles [33], pyrimidines [34, 35], pyridazines [36], hydantoins [37], ionic liquids [38] and so on. Most organic corrosion inhibitors contain heteroatoms and pi-electron systems that aid adsorption of their molecules onto active sites on the metal surface. There are also inorganic inhibitors such as salts of zinc, copper, nickel, and arsenic. Earlier efficient inorganic corrosion inhibitors are chromate based, but their use have been discouraged due to their high toxicity.
\n',keywords:"corrosion, metallurgy, spontaneity, passivity, electrochemical",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/77297.pdf",chapterXML:"https://mts.intechopen.com/source/xml/77297.xml",downloadPdfUrl:"/chapter/pdf-download/77297",previewPdfUrl:"/chapter/pdf-preview/77297",totalDownloads:127,totalViews:0,totalCrossrefCites:0,dateSubmitted:"March 3rd 2021",dateReviewed:"May 24th 2021",datePrePublished:"August 20th 2021",datePublished:null,dateFinished:"June 24th 2021",readingETA:"0",abstract:"This chapter describes the fundamentals of metal corrosion in relation to thermodynamics and kinetics. The chapter is so titled, because corrosion of metal is thermodynamically favourable. Moreover, it impacts negatively on economy and safety. Industries expend a substantial percentage of their budgets on corrosion control, and lose revenue due to corrosion damage. Effects of corrosion on industrial and public infrastructure cannot be overemphasized. Several accidents in the transportation and recreational industries have been linked to corrosion of metallic parts of respective gadgets. Some of these accidents are utterly catastrophic and fatal. Therefore, corrosion, albeit its thermodynamic favouability, is not desired by man. Metals corrode as a way of minimizing energy contents. Active metals are more stable in combined forms such as oxides, sulphides, and hydroxides, even though these forms are less useful to man. It appears the “price” to pay for extracting the pure forms of these metals from their ores is corrosion. This chapter presents fundamentals of thermodynamics and kinetics of metal corrosion, with emphasis on aqueous medium. It promises to serve as an introductory chapter for corrosion science students and as a concise material for tutors.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/77297",risUrl:"/chapter/ris/77297",signatures:"Lukman O. Olasunkanmi",book:{id:"10669",type:"book",title:"Corrosion: Fundamentals and Protection Mechanisms",subtitle:null,fullTitle:"Corrosion: Fundamentals and Protection Mechanisms",slug:null,publishedDate:null,bookSignature:"Dr. Fahmina Zafar, Dr. Anujit Ghosal and Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83968-606-1",printIsbn:"978-1-83968-605-4",pdfIsbn:"978-1-83968-607-8",isAvailableForWebshopOrdering:!0,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. The fate of a metal in an environment",level:"1"},{id:"sec_3",title:"3. Corrosion: thermodynamic driving force",level:"1"},{id:"sec_3_2",title:"3.1 Corrosion: electrochemical cell and electrode potential",level:"2"},{id:"sec_4_2",title:"3.2 Gibb’s free energy and electrode potentials",level:"2"},{id:"sec_5_2",title:"3.3 Impracticability of equilibrium electrochemical corrosion potentials",level:"2"},{id:"sec_6_2",title:"3.4 Corrosion tendency based on electrochemical potentials and pH",level:"2"},{id:"sec_8",title:"4. Corrosion kinetics",level:"1"},{id:"sec_8_2",title:"4.1 Corrosion rate",level:"2"},{id:"sec_9_2",title:"4.2 Factors affecting corrosion rate",level:"2"},{id:"sec_10_2",title:"4.3 Corrosion mechanism",level:"2"},{id:"sec_12",title:"5. Corrosion control methods",level:"1"}],chapterReferences:[{id:"B1",body:'Davis, J.R., Corrosion: Understanding the basics, ASM International, 2000.'},{id:"B2",body:'Terminology relating to corrosion and corrosion testing, American Society for Testing and Materials Designation G 15-99b (Revised), 2000.'},{id:"B3",body:'Fontana, M.G., Corrosion Engineering, New York, McGraw-Hill, 1986.'},{id:"B4",body:'Dong, H., Lin, F., Boccaccini, A.R. and Virtanen, S. (2021). Corrosion behavior of biodegradable metals in two different simulated physiological solutions: Comparison of Mg, Zn and Fe. Corrosion Science, 182, 109278.'},{id:"B5",body:'Feng, X., Zuo, Y., Tang, Y., Zhao, X. and Zhao, J. (2012). The influence of strain on the passive behavior of carbon steel in cement extract. Corrosion Science, 65, 542–548.'},{id:"B6",body:'Sato N. (1990). An overview of the passivity of metals. Corrosion Science, 3 (I), 1–19.'},{id:"B7",body:'Keir, J. (1790). Experiments and observations on the dissolution of metals in acids and their precipitations; with an account of a new compound acid menftruum, useful in fume technical operations of parting metals. Phil. Trans., 80, 359.'},{id:"B8",body:'Sato, N., Kudo, K. and Nishimura, R. (1976). Depth Analysis of Passive Films on Iron in Neutral Borate Solution. J. Electrochem. Soc.,123 1419.'},{id:"B9",body:'Luo, H., Gao, S., Dong, C., Li, X. (2014). Characterization of electrochemical and passive behaviour of Alloy 59 in acid solution. Electrochimica Acta, 135, 412–419.'},{id:"B10",body:'Ahmad, Z. (2006). Basic concepts in corrosion, in principles of corrosion engineering and corrosion control, 9–56, https://doi.org/10.1016/B978-075065924-6/50003-9.'},{id:"B11",body:'Perry, S.C., Gateman, S.M., Stephens, L.I., Lacasse, R., Schulz, R. and Mauzeroll, J. (2019). Pourbaix diagrams as a simple route to first principles corrosion simulation Journal of The Electrochemical Society, 166 (11) C3186-C3192.'},{id:"B12",body:'Nave, M.I. and Kornev, K.G. (2017). Complexity of products of tungsten corrosion: comparison of the 3D Pourbaix diagrams with the experimental data. Metallurgical and Materials Transactions A, 48A, 1414.'},{id:"B13",body:'Ding, R., Shang, J.X., Wang, F.H., Chen. Y. (2018). Electrochemical Pourbaix diagrams of NiATi alloys from first-principles calculations and experimental aqueous states. Computational Materials Science, 143, 431–438.'},{id:"B14",body:'Patel, A.M., Nørskov, J.K., Persson, K.A. and Montoya, J.H. (2019). Efficient Pourbaix diagrams of many-element compounds. Phys. Chem. Chem. Phys., 21, 25323'},{id:"B15",body:'https://www.corrosion-doctors.org/Principles/Conversion.htm. Retrieved on 22nd April, 2021.'},{id:"B16",body:'Kirk, W. W., and Pikul, S. J. (1990). Seawater corrosivity around the world: results from three years of testing. In: C. H. Baloun (Ed.), Corrosion in Natural Waters (pp. 2–36). Philadelphia: American Society for Testing and Materials.'},{id:"B17",body:'Weiss R.F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts. 1970;17(4):721–735. doi: 10.1016/0011-7471(70)90037-9'},{id:"B18",body:'Stanbury E. E. and Buchanan R.A. (2000). Fundamentals of Electrochemical Corrosion: ASM International, p 22 http://site.ebrary.com/id/10320341?ppg=22'},{id:"B19",body:'Larrey, D. and Gunaltun, Y.M. (2000). Correlation of cases of top of line corrosion with calculated water condensation rates, NACE International.'},{id:"B20",body:'Vyas, B. and Hansson, I.L. (1990). The cavitation erosion-corrosion of stainless steel. Corrosion science, 30, 761–770.'},{id:"B21",body:'Locke, C.E. (1987). Anodic protection. In: ASM handbook. ASM International, 13, 463–465.'},{id:"B22",body:'Riggs, O.L. and Locke, C.E. (1981). Anodic protection: theory and practice in the prevention of corrosion. Plenum Press.'},{id:"B23",body:'C. Christodoulou, C., Glass, G., Webb, J., Austin, S., and Goodier, C. (2010). Assessing the long term benefits of Impressed Current Cathodic Protection. Corrosion Science 52, 2671–2679.'},{id:"B24",body:'Morgan, J.H. (1987). Cathodic protection. 2nd Ed., NACE International.'},{id:"B25",body:'Benedict, R.I. (1986). Anode resistance fundamentals and applications – classic paper and reviews. NACE International.'},{id:"B26",body:'Parthiban, G.T., Parthiban, T., Ravi, R., Saraswathy, V., Palaniswamy, N. and Sivan, V. (2008). Cathodic protection of steel in concrete using magnesium alloy anode Corrosion Science, 50, 3329–3335.'},{id:"B27",body:'Edwards, J. (1997). Coating and surface treatment systems for metals: A comprehensive guide to selection. Finishing Publication Ltd. and ASM International.'},{id:"B28",body:'Gray, J.E. and Luan, B. (2002). Protective coatings on magnesium and its alloys — a critical review. Journal of Alloys and Compounds, 336 (1–2), 88–113.'},{id:"B29",body:'Walker, R. (1970), “The use of benzotriazole as a corrosion inhibitor for copper”, Anti-Corrosion Methods and Materials, 17 (9), 9–15. https://0-doi-org.ujlink.uj.ac.za/10.1108/eb006791.'},{id:"B30",body:'Olasunkanmi, L.O., Kabanda, M.M. and Ebenso, E.E. (2016). Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Physica E, 76, 109–126.'},{id:"B31",body:'Olasunkanmi, L.O., Obot, I.B., Kabanda, M.M. and Ebenso, E.E. (2015). Some Quinoxalin-6-yl Derivatives as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid: Experimental and Theoretical Studies. J. Phys. Chem. C, 119, 16004–16019.'},{id:"B32",body:'Olasunkanmi, L.O. and Ebenso, E.E. (2020). Experimental and computational studies on propanone derivatives of quinoxalin-6-yl-4,5-dihydropyrazole as inhibitors of mild steel corrosion in hydrochloric acid. Journal of Colloid and Interface Science, 561, 104–116.'},{id:"B33",body:'Yadav, M., Kumar, S., Purkait, T., Olasunkanmi, L.O., Bahadur, I. and Ebenso, E.E. (2016). Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivatives as corrosion inhibitors for N80 steel in hydrochloric acid. Journal of Molecular Liquids, 213, 122–138.'},{id:"B34",body:'Verma, C., Olasunkanmi, L.O., Ebenso, E.E. and Quraishi, M.A. (2018). Adsorption characteristics of green 5-arylaminomethylene pyrimidine-2,4,6-triones on mild steel surface in acidic medium: Experimental and computational approach. Results in Physics, 8, 657–670.'},{id:"B35",body:'Verma, C., Olasunkanmi, L.O., Ebenso, E.E. and Quraishi, M.A. (2016). Adsorption behavior of glucosamine-based, pyrimidine-fused heterocycles as green corrosion inhibitors for mild steel: experimental and theoretical studies. J. Phys. Chem. C, 120, 11598–11611.'},{id:"B36",body:'Olasunkanmi, L.O., Mashuga, M.E. and Ebenso, E.E. (2018). Surface protection activities of some 6-substituted 3-chloropyridazine derivatives for mild steel in 1 M hydrochloric acid: Experimental and theoretical studies. Surfaces and Interfaces, 12, 8–19.'},{id:"B37",body:'Olasunkanmi, L.O., Moloto, B.P., Obot, I.B., and Ebenso, E.E. (2018). Anticorrosion studies of some hydantoin derivatives for mild steel in 0.5 M HCl solution: Experimental, quantum chemical, Monte Carlo simulations and QSAR studies Journal of Molecular Liquids 252, 62–74.'},{id:"B38",body:'Yesudass, S., Olasunkanmi, L.O., Bahadur, I., Kabanda, M.M., Obot, I.B. and Ebenso, E.E. (2016). Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium. Journal of the Taiwan Institute of Chemical Engineers, 64,252–268.'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Lukman O. Olasunkanmi",address:"waleolasunkanmi@gmail.com",affiliation:'
Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
'}],corrections:null},book:{id:"10669",type:"book",title:"Corrosion: Fundamentals and Protection Mechanisms",subtitle:null,fullTitle:"Corrosion: Fundamentals and Protection Mechanisms",slug:null,publishedDate:null,bookSignature:"Dr. Fahmina Zafar, Dr. Anujit Ghosal and Dr. Eram Sharmin",coverURL:"https://cdn.intechopen.com/books/images_new/10669.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-83968-606-1",printIsbn:"978-1-83968-605-4",pdfIsbn:"978-1-83968-607-8",isAvailableForWebshopOrdering:!0,editors:[{id:"89672",title:"Dr.",name:"Fahmina",middleName:null,surname:"Zafar",slug:"fahmina-zafar",fullName:"Fahmina Zafar"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"419847",title:"Dr.",name:"Edson B.",middleName:null,surname:"Estrada-Arriaga",email:"edson_estrada@tlaloc.imta.mx",fullName:"Edson B. Estrada-Arriaga",slug:"edson-b.-estrada-arriaga",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"78688",title:"Secondary Sludge Biodegradation and Electricity Generation in Biocathode Microbial Fuel Cells",slug:"secondary-sludge-biodegradation-and-electricity-generation-in-biocathode-microbial-fuel-cells",abstract:"The looking for sustainable sewage sludge management technology in the wastewater treatment plants, has brought to light the biocathode microbial fuel cells (bMFCs) which allow simultaneous biological stabilization and direct energy generation, avoiding the production of biogas. In the present study, the performance of bMFCs for the treatment of secondary sludge as anodic substrate was evaluated by analyzing the removal of organic matter, destruction of volatile solids and the generation of electrical energy under different operating conditions and applying two types of cathode chambers. The results indicated that VSS and tCOD removals up to 92% and 87% respectively can be achieved in the anodic chamber generating simultaneously energy. Current and power densities of 1.80 ± 0.09 A∙m−3 and 0.43 ± 0.02 W∙m−3 respectively were reached, showing that bMFCs are a reliable alternative to generate electricity during the sewage sludge stabilization process. It was revealed that the pH value and the type of cathodic zone are statistically significant factors that influenced the performance of the bMFCs. The obtained results demonstrated that the electrochemical performance of the bMFCs was better at pH value of 6 in the anodic chamber and when aerobic cathode zone was used.",signatures:"Petia Mijaylova Nacheva, Danilo Gamboa-Santana and Edson B. Estrada-Arriaga",authors:[{id:"85236",title:"Dr.",name:"Petia",surname:"Mijaylova Nacheva",fullName:"Petia Mijaylova Nacheva",slug:"petia-mijaylova-nacheva",email:"petiam@tlaloc.imta.mx"},{id:"419846",title:"MSc.",name:"Danilo",surname:"Gamboa-Santana",fullName:"Danilo Gamboa-Santana",slug:"danilo-gamboa-santana",email:"ia.danilo.gs@gmail.com"},{id:"419847",title:"Dr.",name:"Edson B.",surname:"Estrada-Arriaga",fullName:"Edson B. Estrada-Arriaga",slug:"edson-b.-estrada-arriaga",email:"edson_estrada@tlaloc.imta.mx"}],book:{id:"10975",title:"Sewage",slug:"sewage-recent-advances-new-perspectives-and-applications",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"85236",title:"Dr.",name:"Petia",surname:"Mijaylova Nacheva",slug:"petia-mijaylova-nacheva",fullName:"Petia Mijaylova Nacheva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"324231",title:"Dr.",name:"Anass",surname:"Omor",slug:"anass-omor",fullName:"Anass Omor",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"324620",title:"Dr.",name:"Karima",surname:"Elkarrach",slug:"karima-elkarrach",fullName:"Karima Elkarrach",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"417038",title:"Dr.",name:"umara",surname:"Qayoom",slug:"umara-qayoom",fullName:"umara Qayoom",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"419846",title:"MSc.",name:"Danilo",surname:"Gamboa-Santana",slug:"danilo-gamboa-santana",fullName:"Danilo Gamboa-Santana",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"421264",title:"Dr.",name:"Saloua",surname:"Biyada",slug:"saloua-biyada",fullName:"Saloua Biyada",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"425232",title:"Prof.",name:"Fatima",surname:"Atia",slug:"fatima-atia",fullName:"Fatima Atia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sidi Mohamed Ben Abdellah University",institutionURL:null,country:{name:"Morocco"}}},{id:"425234",title:"Dr.",name:"Omar",surname:"Laidi",slug:"omar-laidi",fullName:"Omar Laidi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sidi Mohamed Ben Abdellah University",institutionURL:null,country:{name:"Morocco"}}},{id:"425236",title:"Prof.",name:"Mohamed",surname:"Benlmelih",slug:"mohamed-benlmelih",fullName:"Mohamed Benlmelih",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sidi Mohamed Ben Abdellah University",institutionURL:null,country:{name:"Morocco"}}},{id:"425238",title:"Prof.",name:"Mohammed",surname:"Merzouki",slug:"mohammed-merzouki",fullName:"Mohammed Merzouki",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sidi Mohamed Ben Abdellah University",institutionURL:null,country:{name:"Morocco"}}}]},generic:{page:{slug:"indexing-and-abstracting",title:"Indexing and Abstracting",intro:"
Our journals are currently in their launching issue. They will be applied to all relevant indexes as soon as they are eligible. These include (but are not limited to): Web of Science, Scopus, PubMed, MEDLINE, Database of Open Access Journals (DOAJ), Google Scholar and Inspec.
\n\n
IntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"
BKCI is a part of Web of Science Core Collection (WoSCC) and the world’s leading citation index with multidisciplinary content from the top tier international and regional journals, conference proceedings, and books. The Book Citation Index includes over 104,500 editorially selected books, with 10,000 new books added each year. Containing more than 53.2 million cited references, coverage dates back from 2005 to present. The Book Citation Index is multidisciplinary, covering disciplines across the sciences, social sciences, and arts & humanities.
Produced by the Web Of Science group, BIOSIS Previews research database provides researchers with the most current sources of life sciences information, including journals, conferences, patents, books, review articles, and more. Researchers can also access multidisciplinary coverage via specialized indexing such as MeSH disease terms, CAS registry numbers, Sequence Databank Numbers and Major Concepts.
Produced by the Web Of Science group, Zoological Record is the world’s oldest continuing database of animal biology. It is considered the world’s leading taxonomic reference, and with coverage back to 1864, has long acted as the world’s unofficial register of animal names. The broad scope of coverage ranges from biodiversity and the environment to taxonomy and veterinary sciences.
Provides a simple way to search broadly for scholarly literature. Includes peer-reviewed papers, theses, books, abstracts and articles, from academic publishers, professsional societies, preprint repositories, universities and other scholarly organizations. Google Scholar sorts articles by weighing the full text of each article, the author, the publication in which the article appears, and how often the article has been cited in other scholarly literature, so that the most relevant results are returned on the first page.
Microsoft Academic is a project exploring how to assist human conducting scientific research by leveraging machine’s cognitive power in memory, computation, sensing, attention, and endurance. Re-launched in 2016, the tool features an entirely new data structure and search engine using semantic search technologies. The Academic Knowledge API offers information retrieval from the underlying database using REST endpoints for advanced research purposes.
The national library of the United Kingdom includes 150 million manuscripts, maps, newspapers, magazines, prints and drawings, music scores, and patents. Online catalogues, information and exhibitions can be found on its website. The library operates the world's largest document delivery service, providing millions of items a year to national and international customers.
The digital NSK portal is the central gathering place for the digital collections of the National and University Library (NSK) in Croatia. It was established in 2016 to provide access to the Library’s digital and digitized material collections regardless of storage location. The digital NSK portal enables a unified search of digitized material from the NSK Special Collections - books, visual material, maps and music material. From the end of 2019, all thematic portals are available independently: Digital Books, Digitized Manuscripts, Digitized Visual Materials, Digital Music Materials and Digitized Cartographic Materials (established in 2017). Currently available only in Croatian.
The official DOI (digital object identifier) link registration agency for scholarly and professional publications. Crossref operates a cross-publisher citation linking system that allows a researcher to click on a reference citation on one publisher’s platform and link directly to the cited content on another publisher’s platform, subject to the target publisher’s access control practices. This citation-linking network covers millions of articles and other content items from several hundred scholarly and professional publishers.
Dimensions is a next-generation linked research information system that makes it easier to find and access the most relevant information, analyze the academic and broader outcomes of research, and gather insights to inform future strategy. Dimensions delivers an array of search and discovery, analytical, and research management tools, all in a single platform. Developed in collaboration with over 100 leading research organizations around the world, it brings together over 128 million publications, grants, policy, data and metrics for the first time, enabling users to explore over 4 billion connections between them.
The primary aim of DOAB (Directory of Open Access Books) is to increase discoverability of Open Access books. Metadata will be harvestable in order to maximize dissemination, visibility and impact. Aggregators can integrate the records in their commercial services and libraries can integrate the directory into their online catalogues, helping scholars and students to discover the books.
OAPEN is dedicated to open access, peer-reviewed books. OAPEN operates two platforms, the OAPEN Library (www.oapen.org), a central repository for hosting and disseminating OA books, and the Directory of Open Access Books (DOAB, www.doabooks.org), a discovery service for OA books.
OpenAIRE aims at promoting and implementing the directives of the European Commission (EC) and the European Research Council on the promotion and funding of science and research. OpenAIRE supports the Open Access Mandate and the Open Research Data Pilot developed as part of the Horizon 2020 projects.
An integrated information service combining reference databases, subscription management, online journals, books and linking services. Widely used by libraries, schools, government institutions, medical institutions, corporations and others.
SFX® link resolver gives patrons and librarians a wealth of features that optimize management of and access to resources. It provides patrons with a direct route to electronic full-text records through OpenURL linking, delivers alternative links for further resource discovery, access to journals, and more. Released in 2001 as the first OpenURL resolver, SFX is continuously enhanced to support the newest industry developments and meet the evolving needs of customers. The records include a mix of scholarly material – primarily articles and e-books – but also conference proceedings, newspaper articles, and more.
A non-profit, membership, computer library service and research organization dedicated to the public purposes of furthering access to the world's information and reducing information costs. More than 41,555 libraries in 112 countries and territories around the world use OCLC services to locate, acquire, catalogue, lend and preserve library materials.
The world’s largest collection of open access research papers. CORE's mission is to aggregate all open access research outputs from repositories and journals worldwide and make them available to the public. In this way CORE facilitates free unrestricted access to research for all.
Since 2002, Research4Life has provided researchers at more than 10,500 institutions in over 125 lower and middle-income countries with free or low-cost online access to up 151,000 leading journals and books in the fields of health, agriculture, environment, applied sciences and legal information. There are five programs through which users can access content: Research for Health (Hinari), Research in Agriculture (AGORA), Research in the Environment (OARE), Research for Development and Innovation (ARDI) and Research for Global Justice (GOALI).
Perlego is a digital online library focusing on the delivery of academic, professional and non-fiction eBooks. It is a subscription-based service that offers users unlimited access to these texts for the duration of their subscription, however IntechOpen content integrated on the platform will always be available for free. They have been billed as “the Spotify for Textbooks” by the Evening Standard. Perlego is based in London but is available to users worldwide.
MyScienceWork provides a suite of data-driven solutions for research institutions, scientific publishers and private-sector R&D companies. MyScienceWork's comprehensive database includes more than 90 million scientific publications and 12 million patents.
CNKI (China National Knowledge Infrastructure) is a key national information construction project under the lead of Tsinghua University, and supported by PRC Ministry of Education, PRC Ministry of Science, Propaganda Department of the Communist Party of China and PRC General Administration of Press and Publication. CNKI has built a comprehensive China Integrated Knowledge Resources System, including journals, doctoral dissertations, masters' theses, proceedings, newspapers, yearbooks, statistical yearbooks, ebooks, patents, standards and so on. CNKI keeps integrating new contents and developing new products in 2 aspects: full-text academic resources, software on digitization and knowledge management. Began with academic journals, CNKI has become the largest and mostly-used academic online library in China.
As one of the largest digital content platform in China,independently developed by CNPIEC, CNPeReading positions herself as “One Platform,Vast Content, Global Services”. Through their new cooperation model and service philosophy, CNPeReading provides integrated promotion and marketing solutionsfor upstream publishers, one-stop, triune, recommendation, online reading and management servicesfor downstream institutions & libraries.
ERIC (Education Resources Information Center), sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education, provides access to education literature to support the use of educational research and information to improve practice in learning, teaching, educational decision-making, and research. The ERIC website is available to the public for searching more than one million citations going back to 1966.
The ACM Digital Library is a research, discovery and networking platform containing: The Full-Text Collection of all ACM publications, including journals, conference proceedings, technical magazines, newsletters and books. A collection of curated and hosted full-text publications from select publishers.
BASE (Bielefeld Academic Search Engine) is one of the world's most voluminous search sengines especially for academic web resources, e.g. journal articles, preprints, digital collections, images / videos or research data. BASE facilitates effective and targeted searches and retrieves high quality, academically relevant results. Other than search engines like Google or Bing BASE searches the deep web as well. The sources which are included in BASE are intellectually selected (by people from the BASE team) and reviewed. That's why data garbage and spam do not occur.
Zentralblatt MATH (zbMATH) is the world’s most comprehensive and longest-running abstracting and reviewing service in pure and applied mathematics. It is edited by the European Mathematical Society (EMS), the Heidelberg Academy of Sciences and Humanities and FIZ Karlsruhe. zbMATH provides easy access to bibliographic data, reviews and abstracts from all areas of pure mathematics as well as applications, in particular to natural sciences, computer science, economics and engineering. It also covers history and philosophy of mathematics and university education. All entries are classified according to the Mathematics Subject Classification Scheme (MSC 2020) and are equipped with keywords in order to characterize their particular content.
IDEAS is the largest bibliographic database dedicated to Economics and available freely on the Internet. Based on RePEc, it indexes over 3,100,000 items of research, including over 2,900,000 that can be downloaded in full text. RePEc (Research Papers in Economics) is a large volunteer effort to enhance the free dissemination of research in Economics which includes bibliographic metadata from over 2,000 participating archives, including all the major publishers and research outlets. IDEAS is just one of several services that use RePEc data.
As the authoritative source for chemical names, structures and CAS Registry Numbers®, the CAS substance collection, CAS REGISTRY®, serves as a universal standard for chemists worldwide. Covering advances in chemistry and related sciences over the last 150 years, the CAS content collection empowers researchers, business leaders, and information professionals around the world with immediate access to the reliable information they need to fuel innovation.
BKCI is a part of Web of Science Core Collection (WoSCC) and the world’s leading citation index with multidisciplinary content from the top tier international and regional journals, conference proceedings, and books. The Book Citation Index includes over 104,500 editorially selected books, with 10,000 new books added each year. Containing more than 53.2 million cited references, coverage dates back from 2005 to present. The Book Citation Index is multidisciplinary, covering disciplines across the sciences, social sciences, and arts & humanities.
Produced by the Web Of Science group, BIOSIS Previews research database provides researchers with the most current sources of life sciences information, including journals, conferences, patents, books, review articles, and more. Researchers can also access multidisciplinary coverage via specialized indexing such as MeSH disease terms, CAS registry numbers, Sequence Databank Numbers and Major Concepts.
Produced by the Web Of Science group, Zoological Record is the world’s oldest continuing database of animal biology. It is considered the world’s leading taxonomic reference, and with coverage back to 1864, has long acted as the world’s unofficial register of animal names. The broad scope of coverage ranges from biodiversity and the environment to taxonomy and veterinary sciences.
Provides a simple way to search broadly for scholarly literature. Includes peer-reviewed papers, theses, books, abstracts and articles, from academic publishers, professsional societies, preprint repositories, universities and other scholarly organizations. Google Scholar sorts articles by weighing the full text of each article, the author, the publication in which the article appears, and how often the article has been cited in other scholarly literature, so that the most relevant results are returned on the first page.
Microsoft Academic is a project exploring how to assist human conducting scientific research by leveraging machine’s cognitive power in memory, computation, sensing, attention, and endurance. Re-launched in 2016, the tool features an entirely new data structure and search engine using semantic search technologies. The Academic Knowledge API offers information retrieval from the underlying database using REST endpoints for advanced research purposes.
The national library of the United Kingdom includes 150 million manuscripts, maps, newspapers, magazines, prints and drawings, music scores, and patents. Online catalogues, information and exhibitions can be found on its website. The library operates the world's largest document delivery service, providing millions of items a year to national and international customers.
The digital NSK portal is the central gathering place for the digital collections of the National and University Library (NSK) in Croatia. It was established in 2016 to provide access to the Library’s digital and digitized material collections regardless of storage location. The digital NSK portal enables a unified search of digitized material from the NSK Special Collections - books, visual material, maps and music material. From the end of 2019, all thematic portals are available independently: Digital Books, Digitized Manuscripts, Digitized Visual Materials, Digital Music Materials and Digitized Cartographic Materials (established in 2017). Currently available only in Croatian.
The official DOI (digital object identifier) link registration agency for scholarly and professional publications. Crossref operates a cross-publisher citation linking system that allows a researcher to click on a reference citation on one publisher’s platform and link directly to the cited content on another publisher’s platform, subject to the target publisher’s access control practices. This citation-linking network covers millions of articles and other content items from several hundred scholarly and professional publishers.
Dimensions is a next-generation linked research information system that makes it easier to find and access the most relevant information, analyze the academic and broader outcomes of research, and gather insights to inform future strategy. Dimensions delivers an array of search and discovery, analytical, and research management tools, all in a single platform. Developed in collaboration with over 100 leading research organizations around the world, it brings together over 128 million publications, grants, policy, data and metrics for the first time, enabling users to explore over 4 billion connections between them.
The primary aim of DOAB (Directory of Open Access Books) is to increase discoverability of Open Access books. Metadata will be harvestable in order to maximize dissemination, visibility and impact. Aggregators can integrate the records in their commercial services and libraries can integrate the directory into their online catalogues, helping scholars and students to discover the books.
OAPEN is dedicated to open access, peer-reviewed books. OAPEN operates two platforms, the OAPEN Library (www.oapen.org), a central repository for hosting and disseminating OA books, and the Directory of Open Access Books (DOAB, www.doabooks.org), a discovery service for OA books.
OpenAIRE aims at promoting and implementing the directives of the European Commission (EC) and the European Research Council on the promotion and funding of science and research. OpenAIRE supports the Open Access Mandate and the Open Research Data Pilot developed as part of the Horizon 2020 projects.
An integrated information service combining reference databases, subscription management, online journals, books and linking services. Widely used by libraries, schools, government institutions, medical institutions, corporations and others.
SFX® link resolver gives patrons and librarians a wealth of features that optimize management of and access to resources. It provides patrons with a direct route to electronic full-text records through OpenURL linking, delivers alternative links for further resource discovery, access to journals, and more. Released in 2001 as the first OpenURL resolver, SFX is continuously enhanced to support the newest industry developments and meet the evolving needs of customers. The records include a mix of scholarly material – primarily articles and e-books – but also conference proceedings, newspaper articles, and more.
A non-profit, membership, computer library service and research organization dedicated to the public purposes of furthering access to the world's information and reducing information costs. More than 41,555 libraries in 112 countries and territories around the world use OCLC services to locate, acquire, catalogue, lend and preserve library materials.
The world’s largest collection of open access research papers. CORE's mission is to aggregate all open access research outputs from repositories and journals worldwide and make them available to the public. In this way CORE facilitates free unrestricted access to research for all.
Since 2002, Research4Life has provided researchers at more than 10,500 institutions in over 125 lower and middle-income countries with free or low-cost online access to up 151,000 leading journals and books in the fields of health, agriculture, environment, applied sciences and legal information. There are five programs through which users can access content: Research for Health (Hinari), Research in Agriculture (AGORA), Research in the Environment (OARE), Research for Development and Innovation (ARDI) and Research for Global Justice (GOALI).
Perlego is a digital online library focusing on the delivery of academic, professional and non-fiction eBooks. It is a subscription-based service that offers users unlimited access to these texts for the duration of their subscription, however IntechOpen content integrated on the platform will always be available for free. They have been billed as “the Spotify for Textbooks” by the Evening Standard. Perlego is based in London but is available to users worldwide.
MyScienceWork provides a suite of data-driven solutions for research institutions, scientific publishers and private-sector R&D companies. MyScienceWork's comprehensive database includes more than 90 million scientific publications and 12 million patents.
CNKI (China National Knowledge Infrastructure) is a key national information construction project under the lead of Tsinghua University, and supported by PRC Ministry of Education, PRC Ministry of Science, Propaganda Department of the Communist Party of China and PRC General Administration of Press and Publication. CNKI has built a comprehensive China Integrated Knowledge Resources System, including journals, doctoral dissertations, masters' theses, proceedings, newspapers, yearbooks, statistical yearbooks, ebooks, patents, standards and so on. CNKI keeps integrating new contents and developing new products in 2 aspects: full-text academic resources, software on digitization and knowledge management. Began with academic journals, CNKI has become the largest and mostly-used academic online library in China.
As one of the largest digital content platform in China,independently developed by CNPIEC, CNPeReading positions herself as “One Platform,Vast Content, Global Services”. Through their new cooperation model and service philosophy, CNPeReading provides integrated promotion and marketing solutionsfor upstream publishers, one-stop, triune, recommendation, online reading and management servicesfor downstream institutions & libraries.
ERIC (Education Resources Information Center), sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education, provides access to education literature to support the use of educational research and information to improve practice in learning, teaching, educational decision-making, and research. The ERIC website is available to the public for searching more than one million citations going back to 1966.
The ACM Digital Library is a research, discovery and networking platform containing: The Full-Text Collection of all ACM publications, including journals, conference proceedings, technical magazines, newsletters and books. A collection of curated and hosted full-text publications from select publishers.
BASE (Bielefeld Academic Search Engine) is one of the world's most voluminous search sengines especially for academic web resources, e.g. journal articles, preprints, digital collections, images / videos or research data. BASE facilitates effective and targeted searches and retrieves high quality, academically relevant results. Other than search engines like Google or Bing BASE searches the deep web as well. The sources which are included in BASE are intellectually selected (by people from the BASE team) and reviewed. That's why data garbage and spam do not occur.
Zentralblatt MATH (zbMATH) is the world’s most comprehensive and longest-running abstracting and reviewing service in pure and applied mathematics. It is edited by the European Mathematical Society (EMS), the Heidelberg Academy of Sciences and Humanities and FIZ Karlsruhe. zbMATH provides easy access to bibliographic data, reviews and abstracts from all areas of pure mathematics as well as applications, in particular to natural sciences, computer science, economics and engineering. It also covers history and philosophy of mathematics and university education. All entries are classified according to the Mathematics Subject Classification Scheme (MSC 2020) and are equipped with keywords in order to characterize their particular content.
IDEAS is the largest bibliographic database dedicated to Economics and available freely on the Internet. Based on RePEc, it indexes over 3,100,000 items of research, including over 2,900,000 that can be downloaded in full text. RePEc (Research Papers in Economics) is a large volunteer effort to enhance the free dissemination of research in Economics which includes bibliographic metadata from over 2,000 participating archives, including all the major publishers and research outlets. IDEAS is just one of several services that use RePEc data.
As the authoritative source for chemical names, structures and CAS Registry Numbers®, the CAS substance collection, CAS REGISTRY®, serves as a universal standard for chemists worldwide. Covering advances in chemistry and related sciences over the last 150 years, the CAS content collection empowers researchers, business leaders, and information professionals around the world with immediate access to the reliable information they need to fuel innovation.
\n
\n\n
\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"acux3817%C0%BEz1%C0%BCz2a%90bcxuca3817"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:43},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:5},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:21},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:62},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:29},{group:"topic",caption:"Mathematics",value:15,count:10},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:12},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:8},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"965",title:"Control Engineering",slug:"applied-mathematics-control-engineering",parent:{id:"163",title:"Applied Mathematics",slug:"applied-mathematics"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:13,numberOfWosCitations:2,numberOfCrossrefCitations:1,numberOfDimensionsCitations:2,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"965",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5233",title:"Robust Control",subtitle:"Theoretical Models and Case Studies",isOpenForSubmission:!1,hash:"95fde1b6a4d12e27d89b44c94bccc6b6",slug:"robust-control-theoretical-models-and-case-studies",bookSignature:"Moises Rivas López and Wendy Flores-Fuentes",coverURL:"https://cdn.intechopen.com/books/images_new/5233.jpg",editedByType:"Edited by",editors:[{id:"178178",title:"Dr.",name:"Moises",middleName:null,surname:"Rivas-Lopez",slug:"moises-rivas-lopez",fullName:"Moises Rivas-Lopez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"51089",doi:"10.5772/63407",title:"Sliding Mode Speed and Position Control of Induction Motor Drive in Cascade Connection",slug:"sliding-mode-speed-and-position-control-of-induction-motor-drive-in-cascade-connection",totalDownloads:1977,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter deals with sliding mode application in control of an induction motor (IM) torque, speed, and position. Classical, direct approaches to control mentioned variables are described. Their drawbacks are presented and analyzed. Direct control structures are then compared with the proposed cascade sliding mode control structures. These structures allow to control all of the IM variables effectively, simultaneously ensuring supervision of all remaining variables. All of the analyzed structures are illustrated with block diagrams, as well as with simulation and experimental test results.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Grzegorz Tarchała and Teresa Orłowska-Kowalska",authors:[{id:"182057",title:"Dr.",name:"Grzegorz",middleName:null,surname:"Tarchała",slug:"grzegorz-tarchala",fullName:"Grzegorz Tarchała"},{id:"185730",title:"Prof.",name:"Teresa",middleName:null,surname:"Orłowska-Kowalska",slug:"teresa-orlowska-kowalska",fullName:"Teresa Orłowska-Kowalska"}]},{id:"50489",doi:"10.5772/63082",title:"Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic Uncertainties",slug:"robust-adaptive-repetitive-and-iterative-learning-control-for-rotary-systems-subject-to-spatially-pe",totalDownloads:1227,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This book chapter reviews and summarizes the recent progress in the design of spatial‐based robust adaptive repetitive and iterative learning control. In particular, the collection of methods aims at rotary systems that are subject to spatially periodic uncertainties and based on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive backstepping. We will elaborate on the design procedure (applicable to generic nth‐order systems) of each method and the corresponding stability and convergence theorems.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Cheng‐Lun Chen",authors:[{id:"26775",title:"Prof.",name:"Cheng-Lun",middleName:null,surname:"Chen",slug:"cheng-lun-chen",fullName:"Cheng-Lun Chen"}]},{id:"50526",doi:"10.5772/63050",title:"Sequential Optimization Model for Marine Oil Spill Control",slug:"sequential-optimization-model-for-marine-oil-spill-control",totalDownloads:1357,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter gives credence to the introduction of optimal control theory into oil spill modeling and develops an optimization process that will aid in the effective decision-making in marine oil spill management. The purpose of the optimal control theory is to determine the control policy that will optimize (maximize or minimize) a specific performance criterion, subject to the constraints imposed by the physical nature of the problem. A fundamental theorem of the calculus of variations is applied to problems with unconstrained states and controls, whereas a consideration of the effect of control constraints leads to the application of Markovian decision processes. The optimization objectives are expressed as value function or reward to be optimized, whereas the optimization models are formulated to adequately describe the marine oil spill control, starting from the transportation process. These models consist of conservation relations needed to specify the dynamic state of the process given by the chemical compositions and movements of crude oil in water.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Kufre Bassey",authors:[{id:"180936",title:"Dr.",name:"Kufre",middleName:null,surname:"Bassey",slug:"kufre-bassey",fullName:"Kufre Bassey"}]},{id:"50689",doi:"10.5772/63020",title:"Event-Triggered Static Output Feedback Simultaneous H∞ Control for a Collection of Networked Control Systems",slug:"event-triggered-static-output-feedback-simultaneous-h-control-for-a-collection-of-networked-control-",totalDownloads:1532,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter considers the design of event-triggered static output feedback simultaneous H∞ controllers for a collection of networked control systems (NCSs). It is shown that conventional point-to-point wiring delayed static output feedback simultaneous H∞ controllers can be obtained by solving linear matrix inequalities (LMIs) with a linear matrix equality (LME) constraint. Based on an obtained simultaneous H∞ controller, an L2-gain event-triggered transmission policy is proposed for reducing the network usage. An illustrative example is presented to verify the obtained theoretical results.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Sheng-Hsiung Yang and Jenq-Lang Wu",authors:[{id:"2648",title:"Dr.",name:"Jenq-Lang",middleName:null,surname:"Wu",slug:"jenq-lang-wu",fullName:"Jenq-Lang Wu"},{id:"194140",title:"Dr.",name:"Sheng-Hsiung",middleName:null,surname:"Yang",slug:"sheng-hsiung-yang",fullName:"Sheng-Hsiung Yang"}]},{id:"50830",doi:"10.5772/62697",title:"Robust Observer-Based Output Feedback Control of a Nonlinear Time-Varying System",slug:"robust-observer-based-output-feedback-control-of-a-nonlinear-time-varying-system",totalDownloads:1839,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"A class of time-varying systems can be quadratically stabilized with satisfactory performance by a modified time-invariant-based observer. The modified observer driven by the additional adaptation forces with static correction gains is used to estimate the time-varying system states. Under the frame of quadratic stability, the closed-loop systems satisfying induced norm bounded performance criterion are exponentially stabilized while the states are exponentially approaching by the modified observer. This paper deals with the time-varying systems that can be characterized as the multiplicative type of time-invariant and time-varying parts. The time-invariant part is then used to construct the modified observer with additional driving forces, which are ready to adjust time-varying effect coming from the measured outputs feeding into the modified observer. The determination of the adaptation forces can be derived from the minimization of the cost of error dynamics with modified least-squares algorithms. The synthesis of control and observer static correction gains are also demonstrated. The developed systems have been tested in a mass-spring-damper system to illustrate the effectiveness of the design.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Chieh-Chuan Feng",authors:[{id:"29268",title:"Dr.",name:"Chieh-Chuan",middleName:null,surname:"Feng",slug:"chieh-chuan-feng",fullName:"Chieh-Chuan Feng"}]}],mostDownloadedChaptersLast30Days:[{id:"50184",title:"New Stabilization of Complex Networks with Non-delayed and Delayed Couplings over Random Exchanges",slug:"new-stabilization-of-complex-networks-with-non-delayed-and-delayed-couplings-over-random-exchanges",totalDownloads:1317,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"In this chapter, the stabilization problem of complex dynamical network with non-delayed and delayed couplings is realized by a new kind of stochastic pinning controller being partially delay dependent, where the topologies related to couplings may be exchanged. The designed pinning controller is different from the traditional ones, whose non-delay and delay state terms occur asynchronously with a certain probability, respectively. Sufficient conditions for the stabilization of complex dynamical network over topology exchange are derived by the robust method and are presented with liner matrix inequities (LMIs). The switching between the non-delayed and delayed couplings is modeled by the related coupling matrices containing uncertainties. It has shown that the bound of such uncertainties play very important roles in the controller design. Moreover, when the bound is inaccessible, a kind of adaptive partially delay-dependent controller is proposed to deal with this general case, where another adaptive control problem in terms of unknown probability is considered too. Finally, some numerical simulations are used to demonstrate the correctness and effectiveness of our theoretical analysis.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Guoliang Wang and Tingting Yan",authors:[{id:"180535",title:"Prof.",name:"Guoliang",middleName:null,surname:"Wang",slug:"guoliang-wang",fullName:"Guoliang Wang"}]},{id:"50830",title:"Robust Observer-Based Output Feedback Control of a Nonlinear Time-Varying System",slug:"robust-observer-based-output-feedback-control-of-a-nonlinear-time-varying-system",totalDownloads:1831,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"A class of time-varying systems can be quadratically stabilized with satisfactory performance by a modified time-invariant-based observer. The modified observer driven by the additional adaptation forces with static correction gains is used to estimate the time-varying system states. Under the frame of quadratic stability, the closed-loop systems satisfying induced norm bounded performance criterion are exponentially stabilized while the states are exponentially approaching by the modified observer. This paper deals with the time-varying systems that can be characterized as the multiplicative type of time-invariant and time-varying parts. The time-invariant part is then used to construct the modified observer with additional driving forces, which are ready to adjust time-varying effect coming from the measured outputs feeding into the modified observer. The determination of the adaptation forces can be derived from the minimization of the cost of error dynamics with modified least-squares algorithms. The synthesis of control and observer static correction gains are also demonstrated. The developed systems have been tested in a mass-spring-damper system to illustrate the effectiveness of the design.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Chieh-Chuan Feng",authors:[{id:"29268",title:"Dr.",name:"Chieh-Chuan",middleName:null,surname:"Feng",slug:"chieh-chuan-feng",fullName:"Chieh-Chuan Feng"}]},{id:"51089",title:"Sliding Mode Speed and Position Control of Induction Motor Drive in Cascade Connection",slug:"sliding-mode-speed-and-position-control-of-induction-motor-drive-in-cascade-connection",totalDownloads:1971,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"This chapter deals with sliding mode application in control of an induction motor (IM) torque, speed, and position. Classical, direct approaches to control mentioned variables are described. Their drawbacks are presented and analyzed. Direct control structures are then compared with the proposed cascade sliding mode control structures. These structures allow to control all of the IM variables effectively, simultaneously ensuring supervision of all remaining variables. All of the analyzed structures are illustrated with block diagrams, as well as with simulation and experimental test results.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Grzegorz Tarchała and Teresa Orłowska-Kowalska",authors:[{id:"182057",title:"Dr.",name:"Grzegorz",middleName:null,surname:"Tarchała",slug:"grzegorz-tarchala",fullName:"Grzegorz Tarchała"},{id:"185730",title:"Prof.",name:"Teresa",middleName:null,surname:"Orłowska-Kowalska",slug:"teresa-orlowska-kowalska",fullName:"Teresa Orłowska-Kowalska"}]},{id:"50689",title:"Event-Triggered Static Output Feedback Simultaneous H∞ Control for a Collection of Networked Control Systems",slug:"event-triggered-static-output-feedback-simultaneous-h-control-for-a-collection-of-networked-control-",totalDownloads:1528,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"This chapter considers the design of event-triggered static output feedback simultaneous H∞ controllers for a collection of networked control systems (NCSs). It is shown that conventional point-to-point wiring delayed static output feedback simultaneous H∞ controllers can be obtained by solving linear matrix inequalities (LMIs) with a linear matrix equality (LME) constraint. Based on an obtained simultaneous H∞ controller, an L2-gain event-triggered transmission policy is proposed for reducing the network usage. An illustrative example is presented to verify the obtained theoretical results.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Sheng-Hsiung Yang and Jenq-Lang Wu",authors:[{id:"2648",title:"Dr.",name:"Jenq-Lang",middleName:null,surname:"Wu",slug:"jenq-lang-wu",fullName:"Jenq-Lang Wu"},{id:"194140",title:"Dr.",name:"Sheng-Hsiung",middleName:null,surname:"Yang",slug:"sheng-hsiung-yang",fullName:"Sheng-Hsiung Yang"}]},{id:"50489",title:"Robust Adaptive Repetitive and Iterative Learning Control for Rotary Systems Subject to Spatially Periodic Uncertainties",slug:"robust-adaptive-repetitive-and-iterative-learning-control-for-rotary-systems-subject-to-spatially-pe",totalDownloads:1225,totalCrossrefCites:0,totalDimensionsCites:1,abstract:"This book chapter reviews and summarizes the recent progress in the design of spatial‐based robust adaptive repetitive and iterative learning control. In particular, the collection of methods aims at rotary systems that are subject to spatially periodic uncertainties and based on nonlinear control paradigm, e.g., adaptive feedback linearization and adaptive backstepping. We will elaborate on the design procedure (applicable to generic nth‐order systems) of each method and the corresponding stability and convergence theorems.",book:{id:"5233",slug:"robust-control-theoretical-models-and-case-studies",title:"Robust Control",fullTitle:"Robust Control - Theoretical Models and Case Studies"},signatures:"Cheng‐Lun Chen",authors:[{id:"26775",title:"Prof.",name:"Cheng-Lun",middleName:null,surname:"Chen",slug:"cheng-lun-chen",fullName:"Cheng-Lun Chen"}]}],onlineFirstChaptersFilter:{topicId:"965",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"May 19th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:0,paginationItems:[]},overviewPageOFChapters:{paginationCount:0,paginationItems:[]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81751",title:"NanoBioSensors: From Electrochemical Sensors Improvement to Theranostic Applications",doi:"10.5772/intechopen.102552",signatures:"Anielle C.A. Silva, Eliete A. Alvin, Lais S. de Jesus, Caio C.L. de França, Marílya P.G. da Silva, Samaysa L. Lins, Diógenes Meneses, Marcela R. Lemes, Rhanoica O. Guerra, Marcos V. da Silva, Carlo J.F. de Oliveira, Virmondes Rodrigues Junior, Renata M. Etchebehere, Fabiane C. de Abreu, Bruno G. Lucca, Sanívia A.L. Pereira, Rodrigo C. Rosa and Noelio O. Dantas",slug:"nanobiosensors-from-electrochemical-sensors-improvement-to-theranostic-applications",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81766",title:"Evolution of Organoids in Oncology",doi:"10.5772/intechopen.104251",signatures:"Allen Thayakumar Basanthakumar, Janitha Chandrasekhar Darlybai and Jyothsna Ganesh",slug:"evolution-of-organoids-in-oncology",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81678",title:"Developmental Studies on Practical Enzymatic Phosphate Ion Biosensors and Microbial BOD Biosensors, and New Insights into the Future Perspectives of These Biosensor Fields",doi:"10.5772/intechopen.104377",signatures:"Hideaki Nakamura",slug:"developmental-studies-on-practical-enzymatic-phosphate-ion-biosensors-and-microbial-bod-biosensors-a",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Hideaki",surname:"Nakamura"}],book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81547",title:"Organoids and Commercialization",doi:"10.5772/intechopen.104706",signatures:"Anubhab Mukherjee, Aprajita Sinha, Maheshree Maibam, Bharti Bisht and Manash K. Paul",slug:"organoids-and-commercialization",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81412",title:"Mathematical Morphology and the Heart Signals",doi:"10.5772/intechopen.104113",signatures:"Taouli Sidi Ahmed",slug:"mathematical-morphology-and-the-heart-signals",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81360",title:"Deep Learning Algorithms for Efficient Analysis of ECG Signals to Detect Heart Disorders",doi:"10.5772/intechopen.103075",signatures:"Sumagna Dey, Rohan Pal and Saptarshi Biswas",slug:"deep-learning-algorithms-for-efficient-analysis-of-ecg-signals-to-detect-heart-disorders",totalDownloads:31,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"81294",title:"Applications of Neural Organoids in Neurodevelopment and Regenerative Medicine",doi:"10.5772/intechopen.104044",signatures:"Jing Gong, Jiahui Kang, Minghui Li, Xiao Liu, Jun Yang and Haiwei Xu",slug:"applications-of-neural-organoids-in-neurodevelopment-and-regenerative-medicine",totalDownloads:25,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81318",title:"Retinal Organoids over the Decade",doi:"10.5772/intechopen.104258",signatures:"Jing Yuan and Zi-Bing Jin",slug:"retinal-organoids-over-the-decade",totalDownloads:39,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Organoids",coverURL:"https://cdn.intechopen.com/books/images_new/11430.jpg",subseries:null}},{id:"81068",title:"Characteristic Profiles of Heart Rate Variability in Depression and Anxiety",doi:"10.5772/intechopen.104205",signatures:"Toshikazu Shinba",slug:"characteristic-profiles-of-heart-rate-variability-in-depression-and-anxiety",totalDownloads:20,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}},{id:"80691",title:"Applications of Quantum Mechanics, Laws of Classical Physics, and Differential Calculus to Evaluate Source Localization According to the Electroencephalogram",doi:"10.5772/intechopen.102831",signatures:"Kristin S. Williams",slug:"applications-of-quantum-mechanics-laws-of-classical-physics-and-differential-calculus-to-evaluate-so",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biosignal Processing",coverURL:"https://cdn.intechopen.com/books/images_new/11153.jpg",subseries:{id:"7",title:"Bioinformatics and Medical Informatics"}}}]},subseriesFiltersForOFChapters:[{caption:"Bioinformatics and Medical Informatics",value:7,count:13,group:"subseries"}],publishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9753",title:"Terpenes and Terpenoids",subtitle:"Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/9753.jpg",slug:"terpenes-and-terpenoids-recent-advances",publishedDate:"July 28th 2021",editedByType:"Edited by",bookSignature:"Shagufta Perveen and Areej Mohammad Al-Taweel",hash:"575689df13c78bf0e6c1be40804cd010",volumeInSeries:21,fullTitle:"Terpenes and Terpenoids - Recent Advances",editors:[{id:"192992",title:"Prof.",name:"Shagufta",middleName:null,surname:"Perveen",slug:"shagufta-perveen",fullName:"Shagufta Perveen",profilePictureURL:"https://mts.intechopen.com/storage/users/192992/images/system/192992.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9403",title:"Human Microbiome",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9403.jpg",slug:"human-microbiome",publishedDate:"June 16th 2021",editedByType:"Edited by",bookSignature:"Natalia V. Beloborodova and Andrey V. Grechko",hash:"c31366ba82585ba3ac91d21eb1cf0a4d",volumeInSeries:20,fullTitle:"Human Microbiome",editors:[{id:"199461",title:"Prof.",name:"Natalia V.",middleName:null,surname:"Beloborodova",slug:"natalia-v.-beloborodova",fullName:"Natalia V. Beloborodova",profilePictureURL:"https://mts.intechopen.com/storage/users/199461/images/system/199461.jpg",institutionString:"Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",slug:"oxidoreductase",publishedDate:"February 17th 2021",editedByType:"Edited by",bookSignature:"Mahmoud Ahmed Mansour",hash:"852e6f862c85fc3adecdbaf822e64e6e",volumeInSeries:19,fullTitle:"Oxidoreductase",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour",profilePictureURL:"https://mts.intechopen.com/storage/users/224662/images/system/224662.jpg",institutionString:"King Saud bin Abdulaziz University for Health Sciences",institution:{name:"King Saud bin Abdulaziz University for Health Sciences",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9742",title:"Ubiquitin",subtitle:"Proteasome Pathway",coverURL:"https://cdn.intechopen.com/books/images_new/9742.jpg",slug:"ubiquitin-proteasome-pathway",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"af6880d3a5571da1377ac8f6373b9e82",volumeInSeries:18,fullTitle:"Ubiquitin - Proteasome Pathway",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9002",title:"Glutathione System and Oxidative Stress in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9002.jpg",slug:"glutathione-system-and-oxidative-stress-in-health-and-disease",publishedDate:"August 26th 2020",editedByType:"Edited by",bookSignature:"Margarete Dulce Bagatini",hash:"127defed0a50ad5ed92338dc96e1e10e",volumeInSeries:17,fullTitle:"Glutathione System and Oxidative Stress in Health and Disease",editors:[{id:"217850",title:"Dr.",name:"Margarete Dulce",middleName:null,surname:"Bagatini",slug:"margarete-dulce-bagatini",fullName:"Margarete Dulce Bagatini",profilePictureURL:"https://mts.intechopen.com/storage/users/217850/images/system/217850.jpeg",institutionString:"Universidade Federal da Fronteira Sul",institution:{name:"Universidade Federal da Fronteira Sul",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:3},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:8},{group:"subseries",caption:"Chemical Biology",value:15,count:10}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"25",type:"subseries",title:"Evolutionary Computation",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",hasOnlineFirst:!1,hasPublishedBooks:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403"},editorialBoard:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios",profilePictureURL:"https://mts.intechopen.com/storage/users/111683/images/system/111683.jpg",institutionString:"De La Salle University",institution:{name:"De La Salle University",institutionURL:null,country:{name:"Philippines"}}},{id:"106873",title:"Prof.",name:"Hongwei",middleName:null,surname:"Ge",slug:"hongwei-ge",fullName:"Hongwei Ge",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Dalian University of Technology",institutionURL:null,country:{name:"China"}}},{id:"171056",title:"Dr.",name:"Sotirios",middleName:null,surname:"Goudos",slug:"sotirios-goudos",fullName:"Sotirios Goudos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9IuQAK/Profile_Picture_1622623673666",institutionString:null,institution:{name:"Aristotle University of Thessaloniki",institutionURL:null,country:{name:"Greece"}}},{id:"15895",title:"Assistant Prof.",name:"Takashi",middleName:null,surname:"Kuremoto",slug:"takashi-kuremoto",fullName:"Takashi Kuremoto",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLrqQAG/Profile_Picture_1625656196038",institutionString:null,institution:{name:"Nippon Institute of Technology",institutionURL:null,country:{name:"Japan"}}},{id:"125844",title:"Prof.",name:"Wellington",middleName:"Pinheiro Dos",surname:"Santos",slug:"wellington-santos",fullName:"Wellington Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/125844/images/4878_n.jpg",institutionString:null,institution:{name:"Federal University of Pernambuco",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:9,paginationItems:[{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81580",title:"Graft-Versus-Host Disease: Pathogenesis and Treatment",doi:"10.5772/intechopen.104450",signatures:"Shin Mukai",slug:"graft-versus-host-disease-pathogenesis-and-treatment",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80485",title:"Potential Marker for Diagnosis and Screening of Iron Deficiency Anemia in Children",doi:"10.5772/intechopen.102792",signatures:"Yulia Nadar Indrasari, Siti Nurul Hapsari and Muhamad Robiul Fuadi",slug:"potential-marker-for-diagnosis-and-screening-of-iron-deficiency-anemia-in-children",totalDownloads:42,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79693",title:"Ferroptosis: Can Iron be the Last or Cure for a Cell?",doi:"10.5772/intechopen.101426",signatures:"Asuman Akkaya Fırat",slug:"ferroptosis-can-iron-be-the-last-or-cure-for-a-cell",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"79616",title:"Dietary Iron",doi:"10.5772/intechopen.101265",signatures:"Kouser Firdose and Noor Firdose",slug:"dietary-iron",totalDownloads:144,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"78977",title:"FERALGINE™ a New Oral iron Compound",doi:"10.5772/intechopen.100445",signatures:"Valentina Talarico, Laura Giancotti, Giuseppe Antonio Mazza, Santina Marrazzo, Roberto Miniero and Marco Bertini",slug:"feralgine-a-new-oral-iron-compound",totalDownloads:129,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},publishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/419847",hash:"",query:{},params:{id:"419847"},fullPath:"/profiles/419847",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()