\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"Milestone",originalUrl:"/media/original/124"}},components:[{type:"htmlEditorComponent",content:'
Barely three months into the new year and we are happy to announce a monumental milestone reached - 150 million downloads.
\n\nThis achievement solidifies IntechOpen’s place as a pioneer in Open Access publishing and the home to some of the most relevant scientific research available through Open Access.
\n\nWe are so proud to have worked with so many bright minds throughout the years who have helped us spread knowledge through the power of Open Access and we look forward to continuing to support some of the greatest thinkers of our day.
\n\nThank you for making IntechOpen your place of learning, sharing, and discovery, and here’s to 150 million more!
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"9050",leadTitle:null,fullTitle:"Hypnotherapy and Hypnosis",title:"Hypnotherapy and Hypnosis",subtitle:null,reviewType:"peer-reviewed",abstract:"Although hypnosis has been used for centuries to improve mental health and well-being, not until recently has it been applied in modern medicine. Some efforts to integrate hypnosis into Western medical practice in the late nineteenth century were met with stiff resistance by the majority of medical doctors due to lack of scientific foundation, thus hampering its widespread use. The biopsychosocial approach brought about by recent progress in brain research, however, has revived the interest in hypnotherapy. In this book, we shed light on the scientific basis of hypnosis and elaborate its use in modern medical practice.",isbn:"978-1-83962-765-1",printIsbn:"978-1-83962-764-4",pdfIsbn:"978-1-83962-766-8",doi:"10.5772/intechopen.83045",price:119,priceEur:129,priceUsd:155,slug:"hypnotherapy-and-hypnosis",numberOfPages:144,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"f5686a1d5917736fa774b2f46e7da8a5",bookSignature:"Cengiz Mordeniz",publishedDate:"December 2nd 2020",coverURL:"https://cdn.intechopen.com/books/images_new/9050.jpg",numberOfDownloads:4539,numberOfWosCitations:2,numberOfCrossrefCitations:9,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:14,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:25,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 17th 2019",dateEndSecondStepPublish:"February 13th 2020",dateEndThirdStepPublish:"April 13th 2020",dateEndFourthStepPublish:"July 2nd 2020",dateEndFifthStepPublish:"August 31st 2020",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",middleName:null,surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz",profilePictureURL:"https://mts.intechopen.com/storage/users/214664/images/system/214664.jpeg",biography:"Cengiz Mordeniz is an associate professor at the Department of Anesthesiology and Intensive Care and Pain Medicine at Namık Kemal University, Turkey. He is the founder of the Traditional and Complementary Medical Center at The University Hospital where he also works. He obtained specialization in Anesthesiology and Intensive Care at Istanbul University and a master’s degree in Forensic Medicine and Clinical Deontology at Acibadem University, Turkey. He pursued research and clinical practice at Rigs Hospitalet, Denmark; Heidelberg and Giessen Universities, Germany; and Plovdiv University, Bulgaria. He was trained at Moscow Quantum Medicine Academy, Russia, and School of Advanced International Studies on Applied Theoretical and Non-Linear Methodologies of Physics, Italy. He completed the Clinical Research Program at Harvard University. He is a member of HeartMath Institute, USA.",institutionString:"Namık Kemal University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Namık Kemal University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"240",title:"Psychotherapy",slug:"psychotherapy"}],chapters:[{id:"74034",title:"Hypnosis and Hypnotherapy: Emerging of Science-Based Hypnosis",doi:"10.5772/intechopen.94089",slug:"hypnosis-and-hypnotherapy-emerging-of-science-based-hypnosis",totalDownloads:698,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Hypnosis, which has been used for centuries in different forms, has to be reevaluated in the light of modern medicine and science by biological, psychological, sociological and spiritual approach. Hypnosis has been regaining its popularity in the trend of personalized and holistic medicine without any drug, injection or side effects.",signatures:"Cengiz Mordeniz",downloadPdfUrl:"/chapter/pdf-download/74034",previewPdfUrl:"/chapter/pdf-preview/74034",authors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],corrections:null},{id:"71429",title:"Hypnosis and Hypnotherapy: The Role of Traditional Versus Alternative Approach",doi:"10.5772/intechopen.91619",slug:"hypnosis-and-hypnotherapy-the-role-of-traditional-versus-alternative-approach",totalDownloads:1059,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:1,abstract:"Hypnosis is a state of mind that is characterized by focused attention and heightened receptivity for suggestions. It is either established by compliance with instructions or achieved naturally; the critical nature of the mind is bypassed during hypnosis and acceptable suggestions are delivered. Misperceptions about hypnosis by clinical practitioners and their clients have been shaped through years of inaccurate but interesting portrayals of hypnosis in books, plays, and movies. Part of the misperceptions is that individuals with seemingly magical powers to manipulate the unsuspecting innocent with their authoritative voice commands and penetrating eyes are depicted as hypnotists. This chapter will review the traditional and conventional approaches used in hypnosis, their advantages and disadvantages as well as where hypnosis is used as a complementary or alternative therapy to the modern day orthodox medicine. Despite the pejorative image display of hypnosis and misconceptions surrounding it, hypnosis still has numerous applications in contemporary medicine. Hypnotherapy conducted by a trained therapist is considered as a complementary or safe alternative to present day orthodox medication for numerous ailments.",signatures:"Mikail Hudu Garba and Mohammed Mamman",downloadPdfUrl:"/chapter/pdf-download/71429",previewPdfUrl:"/chapter/pdf-preview/71429",authors:[null],corrections:null},{id:"72454",title:"The Integrative Theory of Hypnosis in the Light of Clinical Hypnotherapy",doi:"10.5772/intechopen.92761",slug:"the-integrative-theory-of-hypnosis-in-the-light-of-clinical-hypnotherapy",totalDownloads:732,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"The chapter describes the author’s integrative theory of hypnosis and hypnotherapy (ITHH) and the universal hypnotherapy (UH) method. The ITHH contains neurophysiological, biological, and communicative components. (1) Hypnosis is triggered by symbolical hypnogenic situations of inability of decision-making and/or its behavioral realization. Hypnosis development results in qualitative reorganization of the brain activation system functioning from distribution to generation of activity. Hypnosis deepening is based on the increase of brain activation. Hypnosis development in right-handers is associated with a regressive reorganization of the left hemisphere to the right hemisphere functioning mode, with whole brain functioning on right hemispheric principle. (2) Hypnotization generates hypnogenic stress. Hypnotherapy activates a readaptation process, including neurohormonal, neurotransmitter secretions; activation of the immunological and biochemical responses; and spontaneous change of pain sensation. (3) Hypnotic communication styles (directive, non-directive) are (i) changing due to historical evolution of social communication styles and (ii) indirectly using the representations about hypnosis. The UH utilizes the ITHH, being close to the positive and mindfulness psychotherapeutic approaches. The complex of UH and psycho-education formed positive-dialogue psychotherapy (PDP) for the treatment of anxiety disorders. The randomized clinical trial of PDP efficiency in the therapy of panic and generalized anxiety disorders confirmed high clinical efficiency and the mindfulness effect of UH.",signatures:"Rashit Tukaev",downloadPdfUrl:"/chapter/pdf-download/72454",previewPdfUrl:"/chapter/pdf-preview/72454",authors:[null],corrections:null},{id:"72464",title:"Inner Navigation and Theta Activity: From Movement to Cognition and Hypnosis According to the Sphere Model of Consciousness",doi:"10.5772/intechopen.92755",slug:"inner-navigation-and-theta-activity-from-movement-to-cognition-and-hypnosis-according-to-the-sphere-",totalDownloads:663,totalCrossrefCites:6,totalDimensionsCites:7,hasAltmetrics:0,abstract:"EEG theta (4–7 Hz) activity is closely related to hypnosis and hypnotic analgesia, as well as to meditation and absorption. Research further indicates that theta oscillatory power is involved in different cognitive functions, such as spatial navigation, memory, creativity, and divided attention. The current manuscript will provide a synthesis of current knowledge regarding the importance of theta’s different roles in relation to hypnosis and their connections to movement. Indeed, several movement paradigms, such as Quadrato Motor Training, have been found to modulate theta activity, significantly improving cognition and emotional well-being. The utility of such movement paradigms as a therapeutic vehicle closely related to hypnosis, and the underlying characteristics allowing these neuromodulations, will be discussed. Finally, the relationships between diagonal movement and other psychological phenomena, especially intentionality, attention, and the Sphere Model of Consciousness, will be highlighted.",signatures:"Patrizio Paoletti, Tal Dotan Ben-Soussan and Joseph Glicksohn",downloadPdfUrl:"/chapter/pdf-download/72464",previewPdfUrl:"/chapter/pdf-preview/72464",authors:[null],corrections:null},{id:"71426",title:"Cognitive Hypnotherapy",doi:"10.5772/intechopen.91327",slug:"cognitive-hypnotherapy",totalDownloads:738,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Cognitive hypnotherapy (CH) is an assimilative therapy rooted in cognitive therapy and behavioural therapy, with the addition of hypnosis. It is a psychodynamic therapy that focuses on the unconscious mind (implicit thoughts, actions and emotions) no longer in conscious awareness. This chapter gives a brief synopsis of the hypnotic procedures and protocols that are most pertinent for understanding the case for integration. It gives the background of cognitive behavioural therapy (CBT) and a brief history of how this therapy evolved. It further gives the rationale for the integration of hypnosis with CBT, corroborated with evidence from the literature. CH treatments are documented in some detail in a number of different domains where hypnosis is used as an adjunct to therapy for the treatment of debilitating psychological conditions. The techniques and procedures are designed to desensitise and reprocess dysfunctional cognitions, emotions and memories enabling positive change in cognitive perceptions and visualisation. The author, an academic and experienced clinical practitioner of CH for more than 10 years, recognises that there is much scepticism regarding this therapy. It is hoped that this review will give greater understanding and more credence to this highly effective therapy in both the scientific community and medical profession.",signatures:"Elizabeth Brooker",downloadPdfUrl:"/chapter/pdf-download/71426",previewPdfUrl:"/chapter/pdf-preview/71426",authors:[null],corrections:null},{id:"72045",title:"Active-Alert Hypnosis to Achieve Personal, Professional, and Therapeutic Goals",doi:"10.5772/intechopen.92197",slug:"active-alert-hypnosis-to-achieve-personal-professional-and-therapeutic-goals",totalDownloads:650,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Hypnosis does not always require suggestions of relaxation in order enter into this state. It can also be induced through suggestions of activation and cognitive alertness. This procedure and the hypnotic state caused by it has been called active-alert hypnosis (AAH). In this chapter, we describe a strategy to increase the probability to achieve goals using an AAH technique in which we ask the patient to move his arms in an alternate way, while imagining that he has a pair of dumbbells of several kilograms in each hand, in order to produce a hypnotic age progression phenomenon, in which the patient is oriented to a positive future and mobilizing hope, and could see himself achieving his goals, creating “memories of the future.” We report several clinical cases in which this hypnotic strategy was used.",signatures:"Arnoldo Téllez, Arturo Valdez and Teresa Sánchez-Jáuregui",downloadPdfUrl:"/chapter/pdf-download/72045",previewPdfUrl:"/chapter/pdf-preview/72045",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"8323",title:"Traditional and Complementary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"60eadb1783d9bba245687adf284d4871",slug:"traditional-and-complementary-medicine",bookSignature:"Cengiz Mordeniz",coverURL:"https://cdn.intechopen.com/books/images_new/8323.jpg",editedByType:"Edited by",editors:[{id:"214664",title:"Associate Prof.",name:"Cengiz",surname:"Mordeniz",slug:"cengiz-mordeniz",fullName:"Cengiz Mordeniz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9136",title:"Counseling and Therapy",subtitle:null,isOpenForSubmission:!1,hash:"499608b1cf8111827e1a271e5555a6a6",slug:"counseling-and-therapy",bookSignature:"Simon George Taukeni",coverURL:"https://cdn.intechopen.com/books/images_new/9136.jpg",editedByType:"Edited by",editors:[{id:"202046",title:"Dr.",name:"Simon George",surname:"Taukeni",slug:"simon-george-taukeni",fullName:"Simon George Taukeni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66063",slug:"corrigendum-to-introductory-chapter-historical-perspective-and-brief-overview-of-insulin",title:"Corrigendum to: Introductory Chapter: Historical Perspective and Brief Overview of Insulin",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66063.pdf",downloadPdfUrl:"/chapter/pdf-download/66063",previewPdfUrl:"/chapter/pdf-preview/66063",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66063",risUrl:"/chapter/ris/66063",chapter:{id:"63640",slug:"introductory-chapter-historical-perspective-and-brief-overview-of-insulin",signatures:"Gaffar Sarwar Zaman",dateSubmitted:"June 29th 2018",dateReviewed:"August 28th 2018",datePrePublished:"November 5th 2018",datePublished:"February 6th 2019",book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",fullName:"Gaffar Zaman",slug:"gaffar-zaman",email:"gffrzaman@gmail.com",position:null,institution:null}]}},chapter:{id:"63640",slug:"introductory-chapter-historical-perspective-and-brief-overview-of-insulin",signatures:"Gaffar Sarwar Zaman",dateSubmitted:"June 29th 2018",dateReviewed:"August 28th 2018",datePrePublished:"November 5th 2018",datePublished:"February 6th 2019",book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",fullName:"Gaffar Zaman",slug:"gaffar-zaman",email:"gffrzaman@gmail.com",position:null,institution:null}]},book:{id:"6675",title:"Ultimate Guide to Insulin",subtitle:null,fullTitle:"Ultimate Guide to Insulin",slug:"ultimate-guide-to-insulin",publishedDate:"February 6th 2019",bookSignature:"Gaffar Zaman",coverURL:"https://cdn.intechopen.com/books/images_new/6675.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"203015",title:"Dr.",name:"Gaffar",middleName:"Sarwar",surname:"Zaman",slug:"gaffar-zaman",fullName:"Gaffar Zaman"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11958",leadTitle:null,title:"TEST BOOK Tea Jurcic",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tLorem ipsum dolor sit amet, consectetur adipiscing elit. In at mauris lobortis, dapibus justo nec, suscipit lacus. Fusce tincidunt et sapien in congue. Sed rhoncus neque non dapibus auctor. Pellentesque non viverra dui, a tincidunt sapien. Fusce maximus mauris diam, et eleifend neque tincidunt quis. Interdum et malesuada fames ac ante ipsum primis in faucibus. Vestibulum et leo eget nisl varius rutrum sed in nulla. Nullam a finibus enim, nec rhoncus felis. Quisque ut imperdiet nunc, sed facilisis dui. Nulla molestie semper viverra. Aliquam pharetra magna ex, in vestibulum arcu condimentum in. Nulla ut felis porttitor, tincidunt dui at, imperdiet eros. Nam malesuada imperdiet tellus. Etiam id dolor efficitur, elementum tortor vel, eleifend sem.
\r\n\r\n\tEtiam quis lacus lacinia, ullamcorper massa sed, bibendum arcu. Curabitur tempor lacus at leo cursus sagittis. Nullam eleifend eleifend blandit. Nunc eget neque nisl. Nam nisi dolor, finibus non facilisis non, consequat vitae urna. Nunc non ligula augue. Nullam eros erat, mollis eget mattis id, ornare fringilla tellus.
\r\n\r\n\tDuis bibendum suscipit purus, eu cursus nisl malesuada sed. Maecenas ornare, magna ac finibus tristique, leo nisl bibendum justo, vel ultrices erat mauris placerat massa. Suspendisse feugiat nunc erat. Integer fringilla vitae lectus eu feugiat. Suspendisse sodales ligula quis nisl tempus, sit amet congue felis commodo. Aliquam erat volutpat. Suspendisse eu libero commodo, dapibus dui ultrices, vehicula nunc. Donec condimentum tortor in nibh pulvinar, quis iaculis augue fringilla.
",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,hash:"720e03f9c8974aa2072144b3543004f8",bookSignature:"",publishedDate:null,coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",keywords:"Lorem, Ipsum, Dolore, Amet",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"February 14th 2022",dateEndSecondStepPublish:"March 7th 2022",dateEndThirdStepPublish:"May 6th 2022",dateEndFourthStepPublish:"July 25th 2022",dateEndFifthStepPublish:"September 23rd 2022",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:"BE",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:null,chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"37203",title:"Co-Simulation Procedure for PID and Fuzzy Logic Active Controls Strategies Applied to a Sprayers Boom Suspension",doi:"10.5772/37221",slug:"co-simulation-procedure-for-pid-and-fuzzy-logic-active-controls-strategies-applied-to-a-sprayers",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/37203.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/37203",previewPdfUrl:"/chapter/pdf-preview/37203",totalDownloads:3559,totalViews:144,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:13,impactScoreQuartile:1,hasAltmetrics:0,dateSubmitted:"May 31st 2011",dateReviewed:"January 11th 2012",datePrePublished:null,datePublished:"May 23rd 2012",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/37203",risUrl:"/chapter/ris/37203",book:{id:"2001",slug:"technology-and-engineering-applications-of-simulink"},signatures:"Cristiano Okada Pontelli and Mario Francisco Mucheroni",authors:[{id:"111811",title:"MSc.",name:"Cristiano",middleName:"Okada",surname:"Pontelli",fullName:"Cristiano Pontelli",slug:"cristiano-pontelli",email:"pontelli@jacto.com.br",position:"Coordinator",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"120117",title:"MSc.",name:"Mário Francisco",middleName:null,surname:"Mucheroni",fullName:"Mário Francisco Mucheroni",slug:"mario-francisco-mucheroni",email:"mariofm@sc.usp.br",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"2001",type:"book",title:"Technology and Engineering Applications of Simulink",subtitle:null,fullTitle:"Technology and Engineering Applications of Simulink",slug:"technology-and-engineering-applications-of-simulink",publishedDate:"May 23rd 2012",bookSignature:"Subhas Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/2001.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-51-0635-7",pdfIsbn:"978-953-51-5651-2",reviewType:"peer-reviewed",numberOfWosCitations:17,isAvailableForWebshopOrdering:!0,editors:[{id:"48388",title:"Dr.",name:"S.",middleName:"C.",surname:"Chakravarty",slug:"s.-chakravarty",fullName:"S. Chakravarty"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"599"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"37200",type:"chapter",title:"Analysis of Power Electronic Controllers in Electric Power Systems Using Simulink",slug:"analysis-of-power-electronic-controllers-in-electric-power-systems-using-simulink",totalDownloads:7121,totalCrossrefCites:0,signatures:"Juan Segundo-Ramirez and A. Medina",reviewType:"peer-reviewed",authors:[{id:"108902",title:"Dr.",name:"Juan",middleName:null,surname:"Segundo Ramírez",fullName:"Juan Segundo Ramírez",slug:"juan-segundo-ramirez"}]},{id:"37201",type:"chapter",title:"Study of Inductive-Capacitive Series Circuits Using the Simulink Software Package",slug:"study-of-inductive-capacitive-series-circuits-using-the-simulink-software-package",totalDownloads:10886,totalCrossrefCites:0,signatures:"Titu Niculescu",reviewType:"peer-reviewed",authors:[{id:"109021",title:"Dr.",name:"Niculescu",middleName:null,surname:"Titu",fullName:"Niculescu Titu",slug:"niculescu-titu"}]},{id:"37202",type:"chapter",title:"Fixed Transmission Media",slug:"fixed-transmission-media",totalDownloads:3164,totalCrossrefCites:6,signatures:"Rastislav Róka",reviewType:"peer-reviewed",authors:[{id:"112777",title:"Dr.",name:"Rastislav",middleName:null,surname:"Róka",fullName:"Rastislav Róka",slug:"rastislav-roka"}]},{id:"37203",type:"chapter",title:"Co-Simulation Procedure for PID and Fuzzy Logic Active Controls Strategies Applied to a Sprayers Boom Suspension",slug:"co-simulation-procedure-for-pid-and-fuzzy-logic-active-controls-strategies-applied-to-a-sprayers",totalDownloads:3559,totalCrossrefCites:0,signatures:"Cristiano Okada Pontelli and Mario Francisco Mucheroni",reviewType:"peer-reviewed",authors:[{id:"111811",title:"MSc.",name:"Cristiano",middleName:"Okada",surname:"Pontelli",fullName:"Cristiano Pontelli",slug:"cristiano-pontelli"},{id:"120117",title:"MSc.",name:"Mário Francisco",middleName:null,surname:"Mucheroni",fullName:"Mário Francisco Mucheroni",slug:"mario-francisco-mucheroni"}]},{id:"37204",type:"chapter",title:"S-Function Library for Bond Graph Modeling",slug:"s-function-library-for-bond-graph-modelling",totalDownloads:6500,totalCrossrefCites:0,signatures:"B. Umesh Rai",reviewType:"peer-reviewed",authors:[{id:"109110",title:"Dr.",name:"Umesh",middleName:"B",surname:"Rai",fullName:"Umesh Rai",slug:"umesh-rai"}]},{id:"37205",type:"chapter",title:"From Control Design to FPGA Implementation",slug:"from-control-design-to-fpga-implementation",totalDownloads:3820,totalCrossrefCites:1,signatures:"Marcus Müller, Hans-Christian Schwannecke and Wolfgang Fengler",reviewType:"peer-reviewed",authors:[{id:"112039",title:"MSc.",name:"Marcus",middleName:null,surname:"Mueller",fullName:"Marcus Mueller",slug:"marcus-mueller"},{id:"115957",title:"MSc.",name:"Hans-Christian",middleName:null,surname:"Schwannecke",fullName:"Hans-Christian Schwannecke",slug:"hans-christian-schwannecke"},{id:"115958",title:"Prof.",name:"Wolfgang",middleName:null,surname:"Fengler",fullName:"Wolfgang Fengler",slug:"wolfgang-fengler"}]},{id:"37206",type:"chapter",title:"Describing Function Recording with Simulink and MATLAB",slug:"describing-function-recording-with-simulink-and-matlab",totalDownloads:4232,totalCrossrefCites:0,signatures:"Krunoslav Horvat, Ognjen Kuljaca and Tomislav Sijak",reviewType:"peer-reviewed",authors:[{id:"112742",title:"Dr.",name:"Krunoslav",middleName:null,surname:"Horvat",fullName:"Krunoslav Horvat",slug:"krunoslav-horvat"},{id:"119009",title:"Dr.",name:"Ognjen",middleName:null,surname:"Kuljaca",fullName:"Ognjen Kuljaca",slug:"ognjen-kuljaca"},{id:"119010",title:"MSc.",name:"Tomislav",middleName:null,surname:"Sijak",fullName:"Tomislav Sijak",slug:"tomislav-sijak"}]},{id:"37207",type:"chapter",title:"Performance Evaluation of a Temperature Control Stage Used on a Semiconductor Gas Sensor 3D Electro-Thermal Model Through Simulink(r)",slug:"performance-evaluation-of-a-temperature-control-stage-used-on-a-semiconductor-gas-sensor-3d-elec",totalDownloads:2623,totalCrossrefCites:0,signatures:"E.N. Vázquez-Acosta, S. Mendoza-Acevedo, M.A. Reyes-Barranca, L.M. Flores-Nava, J.A. Moreno-Cadenas and J.L. González-Vidal",reviewType:"peer-reviewed",authors:[{id:"20324",title:"Prof.",name:"Mario Alfredo",middleName:null,surname:"Reyes-Barranca",fullName:"Mario Alfredo Reyes-Barranca",slug:"mario-alfredo-reyes-barranca"},{id:"84718",title:"Dr.",name:"Salvador",middleName:null,surname:"Mendoza-Acevedo",fullName:"Salvador Mendoza-Acevedo",slug:"salvador-mendoza-acevedo"},{id:"113812",title:"MSc.",name:"Edgar Norman",middleName:null,surname:"Vazquez-Acosta",fullName:"Edgar Norman Vazquez-Acosta",slug:"edgar-norman-vazquez-acosta"},{id:"115268",title:"Dr.",name:"José Antonio",middleName:null,surname:"Moreno-Cadenas",fullName:"José Antonio Moreno-Cadenas",slug:"jose-antonio-moreno-cadenas"},{id:"115685",title:"MSc.",name:"L. Martin",middleName:null,surname:"Flores-Nava",fullName:"L. Martin Flores-Nava",slug:"l.-martin-flores-nava"},{id:"115686",title:"Dr.",name:"José Luis",middleName:null,surname:"González-Vidal",fullName:"José Luis González-Vidal",slug:"jose-luis-gonzalez-vidal"}]},{id:"37208",type:"chapter",title:"Matlab Simulink(r) Model of a Braked Rail Vehicle and Its Applications",slug:"matlab-simulink-model-of-a-braked-rail-vehicle-and-its-applications",totalDownloads:7758,totalCrossrefCites:0,signatures:"Grażyna Barna",reviewType:"peer-reviewed",authors:[{id:"115833",title:"Dr.",name:"Grazyna",middleName:null,surname:"Barna",fullName:"Grazyna Barna",slug:"grazyna-barna"}]},{id:"37209",type:"chapter",title:"Using of Hybrid Supply for Electric or Hybrid Vehicles",slug:"using-of-hybrid-supply-to-supply-electric-or-hybrid-vehicles",totalDownloads:4056,totalCrossrefCites:0,signatures:"N. Rizoug, G. Feld, B. Barbedette and R. Sadoun",reviewType:"peer-reviewed",authors:[{id:"106371",title:"Dr.",name:"Bertrand",middleName:null,surname:"Barbedette",fullName:"Bertrand Barbedette",slug:"bertrand-barbedette"},{id:"112959",title:"Dr.",name:"Nassim",middleName:null,surname:"Rizoug",fullName:"Nassim Rizoug",slug:"nassim-rizoug"},{id:"117502",title:"Dr.",name:"Gilles",middleName:null,surname:"Feld",fullName:"Gilles Feld",slug:"gilles-feld"},{id:"138160",title:"Mr.",name:"Redha",middleName:null,surname:"Sadoun",fullName:"Redha Sadoun",slug:"redha-sadoun"}]},{id:"37210",type:"chapter",title:"The Uses of Artificial Intelligence for Electric Vehicle Control Applications",slug:"the-uses-of-artificial-intelligence-for-electric-vehicle-control-applications",totalDownloads:4287,totalCrossrefCites:3,signatures:"Brahim Gasbaoui and Abdelfatah Nasri",reviewType:"peer-reviewed",authors:[{id:"109252",title:"Dr.",name:"Gasbaoui",middleName:null,surname:"Brahim",fullName:"Gasbaoui Brahim",slug:"gasbaoui-brahim"}]}]},relatedBooks:[{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editedByType:"Edited by",editors:[{id:"12289",title:"Prof.",name:"Vasilios",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"39372",title:"PID Control Design",slug:"pid-control-design",signatures:"A.B. Campo",authors:[{id:"144957",title:"Dr.",name:"Alexandre",middleName:"Brincalepe",surname:"Campo",fullName:"Alexandre Campo",slug:"alexandre-campo"}]},{id:"39365",title:"Post Processing of Results of EM Field Simulators",slug:"post-processing-of-results-of-em-field-simulators",signatures:"Tomas Vydra and Daniel Havelka",authors:[{id:"146674",title:"MSc.",name:"Tomas",middleName:null,surname:"Vydra",fullName:"Tomas Vydra",slug:"tomas-vydra"},{id:"146680",title:"MSc.",name:"Daniel",middleName:null,surname:"Havelka",fullName:"Daniel Havelka",slug:"daniel-havelka"}]},{id:"39326",title:"Simulation of Power Converters Using Matlab-Simulink",slug:"simulation-of-power-converters-using-matlab-simulink",signatures:"Christophe Batard, Frédéric Poitiers, Christophe Millet and Nicolas Ginot",authors:[{id:"144924",title:"Dr.",name:"Christophe",middleName:null,surname:"Batard",fullName:"Christophe Batard",slug:"christophe-batard"},{id:"147986",title:"Dr.",name:"Frederic",middleName:null,surname:"Poitiers",fullName:"Frederic Poitiers",slug:"frederic-poitiers"},{id:"147987",title:"Dr.",name:"Nicolas",middleName:null,surname:"Ginot",fullName:"Nicolas Ginot",slug:"nicolas-ginot"},{id:"147988",title:"Dr.",name:"Christophe",middleName:null,surname:"Millet",fullName:"Christophe Millet",slug:"christophe-millet"}]},{id:"39329",title:"Performances of the PCA Method in Electrical Machines Diagnosis Using Matlab",slug:"performances-of-the-pca-method-in-electrical-machines-diagnosis-using-matlab",signatures:"Jacques Fanjason Ramahaleomiarantsoa, Eric Jean Roy Sambatra, Nicolas Héraud and Jean Marie Razafimahenina",authors:[{id:"144955",title:"Prof.",name:"Nicolas",middleName:null,surname:"Heraud",fullName:"Nicolas Heraud",slug:"nicolas-heraud"},{id:"148718",title:"Mr.",name:"Fanjason Jacques",middleName:null,surname:"Ramahaleomiarantsoa",fullName:"Fanjason Jacques Ramahaleomiarantsoa",slug:"fanjason-jacques-ramahaleomiarantsoa"}]},{id:"39332",title:"Dynamic and Quasi-Static Simulation of a Novel Compliant MEMS Force Amplifier by Matlab/Simulink",slug:"dynamic-and-quasi-static-simulation-of-a-novel-compliant-mems-force-amplifier-by-matlab-simulink",signatures:"Ergin Kosa, Levent Trabzon, Umit Sonmez and Huseyin Kizil",authors:[{id:"148720",title:"Ph.D. Student",name:"Ergin",middleName:null,surname:"Kosa",fullName:"Ergin Kosa",slug:"ergin-kosa"}]},{id:"39331",title:"Voltage Sag Waveform Using SagWave GUI",slug:"voltage-sag-waveform-using-sagwave-gui",signatures:"Kosol Oranpiroj, Worrajak Moangjai and Wichran Jantee",authors:[{id:"148116",title:"Dr.",name:"Kosol",middleName:null,surname:"Oranpiroj",fullName:"Kosol Oranpiroj",slug:"kosol-oranpiroj"}]},{id:"39367",title:"Modelling and Characterization of Power Electronics Converters Using Matlab Tools",slug:"modelling-and-characterization-of-power-electronics-converters-using-matlab-tools",signatures:"Sven Fagerstrom and Nagy Bengiamin",authors:[{id:"145614",title:"MSc.",name:"Sven E.",middleName:null,surname:"Fagerstrom",fullName:"Sven E. Fagerstrom",slug:"sven-e.-fagerstrom"},{id:"149266",title:"Dr.",name:"Nagy",middleName:null,surname:"Bengiamin",fullName:"Nagy Bengiamin",slug:"nagy-bengiamin"}]},{id:"39333",title:"Improved DTC Algorithms for Reducing Torque and Flux Ripples of PMSM Based on Fuzzy Logic and PWM Techniques",slug:"improved-dtc-algorithms-for-reducing-torque-and-flux-ripples-of-pmsm-based-on-fuzzy-logic-and-pwm-te",signatures:"Khalid Chikh, Mohamed Khafallah and Abdallah Saâd",authors:[{id:"145063",title:"Ph.D.",name:"Khalid",middleName:null,surname:"Chikh",fullName:"Khalid Chikh",slug:"khalid-chikh"},{id:"146138",title:"Prof.",name:"Mohamed",middleName:null,surname:"Khafallah",fullName:"Mohamed Khafallah",slug:"mohamed-khafallah"},{id:"149147",title:"Prof.",name:"Abdallah",middleName:null,surname:"Saâd",fullName:"Abdallah Saâd",slug:"abdallah-saad"}]},{id:"39327",title:"Position Estimation of the PMSM High Dynamic Drive at Low Speed Range",slug:"position-estimation-of-the-pmsm-high-dynamic-drive-at-low-speed-range",signatures:"Konrad Urbanski",authors:[{id:"148958",title:"Dr.",name:"Konrad",middleName:null,surname:"Urbanski",fullName:"Konrad Urbanski",slug:"konrad-urbanski"}]},{id:"39377",title:"Digital Differential Protection of Power Transformer Using Matlab",slug:"digital-differential-protection-of-power-transformer-using-matlab",signatures:"Adel Aktaibi and M. Azizur Rahman",authors:[{id:"124154",title:"Prof.",name:"Azizur",middleName:null,surname:"Rahman",fullName:"Azizur Rahman",slug:"azizur-rahman"},{id:"146799",title:"Dr.",name:"Adel",middleName:null,surname:"Aktaibi",fullName:"Adel Aktaibi",slug:"adel-aktaibi"}]},{id:"39371",title:"PH Control Using MATLAB",slug:"ph-control-using-matlab",signatures:"Mostefa Ghassoul",authors:[{id:"146702",title:"Dr.",name:"Mostefa",middleName:null,surname:"Ghassoul",fullName:"Mostefa Ghassoul",slug:"mostefa-ghassoul"}]},{id:"39330",title:"An Advanced Transmission Line and Cable Model in Matlab for the Simulation of Power-System Transients",slug:"an-advanced-transmission-line-and-cable-model-in-matlab-for-the-simulation-of-power-system-transient",signatures:"Octavio Ramos-Leaños, Jose Luis Naredo and Jose Alberto Gutierrez-Robles",authors:[{id:"145421",title:"Dr.",name:"Octavio",middleName:null,surname:"Ramos-Leaños",fullName:"Octavio Ramos-Leaños",slug:"octavio-ramos-leanos"},{id:"145517",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Naredo",fullName:"Jose Luis Naredo",slug:"jose-luis-naredo"},{id:"145519",title:"Dr.",name:"Jose Alberto",middleName:null,surname:"Gutierrez-Robles",fullName:"Jose Alberto Gutierrez-Robles",slug:"jose-alberto-gutierrez-robles"}]},{id:"39328",title:"A New Modeling of the Non-Linear Inductances in MATLAB",slug:"a-new-modeling-of-the-non-linear-inductances-in-matlab",signatures:"M. Ould Ahmedou, M. Ferfra, M. Chraygane and M. Maaroufi",authors:[{id:"145391",title:"PhD.",name:"Mohamed Ould",middleName:null,surname:"Ahmedou",fullName:"Mohamed Ould Ahmedou",slug:"mohamed-ould-ahmedou"},{id:"148288",title:"Prof.",name:"Mohammed",middleName:null,surname:"Ferfra",fullName:"Mohammed Ferfra",slug:"mohammed-ferfra"},{id:"148289",title:"Prof.",name:"Mohammed",middleName:null,surname:"Chraygane",fullName:"Mohammed Chraygane",slug:"mohammed-chraygane"},{id:"148628",title:"Prof.",name:"Mohammed",middleName:null,surname:"Maaroufi",fullName:"Mohammed Maaroufi",slug:"mohammed-maaroufi"}]},{id:"39378",title:"Dynamic Simulation of Electrical Machines and Drive Systems Using MATLAB GUI",slug:"dynamic-simulation-of-electrical-machines-and-drive-systems-using-matlab-gui",signatures:"Viliam Fedák, Tibor Balogh and Pavel Záskalický",authors:[{id:"85462",title:"Associate Prof.",name:"Viliam",middleName:null,surname:"Fedak",fullName:"Viliam Fedak",slug:"viliam-fedak"},{id:"145228",title:"MSc.",name:"Tibor",middleName:null,surname:"Balogh",fullName:"Tibor Balogh",slug:"tibor-balogh"},{id:"154498",title:"Prof.",name:"Pavel",middleName:null,surname:"Záskalický",fullName:"Pavel Záskalický",slug:"pavel-zaskalicky"}]},{id:"39363",title:"Image Reconstruction Methods for MATLAB Users - A Moore-Penrose Inverse Approach",slug:"image-reconstruction-methods-for-matlab-users-a-moore-penrose-inverse-approach",signatures:"S. Chountasis, V.N. Katsikis and D. Pappas",authors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",fullName:"Vasilios Katsikis",slug:"vasilios-katsikis"},{id:"150079",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Pappas",fullName:"Dimitrios Pappas",slug:"dimitrios-pappas"},{id:"150080",title:"Dr.",name:"Spiros",middleName:null,surname:"Chountasis",fullName:"Spiros Chountasis",slug:"spiros-chountasis"}]},{id:"39325",title:"Artificial Human Arm Driven by EMG Signal",slug:"artificial-human-arm-driven-by-emg-signal",signatures:"Mohammed Z. Al-Faiz and Abbas H. Miry",authors:[{id:"145422",title:"Prof.",name:"Mohammed Zeki",middleName:null,surname:"Al-Faiz",fullName:"Mohammed Zeki Al-Faiz",slug:"mohammed-zeki-al-faiz"}]},{id:"39369",title:"Analysis and Modeling of Clock-Jitter Effects in Delta-Sigma Modulators",slug:"analysis-and-modeling-of-clock-jitter-effects-in-delta-sigma-modulators",signatures:"Ramy Saad, Sebastian Hoyos and Samuel Palermo",authors:[{id:"144896",title:"Dr.",name:"Ramy",middleName:null,surname:"Saad",fullName:"Ramy Saad",slug:"ramy-saad"},{id:"154354",title:"Prof.",name:"Sebastian",middleName:null,surname:"Hoyos",fullName:"Sebastian Hoyos",slug:"sebastian-hoyos"},{id:"154355",title:"Prof.",name:"Samuel",middleName:null,surname:"Palermo",fullName:"Samuel Palermo",slug:"samuel-palermo"}]},{id:"39379",title:"Matlab-Based Algorithm for Real Time Analysis of Multiexponential Transient Signals",slug:"matlab-based-algorithm-for-real-time-analysis-of-multiexponential-transient-signals",signatures:"Momoh-Jimoh E. Salami, Ismaila B. Tijani, Abdussamad U. Jibia and Za'im Bin Ismail",authors:[{id:"90923",title:"Prof.",name:"Momoh-Jimoh",middleName:"Eyiomika",surname:"Salami",fullName:"Momoh-Jimoh Salami",slug:"momoh-jimoh-salami"}]},{id:"39362",title:"Digital FIR Hilbert Transformers: Fundamentals and Efficient Design Methods",slug:"digital-fir-hilbert-transformers-fundamentals-and-efficient-design-methods",signatures:"David Ernesto Troncoso Romero and Gordana Jovanovic Dolecek",authors:[{id:"148249",title:"Prof.",name:"Gordana",middleName:null,surname:"Jovanovic Dolecek",fullName:"Gordana Jovanovic Dolecek",slug:"gordana-jovanovic-dolecek"},{id:"148250",title:"Dr.",name:"David Ernesto",middleName:null,surname:"Troncoso Romero",fullName:"David Ernesto Troncoso Romero",slug:"david-ernesto-troncoso-romero"}]},{id:"39334",title:"Detection of Craters and Its Orientation on Lunar",slug:"detection-of-craters-and-its-orientation-on-lunar",signatures:"Nur Diyana Kamarudin, Kamaruddin Abd. Ghani, Siti Noormiza Makhtar, Baizura Bohari and Noorlina Zainuddin",authors:[{id:"145341",title:"Mrs.",name:"Nur Diyana",middleName:null,surname:"Kamarudin",fullName:"Nur Diyana Kamarudin",slug:"nur-diyana-kamarudin"},{id:"145654",title:"Mrs.",name:"Siti Noormiza",middleName:null,surname:"Makhtar",fullName:"Siti Noormiza Makhtar",slug:"siti-noormiza-makhtar"},{id:"145655",title:"Mrs.",name:"Noorlina",middleName:null,surname:"Zainuddin",fullName:"Noorlina Zainuddin",slug:"noorlina-zainuddin"},{id:"145657",title:"Mrs.",name:"Baizura",middleName:null,surname:"Bohari",fullName:"Baizura Bohari",slug:"baizura-bohari"},{id:"150893",title:"Prof.",name:"Kamaruddin",middleName:null,surname:"Abd. Ghani",fullName:"Kamaruddin Abd. Ghani",slug:"kamaruddin-abd.-ghani"}]}]}],publishedBooks:[{type:"book",id:"3737",title:"MATLAB",subtitle:"Modelling, Programming and Simulations",isOpenForSubmission:!1,hash:null,slug:"matlab-modelling-programming-and-simulations",bookSignature:"Emilson Pereira Leite",coverURL:"https://cdn.intechopen.com/books/images_new/3737.jpg",editedByType:"Edited by",editors:[{id:"12051",title:"Prof.",name:"Emilson",surname:"Pereira Leite",slug:"emilson-pereira-leite",fullName:"Emilson Pereira Leite"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3742",title:"Modelling and Simulation",subtitle:null,isOpenForSubmission:!1,hash:"845d9ea9318230aeb9fb54ef7cd81ffe",slug:"modelling_and_simulation",bookSignature:"Giuseppe Petrone and Giuliano Cammarata",coverURL:"https://cdn.intechopen.com/books/images_new/3742.jpg",editedByType:"Edited by",editors:[{id:"134872",title:"Prof.",name:"Giuseppe",surname:"Petrone",slug:"giuseppe-petrone",fullName:"Giuseppe Petrone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5198",title:"Numerical Simulation",subtitle:"From Brain Imaging to Turbulent Flows",isOpenForSubmission:!1,hash:"6bf6d0e6b25e77e717dd3b6c9d494cf9",slug:"numerical-simulation-from-brain-imaging-to-turbulent-flows",bookSignature:"Ricardo Lopez-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/5198.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6217",title:"Computational Fluid Dynamics",subtitle:"Basic Instruments and Applications in Science",isOpenForSubmission:!1,hash:"0fb7b242fd063d519b361e5c2c99187b",slug:"computational-fluid-dynamics-basic-instruments-and-applications-in-science",bookSignature:"Adela Ionescu",coverURL:"https://cdn.intechopen.com/books/images_new/6217.jpg",editedByType:"Edited by",editors:[{id:"146822",title:"Prof.",name:"Adela",surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6497",title:"Molecular Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"7c39014c55ebf909a1d4f3063d1e4d55",slug:"molecular-dynamics",bookSignature:"Alexander Vakhrushev",coverURL:"https://cdn.intechopen.com/books/images_new/6497.jpg",editedByType:"Edited by",editors:[{id:"140718",title:"Prof.",name:"Alexander V.",surname:"Vakhrushev",slug:"alexander-v.-vakhrushev",fullName:"Alexander V. Vakhrushev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"2001",title:"Technology and Engineering Applications of Simulink",subtitle:null,isOpenForSubmission:!1,hash:"b7ba52f4e08305d425749b931087c0c4",slug:"technology-and-engineering-applications-of-simulink",bookSignature:"Subhas Chakravarty",coverURL:"https://cdn.intechopen.com/books/images_new/2001.jpg",editedByType:"Edited by",editors:[{id:"48388",title:"Dr.",name:"S.",surname:"Chakravarty",slug:"s.-chakravarty",fullName:"S. Chakravarty"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"76199",title:"Volatilomics of Natural Products: Whispers from Nature",doi:"10.5772/intechopen.97228",slug:"volatilomics-of-natural-products-whispers-from-nature",body:'Volatilomics indicates the qualitative and quantitative study of the volatilome, defined as the complex blend of volatile organic compounds (VOCs) originating from different biosynthetic pathways and emitted by living organisms [1]. VOCs are small molecules (below 500 Da), with hydrophobic character, low boiling points, and high vapor pressure at ambient temperature. Unconjugated volatiles can freely diffuse across membranes to be released from flowers, fruits, and vegetative tissues into the atmosphere and from roots into the soil to be perceived at short and long-distance. Therefore, plants and animals use VOCs for chemical communication with the surrounding ecosystem, and plants also use them as attractors for pollinators and defense against herbivory and biotic and abiotic stress [2, 3, 4, 5].
The study of VOCs of plants has focused not only on the qualitative and quantitative composition of the volatile fraction but on the bioactive compounds as well as flavors and fragrances [6, 7]. Similarly, the understanding of fruits’ sensorial attributes is of great interest as quality control, as well as in the determination of origin mark, and the performance of ecological studies aimed at the establishment of the relationship between the ripening stage and the incidence of fruit diseases for insect or microorganism attack [8, 9, 10].
Microorganisms produce a plethora of important microbial volatile organic compounds (mVOCs), that play an essential role in inter- and intra-kingdom connections. The study of mVOCs has allowed, for example, to detect terpenes, compounds normally associated with plants, also in fungi and bacteria [11]. Also, these compounds are related to ecological interactions between living organisms found in the soil, including the rhizosphere [12].
In addition, several studies of VOCs from animals not only have allowed decoding the signal of the animal chemical communication but also have demonstrated the potential use of that knowledge in early disease’s diagnostics. For example, recent studies have shown novel practice for the detection of biomarkers to identify the intoxication using unusual biological fluids like ear wax, being fast, economic, and noninvasive bioanalysis, with minimal sample preparation and very versatile to identify the first signals of intoxication [13, 14].
Differently to the genomes, the volatilome changes continuously across time, and its composition depends on external and internal factors, such as the environmental conditions, and/or the physiological state [15]. Therefore, the study of the volatilome is not a simple task and the researchers in this area entail multiple challenges derived from the chemical complexity of the samples and the superposition of VOCs signals as proper of the ecosystems. Thus, sensitive yet unbiased methodologies are needed to provide researchers with comprehensive and accurate representations of a plant species’ volatile metabolome.
However, current methodologies are limited in their ability to isolate, and even more critically to identify, many of the compounds present in each sample. In volatile metabolomics, the emitted metabolites are already isolated from tissues, they need to be temporarily trapped, and eventually preconcentrated, in a way that allows them to be released unadulterated for separation and identification.
A variety of technologies have been developed. In these methods, the sample of interest is enclosed in a collection chamber and the released volatiles present in the airspace surrounding the sample, headspace (HS), are trapped onto an adsorbent. And are subsequently analyzed by gas chromatography in combination with mass spectrometry (GC–MS) as the method of choice for volatilomics.
Hence, in the next sections of this chapter, we will provide an overview of the volatilome study process, including the main practical and theoretical aspects of volatiles capture, sample preparation, and the main analytical techniques employed to monitor VOCs, together with the chemoinformatics tools used for volatilome dereplication, elucidation, annotation, and interpretation of data.
Sample acquisition in volatilomics experiments requires consistency, therefore due to the high variability of chemical structures, concentrations levels, sample types, and physiological variations, other variables different than metabolites (addressed as meta-variables from now on) should be controlled or at least carefully monitored in order to evaluate their effect on the study outcome. Some important variables that should be taken into account include replicate number, taxonomic identification, geographic location, phenotypic or phylogenetic variant, sample weight, phenotypic characteristics, sex, developmental stage, health status, collection date, and time. Photographs should be taken. A useful reference for registering meta-variables is the ReDU Sample Information Template. (https://docs.google.com/spreadsheets/d/1v71bnUd8fiXX51zuZIUAvYETWmpwFQj-M3mu4CNsHBU/edit?usp=sharing) [16] build by the collaborative Global Natural Products Social Networking (GNPS) (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) [17] where researchers can add new meta-variables and share their data in an open-source and collaborative environment.
The plant volatilome is defined as the complex blend of essential oils (EOs) and VOCs fed by different biosynthetic pathways and emitted by plants, constitutively and/or after induction, as a defense strategy against biotic and abiotic stress. Plants have a vast diversity in their range of metabolites and their concentrations, as there are hundreds of thousands of metabolites in different categories. As such, there is no single analytical technique that has the capability of extracting and detecting the whole metabolome [18].
Plant volatile emissions are linked to the physiological status of the emitter, therefore special care must be taken to control the plant-growing environment as well as all variables concerning the developmental stage of the plant to limit unwanted fluctuations in metabolism that might affect collected. These include the time of day, photoperiod, temperature, humidity, water conditions, collection site altitude, plant age, climate, and soil type so that a careful experimental design is recommended. Whenever possible, growth chambers must be used for plant cultivation and volatile collection [19, 20]. EOs and VOCs can be extracted and analyzed from both fresh and dried plant materials. When using fresh material, particular attention must be paid to the health status of plants, since microbial and other infections may alter metabolites production. Plants must not show necrotic areas and be at the same developmental stage if comparative analyses are needed. Since the content of water may vary, it is a good practice to use some of the fresh material to calculate the dry matter percentage [21].
Since volatile emissions from many plant species vary with respect to the time of day, and different organs in the plant are known to produce and/or accumulate different profiles of secondary metabolites, collection strategies should consider volatile sampling over an extended period of time and from the investigated organ or entire plant, to prevent unintentional exclusion of volatile components in the sampled mixture. Also, when running VOCs analyses from living plants it must be remembered that rooted plants in pots respond differently than cuttings, and that soil in pots may contain microorganisms that can produce VOCs [22, 23]. Once a plant part is collected, at least two herbarium samples should be prepared and identified or authenticated by a taxonomist. One of these voucher specimens should be deposited in a local national herbarium. A card with details of the place, altitude, environment, and photographs should be attached to the herbarium sample, in case a recollection of the plant material is necessary. Although depositing herbarium samples is a basic step in performing phytochemical investigation, many researchers in the past neglected this step and thus were unable to reproduce their work [23, 24, 25].
Living flowers change their volatile profile in a continuous way that depends on intrinsic and extrinsic factors. Once cut, flowers undergo rapid deterioration and loose volatiles. Flower volatiles allow discrimination between different plants and attract insects for pollination when they are released. The amount of emission is not uniform through time, with some differences between diurnal and nocturnal emission levels, and between reproduction phases. The volatile compounds emitted by flowers are mainly aliphatics, terpenoids, benzenoids, and phenylpropanoids. Flower volatiles require special methods for their isolation with preconcentration and can be obtained from the air surrounding the living or excised flower, or from the flower tissues themselves. The selected extraction technique determines the composition of the isolated volatiles mixture [26, 27].
Fruits are very complex samples, rich in a great number of different classes of metabolites, including volatile, semi-volatile, and no volatile compounds. The flavor is one of the most important characteristics to value the quality of fruit. Volatile and semi-volatile compounds usually are responsible for aroma fruit, and their study has conducive to identify both positive and negative sensory attributes [28]. VOCs are produced in trace amounts, and although they are easily perceptible by the human nose, their sampling and monitoring can be challenging at an analytical level [29]. The volatile fraction of fruits is composed of hundreds of different chemical substances that can vary according to the type of fruit, but the emitted compounds can be grouped according to the chemical function mainly into esters, alcohols, aldehydes, ketones, lactones, and terpenoids [29]. Moreover, VOCs emitted by fruit depend on the production conditions (cultivars, state of maturity, post-harvest treatment, and storage) the sample format (whole fruit, sliced, wet, dry), and the type of analysis (in-field or in-lab). Capturing volatiles in-situ is a challenge, as small amounts of VOCs are released and diffuse in a large volume of air, which requires highly efficient sampling techniques to capture them. Solid-phase microextraction (SPME) and solid-phase extraction (SPE) are usually the most profitable techniques for the capture of fruit volatiles in-situ. Once the volatile compounds are retained in an adsorbent material, their storage and transport are facilitated. On the other hand, in laboratory capture of VOCs from fruits, can be efficiently performed by solvent or gas-based extraction techniques, such as Soxhlet, simultaneous distillation extraction, purge and trap, and headspace, among others.
Analysis of mVOCs is commonly performed under controlled culture media, temperature, and agitation. Also, the percentage of humidity and exposure to UV–visible light among other growing conditions should be taken into account. In order to account for reproducibility of the experiments, laboratory tests on microorganisms must be performed using international reference strains e.g.: American Type Culture Collection (ATCC), instead of clinical or field isolations, or even strains isolated and saved in the research group for a long time. Because the emission of VOCs can vary in terms of presence or absence, and in terms of fluctuation in concentration, throughout the life span of the microorganisms (which can be from a few hours to days), it is advisable to perform analyses both in the exponential or logarithmic growth phase, as well as in the stationary phase [12, 30, 31]. During the exponential phase, the microorganism is reactivating its biosynthetic pathways after having been in a state of latency. Therefore, in this stage, there is generally a high concentration of some metabolites that are part of the first stages of the biosynthetic pathways, which can later diminish and disappear in the exponential phase. The stationary phase is achieved when the initial metabolic processes have been reached and occurs when the survival process of the species begins [32]. The metabolic changes produced in these two stages of microbial culture are fundamental to understanding and solving research questions [33, 34]. The determination of each of the culture phases is commonly done with a measurement of the absorption of light in the visible region between 500 and 650 nm for liquid growth medium. This is achieved by counting the colony-forming units (CFU) in the solid medium. The sampling time for analysis of mVOCs must coincide with those obtained in the growth curves, correctly differentiating the exponential and stationary phases.
For conducting volatile sampling from animals, the specimens could be either raised in captivity at controlled vivaria or extracted from their natural environments. Proper training in animal manipulation is an important aspect to be fulfilled before performing animal experimentation, as well as an approved permit by the Institution in charge to validates the procedures. Also, when animals are to be collected in their habitats, it is necessary to review if a Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) permit is needed for protected species. A specialist should validate taxonomic identification and, in those cases, where sample collection involves euthanization of specimens that should be registered at a recognized Museum, and voucher numbers should be annotated and published on the research paper. In the same way, as other organisms could be sampled by different methods, almost all animals could be sampled in vivo, but in some cases, tissue extraction could be preferred for guaranteeing detection of less abundant metabolites. Some techniques applied for VOCs analysis from terrestrial arthropods [35, 36, 37, 38, 39], aquatic organisms [40, 41, 42], mammals [43, 44, 45, 46, 47, 48], birds [49, 50], reptiles [51, 52], fishes [53], and amphibians [37, 38, 54, 55, 56, 57] include headspace-adsorbent traps, polydimethylsiloxane (PDMS) patches, swabs and stir bar sorptive extraction (SBSE).
Sample preparation is one of the most important steps in the analytical process. The goal of sample preparation is to efficiently isolate target analytes from potential interferences and to extract as many VOCs as possible to provide a true representation of the studied system.
Some steps of pre-treatment of the sample are necessary in order to minimize the manipulation of the sample and avoid its modification, to clean-up the sample efficiently, and to quench metabolic reactions that could cause degradation and decomposition. To date, two different types of headspace sampling, static and dynamic, are widely used for volatilomics investigation.
Static headspace sampling is a passive technique for VOCs collection, where no air is circulated for the concentration of the volatiles on a sorbent matrix [18]. As a result, the background noise is drastically reduced due to the absence of a continuous airflow that can contain impurities that could mask compounds released at trace amounts. In static headspace methods, samples are typically sealed inside a container or bag, where the volatiles are released and, in the more traditional version of the technique, the headspace is sampled directly using a gas-tight syringe and transferred to the Gas Chromatography (GC) injection port. When the analytes are present at trace level, it might be necessary to carry out static headspace methods with special techniques to concentrate volatiles during collection and reduce the dilution of the sample during desorption in the GC inlet. In such a context, SPME stands out as the most versatile strategy for volatile capture from the sample headspace in static mode. Nowadays, SPME is the leading technique in the analysis of volatiles of biological origin because it uses a fiber coated with a sorbent phase to combine extraction and pre-concentration compounds. SPME fibers are available in a wide range of coatings that allow the sampling of compounds of different polarities and volatilities. Considering that the goal of volatilomics profiling is to analyze as many metabolites as possible, the use of divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fibers is the most suited to increase the number of analytes that can be trapped on the fiber because it can allow capture VOCs in a wide range of polarity and molecular weight [58].
This type of coating contains a layer of CAR particles underneath a layer of DVB particles. Because the ability of adsorbent coatings to extract a particular analyte strongly depends on the size of the pores, larger analytes will be retained in the outer DVB layer, while the smaller analytes will migrate through this layer and are retained by the inner layer of CAR. On the contrary, if the study targeted only on the most volatile fraction, PDMS/CAR would be an appropriate choice of coating, since the micropores of the CAR retain smaller analytes better than other coatings, although introducing a high degree of discrimination towards high-molecular-weight compounds.
On another hand, although other coatings, such as PDMS, polyacrylate (PA), and Carbowax (CW), are also commercially available, their use in volatilomics is quite scarce due to the higher selectivity towards certain classes of polarities [58, 59].
From a practical point of view, SPME is a versatile technique for in-field sampling as a non-destructive strategy for the study of the volatiles emitted ex-vivo, for example, by grapes. In this case, an aluminum wire cage can be used to support a polymeric film to enclose a whole cluster of grapes, and SPME fiber is introduced through a port fitted with a silicone septum (Figure 1a).
Sampling handling techniques of VOC’s fruit. a) Ex-vivo sampling of volatiles from the whole cluster of grapes by SPME; b)Ex-vivo sampling of volatiles from a single grape berry by SPME. Adapted from [
Also, an interesting strategy for speeding up the volatiles’ uptake is vacuum-assisted SPME. For example, in-field sampling of volatiles from a single grape berry, a modified screw top, and a 2 mL glass vial can be used for fiber exposition. A syringe is usually used to create a negative pressure to hold the sampling device with the SPME sealed onto the sample surface (Figure 1b).
This type of coating contains a layer of CAR particles underneath a layer of DVB particles. Because the ability of adsorbent coatings to extract a particular analyte strongly depends on the size of the pores, larger analytes will be retained in the outer DVB layer, while the smaller analytes will migrate through this layer and are retained by the inner layer of Carboxen. Conversely, if the study targeted only on the most volatile fraction, PDMS/CAR would be an appropriate choice of coating, since the micropores of the CAR retain smaller analytes better than other coatings, although introducing a high degree of discrimination towards high-molecular-weight compounds.
Although SPME generally exhibits better extraction efficiency as the polarity of the compound decreases, these three coatings can provide balanced metabolome coverage as long as most polar analytes are present at reasonable concentration levels. Absorbent coatings, such as PDMS, PA, and CW, were rarely employed in profiling studies. These coatings display selectivity based on polarity, resulting in poor metabolomic coverage. The second case is dynamic headspace sampling, which offers a highly concentrated sample that can be desorbed into a solvent at volumes suitable for multiple analyses. To date, it is the most frequently used technique in all areas of plant volatile analysis. Dynamic headspace sampling collects a much larger quantity of compounds at higher concentrations because the continuous stream of air allows the sorbent to act as a filter trapping the volatiles.
Also, push and pull headspace sampling, two examples of dynamic headspace sampling, allow to avoid problems often encountered with the sealed systems used in static headspace and closed-loop stripping methods including heat, water vapor, and, in the case of plants, ethylene accumulation that can affect not only sampling efficiency but also plant physiology. Among the several methods, closed-loop stripping systems have broad utility for the collection of volatiles: volatiles are collected during continuous circulation of HS air inside closed chambers in which air circulation pumps are connected to supporting columns or coated supports [22].
As an example, SPME is a versatile technique for in-field sampling handling as a non-destructive strategy for the study of the volatiles emitted ex-vivo, for example, by the whole cluster of grapes. In this case, an aluminum wire cage can be used to support a polymeric film to enclosing a whole cluster of grapes, and SPME fiber introduced through a port fitted with silicone septa (Figure 1a) [60]. Also, an interesting strategy for speed up the volatile’s uptake is vacuum-assisted SPME. For example, in-field sampling of volatiles from a single grape berry, a modified screw top, and a 2 mL glass vial can be used for fiber exposition. A syringe is usually used to create a negative pressure to hold the sampling device with SPME sealed unto the sample surface (Figure 1b) [60].
Alternatively, to the SPME, some liquid-phase microextractions (LPME), such as the single drop microextraction (SDME) or the hollow fiber liquid-phase microextraction (HF-LPME), can also provide efficient and profitable volatiles recoveries in the headspace static mode. For example, SDME is a technique based on a few microliters of solvent, in which volatiles can be capture in a small drop of extraction solvent-exposed to the headspace of the sample [20, 59]. In the same way, to address the drawbacks of the drop instability, the extraction solvent can be deposited into the lumen of a porous fiber HF-LPME, improving the extraction kinetics by use of a bigger transference surface or by the incorporation of an acceptor solvent into the membrane pores (Supported Liquid Membrane, SLM). Although the use of hazardous organic solvents can be considered a drawback, nowadays those solvent-based extractions can be performed with environmental-friendly alternatives, such as ionic liquids, deep eutectic solvents, or supramolecular solvents, among others.
The second type of headspace sampling is the dynamic headspace (DHS) method. It encompasses strategies in which VOCs are captured in a sorbent-packed trap by passing a continuous flow of inert dry gas through the sample. In this way, the emission of VOCs speeds up by the continuous renovation of the headspace fraction. After extraction, concentrated VOCs can be desorbed from the sorbent-packed trap with a suitable solvent or via thermal desorption. Besides, DHS address some drawbacks of the static modes such as the accumulation of water vapor or highly concentrated compounds, which presence can affect extraction efficiency. Two examples of dynamic headspace sampling which allow avoiding some drawbacks of the static mode, e.g., heat and water vapor accumulation that can affect not only sampling efficiency but also plant physiology, are closed-loop stripping and push and pull methods. These systems collect VOCs in sorbent-packed traps or coated devices, via the continuous circulation of gas inside closed circuits [22].
In addition to headspace sampling techniques, some sui generis approaches can combine two methods from different groups, for example, solvent-assisted flavor evaporation (SAFE). SAFE is an exhaustive extraction technique based on the high volatility rather than the polarity of the target compounds. In this case, a crude-extract from dry sample pieces is prepared with an appropriate solvent, such as dichloromethane, and then added into the dropping funnel and passed through a specific distillation chamber. Extraction takes place at high vacuum, and low-temperature conditions (20–30°C), and VOCs are collected in a cooled extraction vessel [61]. Other techniques including in this group are simultaneous extraction-distillation (SDE) and/or liquid–liquid extraction (LLE). Nevertheless, those can be subjected to some drawbacks, like the use of hazardous solvents, as well as the requirement of high temperatures and long extraction times, with potential formation of artifacts and degradation of some compounds.
Finally, volatile compounds also can be obtained for direct collection of the secretions of odoriferous glands or via non-invasive strategies using PDMS patches or swabs [22]. These techniques are especially useful in the monitoring of VOCs from animals. For example, obtaining the animal skin volatilome on PDMS patches is an excellent option [62]. Patches could be prepared by cutting a Silicone Elastomer Sheet (Goodfellows mfr. No. 942-965-49, Coraopolis, PA) and then carefully fix it on the animal skin with Tegaderm® dressings or water block clear Band-aids®. Alternatively, this procedure could be modified by gently swabbing the skin with or without previous stress-induced secretion. PDMS patches also can be placed into an animal enclosure and used without direct contact for capturing the volatiles that emanates in the headspace.
Currently, gas chromatography coupled to mass spectrometry (GC–MS) is the primary analytical technique for the elucidation of the volatilome profile from natural sources. In gas chromatography analytes elute according to their volatility carried by a gas, usually Helium, through a coated fused silica capillary using a temperature gradient. Separation occurs based on the differential partition between the gas phase and the coating and the eluting peaks will give a response in the detector. The sample is vaporized in the injection system before it enters the column.
Several injection systems can be used to introduce the sample onto the column. Split injection allows transferring to the column only controlled sample amounts and prevent overloading of the column, thanks to a split valve at the base of the hot injector that divides the flow between column and waste in a fixable ratio. High-concentration samples can easily overload the GC column, resulting in all active sites on the column becoming occupied and leading to additional analytes not being retained and therefore to poor chromatographic resolution. For trace analysis, the injector can be used in splitless mode, which allows the entire volume of sample vaporized in the injector to reach the column. An alternative to the split/splitless interface is the programmed temperature vaporizer (PTV). Samples are injected onto a cool (40–60°C) PTV where they are trapped and concentrated on different sorbent materials before the inlet is rapidly heated to desorb the sample onto the column.
Different selectivity and sizes of columns have been used for GC–MS–based metabolomic analysis. The most used phase is 5% phenyl, 95% methyl siloxane, which offers a sufficiently generic selectivity, optimal for metabolomic applications where analytes with a wide range of volatilities have to be separated. Capillary columns of 25 to 30 m will provide the highest resolution and are available in most phases. An important point for all capillary GC–MS work is the need to condition the column prior to running valuable samples. Sangster et al. have recommended that several quality control samples be run at the beginning of a sample batch to condition the column [63]. Care also needs to be taken to randomize the injection sequence in order not to compromise subsequent statistical analysis.
In GC–MS ionization of analytes is mainly produced by electron ionization (EI) or chemical ionization (CI), while ion separation is obtained by mass analyzers operating on different principles. In EI, analytes that elute from the GC column are vaporized into the ion source and collide with an electron beam at 70 eV. As a result of the high energy imparted by electrons to the vaporized molecules, characteristic fragmentation occurs, providing structural information. EI is very robust and highly reproducible between instruments, and spectral libraries are available that can be used to search for the identities of unknown compounds based on m/z and intensity ratios of the observed fragment ions. A disadvantage of EI is that fragmentation is usually so efficient that the intensity of the molecular ion can be extremely low or even lost. For CI, a reagent gas, such as methane or ammonia, is introduced into the source of the mass spectrometer. Protonated gas ions, produced by the collision with electrons originating from an electron beam, ionize the analytes eluting from the column after vaporization into the ion source. Significantly less energy than in EI is transferred to the analytes, and as a result, the dominant ion is usually the molecular ion.
Mass spectrometer based detectors are mainly used in metabolomic analysis and can be grouped according to the spectral information they provide, i.e., low-resolution instruments such as quadrupole mass spectrometer (qMS), ion-trap mass spectrometer (IT-MS), and high-speed time-of-flight mass spectrometer (TOF-MS) give nominal molecular weights and fragmentation of an analyte, while high-resolution instruments (high-resolution TOF-MS and hybrids) give the precise elemental composition of nominal masses. The single quadrupole mass analyzer is widely used and relatively inexpensive. The ions move along the axis of four parallel rods to which a direct current (DC) and an alternating current (AC) voltage are applied. These voltages affect the trajectory of ions traveling down the flight path between the rods in a way that only ions of a given m/z are transmitted at a given point in time. Scan speeds are rather low on quadrupole instruments, therefore considering the very high separation power of GC with peak widths of only a few seconds, it will be difficult to acquire several spectra across the width of a typical peak on a single quadrupole instrument. Time-of-flight (TOF) instruments are the most common mass analyzers in GC–MS–based metabolomics. The ions are accelerated in an electric field in which ions with the same charge will have the same kinetic energy, but different velocity depending on their mass-to-charge ratio (m/z). Successively, the ions enter a field-free region (flight tube) where they separate based on their m/z. TOF instruments are characterized by the fastest scan rate among all mass analyzers: a significant number of spectra can be acquired across each peak, leading to higher sensitivity and better spectral quality.
GC–MS has very high sensitivity and can therefore be used for the analysis of less commonly encountered samples that might only be available in trace amounts. Monodimensional GC–MS analysis provides suitable resolving-power for the analysis of relatively simple mixtures of VOCs. Nevertheless, volatilome samples can be very complex mixtures, involving a diverse plethora of chemical structures in a wide range of polarities, so that the restricted chromatographic resolution commonly limits the identification via MS to the more abundant compounds. Complex mixtures can be better resolved by employing comprehensive two-dimensional gas chromatography–mass spectrometry (GCxGC–MS), which has been defined as “…an orthogonal two-column separation, with complete transfer of a solute from the separation system 1 (column 1) to the separation system 2 (column 2), such that the separation performance from each system (column) is preserved” [64]. In GC × GC, two columns with different polarity—usually a nonpolar column in the first dimension and a moderately polar column for the second one—are run in series. Analytes eluting from the first dimension (1D) column are trapped, focused, and then rapidly injected, as a narrow band of few milliseconds, in the second dimension (2D) column, then the eluting peaks are detected by MS. The transfer process is actuated by a modulator, a thermal or valve-based focusing system. Each single modulator cycle takes a fixed time (4–8 s) and each fraction, injected online into the second column must be analyzed in a time equal to that of the successive modulation. The challenge is to avoid continuously transmitting analyte onto the second column, which would lead to a loss of resolution. A solution to this problem is to make the separation on the second column much faster than the separation on the first column. The volume of data generated is significantly larger than the one obtained in a one-dimensional analysis. However, this approach allows for better separation of the number of components in the sample. Although single qMS instruments are cheaper, can provide very low LODs via selected ion monitoring (SIM), and can provide maximum acquisition rates (20,000 amu/s) suitable for metabolic profiling, TOF has become the preferentially MS analyzers for GCxGC volatilome analysis. TOF-MS instruments are capable of full-spectrum collection rates up to 500 Hz with improved sensitivity. Besides the high-resolution mass spectrometry (HRMS) provide accurate mass data, which increases the identification confidence and allows to annotate molecular formulas for unknown compounds, being especially useful in untargeted metabolomic studies.
Metabolite identification remains a major complication. Although EI generates highly reproducible fragmentation spectra, only a relatively small percentage of metabolites can be identified by searching databases, mainly because these have traditionally been a repository of EI spectra of synthetic organic compounds. Only recently, the number of metabolite spectra started to increase. A more powerful identification method involves comparing both EI/CI spectra and retention indices obtained from analyzing a reference compound under identical analytical conditions. If commercial standards are not available, metabolite identification can be cumbersome.
Retention indexes (RI) were first introduced by Kováts [28] for isothermal analysis and then by Van den Dool [65] for temperature-programmed analysis (linear retention indices, LRIs) and are calculated vs. a homologous series of linear hydrocarbons run in the same GC conditions as samples. RI can also be automatically calculated using the Automated Mass Spectral Deconvolution and Identification System (AMDIS), freely available from the National Institute of Standards and Technology (NIST) at this site (http://www.amdis.net/).
In order to achieve the identification of unknown compounds, their background-subtracted EI spectra are searched against EI libraries (such as the NIST library) to achieve identification. Values of
The high variability of data obtained from the investigated matrix composition makes it hard to indicate a universal approach to quantitatively evaluate the volatilome composition. The most widely used approaches are: (a) relative percentage abundance, (b) internal standard normalized percentage abundance, and (c) “absolute” or true quantitation of one or more target components, with or without a validated method. Relative percentage abundance can be applied only to evaluate relative component ratios within the same sample. Internal standard normalized percentage abundance is the ideal approach when a group of samples is compared: raw data must first be corrected vs. analyte response factors to the detector, then normalized vs. an internal standard. Percentage abundance must be calculated vs. the sum of the areas of a fixed number of selected components, found in all the samples. The quantitation of marker components is obtained from the chromatographic area in SIM mode vs. an internal (or external) standard and calculated via a calibration curve constructed from amounts of pure standards in the selected concentration range.
Some common non-separative techniques used in the study of volatilome using mass spectrometry are selected-ion flow-tube mass spectrometry (SIFT-MS) and proton-transfer-reaction mass spectrometry (PTR-MS). These techniques are focused on the use of soft chemical ionization, allow on-line detection of VOCs with low levels of detection without the need for pre-concentration or sample preparation, which facilitates obtaining reproducible results. For example, Vendel and co-workers [66], used SIFT-MS and HS-SPME-GC–MS for the analysis of strawberry aroma. Although both techniques provided similar results in the study of the fruit ripening, the SIFT-MS analysis was about 11 times faster than HS-SPME-GC–MS. Moreover, SIFT-MS showed low detection limits, so that the postharvest analysis can be easily performed by the analysis of individual fruit. Capellin and collaborators [67] developed a similar study was using PTR-TOF-MS to study the volatilome of clones belonging to three types of apple. They concluded that PTR-TOF-MS is a very useful tool for volatilome studies once this technique allows obtaining a rapid and non-invasive fingerprint of the VOCs profile from single apple fruits.
With an alternative focus, the chromatographic system can be coupled to an olfactometer detector to identify the aroma-active compounds present in a determinate volatilome. This type of analysis allows determining the compounds which generate a positive response to the electronic noise detector, obtaining their identification by comparison of the mass spectrum, retention index, and odor descriptions with reference compounds. Using gas chromatography-olfactometry-mass spectrometry (GC-O-MS), Zhu and co-workers [68] studied the volatile profile of three cultivars of mulberries, establishing benzaldehyde, ethyl butanoate, (E)-2-nonenal, 1-hexanol, hexanal, methional, 3-mercaptohexyl acetate, and 3-mercapto-1-hexanol as the main compounds responsible for the characteristic aroma of mulberry.
Once the raw data have been acquired following chromatographic separation and mass spectrometry analysis, the large amount of data generated needs to be processed following a standardized procedure that includes data conversion, pre-processing, pre-treatment, and metabolite annotation [69]. An additional step, sharing data derived from any metabolomics analysis, currently is optional for researchers but highly recommended.
Data processing starts with a set of raw data files for different samples. Usually, default vendor formats from instruments need a conversion. A useful toolkit compatible with several instruments formats is ProteoWizard (http://proteowizard.sourceforge.net/download.html) [70]. Open-source formats usually supported by many software packages are Network Common Data Form (NetCDF) [71], Extensible Markup Language (mzXML) [72], and Mass Spectrometry Markup Language (mzmL) [73]. Each file is processed to an easily accessible and more informative data table, where rows represent samples and columns represent different features from volatilome. Values from this matrix represent intensity values of peak area/height, standing for relative concentration. The data should be checked for missing values and possible outliers.
Pre-processing involves setting different filters to recognize signals from noise, select masses or intensities to perform feature detection, and finally adjust the retention time shifts parameters needed to align features throughout all samples. The aim of pre-processing is to minimize the number of false positives features and to establish quantitative procedures for discarding less reliable signals with low signal-to-noise ratio, or low prevalence within a similar set of samples [74].
Pre-treatment or data correction is one of the most important steps from data analysis because systematic and technical variation could obscure relevant biological patterns. The variation in the data resulting from a metabolomics experiment is the sum of the induced variation and the total uninduced variation [75]. Some sources of variation could be controlled by researchers through a careful experimental design. In other cases, this variation is very difficult to control. Natural variation in the metabolism of an organism can cause 5000-fold differences in signal intensities for different metabolites, or sampling could not be performed on the exact conditions for all samples, sample work-up varies naturally between batches, and analytical errors are always present. This variation could be accounted for using different classes of corrections that include centering, scaling, transformation, and normalization of raw data and several methods are available to do so (e.g., autoscaling, pareto scaling, range scaling, vast scaling, log transformation, and power transformation, normalization by sum, normalization by a reference sample). The selection of the most appropriate method depends on the hypothesis to be tested and the statistical behavior of the data matrix. Before applying pre-treatment methods, it is required to check if data is fit for analysis. For example, performing the treatment may enhance the results of a clustering method (if the hypothesis is related to comparison of similarities), while obscuring the results of a Principal Component Analysis (PCA) (if in contrast, the hypothesis is related with determining redundancy between metabolites) [75].
The analysis by comparison with pure standards of different family of compounds is advisable, in order to compare the retention rates of the compounds. However, the characterization of a certain metabolite that there are no pure standards, its determination can be done by comparison with homologues of a certain family of compounds, which the detailed analysis of the fragmentation pattern. Metabolite annotation is still challenging despite all efforts made for establishing specialized databases with mass spectral properties of different metabolites. Annotation and identification levels for metabolites were defined by the Chemical Analysis Working Group of the Metabolomics Standards Initiative (MSI). Level 1 indicates compromise identified compounds, level 2 is used for putatively annotated compounds, level 3 is used for putatively characterized compound classes, and level 4 is used for unidentified or unclassified metabolites that still can be differentiated and quantified based upon spectral data. Dark matter, also called “unknown unknowns”, represents the majority of metabolites analyzed on a metabolomics experiment, because instruments collect much more information than it is currently possible to annotate [76]. It is estimated that an average of only 2% of the data can be annotated. This is even a most common problem in metabolomics analysis from animals because many databases are specialized in human-derived metabolites, or some molecular structures from animals have been solved but are absent from the reference databases. Analysis from non-model organisms tends to have a higher number of truly novel compounds, called “unknown unknowns” [77]. As it is impossible to collect spectra for every molecule in the universe, computer-generated (in silico) spectral prediction algorithms are also recommended during metabolite annotation such as CSI:FingerID (https://www.csi-fingerid.uni-jena.de/) and Competitive Fragmentation Modeling-ID (CFM-ID, https://cfmid.wishartlab.com/) for analyzing fragmentation patterns. For volatilome analysis NIST (https://www.mswil.com/software/spectral-libraries-and-databases/nist20/) and Wiley (https://www.mswil.com/software/spectral-libraries-and-databases/wiley-spectral-libraries/wiley-gcms-libraries/) electronic collections are the most used mass spectra databases. The Dictionary of Natural Products (DNP) (http://dnp.chemnetbase.com/faces/chemical/ChemicalSearch.xhtml;jsessionid=DBE98AD72918A1607A7E739064D0DB21), Pherobase (https://www.pherobase.com/), Human Metabolome Database (HMDB) (https://hmdb.ca/), METLIN (https://metlin.scripps.edu/landing_page.php?pgcontent=mainPage), MassBank Japan (http://www.massbank.jp/), MassBank Europe (https://massbank.eu/MassBank/), MassBank North America (https://mona.fiehnlab.ucdavis.edu/), Supernatural II (http://bioinf-applied.charite.de/supernatural_new/index.php), ChEMBL (https://www.ebi.ac.uk/chembl/), Mass Spectral and GC Data of Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites (https://www.wiley.com/en-gb/Mass+Spectral+and+GC+Data+of+Drugs%2C+Poisons%2C+Pesticides%2C+Pollutants%2C+and+Their+Metabolites%2C+5th+Edition-p-9783527342877) and vocBinBase (https://bitbucket.org/fiehnlab/binbase/src/master/) are other useful resources. When compound annotation is not possible and only chemical class could be assigned to a metabolite it is recommended to employ the comprehensive, and computable chemical taxonomy from Classyfire (http://classyfire.wishartlab.com/). See [78] for a review focused on mass spectral databases for LC/MS- and GC/MS-based metabolomics. For the analysis of mVOCs, in 2014 was developed a software that allows the characterization of mass spectra obtained in microorganisms. It was updated in 2018 with more than 2000 compounds from more than 1000 species, which is called mVOC database 2.0 (http://bioinformatics.charite.de/mvoc) [79]. With this tool a more precise characterization of the different volatilome of the microbes studied at present is achieved.
Select the univariate statistics according to the variables of interest. T-test, U-test, and analysis of variance (ANOVA) are the most common univariate statistics employed for data mining in volatilomics. As datasets usually include a large number of features, the significance level should be determined appropriately to reduce the number of false positives and false negatives. For reducing false positive, family wise error rate (FWER) correction, such as a Bonferroni correction, is a conservative approach, in which the p-values are multiplied by the number of comparisons. In contrast, for reducing false negatives, false discovery rate (FDR) correction is a highly sensitive method [80].
Multivariate statistical methods are very powerful at summarizing large and multidimensional data generated from volatilomics. Exactly as for pre-treatment methods, multivariable analysis should be chosen carefully and selected coherently with the hypothesis of interest and methods used for data pretreatment. Unsupervised approaches and supervised approaches differ in how samples are grouped within the multivariate calculations. Unsupervised solely have access to the matrix to find features useful for grouping and categorizing the samples. Clustering methods, such as hierarchical clustering (HCA), K-means clustering, self-organizing maps, principal component analysis (PCA) are among this group. Once the data have been analyzed by unsupervised methods, supervised methods (e.g. partial least squares discriminant analysis (PLD-DA), artificial neural networks, and evolutionary algorithms) should be applied for further evaluation [81]. Supervised methods have access to qualitative or quantitative traits (e.g., specie, location, body size, tissue type) and the matrix of measurements and can classify samples. Volcano plots have also recently been used to identify significantly covarying metabolites in binary comparisons. Volcano plots show each features’ statistical significance, p-value, on the y-axis, and fold change along the x-axis [82].
Correlation networks is a visualization tool that summarizes positive and negative correlations found between samples that represent different biological process [69]. Molecular networking organizes metabolite features from a volatilomics analysis into a connectivity network based on similarities in molecular fragmentation patterns obtained from mass spectrometry [82]. This analysis cluster families of molecules through vector correlations between fragment ions and enhance the interpretation of volatilome differentiation using a chemically informed visualization. Also, it enhances the annotation process with experimental and in silico databases [83]. When it is possible to combine Volatilomic and Genomic analysis, molecular networking can also be useful to prioritize features by linking observed natural products to their cognate biosynthetic gene clusters and gene cluster families [82].
Recently, many researchers have shared raw data files on open repositories, and this has motivated computer scientists to develop modern algorithms for facilitating the comparison of MS spectra obtained in different conditions [78]. This comparison still needs human inspection from experts trained in mass spectrometry fragmentation patterns, because is not an automatic process. Some examples of sites that allow raw experimental data to be shared in public repositories include MetaboLights (http://www.ebi.ac.uk/metabolights/), the Metabolomics Workbench (https://www.metabolomicsworkbench.org/), XCMS Online (https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage), MetabolomeExpress (https://www.metabolome-express.org/), GNPS (https://gnps.ucsd.edu/ProteoSAFe/static/gnps-splash.jsp) and the Metabolomic Repository Bordeaux (http://services.cbib.u-bordeaux.fr/MERYB/).
Current technological advances in sample collection, extraction techniques, volatile profiling, and data processing allow that the analysis of an invisible world where VOCs mediates different ecological processes could recover a more accurate picture of the complex chemical communication that occurs in nature. Different combinations of procedures need to be followed by researchers with the aim to answer specific scientific questions or hypotheses. Microextraction techniques emerge as tools for increasing extraction efficiency and at the same time facilitating faster extraction times without the environmental impact of large volume solvent wastes. Gas chromatography has played a fundamental role to detect volatile compounds often present as trace levels. Mass spectrometry has proved to be the preferred technique for the structure elucidation of new compounds and annotation of known VOCs. Current improvements in data analysis allow to extract of more biologically relevant information from a single study and to standardize procedures for evaluating hypothesis properly. All these steps are of paramount importance to evaluate both the ecological function of these compounds and the economic value in the medical, agricultural, flavor, and fragrance industry.
The authors thank the Department of Chemistry and Vicerrectoria de Investigaciones at Universidad de los Andes, Bogotá, Colombia for financial support. We wish to thank to Ministerio de Ciencia, Tecnología e Innovación (MinCiencias) for Julie Paulin Garcia Rodriguez (No 679), Mabel Gonzalez (No 757) and Gerson-Dirceu López (No 785), as well as the support to No. 44842-058-2018 and No. 80740-532-2019 projects. Also, the Faculty of Sciences of the Universidad de los Andes forgivable loan and research funds (INV-2018-2033-1259, INV-2019-2067-1747, INV-2018-2048-1338, and INV-2019-2086-1843). Scholarship granted by Fulbright to Mabel González as a Visiting Scholar at the Dorrestein Laboratory at Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, United States.
The authors declare no conflict of interest.
1D | First-Dimension |
2D | Second-Dimension |
AC | Alternating Current |
AMDIS | Automated Mass Spectral Deconvolution and Identification System |
ANOVA | Analysis of variance |
ATCC | American Type Culture Collection |
CAR | Carboxen |
CFM-ID | Competitive Fragmentation Modeling-Id |
CI | Chemical Ionization |
CITES | Convention on International Trade in Endangered Species of Wild Fauna and Flora |
CW | Carbowax |
DC | Direct Current |
SDE | Simultaneous Extraction-Distillation |
DHS | Dynamic Headspace |
DNP | Dictionary of Natural Products |
DVB | Divinylbenzene |
EI | Electron Ionization |
EOs | Essential Oils |
FWER | Family Wise Error Rate |
FDR | False Discovery Rate |
GC | Gas Chromatography |
GC–MS | Gas Chromatography–Mass Spectrometry |
GC-O-MS | Gas Chromatography-Olfactometry-Mass Spectrometry |
GNPS | Global Natural Products Social Networking |
GCxGC | Comprehensive Two-Dimensional Gas Chromatography |
HCA | Hierarchical Clustering |
HF-LPME | Hollow Fiber Liquid-Phase Microextraction |
HMDB | Human Metabolome Database |
HRMS | High-Resolution Mass Spectrometry |
HS | Headspace |
IT-MS | Ion-Trap Mass Spectrometer |
LLE | Liquid–Liquid Extraction |
LPME | Liquid-Phase Microextractions |
LRI | Linear Retention Indices |
MS | Mass Spectrometer |
MSI | Metabolomics Standards Initiative |
mVOCs | Microbial Volatile Organic Compounds |
m/z | Mass-To-Charge Ratio |
mzmL | Mass Spectrometry Markup Language |
mzXML | Extensible Markup Language |
NetCDF | Network Common Data Form |
NIST | National Institute of Standards and Technology |
PA | Polyacrylate |
PCA | Principal Component Analysis |
PDMS | Polydimethylsiloxane |
PLD-DA | Partial Least Squares Discriminant Analysis |
PTR-MS | Proton-Transfer-Reaction Mass Spectrometry |
PTV | Programmed Temperature Vaporizer |
RI | Retention indexes |
qMS | Quadrupole Mass Spectrometer |
SAFE | Solvent Assisted Flavor Evaporation |
SBSE | Stir Bar Sorptive Extraction |
SDME | Single Drop Microextraction |
SIFT-MS | Selected-Ion Flow-Tube Mass Spectrometry |
SIM | Selected Ion Monitoring |
SLM | Supported Liquid Membrane |
SPE | Solid-Phase Extraction |
SPME | Solid-Phase Microextraction |
TOF-MS | Time-of-Flight Mass Spectrometer |
VOCs | Volatile Organic Compounds |
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{id:"965887@"},profiles:[],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6601},{group:"region",caption:"Middle and South America",value:2,count:5906},{group:"region",caption:"Africa",value:3,count:2400},{group:"region",caption:"Asia",value:4,count:12541},{group:"region",caption:"Australia and Oceania",value:5,count:1008},{group:"region",caption:"Europe",value:6,count:17561}],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"title",topicId:"open-for-submissions\0"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:41},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:12},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:17},{group:"topic",caption:"Computer and Information Science",value:9,count:16},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:32},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:11},{group:"topic",caption:"Materials Science",value:14,count:11},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:106},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:11},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:8},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:32},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3340,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1845,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1096,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:995,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3791,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:2982,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",publishedDate:"May 18th 2022",numberOfDownloads:559,editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",publishedDate:"May 18th 2022",numberOfDownloads:546,editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",publishedDate:"May 18th 2022",numberOfDownloads:539,editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",publishedDate:"May 18th 2022",numberOfDownloads:535,editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10853",title:"Recent Advances in Polynomials",subtitle:null,isOpenForSubmission:!1,hash:"9e8671bae09ccaa8b8e276c639a737fc",slug:"recent-advances-in-polynomials",bookSignature:"Kamal Shah",coverURL:"https://cdn.intechopen.com/books/images_new/10853.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10871",title:"Computed-Tomography (CT) Scan",subtitle:null,isOpenForSubmission:!1,hash:"966d8cf74fa27eea1b9cbc9a6ee94993",slug:"computed-tomography-ct-scan",bookSignature:"Reda R. Gharieb",coverURL:"https://cdn.intechopen.com/books/images_new/10871.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"225387",title:"Prof.",name:"Reda R.",middleName:"R.",surname:"Gharieb",slug:"reda-r.-gharieb",fullName:"Reda R. Gharieb"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10904",title:"Fusarium",subtitle:"An Overview of the Genus",isOpenForSubmission:!1,hash:"49d9063e43f94bd1517d65fbc58b93c3",slug:"fusarium-an-overview-of-the-genus",bookSignature:"Seyed Mahyar Mirmajlessi",coverURL:"https://cdn.intechopen.com/books/images_new/10904.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"100573",title:"Dr.",name:"Seyed Mahyar",middleName:null,surname:"Mirmajlessi",slug:"seyed-mahyar-mirmajlessi",fullName:"Seyed Mahyar Mirmajlessi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!1,hash:"a5308884068cc53ed31c6baba756857f",slug:"brain-computer-interface",bookSignature:"Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10676",title:"Recent Applications in Graph Theory",subtitle:null,isOpenForSubmission:!1,hash:"900c60742d224080732bd16bd25ccba8",slug:"recent-applications-in-graph-theory",bookSignature:"Harun Pirim",coverURL:"https://cdn.intechopen.com/books/images_new/10676.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"146092",title:"Dr.",name:"Harun",middleName:null,surname:"Pirim",slug:"harun-pirim",fullName:"Harun Pirim"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11196",title:"New Updates in E-Learning",subtitle:null,isOpenForSubmission:!1,hash:"6afaadf68e2a0a4b370ac5ceb5ca89c6",slug:"new-updates-in-e-learning",bookSignature:"Eduard Babulak",coverURL:"https://cdn.intechopen.com/books/images_new/11196.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"10086",title:"Prof.",name:"Eduard",middleName:null,surname:"Babulak",slug:"eduard-babulak",fullName:"Eduard Babulak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editedByType:"Edited by",publishedDate:"May 18th 2022",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"208",title:"Material Science",slug:"nanotechnology-and-nanomaterials-material-science",parent:{id:"17",title:"Nanotechnology and Nanomaterials",slug:"nanotechnology-and-nanomaterials"},numberOfBooks:99,numberOfSeries:0,numberOfAuthorsAndEditors:2716,numberOfWosCitations:4236,numberOfCrossrefCitations:1964,numberOfDimensionsCitations:4604,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"208",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editedByType:"Edited by",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editedByType:"Edited by",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10504",title:"Crystallization and Applications",subtitle:null,isOpenForSubmission:!1,hash:"3478d05926950f475f4ad2825d340963",slug:"crystallization-and-applications",bookSignature:"Youssef Ben Smida and Riadh Marzouki",coverURL:"https://cdn.intechopen.com/books/images_new/10504.jpg",editedByType:"Edited by",editors:[{id:"311698",title:"Dr.",name:"Youssef",middleName:null,surname:"Ben Smida",slug:"youssef-ben-smida",fullName:"Youssef Ben Smida"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10644",title:"Recent Developments in Atomic Force Microscopy and Raman Spectroscopy for Materials Characterization",subtitle:null,isOpenForSubmission:!1,hash:"30a4c22b98d8dd2b18e5c33dade4b94b",slug:"recent-developments-in-atomic-force-microscopy-and-raman-spectroscopy-for-materials-characterization",bookSignature:"Chandra Shakher Pathak and Samir Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10644.jpg",editedByType:"Edited by",editors:[{id:"318029",title:"Dr.",name:"Chandra Shakher",middleName:null,surname:"Pathak",slug:"chandra-shakher-pathak",fullName:"Chandra Shakher Pathak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10386",title:"Ionic Liquids",subtitle:"Thermophysical Properties and Applications",isOpenForSubmission:!1,hash:"e995617af1c5e63353ae91bbdac4c894",slug:"ionic-liquids-thermophysical-properties-and-applications",bookSignature:"S. M. Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/10386.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10281",title:"Nanopores",subtitle:null,isOpenForSubmission:!1,hash:"73c465d2d70f8deca04b05d7ecae26c4",slug:"nanopores",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10281.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",middleName:null,surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9913",title:"Carbon Nanotubes",subtitle:"Redefining the World of Electronics",isOpenForSubmission:!1,hash:"43a22b8570e841b7a26d70159b2f755d",slug:"carbon-nanotubes-redefining-the-world-of-electronics",bookSignature:"Prasanta Kumar Ghosh, Kunal Datta and Arti Dinkarrao Rushi",coverURL:"https://cdn.intechopen.com/books/images_new/9913.jpg",editedByType:"Edited by",editors:[{id:"294687",title:"Dr.",name:"Prasanta",middleName:"Kumar",surname:"Ghosh",slug:"prasanta-ghosh",fullName:"Prasanta Ghosh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10479",title:"21st Century Advanced Carbon Materials for Engineering Applications",subtitle:"A Comprehensive Handbook",isOpenForSubmission:!1,hash:"712d04d43dbe1dca7dec9fcc08bc8852",slug:"21st-century-advanced-carbon-materials-for-engineering-applications-a-comprehensive-handbook",bookSignature:"Mujtaba Ikram and Asghari Maqsood",coverURL:"https://cdn.intechopen.com/books/images_new/10479.jpg",editedByType:"Edited by",editors:[{id:"286820",title:"Dr.",name:"Mujtaba",middleName:null,surname:"Ikram",slug:"mujtaba-ikram",fullName:"Mujtaba Ikram"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10411",title:"Materials at the Nanoscale",subtitle:null,isOpenForSubmission:!1,hash:"be29908600b7067c583ac21da1544a2d",slug:"materials-at-the-nanoscale",bookSignature:"Awadesh Kumar Mallik",coverURL:"https://cdn.intechopen.com/books/images_new/10411.jpg",editedByType:"Edited by",editors:[{id:"178218",title:"Dr.",name:"Awadesh",middleName:null,surname:"Mallik",slug:"awadesh-mallik",fullName:"Awadesh Mallik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10465",title:"Silver Micro-Nanoparticles",subtitle:"Properties, Synthesis, Characterization, and Applications",isOpenForSubmission:!1,hash:"dcc19a2b44c91940e16d82fd5eb8fffa",slug:"silver-micro-nanoparticles-properties-synthesis-characterization-and-applications",bookSignature:"Samir Kumar, Prabhat Kumar and Chandra Shakher Pathak",coverURL:"https://cdn.intechopen.com/books/images_new/10465.jpg",editedByType:"Edited by",editors:[{id:"296661",title:"Dr.",name:"Samir",middleName:null,surname:"Kumar",slug:"samir-kumar",fullName:"Samir Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10469",title:"Nanofibers",subtitle:"Synthesis, Properties and Applications",isOpenForSubmission:!1,hash:"28dc655dde01b94399cab954663f8bff",slug:"nanofibers-synthesis-properties-and-applications",bookSignature:"Brajesh Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10469.jpg",editedByType:"Edited by",editors:[{id:"176093",title:"Dr.",name:"Brajesh",middleName:null,surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10505",title:"Colloids",subtitle:"Types, Preparation and Applications",isOpenForSubmission:!1,hash:"55025219ea1a8b915ec8aa4b9f497a8d",slug:"colloids-types-preparation-and-applications",bookSignature:"Mohamed Nageeb Rashed",coverURL:"https://cdn.intechopen.com/books/images_new/10505.jpg",editedByType:"Edited by",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:99,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"50566",doi:"10.5772/63234",title:"Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst",slug:"influences-of-doping-on-photocatalytic-properties-of-tio2-photocatalyst",totalDownloads:5395,totalCrossrefCites:23,totalDimensionsCites:75,abstract:"As a kind of highly effective, low‐cost, and stable photocatalysts, TiO2 has received substantial public and scientific attention. However, it can only be activated under ultraviolet light irradiation due to its wide bandgap, high recombination, and weak separation efficiency of carriers. Doping is an effective method to extend the light absorption to the visible light region. In this chapter, we will address the importance of doping, different doping modes, preparation method, and photocatalytic mechanism in TiO2 photocatalysts. Thereafter, we will concentrate on Ti3+ self‐doping, nonmetal doping, metal doping, and codoping. Examples of progress can be given for each one of these four doping modes. The influencing factors of preparation method and doping modes on photocatalytic performance (spectrum response, carrier transport, interfacial electron transfer reaction, surface active sites, etc.) are summed up. The main objective is to study the photocatalytic processes, to elucidate the mechanistic models for a better understanding the photocatalytic reactions, and to find a method of enhancing photocatalytic activities.",book:{id:"5139",slug:"semiconductor-photocatalysis-materials-mechanisms-and-applications",title:"Semiconductor Photocatalysis",fullTitle:"Semiconductor Photocatalysis - Materials, Mechanisms and Applications"},signatures:"Fei Huang, Aihua Yan and Hui Zhao",authors:[{id:"178389",title:"Dr.",name:"Fei",middleName:null,surname:"Huang",slug:"fei-huang",fullName:"Fei Huang"},{id:"185126",title:"Dr.",name:"Aihua",middleName:null,surname:"Yan",slug:"aihua-yan",fullName:"Aihua Yan"},{id:"185127",title:"Ms.",name:"Hui",middleName:null,surname:"Zhao",slug:"hui-zhao",fullName:"Hui Zhao"}]},{id:"17184",doi:"10.5772/17039",title:"Polymer Nanocomposites: From Synthesis to Applications",slug:"polymer-nanocomposites-from-synthesis-to-applications",totalDownloads:17294,totalCrossrefCites:31,totalDimensionsCites:68,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"S. Anandhan and S. Bandyopadhyay",authors:[{id:"27050",title:"Prof.",name:"Sri",middleName:null,surname:"Bandyopadhyay",slug:"sri-bandyopadhyay",fullName:"Sri Bandyopadhyay"},{id:"44992",title:"Prof.",name:"Anandhan",middleName:null,surname:"Srinivasan",slug:"anandhan-srinivasan",fullName:"Anandhan Srinivasan"}]},{id:"9725",doi:"10.5772/8508",title:"Biosynthesis and Application of Silver and Gold Nanoparticles",slug:"biosynthesis-and-application-of-silver-and-gold-nanoparticles",totalDownloads:27930,totalCrossrefCites:23,totalDimensionsCites:58,abstract:null,book:{id:"3621",slug:"silver-nanoparticles",title:"Silver Nanoparticles",fullTitle:"Silver Nanoparticles"},signatures:"Zygmunt Sadowski",authors:null},{id:"17194",doi:"10.5772/21694",title:"Properties of Nanofillers in Polymer",slug:"properties-of-nanofillers-in-polymer",totalDownloads:20390,totalCrossrefCites:9,totalDimensionsCites:56,abstract:null,book:{id:"1045",slug:"nanocomposites-and-polymers-with-analytical-methods",title:"Nanocomposites and Polymers with Analytical Methods",fullTitle:"Nanocomposites and Polymers with Analytical Methods"},signatures:"Damien M. Marquis, Éric Guillaume and Carine Chivas-Joly",authors:[{id:"44307",title:"Dr",name:"Damien",middleName:"Michel",surname:"Marquis",slug:"damien-marquis",fullName:"Damien Marquis"},{id:"44317",title:"Prof.",name:"Carine",middleName:null,surname:"Chivas-Joly",slug:"carine-chivas-joly",fullName:"Carine Chivas-Joly"}]},{id:"52860",doi:"10.5772/65937",title:"Cerium Oxide Nanostructures and their Applications",slug:"cerium-oxide-nanostructures-and-their-applications",totalDownloads:5377,totalCrossrefCites:24,totalDimensionsCites:58,abstract:"Due to excellent physical and chemical properties, cerium oxide (ceria, CeO2) has attracted much attention in recent years. This chapter aimed at providing some basic and fundamental properties of ceria, the importance of oxygen vacancies in this material, nano‐size effects and various synthesis strategies to form diverse structural morphologies. Finally, some key applications of ceria‐based nanostructures are reviewed. We conclude this chapter by expressing personal perspective on the probable challenges and developments of the controllable synthesis of CeO2 nanomaterials for various applications.",book:{id:"5510",slug:"functionalized-nanomaterials",title:"Functionalized Nanomaterials",fullTitle:"Functionalized Nanomaterials"},signatures:"Adnan Younis, Dewei Chu and Sean Li",authors:[{id:"191574",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"}]}],mostDownloadedChaptersLast30Days:[{id:"71103",title:"Preparation of Nanoparticles",slug:"preparation-of-nanoparticles",totalDownloads:3140,totalCrossrefCites:11,totalDimensionsCites:25,abstract:"Innovative developments of science and engineering have progressed very fast toward the synthesis of nanomaterials to achieve unique properties that are not the same as the properties of the bulk materials. The particle reveals interesting properties at the dimension below 100 nm, mostly from two physical effects. The two physical effects are the quantization of electronic states apparent leading to very sensitive size-dependent effects such as optical and magnetic properties and the high surface-to-volume ratio modifies the thermal, mechanical, and chemical properties of materials. The nanoparticles’ unique physical and chemical properties render them most appropriate for a number of specialist applications.",book:{id:"9109",slug:"engineered-nanomaterials-health-and-safety",title:"Engineered Nanomaterials",fullTitle:"Engineered Nanomaterials - Health and Safety"},signatures:"Takalani Cele",authors:[{id:"305934",title:"Dr.",name:"Takalani",middleName:null,surname:"Cele",slug:"takalani-cele",fullName:"Takalani Cele"}]},{id:"72636",title:"Nanocomposite Materials",slug:"nanocomposite-materials",totalDownloads:2139,totalCrossrefCites:5,totalDimensionsCites:11,abstract:"Nanocomposites are the heterogeneous/hybrid materials that are produced by the mixtures of polymers with inorganic solids (clays to oxides) at the nanometric scale. Their structures are found to be more complicated than that of microcomposites. They are highly influenced by the structure, composition, interfacial interactions, and components of individual property. Most popularly, nanocomposites are prepared by the process within in situ growth and polymerization of biopolymer and inorganic matrix. With the rapid estimated demand of these striking potentially advanced materials, make them very much useful in various industries ranging from small scale to large to very large manufacturing units. With a great deal to mankind with environmental friendly, these offer advanced technologies in addition to the enhanced business opportunities to several industrial sectors like automobile, construction, electronics and electrical, food packaging, and technology transfer.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Mousumi Sen",authors:[{id:"310218",title:"Dr.",name:"Mousumi",middleName:null,surname:"Sen",slug:"mousumi-sen",fullName:"Mousumi Sen"}]},{id:"38951",title:"Carbon Nanotube Transparent Electrode",slug:"carbon-nanotube-transparent-electrode",totalDownloads:3985,totalCrossrefCites:3,totalDimensionsCites:5,abstract:null,book:{id:"3077",slug:"syntheses-and-applications-of-carbon-nanotubes-and-their-composites",title:"Syntheses and Applications of Carbon Nanotubes and Their Composites",fullTitle:"Syntheses and Applications of Carbon Nanotubes and Their Composites"},signatures:"Jing Sun and Ranran Wang",authors:[{id:"153508",title:"Prof.",name:"Jing",middleName:null,surname:"Sun",slug:"jing-sun",fullName:"Jing Sun"},{id:"153596",title:"Ms.",name:"Ranran",middleName:null,surname:"Wang",slug:"ranran-wang",fullName:"Ranran Wang"}]},{id:"49413",title:"Electrodeposition of Nanostructure Materials",slug:"electrodeposition-of-nanostructure-materials",totalDownloads:3732,totalCrossrefCites:1,totalDimensionsCites:7,abstract:"We are conducting a multi-disciplinary research work that involves development of nanostructured thin films of semiconductors for different applications. Nanotechnology is widely considered to constitute the basis of the next technological revolution, following on from the first Industrial Revolution, which began around 1750 with the introduction of the steam engine and steelmaking. Nanotechnology is defined as the design, characterization, production, and application of materials, devices and systems by controlling shape and size of the nanoscale. The nanoscale itself is at present considered to cover the range from 1 to 100 nm. All samples prepared in thin film forms and the characterization revealed their nanostructure. The major exploitation of thin films has been in microelectronics, there are numerous and growing applications in communications, optical electronics, coatings of all kinds, and in energy generation. A great many sophisticated analytical instruments and techniques, largely developed to characterize thin films, have already become indispensable in virtually every scientific endeavor irrespective of discipline. Among all these techniques, electrodeposition is the most suitable technique for nanostructured thin films from aqueous solution served as samples under investigation. The electrodeposition of metallic layers from aqueous solution is based on the discharge of metal ions present in the electrolyte at a cathodic surface (the substrate or component.) The metal ions accept an electron from the electrically conducting material at the solid- electrolyte interface and then deposit as metal atoms onto the surface. The electrons necessary for this to occur are either supplied from an externally applied potential source or are surrendered by a reducing agent present in solution (electroless reduction). The metal ions themselves derive either from metal salts added to solution, or by the anodic dissolution of the so-called sacrificial anodes, made of the same metal that is to be deposited at the cathode.",book:{id:"4718",slug:"electroplating-of-nanostructures",title:"Electroplating of Nanostructures",fullTitle:"Electroplating of Nanostructures"},signatures:"Souad A. M. Al-Bat’hi",authors:[{id:"174793",title:"Dr.",name:"Mohamad",middleName:null,surname:"Souad",slug:"mohamad-souad",fullName:"Mohamad Souad"}]},{id:"71346",title:"Application of Nanomaterials in Environmental Improvement",slug:"application-of-nanomaterials-in-environmental-improvement",totalDownloads:1691,totalCrossrefCites:0,totalDimensionsCites:13,abstract:"In recent years, researchers used many scientific studies to improve modern technologies in the field of reducing the phenomenon of pollution resulting from them. In this chapter, methods to prepare nanomaterials are described, and the main properties such as mechanical, electrical, and optical properties and their relations are determined. The investigation of nanomaterials needed high technologies that depend on a range of nanomaterials from 1 to 100 nm; these are scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffractions (XRD). The applications of nanomaterials in environmental improvement are different from one another depending on the type of devices used, for example, solar cells for producing clean energy, nanotechnologies in coatings for building exterior surfaces, and sonochemical decolorization of dyes by the effect of nanocomposite.",book:{id:"10072",slug:"nanotechnology-and-the-environment",title:"Nanotechnology and the Environment",fullTitle:"Nanotechnology and the Environment"},signatures:"Ali Salman Ali",authors:[{id:"313275",title:"Associate Prof.",name:"Ali",middleName:null,surname:"Salman",slug:"ali-salman",fullName:"Ali Salman"}]}],onlineFirstChaptersFilter:{topicId:"208",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81438",title:"Research Progress of Ionic Thermoelectric Materials for Energy Harvesting",slug:"research-progress-of-ionic-thermoelectric-materials-for-energy-harvesting",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.101771",abstract:"Thermoelectric material is a kind of functional material that can mutually convert heat energy and electric energy. It can convert low-grade heat energy (less than 130°C) into electric energy. Compared with traditional electronic thermoelectric materials, ionic thermoelectric materials have higher performance. The Seebeck coefficient can generate 2–3 orders of magnitude higher ionic thermoelectric potential than electronic thermoelectric materials, so it has good application prospects in small thermoelectric generators and solar power generation. According to the thermoelectric conversion mechanism, ionic thermoelectric materials can be divided into ionic thermoelectric materials based on the Soret effect and thermocouple effect. They are widely used in pyrogen batteries and ionic thermoelectric capacitors. The latest two types of ionic thermoelectric materials are in this article. The research progress is explained, and the problems and challenges of ionic thermoelectric materials and the future development direction are also put forward.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jianwei Zhang, Ying Xiao, Bowei Lei, Gengyuan Liang and Wenshu Zhao"},{id:"77670",title:"Thermoelectric Elements with Negative Temperature Factor of Resistance",slug:"thermoelectric-elements-with-negative-temperature-factor-of-resistance",totalDownloads:72,totalDimensionsCites:0,doi:"10.5772/intechopen.98860",abstract:"The method of manufacturing of ceramic materials on the basis of ferrites of nickel and cobalt by synthesis and sintering in controllable regenerative atmosphere is presented. As the generator of regenerative atmosphere the method of conversion of carbonic gas is offered. Calculation of regenerative atmosphere for simultaneous sintering of ceramic ferrites of nickel and cobalt is carried out. It is offered, methods of the dilated nonequilibrium thermodynamics to view process of distribution of a charge and heat along a thermoelement branch. The model of a thermoelement taking into account various relaxation times of a charge and warmth is constructed.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Yuri Bokhan"},{id:"79236",title:"Processing Techniques with Heating Conditions for Multiferroic Systems of BiFeO3, BaTiO3, PbTiO3, CaTiO3 Thin Films",slug:"processing-techniques-with-heating-conditions-for-multiferroic-systems-of-bifeo3-batio3-pbtio3-catio",totalDownloads:96,totalDimensionsCites:0,doi:"10.5772/intechopen.101122",abstract:"In this chapter, we have report a list of synthesis methods (including both synthesis steps & heating conditions) used for thin film fabrication of perovskite ABO3 (BiFeO3, BaTiO3, PbTiO3 and CaTiO3) based multiferroics (in both single-phase and composite materials). The processing of high quality multiferroic thin film have some features like epitaxial strain, physical phenomenon at atomic-level, interfacial coupling parameters to enhance device performance. Since these multiferroic thin films have ME properties such as electrical (dielectric, magnetoelectric coefficient & MC) and magnetic (ferromagnetic, magnetic susceptibility etc.) are heat sensitive, i.e. ME response at low as well as higher temperature might to enhance the device performance respect with long range ordering. The magnetoelectric coupling between ferromagnetism and ferroelectricity in multiferroic becomes suitable in the application of spintronics, memory and logic devices, and microelectronic memory or piezoelectric devices. In comparison with bulk multiferroic, the fabrication of multiferroic thin film with different structural geometries on substrate has reducible clamping effect. A brief procedure for multiferroic thin film fabrication in terms of their thermal conditions (temperature for film processing and annealing for crystallization) are described. Each synthesis methods have its own characteristic phenomenon in terms of film thickness, defects formation, crack free film, density, chip size, easier steps and availability etc. been described. A brief study towards phase structure and ME coupling for each multiferroic system of BiFeO3, BaTiO3, PbTiO3 and CaTiO3 is shown.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Kuldeep Chand Verma and Manpreet Singh"},{id:"78034",title:"Quantum Physical Interpretation of Thermoelectric Properties of Ruthenate Pyrochlores",slug:"quantum-physical-interpretation-of-thermoelectric-properties-of-ruthenate-pyrochlores",totalDownloads:78,totalDimensionsCites:0,doi:"10.5772/intechopen.99260",abstract:"Lead- and lead-yttrium ruthenate pyrochlores were synthesized and investigated for Seebeck coefficients, electrical- and thermal conductivity. Compounds A2B2O6.5+z with 0 ≤ z < 0.5 were defect pyrochlores and p-type conductors. The thermoelectric data were analyzed using quantum physical models to identify scattering mechanisms underlying electrical (σ) and thermal conductivity (κ) and to understand the temperature dependence of the Seebeck effect (S). In the metal-like lead ruthenates with different Pb:Ru ratios, σ (T) and the electronic thermal conductivity κe (T) were governed by ‘electron impurity scattering’, the lattice thermal conductivity κL (T) by the 3-phonon resistive process (Umklapp scattering). In the lead-yttrium ruthenate solid solutions (Pb(2-x)YxRu2O(6.5±z)), a metal–insulator transition occurred at 0.2 moles of yttrium. On the metallic side (<0.2 moles Y) ‘electron impurity scattering’ prevailed. On the semiconductor/insulator side between x = 0.2 and x = 1.0 several mechanisms were equally likely. At x > 1.5 the Mott Variable Range Hopping mechanism was active. S (T) was discussed for Pb-Y-Ru pyrochlores in terms of the effect of minority carrier excitation at lower- and a broadening of the Fermi distribution at higher temperatures. The figures of merit of all of these pyrochlores were still small (≤7.3 × 10−3).",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Sepideh Akhbarifar"},{id:"77635",title:"Optimization of Thermoelectric Properties Based on Rashba Spin Splitting",slug:"optimization-of-thermoelectric-properties-based-on-rashba-spin-splitting",totalDownloads:124,totalDimensionsCites:0,doi:"10.5772/intechopen.98788",abstract:"In recent years, the application of thermoelectricity has become more and more widespread. Thermoelectric materials provide a simple and environmentally friendly solution for the direct conversion of heat to electricity. The development of higher performance thermoelectric materials and their performance optimization have become more important. Generally, to improve the ZT value, electrical conductivity, Seebeck coefficient and thermal conductivity must be globally optimized as a whole object. However, due to the strong coupling among ZT parameters in many cases, it is very challenging to break the bottleneck of ZT optimization currently. Beyond the traditional optimization methods (such as inducing defects, varying temperature), the Rashba effect is expected to effectively increase the S2σ and decrease the κ, thus enhancing thermoelectric performance, which provides a new strategy to develop new-generation thermoelectric materials. Although the Rashba effect has great potential in enhancing thermoelectric performance, the underlying mechanism of Rashba-type thermoelectric materials needs further research. In addition, how to introduce Rashba spin splitting into current thermoelectric materials is also of great significance to the optimization of thermoelectricity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Zhenzhen Qin"},{id:"75364",title:"Challenges in Improving Performance of Oxide Thermoelectrics Using Defect Engineering",slug:"challenges-in-improving-performance-of-oxide-thermoelectrics-using-defect-engineering",totalDownloads:214,totalDimensionsCites:0,doi:"10.5772/intechopen.96278",abstract:"Oxide thermoelectric materials are considered promising for high-temperature thermoelectric applications in terms of low cost, temperature stability, reversible reaction, and so on. Oxide materials have been intensively studied to suppress the defects and electronic charge carriers for many electronic device applications, but the studies with a high concentration of defects are limited. It desires to improve thermoelectric performance by enhancing its charge transport and lowering its lattice thermal conductivity. For this purpose, here, we modified the stoichiometry of cation and anion vacancies in two different systems to regulate the carrier concentration and explored their thermoelectric properties. Both cation and anion vacancies act as a donor of charge carriers and act as phonon scattering centers, decoupling the electrical conductivity and thermal conductivity.",book:{id:"10037",title:"Thermoelectricity - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg"},signatures:"Jamil Ur Rahman, Gul Rahman and Soonil Lee"}],onlineFirstChaptersTotal:6},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:287,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:10,numberOfPublishedChapters:103,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"