Renewable energy resource (RER) energy systems are becoming more cost-effective and this work investigates the effect of shared load on the optimal sizing of a renewable energy resource (RER) microgrid. The RER system consists of solar panels, wind turbines, battery storage, and a backup diesel generator, and it is isolated from conventional grid power. The building contains a restaurant and 12 residential apartments. Historical meter readings and restaurant modeling represent the apartments and restaurant, respectively. Weather data determines hourly RER power, and a dispatching algorithm predicts power flows between system elements. A genetic algorithm approach minimizes total annual cost over the number of PV and turbines, battery capacity, and generator size, with a constraint on the renewable penetration. Results indicate that load-mixing serves to reduce cost, and the reduction is largest if the diesel backup is removed from the system. This cost is optimized with a combination of particle swarm optimization with genetic-algorithm approach minimizes total annual cost over the number of solar panels and micro-turbines, battery capacity, and diesel generator size, with a constraint on the renewable penetration. Results indicate that load-mixing serves to reduce cost, and the reduction is largest if the diesel backup is removed from the system.
Part of the book: Smart Microgrids