Data used for parameter optimization.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:{caption:"IntechOpen Maintains",originalUrl:"/media/original/113"}},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"10196",leadTitle:null,fullTitle:"Hot Topics in Endocrinology and Metabolism",title:"Hot Topics in Endocrinology and Metabolism",subtitle:null,reviewType:"peer-reviewed",abstract:"The field of endocrinology and metabolism represents a complex and multifaceted specialty in medicine that may be affected by different factors. This book presents an overview of several endocrine-disrupting chemicals, especially those affecting the reproductive system and adipose tissue. It also discusses the endocrine and metabolic impacts of the COVID-19 pandemic and the pathogenesis of lipedema.",isbn:"978-1-83962-912-9",printIsbn:"978-1-83962-911-2",pdfIsbn:"978-1-83962-913-6",doi:"10.5772/intechopen.90963",price:119,priceEur:129,priceUsd:155,slug:"hot-topics-in-endocrinology-and-metabolism",numberOfPages:136,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"d6df932c01289abc774e4c180b5632fd",bookSignature:"Hassan Massoud Heshmati",publishedDate:"December 8th 2021",coverURL:"https://cdn.intechopen.com/books/images_new/10196.jpg",numberOfDownloads:2163,numberOfWosCitations:0,numberOfCrossrefCitations:5,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:9,numberOfDimensionsCitationsByBook:0,hasAltmetrics:1,numberOfTotalCitations:14,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 28th 2020",dateEndSecondStepPublish:"September 25th 2020",dateEndThirdStepPublish:"November 24th 2020",dateEndFourthStepPublish:"February 12th 2021",dateEndFifthStepPublish:"April 13th 2021",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"313921",title:"Dr.",name:"Hassan M.",middleName:null,surname:"Heshmati",slug:"hassan-m.-heshmati",fullName:"Hassan M. Heshmati",profilePictureURL:"https://mts.intechopen.com/storage/users/313921/images/system/313921.jpg",biography:"Dr. Hassan Massoud Heshmati is an endocrinologist with 46 years of experience in clinical research in academia (university-affiliated hospitals, Paris, France; Mayo Foundation, Rochester, MN, USA) and pharmaceutical companies (Sanofi, Malvern, PA, USA; Essentialis, Carlsbad, CA, USA; Gelesis, Boston, MA, USA). His research activity focuses on pituitary tumors, hyperthyroidism, thyroid cancers, osteoporosis, diabetes, and obesity. He has extensive knowledge in the development of anti-obesity products. Dr. Heshmati is the author of 299 abstracts, chapters, and articles related to endocrinology and metabolism. He is currently a consultant at Endocrinology Metabolism Consulting, LLC, Anthem, AZ, USA.",institutionString:"Endocrinology Metabolism Consulting, LLC",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"178",title:"Endocrinology",slug:"medicine-endocrinology"}],chapters:[{id:"75692",title:"G-Protein Coupled Hormone Receptors of the Hypothalamic-Pituitary-Gonadal Axis are Targets of Endocrine Disrupting Chemicals",doi:"10.5772/intechopen.96240",slug:"g-protein-coupled-hormone-receptors-of-the-hypothalamic-pituitary-gonadal-axis-are-targets-of-endocr",totalDownloads:232,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:1,abstract:"Endocrine-disrupting chemicals have received significant concern, since they ubiquitously persist in the environment and are able to induce adverse effects on health, and more particularly on reproductive function. Most of the studies focused on nuclear hormone receptors as mediators of sex steroid hormones signaling. However, there are increasing evidences that peptides hormones of the Hypothalamo-Pituitary-Gonadal axis are targets of endocrine-disrupting chemicals (as Gonadotropin-Releasing Hormone, Follicle-Stimulating Hormone, Luteinizing Hormone…). The majority of these hormones act on G protein-coupled membrane receptors. This review summarizes the effects of endocrine-disrupting chemicals on homeostasis of peptides hormone of Hypothalamo-Pituitary-Gonadal axis and on their G protein-coupled membrane receptors signaling revealed by experimental, clinical, and epidemiological studies in human.",signatures:"Valentine Suteau, Patrice Rodien and Mathilde Munier",downloadPdfUrl:"/chapter/pdf-download/75692",previewPdfUrl:"/chapter/pdf-preview/75692",authors:[{id:"316306",title:"Dr.",name:"Valentine",surname:"Suteau",slug:"valentine-suteau",fullName:"Valentine Suteau"},{id:"316307",title:"Prof.",name:"Patrice",surname:"Rodien",slug:"patrice-rodien",fullName:"Patrice Rodien"},{id:"330138",title:"Ph.D.",name:"Mathilde",surname:"Munier",slug:"mathilde-munier",fullName:"Mathilde Munier"}],corrections:null},{id:"75387",title:"Effect of Endocrine Disrupting Chemicals on HPG Axis: A Reproductive Endocrine Homeostasis",doi:"10.5772/intechopen.96330",slug:"effect-of-endocrine-disrupting-chemicals-on-hpg-axis-a-reproductive-endocrine-homeostasis",totalDownloads:357,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"The hypothalamic–pituitary-gonadal (HPG) axis plays a crucial and integrative role in the mammalian endocrine regulation to maintain homeostasis. The HPG axis is primarily responsible for governing all the hormonal events related to reproductive activity. Endocrine-disrupting chemicals (EDCs) comprise a diverse group of naturally occurring and synthetic compounds that mimic and interfere with the endogenous chemical hormones. Epidemiological investigations have shown increasing evidence of altered development and detrimental effects on reproductive health during the past 50 years associated with endocrine disruptors affecting the HPG axis. The pleiotropic harmful effects of EDCs act through hormone-dependent downstream signaling pathways responsible for gonad development either through direct interaction with steroid hormone receptor or via epigenetic regulation. Hence, this chapter summarizes the biological plausibility of EDCs exposure and elucidates the mechanism of action underlying EDCs affecting the regulatory circuits of the mammalian HPG axis and reproductive function.",signatures:"Priya Gupta, Archisman Mahapatra, Anjali Suman and Rahul Kumar Singh",downloadPdfUrl:"/chapter/pdf-download/75387",previewPdfUrl:"/chapter/pdf-preview/75387",authors:[{id:"332218",title:"Ms.",name:"Priya",surname:"Gupta",slug:"priya-gupta",fullName:"Priya Gupta"},{id:"332846",title:"Dr.",name:"Rahul Kumar",surname:"Singh",slug:"rahul-kumar-singh",fullName:"Rahul Kumar Singh"},{id:"332848",title:"Ms.",name:"Anjali",surname:"Suman",slug:"anjali-suman",fullName:"Anjali Suman"},{id:"332849",title:"Mr.",name:"Archisman",surname:"Mahapatra",slug:"archisman-mahapatra",fullName:"Archisman Mahapatra"}],corrections:null},{id:"75707",title:"Environmental Obesogens and Human Health",doi:"10.5772/intechopen.96730",slug:"environmental-obesogens-and-human-health",totalDownloads:288,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Obesity is an alarming public health concern that contributes to a substantially increased risk of multiple chronic disorders, including diabetes. As per WHO data, in 2016, almost 39% adult population of the world is overweight, 13% of them were obese. There is prominent evidence on the involvement of environmental endocrine-disrupting chemicals, termed obesogens, in the prevalence of this growing worldwide pandemic, obesity. The exaggerated effect of obesogens on endocrine disruption, lipid metabolism and homeostasis, adipocyte functioning, impaired thermogenesis, inflammation, epigenetics, and overall human health will be covered in this chapter. This chapter will discuss the environmental obesogen hypothesis, the epidemiological and experimental evidence of obesogens, its chemical characteristics, and possible mechanism of actions. It will also focus on some recent indications of obesogens and their correlation in COVID-19 disease pathogenesis. This chapter will try to conclude with strategies for identifying the underlying mechanisms of obesogens within model systems and the human body, including future directions.",signatures:"Archisman Mahapatra, Priya Gupta, Anjali Suman and Rahul Kumar Singh",downloadPdfUrl:"/chapter/pdf-download/75707",previewPdfUrl:"/chapter/pdf-preview/75707",authors:[{id:"332218",title:"Ms.",name:"Priya",surname:"Gupta",slug:"priya-gupta",fullName:"Priya Gupta"},{id:"332846",title:"Dr.",name:"Rahul Kumar",surname:"Singh",slug:"rahul-kumar-singh",fullName:"Rahul Kumar Singh"},{id:"332848",title:"Ms.",name:"Anjali",surname:"Suman",slug:"anjali-suman",fullName:"Anjali Suman"},{id:"331908",title:"Mr.",name:"Archisman",surname:"Mahapatra",slug:"archisman-mahapatra",fullName:"Archisman Mahapatra"}],corrections:null},{id:"75565",title:"Critical Analysis of Human Exposure to Bisphenol A and Its Novel Implications on Renal, Cardiovascular and Hypertensive Diseases",doi:"10.5772/intechopen.96309",slug:"critical-analysis-of-human-exposure-to-bisphenol-a-and-its-novel-implications-on-renal-cardiovascula",totalDownloads:210,totalCrossrefCites:0,totalDimensionsCites:4,hasAltmetrics:0,abstract:"Bisphenol A (BPA), an endocrine disruptor involved in synthesizing numerous types of plastics, is detected in almost the entire population’s urine. The present work aims to estimate daily exposure to BPA by systematically reviewing all articles with original data related to urinary BPA concentration. This approach is based on human pharmacokinetic models, which have shown that 100% of BPA (free and metabolized form) is eliminated only in a few hours through urine. Several extensive population studies and experimental data have recently proven a significant association between urinary excretion of BPA and albuminuria, associated with renal damage. Our team’s previous work has shown that low-dose BPA can promote a cytotoxic effect on renal mouse podocytes. Moreover, BPA administration in mice promotes kidney damage and hypertension. Furthermore, preliminary studies in human renal cells in culture (podocytes) strongly suggest that BPA might also promote kidney damage. Overall, the present review analyzed BPA exposure data from mammalian cell studies, experimental animal models, and several human populations. Studying principal cohorts calculated the exposures to BPA globally, showing a high BPA exposure suggesting the need to decrease BPA exposure more effectively, emphasizing groups with higher sensitivity as kidney disease patients.",signatures:"Rafael Moreno-Gómez-Toledano, María I. Arenas, Sandra Sánchez-Esteban, Alberto Cook, Marta Saura and Ricardo J. Bosch",downloadPdfUrl:"/chapter/pdf-download/75565",previewPdfUrl:"/chapter/pdf-preview/75565",authors:[{id:"63564",title:"Prof.",name:"Ricardo J.",surname:"Bosch",slug:"ricardo-j.-bosch",fullName:"Ricardo J. Bosch"},{id:"116570",title:"Prof.",name:"María I.",surname:"Arenas",slug:"maria-i.-arenas",fullName:"María I. Arenas"},{id:"332083",title:"Ph.D. Student",name:"Rafael",surname:"Moreno-Gómez-Toledano",slug:"rafael-moreno-gomez-toledano",fullName:"Rafael Moreno-Gómez-Toledano"},{id:"341225",title:"Mrs.",name:"Sandra",surname:"Sánchez-Esteban",slug:"sandra-sanchez-esteban",fullName:"Sandra Sánchez-Esteban"},{id:"341246",title:"Mr.",name:"Alberto",surname:"Cook",slug:"alberto-cook",fullName:"Alberto Cook"},{id:"341247",title:"Prof.",name:"Marta",surname:"Saura",slug:"marta-saura",fullName:"Marta Saura"}],corrections:null},{id:"79019",title:"Consequences of COVID-19 Pandemic Including Endocrine and Metabolic Impacts",doi:"10.5772/intechopen.100278",slug:"consequences-of-covid-19-pandemic-including-endocrine-and-metabolic-impacts",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"A pandemic is an epidemic that spreads globally. Coronavirus disease 2019 (COVID-19) caused a major pandemic that affected human health and activities around the world since the beginning of 2020 and became a major international emergency. Through multiple paths, COVID-19 pandemic influenced life at individual, familial, societal, and environmental levels and led to a global economic recession. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the disease. It invades the target cells by binding to angiotensin-converting enzyme 2 (ACE2). Endocrine and metabolic systems can be implicated in COVID-19 infection. Subjects with several comorbidities (e.g., hypertension, diabetes, and obesity) are more likely to be infected and are at a higher risk for complications and death from COVID-19. Wearing mask, social distancing, home confinement, and isolation have been recommended and implemented in several countries to curb the spread of the outbreak. Vaccination remains the best protective measure. Different vaccines are now available and have been used. The worldwide impact of COVID-19 pandemic may last several years.",signatures:"Hassan M. Heshmati",downloadPdfUrl:"/chapter/pdf-download/79019",previewPdfUrl:"/chapter/pdf-preview/79019",authors:[{id:"313921",title:"Dr.",name:"Hassan M.",surname:"Heshmati",slug:"hassan-m.-heshmati",fullName:"Hassan M. Heshmati"}],corrections:null},{id:"75320",title:"Estrogen as a Contributing Factor to the Development of Lipedema",doi:"10.5772/intechopen.96402",slug:"estrogen-as-a-contributing-factor-to-the-development-of-lipedema",totalDownloads:934,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:1,abstract:"Lipedema is an underdiagnosed painful adipose tissue disorder that occurs almost exclusively in women, with onset manifesting at puberty or at times of hormonal change. Unlike many fat disorders, diet and exercise have little to no impact on the prevention or progression of this disease. Estrogens control the distribution of body fat and food intake, regulate leptin expression, increase insulin sensitivity, and reduce inflammation through signaling pathways mediated by its receptors, estrogen receptor alpha (ERα) and ERβ. This review will focus on understanding the role of estrogen in the pathogenesis of the disease and envisage potential hormonal therapy for lipedema patients.",signatures:"Sara Al-Ghadban, Mary L. Teeler and Bruce A. Bunnell",downloadPdfUrl:"/chapter/pdf-download/75320",previewPdfUrl:"/chapter/pdf-preview/75320",authors:[{id:"304521",title:"Ph.D.",name:"Sara",surname:"Al-Ghadban",slug:"sara-al-ghadban",fullName:"Sara Al-Ghadban"},{id:"345862",title:"Dr.",name:"Mary L.",surname:"Teeler",slug:"mary-l.-teeler",fullName:"Mary L. Teeler"},{id:"345863",title:"Prof.",name:"Bruce A.",surname:"Bunnell",slug:"bruce-a.-bunnell",fullName:"Bruce A. Bunnell"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6581",title:"Adipose Tissue",subtitle:null,isOpenForSubmission:!1,hash:"85899eab2d8b01653e1297b168c470d7",slug:"adipose-tissue",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/6581.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6246",title:"Salivary Glands",subtitle:"New Approaches in Diagnostics and Treatment",isOpenForSubmission:!1,hash:"de375ecbd9ac673d6464107a0c416763",slug:"salivary-glands-new-approaches-in-diagnostics-and-treatment",bookSignature:"Işıl Adadan Güvenç",coverURL:"https://cdn.intechopen.com/books/images_new/6246.jpg",editedByType:"Edited by",editors:[{id:"36790",title:"M.D.",name:"Işıl",surname:"Adadan Güvenç",slug:"isil-adadan-guvenc",fullName:"Işıl Adadan Güvenç"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7269",title:"Endocrine Disruptors",subtitle:null,isOpenForSubmission:!1,hash:"571f5c496c8b0e8db9043204fa58be2a",slug:"endocrine-disruptors",bookSignature:"Ahmed R. G.",coverURL:"https://cdn.intechopen.com/books/images_new/7269.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"R.G.",surname:"Ahmed",slug:"r.g.-ahmed",fullName:"R.G. Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",isOpenForSubmission:!1,hash:"34880b7b450ef96fa5063c867c028b02",slug:"adipose-tissue-an-update",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7059",title:"Amyloid Diseases",subtitle:null,isOpenForSubmission:!1,hash:"d9a197d34d3d6006af726d577060f928",slug:"amyloid-diseases",bookSignature:"Dmitry Kurouski",coverURL:"https://cdn.intechopen.com/books/images_new/7059.jpg",editedByType:"Edited by",editors:[{id:"264297",title:"Dr.",name:"Dmitry",surname:"Kurouski",slug:"dmitry-kurouski",fullName:"Dmitry Kurouski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6154",title:"Diabetes and Its Complications",subtitle:null,isOpenForSubmission:!1,hash:"79f08a2c1cbbcea2d1df2ad075d2f9fa",slug:"diabetes-and-its-complications",bookSignature:"Ahmed R. G.",coverURL:"https://cdn.intechopen.com/books/images_new/6154.jpg",editedByType:"Edited by",editors:[{id:"138555",title:"Prof.",name:"R.G.",surname:"Ahmed",slug:"r.g.-ahmed",fullName:"R.G. Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",isOpenForSubmission:!1,hash:"bfbc5538173f11acb0f9549a85b70489",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",bookSignature:"Marilena Vlachou",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",editedByType:"Edited by",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7020",title:"Thymus",subtitle:null,isOpenForSubmission:!1,hash:"d5e32bf6c19eb7408108a84bc3d37948",slug:"thymus",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7020.jpg",editedByType:"Edited by",editors:[{id:"116250",title:"Dr.",name:"Nima",surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7061",title:"Blood Glucose Levels",subtitle:null,isOpenForSubmission:!1,hash:"71d38173067c610b03c51dec97dd031d",slug:"blood-glucose-levels",bookSignature:"Leszek Szablewski",coverURL:"https://cdn.intechopen.com/books/images_new/7061.jpg",editedByType:"Edited by",editors:[{id:"49739",title:"Dr.",name:"Leszek",surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10488",title:"Renin-Angiotensin Aldosterone System",subtitle:null,isOpenForSubmission:!1,hash:"5815b21958b2b2d5b653771c3f0cc35c",slug:"renin-angiotensin-aldosterone-system",bookSignature:"Samy I. McFarlane",coverURL:"https://cdn.intechopen.com/books/images_new/10488.jpg",editedByType:"Edited by",editors:[{id:"53477",title:"Prof.",name:"Samy I.",surname:"McFarlane",slug:"samy-i.-mcfarlane",fullName:"Samy I. McFarlane"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"81456",slug:"corrigendum-to-occurrence-of-dog-bites-and-rabies-within-humans-in-srinagar-kashmir",title:"Corrigendum to: Occurrence of Dog Bites and Rabies within Humans in Srinagar, Kashmir",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/81456.pdf",downloadPdfUrl:"/chapter/pdf-download/81456",previewPdfUrl:"/chapter/pdf-preview/81456",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/81456",risUrl:"/chapter/ris/81456",chapter:{id:"76894",slug:"occurrence-of-dog-bites-and-rabies-within-humans-in-srinagar-kashmir",signatures:"Namera Thahaby, Afzal Hoque Akand, Abdul Hai Bhat, Shabeer Ahmed Hamdani and Mudasir Ali Rather",dateSubmitted:"February 15th 2021",dateReviewed:"May 3rd 2021",datePrePublished:"May 25th 2021",datePublished:"May 11th 2022",book:{id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,fullTitle:"Rabies Virus at the Beginning of 21st Century",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"339059",title:"Dr.",name:"Namera",middleName:null,surname:"Thahaby",fullName:"Namera Thahaby",slug:"namera-thahaby",email:"nimrazahbi@gmail.com",position:null,institution:null},{id:"348665",title:"Dr.",name:"Afzal",middleName:null,surname:"Hoque Akand",fullName:"Afzal Hoque Akand",slug:"afzal-hoque-akand",email:"a@gmail.com",position:null,institution:null},{id:"348666",title:"Dr.",name:"Shabeer",middleName:null,surname:"Ahmed Hamdani",fullName:"Shabeer Ahmed Hamdani",slug:"shabeer-ahmed-hamdani",email:"S@GMAIL.COM",position:null,institution:null},{id:"348667",title:"Dr.",name:"Abdul",middleName:null,surname:"Hai Bhat",fullName:"Abdul Hai Bhat",slug:"abdul-hai-bhat",email:"ab@gmail.com",position:null,institution:null},{id:"417258",title:"Prof.",name:"Mudasir",middleName:null,surname:"Ali Rather",fullName:"Mudasir Ali Rather",slug:"mudasir-ali-rather",email:"mu@gmail.com",position:null,institution:null}]}},chapter:{id:"76894",slug:"occurrence-of-dog-bites-and-rabies-within-humans-in-srinagar-kashmir",signatures:"Namera Thahaby, Afzal Hoque Akand, Abdul Hai Bhat, Shabeer Ahmed Hamdani and Mudasir Ali Rather",dateSubmitted:"February 15th 2021",dateReviewed:"May 3rd 2021",datePrePublished:"May 25th 2021",datePublished:"May 11th 2022",book:{id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,fullTitle:"Rabies Virus at the Beginning of 21st Century",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"339059",title:"Dr.",name:"Namera",middleName:null,surname:"Thahaby",fullName:"Namera Thahaby",slug:"namera-thahaby",email:"nimrazahbi@gmail.com",position:null,institution:null},{id:"348665",title:"Dr.",name:"Afzal",middleName:null,surname:"Hoque Akand",fullName:"Afzal Hoque Akand",slug:"afzal-hoque-akand",email:"a@gmail.com",position:null,institution:null},{id:"348666",title:"Dr.",name:"Shabeer",middleName:null,surname:"Ahmed Hamdani",fullName:"Shabeer Ahmed Hamdani",slug:"shabeer-ahmed-hamdani",email:"S@GMAIL.COM",position:null,institution:null},{id:"348667",title:"Dr.",name:"Abdul",middleName:null,surname:"Hai Bhat",fullName:"Abdul Hai Bhat",slug:"abdul-hai-bhat",email:"ab@gmail.com",position:null,institution:null},{id:"417258",title:"Prof.",name:"Mudasir",middleName:null,surname:"Ali Rather",fullName:"Mudasir Ali Rather",slug:"mudasir-ali-rather",email:"mu@gmail.com",position:null,institution:null}]},book:{id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,fullTitle:"Rabies Virus at the Beginning of 21st Century",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12102",leadTitle:null,title:"Current Trends in Ambulatory Care",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe goal of this book will be to introduce the current change in ambulatory care affected by the new development of medical knowledge, new technology, and social ethics. The COVID-19 pandemic plays an important role in the acceleration of the adoption of telehealth or telemedicine in medical care. Both patients and medical providers adopt it quickly. The new devices make it possible for remote measuring or monitoring vitals or other physical parameters and communication pathways that provide other tools for medical providers to change the pattern of management of different chronic diseases, like hypertension, diabetes, obesity, congestive heart failure, etc. Some techniques can switch some procedures from the hospital to the patient’s home or clinic so, which will not just make such procedures more convenient for patients but also save expense on medical care. The quality of medical care will improve once both medical providers and patients understand such changes, and cooperate proactively. Medical providers can learn how and what tools they can update and apply for caring for patients. Patients can understand and learn how to proactively engage in their health management.
\r\n\r\n\tThe quest to ensure a perfect patient safety record is at the heart of the decades-long quest to improve quality, enhance value, and increase trust in our healthcare delivery systems. Beginning with the landmark report, To Err Is Human, the Institute of Medicine set an ambitious agenda for the medical community to reduce the number of patients harmed by healthcare-related errors and preventable adverse events. As a result, large-scale initiatives were initiated, including electronic medical records, trainee work hours restrictions, and the advent of evidence-based care bundles. To help support the effort, various governmental and non-governmental agencies established funding for patient safety research and actively fostered the development of well-defined Patient Safety Goals via the National Quality Forum. Parallel to targeted efforts aimed at reducing human and systemic errors leading to patient harm, legislative efforts resulted in bills intended to increase public reporting of medical errors and a paradigm shift allowing public support of the concept that most patient injuries are a result of system failures and not provider errors. This book will intend to provide the reader with a comprehensive overview of the current state-of-the-art in patient safety, featuring an easy-to-follow, vignette-based format that focuses on the most important evidence-based developments in this critically important area.
",isbn:"978-1-83768-192-1",printIsbn:"978-1-83768-191-4",pdfIsbn:"978-1-83768-193-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",bookSignature:"Dr. Xin-Nong Li",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",keywords:"Pandemic, Telehealth, Communication, High Technology, Chronic Disease, Remote, Monitor, Quality, Diabetes, Hypertension, Digital Device, Cardiovascular Disease",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 26th 2022",dateEndSecondStepPublish:"June 23rd 2022",dateEndThirdStepPublish:"August 22nd 2022",dateEndFourthStepPublish:"November 10th 2022",dateEndFifthStepPublish:"January 9th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"7 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Li, MD, graduated from Sun Yat-Sen University of Medical Sciences as an Outstanding Student. He later retrained as a resident in the department of internal medicine at the University of Pittsburgh Medical Center. He gained rich professional experience by working at Basel University, Switzerland, the University of Alabama at Birmingham, USA, and Medical School, the University of California at Davis. He is a Fellow of the American College of Physicians and a member of the American Medical Association.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",middleName:null,surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li",profilePictureURL:"https://mts.intechopen.com/storage/users/345917/images/system/345917.jpg",biography:"Dr. Xin-Nong Li, MD is an internal medicine specialist in Fair Oaks, CA. Dr. Li completed a residency at U Pittsburgh MC Shadyside. He currently practices at Xin-Nong Li, MD, and is affiliated with Mercy San Juan Medical Center. He accepts multiple insurance plans. Dr. Li is board-certified in Internal Medicine.\r\n\r\nEducation:\r\nU Pittsburgh MC Shadyside, Residency Hospital — 1999\r\nU Pittsburgh MC Shadyside, Internship Hospital — 1997\r\nSun Yat Sen University Med Sci, Medical School — 1982",institutionString:"Sutter Health",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Sutter Health",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"466997",firstName:"Patricia",lastName:"Kerep",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/466997/images/21565_n.jpg",email:"patricia@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully"}},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"9526",title:"Monitoring Soil Moisture from Spaceborne Passive Microwave Radiometers: Algorithm Developments and Applications to AMSR-E and SSM/I",doi:"10.5772/8291",slug:"monitoring-soil-moisture-from-spaceborne-passive-microwave-radiometers-algorithm-developments-and-ap",body:'\n\t\tSoil moisture patterns, both spatial and temporal, are the key to understanding the spatial variability and scale problems that are paramount in scientific hydrology, meteorology and climatology. Soil moisture controls the ratio of runoff and infiltration (Delworth & Manabe, 1988; Wagner et al., 2003), decides the energy fluxes (Entekabi et al., 1996; Prigent et al., 2005) and influents vegetation development and then carbon cycle. A long term soil moisture data set on a region scale therefore could provide valuable information for researches such as climate change and global warming (Seneviratne et al., 2006), and then improve the weather forecasting (Beljaars et al., 1996; Schar et al., 1999) and water resources management.
\n\t\t\tSoil moisture profile can be observed at point scale by using gravimetric sampling or some automatic probes, such as Time Domain Reflectometry (TDR), Neutron Probe (NP), etc. These methods are commonly used to provide accurate and continuous soil moisture information and adopted by the meteorology, hydrology and agriculture stations. But these point information are not enough for the regional research and application, and are also not available in the remote areas where difficult to access and to maintain such stations. On the other hand, satellite remote sensing offers a possibility to measure surface soil moisture at regional, continental and even global scales.
\n\t\t\tAlthough surface soil moisture can be estimated indirectly from visible/infrared remote sensing data (Verstraeten et al., 2006), it failed to produce routinely soil moisture map mainly due to factors inherent in optical remote sensing, such as atmosphere effects, cloud masking effects and vegetation cover masking effects. Fortunately, microwave remote sensing offers a possibility to observe area-averaged surface soil moisture regularly in the global scale, by directly measuring to the soil dielectric properties which are strongly related to the liquid moisture content (Hipp, 1974). Moreover, extra advantages of microwave remote sensing include: (1) long wavelength in microwave region which enable the low frequency microwave signals to penetrate clouds and to provide physical information of the land surface; and (2) independent of illumination source which enables the spaceborne sensors to observe earth all-day with all-weather coverage.
\n\t\t\tThere are two approaches through which microwave remote sensing estimating surface soil moisture: active ways by Radar and/or Synthetic Aperture Radar (SAR) with high spatial resolution (in the order of ten to hundred meters) and long revisiting period (about 1 month), passive ways by radiometers with coarse resolution (~ order of 10 km) and frequent temporal coverage (daily or bi-daily). Considering the temporal resolution requirement of the meteorological and hydrological modeling, passive ways are more suitable for the application in these fields and have been wildly used in recent 30 years.
\n\t\t\tAlthough it was recognized early that microwave sensors operated at L-band (1-2GHz) provide the best surface soil moisture observation (Schmugge et al. 1988), L-band radiometers are not equipped on any satellites. This situation is mainly due to the limitation of our current technical capability, which is a significant challenge to built L-band antenna big enough to provide reasonable resolution. So all current available passive microwave remote sensing data are observed by radiometers operating with higher frequencies, such as the Scanning Multichannel Microwave radiometer (SMMR; 6.6, 10.7, 18.0, 21 and 37 GHz) on board Nimbus-7 Pathfinder (Gloersen & Barath, 1977), the Special Sensor Microwave Imager (SSM/I; 19.35, 22.2, 37.0 and 85.5 GHz) on board Defense Meteorological Satellite Program (DMSP) (Hollinger et al., 1990), and the Advanced Microwave Scanning Radiometer (AMSR-E; 6.925, 10.65, 18.7, 23.8, 36.5 and 89 GHz) of the Earth Observing System (EOS) on board Aqua (Kawanishi et al., 2003). Among them, AMSR-E is the only passive systems which including surface soil moisture as a target product. In terms of continuous observation, SSM/I series, starting from 1987, is highly expected to provide long-term global soil moisture estimation.
\n\t\t\tA number of techniques have been used to estimate surface soil moisture information from microwave remote sensed data, such as statistical inversion (Njoku & Kong, 1977), artificial neural networks (Said et al., 2008), and genetic algorithm (Singh & Kathpalia, 2007). However, only the radiative transfer-based methods are considered as the true retrieval, for both passive and active techniques. The radiative transfer models adopted in those methods generally are consists of three parts: a dielectric model (Wang & Schmugge, 1980; Dobson et al., 1985; Mironov et al., 2004) which relating surface soil moisture content to the dielectric constants; a surface roughness model (Choudhury et al., 1979; Fung et al., 1992; Wegmuller & Matzler, 1999; Chen, et al. 2003; Shi, et al. 2005) which accounting for surface scattering effects; and a vegetation layer model (Ulaby et al., 1983; Paloscia & Pampaloni, 1988; Jackson & Schmugge, 1991) which accounting for the vegetation masking effects.
\n\t\t\tAlgorithms considering various other factors have also been proposed to retrieve soil moisture content from passive microwave remote sensed data. T. Jackson (Jackson, 1993) developed a so-called single channel algorithm (SCA), in which the brightness temperature of the 6.9 GHz horizontal polarization channel was used. In this algorithm, ancillary data such as air temperature, land cover, Normalized Difference Vegetation Index (NDVI), surface roughness, and soil texture and porosity are needed. The algorithm of Njoku et al (Njoku & Entekhabi, 1996; Njoku et al., 2003) is a multiple channel iterative retrieval algorithm. It uses the brightness temperature observed by the lowest six channels of AMSR-E. Using their algorithm, the surface temperature, the vegetation opacity and the soil moisture are estimated simultaneously. The algorithm proposed by Paloscia (Paloscia et al., 2001; 2006) is an experiment-based linear regression retrieval, in which soil moisture is estimated by using both the Polarization Index (PI) at 10.7GHz and the brightness temperature at 6.9GHz.
\n\t\t\tAfter more than 20 years effort, good results were obtained and several global and continental scale soil moisture datasets (e.g. Njoku et al. 2003; Owe et al. 2008) were generated. But both the quality and application region of these algorithms can be further improved. For example, Shibata et al. (2003) pointed out that the soil moisture in desert regions retrieved from AMSR-E soil moisture algorithms indicate very wet areas. To solve such problem, the forward model, viz. Radiative Transfer Model (RTM) should be improved firstly.
\n\t\t\tIn this study, we present a new soil moisture retrieval algorithm developed at the University of Tokyo. This algorithm is based on a modified radiative transfer model (Lu et al., 2006), in which the volume scattering inside soil layers is calculated through dense media radiative transfer theory (DMRT) (Wen et al., 1990; Tsang & Kong, 2001) and the surface roughness effect is simulated by Advanced Integration Equation Model (AIEM) (Chen et al., 2003). The optimal values of forward model parameters are estimated using in situ observation data and lower frequency brightness temperature data. And with those optimized parameters, we run the forward model to generate a lookup table, which relates the variables of interest, such as soil moisture content, soil physical temperature, vegetation water content and atmosphere optical thickness, to the brightness temperature or some indexes calculated from brightness temperature data. Finally, soil moisture content is estimated by linearly interpolating the brightness temperature or index into the inversed lookup table. The algorithm was validated by using the AMSR-E match up data set at Mongolia region. Moreover, the capability of our algorithm to retrieve soil moisture from SSM/I was also checked at the same region.
\n\t\t\tThe paper is organized as follows. In Section 2, we present our physically-based radiative transfer model, emphasizing the soil RTM, so-called DMRT-AIEM model. In Section 3 we describe the structure of our algorithm. Section 4 and 5 discusses the application of our new algorithm on AMSR-E and SSM/I data, respectively. Section 6 contains some concluding remarks.
\n\t\tOur algorithm is based on a look up table, which is a database of brightness temperature simulated by a radiative transfer model for various possible conditions. The quality of retrieved soil moisture, therefore, is heavily dependent on the performance of the radiative transfer model. So, the main task of our algorithm development was to develop a physically-based soil moisture retrieval algorithm, which is able to estimate soil moisture content from low frequency passive microwave remote sensing data and to overcome the misrepresent problems occurred in dry areas.
\n\t\t\tFor the land surface remote sensing by spaceborne microwave radiometers, the radiative transfer process from land to space can be divided into as four stages as follows:
\n\t\t\t\t(1) Radiative transfer inside soil media.
\n\t\t\t\tThe initial incident energy is treated as the one starting from the deep soil layer, which propagates through many soil layers, attenuating by the soil absorption effects (dominative at wet cases) and volume scattering effects (dominative at dry cases), experiencing multi-reflection effects between the interfaces of soil layers, finally reaching the soil/air interface.
\n\t\t\t\t(2) Surface scattering process at soil/air interface.
\n\t\t\t\tAt the soil/air interface, the surface scattering influences this upward initial radiation by changing its direction, magnitude and polarization status. At the same time, the downward radiation from the cosmic background, atmosphere, precipitation and canopy are reflected by the air/soil interface, and parts of the reflected radiation propagate along the same direction as that emitted from the soil layers.
\n\t\t\t\tThe upward radiation just above the soil/air interface, therefore, is not only the product of soil medium but also the product of downward radiation.
\n\t\t\t\t(3) Radiative transfer inside vegetation layers.
\n\t\t\t\tAfter leaving the soil/air interface, the upward radiation propagates through the canopy layer (if there are vegetations), experiences the volume scattering effects from the leaves and stems of vegetations and the multi-reflection effects between canopy/air and soil/air interfaces. At the same time, parts of the upward radiation from vegetations join our target radiation.
\n\t\t\t\t(4) Radiative transfer inside atmosphere layers.
\n\t\t\t\tAfter transmitting from vegetation layer, the radiation continues its way, traversing the cloud and precipitation layers, affected by the absorptive atmosphere gases, scattered by precipitation drops, incorporating the emission from surroundings, finally detected by the sensors boarded on satellites.
\n\t\t\t\tThe story of radiative transfer is so complicate that make it necessary to simplify the process to make it computable. In microwave region, the reflectivity of the air/soil interface is generally small. The downward radiation from vegetation and rainfall, which is reflected by the soil surface, therefore, is neglected. Moreover, for the lower frequencies region of microwave, the atmosphere is transparent. Finally, after neglecting all the downward radiation and parts of upward radiation from surroundings, the radiative transfer model is written as:
\n\t\t\t\twhere
For the frequencies less than 18GHz, equation (1) can be even simplified by omitting the precipitation layer, as:
\n\t\t\t\tMicrowave can penetrate into soil media, especially for dry cases, in which the penetration depth of C-band is about several centimeters. The soil moisture observed by microwave remote sensing, therefore, is inside a soil media with a volume of several centimeters depth. The radiative transfer process inside a soil media includes various effects, such as moisture and temperature profile effects and the volume scattering effects of dry soil particles. To simulate these effects, the dielectric constant model should be addressed at first.
\n\t\t\t\t(1) Dielectric constant model of soil
\n\t\t\t\tIn the view of microwave, soil is a multi-phase mixture, with a dielectric constant decided by moisture content, bulk density, soil textural composition, soil temperature and salinity. In our algorithm, the dielectric constant of soil is calculated using Dobson model (Dobson et al., 1985):
\n\t\t\t\twhere
where
(2) Profile effects of soil media
\n\t\t\t\tThe heterogeneity inside soil media causes the so-called profile effects. The profile effects can be accounted for by using the simple zero-order noncoherent model proposed by Schmugge and Choudhury (1981) or by more complicate first-order noncoherent model given by Burke et al. (1979). The volume scattering effects inside soil media are not included in both models.
\n\t\t\t\tIn order to include the volume scattering effects, a more complicate model was adopted in our algorithm. We assumed that the soil has a multi-layer structure and is composed of many plane-parallel and azimuthally symmetric soil slabs with spherical scattering particles. The radiative transfer process in a plane-parallel and azimuthally symmetric soil slab with spherical scattering particles can be expressed as (Tsang & Kong, 1977):
\n\t\t\t\twhere
(3) Volume scattering effects of dry soil particles
\n\t\t\t\tWith considering the facts that the soil particles are densely compacted, the multi-scattering effects of soil particles should be accounted for. In our algorithm, this volume scattering effect were calculated by the so-called dense media radiative transfer theory (DMRT) under Quasi Crystalline Approximation with Coherent Potential (QCA-CP) (Wen et al., 1990; Tsang & Kong, 2001). Dense Media radiative transfer theory was derived from Dyson’s equation under the quasi-crystalline approximation with coherent potential (QCA-CP) and the Bethe-Salpeter equation under the ladder approximation of correlated scatterers.
\n\t\t\t\tBy using the DMRT, the extinction coefficient
When an electromagnetic wave reaches the air/soil interface, it suffers the reflection and refraction due to the dielectric constant changing in the two sides of the interface. The roughness of the interface divides the reflected wave into two parts, one is reflected in the specular direction and another is scattered in all directions. Generally, the specular component is often referred to as the coherent scattering component. And the scattered component is known as the diffuse or noncoherent component, which consists of power scattered in all directions but with a smaller magnitude than that of the coherent component. Qualitatively, surface roughness increases the apparent emissivity of natural surfaces, which is caused by increased scattering due to the increase in surface area of the emitting surfaces. And it was demonstrated by many researches that the surface roughness has a nonnegligible effects on the accuracy of soil moisture retrieval by spaceborne microwave sensors (Oh & Key, 1998; Singh et al., 2003). In general, the surface roughness effects are simulated by two ways: semi-empirical models and fully physical-based models.
\n\t\t\t\t(1) Semi-empirical models
\n\t\t\t\tThe semi-empirical models are simply and do not cost too much computation efforts. The parameters used in semi-empirical models are often derived from field observations. Depending on the parameters involved, there are three different semi-empirical models: Q-H model (Choudhury et al., 1979; Wang & Choudhury, 1981), Hp model (Mo & Schmugge, 1987; Wegmuller & Matzler, 1999; Wigneron et al., 2001) and Qp model (Shi et al., 2005).
\n\t\t\t\t(2) Fully physical-based model
\n\t\t\t\tIn our algorithm, we simulated the land surface roughness effect using the Advanced Integral Equation Model (AIEM) (\n\t\t\t\t\t\tChen et al., 2003\n\t\t\t\t\t). AIEM is a physically-based model with only two parameters: standard deviation of the height variations
By coupling AIEM with DMRT (DMRT-AIEM), this radiative transfer model for soil media is fully physically-based. As a result, the parameters of DMRT-AIEM, such as the
The existence of canopy layers complicates the electromagnetic radiation which is originally emitted solely by soil layers. The vegetation may absorb or scatter the radiation, but it will also emit its own radiation. The effects of a vegetation layer depend on the vegetation opacity
where
The single scattering albedo,
The value of albedo parameter
By combing the
The basis of our algorithm is a data base of brightness temperature and/or some indexes calculated from brightness temperature. By searching the data base (or look up table) with the satellite observation as the input, soil moisture and other related variables of interest can be estimated quickly. Such high searching speed is the main reason why we adopt the look up table method for soil moisture retrieval. The implementation of our algorithm consists of three steps: (1) fixing the parameters used in the forward model; (2) generating a look up table by running forward model; and (3) retrieving soil moisture by searching the look up table.
\n\t\t\tAs in other physically-based algorithms, such as that developed by Njoku et al. (2003) and the SCA developed by Jackson (1993), the parameters used in our algorithm have clear physical meanings. This advantage derives from the strength of the forward radiative transfer model. Before running the forward RTM to generate look up table, the parameters should be confirmed at first. The parameters to be confirmed include
(1) Best-fitting method
\n\t\t\t\tFor the region where in-situ soil moisture and temperature observation are available and when such observation are also representative, we can use a best-fitting way to optimize parameters. In order to simplify the calculation, low frequencies simulation and observation were used. These parameters are optimized by minimizing the cost function:
\n\t\t\t\twhere the subscript
(2) Parameter optimization by LDAS-UT
\n\t\t\t\tFor most remote regions, in-situ representative observation is not available. A more general parameter optimization method is proposed by Yang et al. (2007). In this method, long term (around 2 months) meteorological field was used to drive a land surface model (Simple Biosphere model, SiB2) to generate time series of soil moisture and temperature data set. And then corresponding TB was simulated with our RTM. Since the land surface parameter set (soil texture, porosity, particle size, roughness, etc.) was also used in SiB2, simulated soil moisture and temperature and corresponding TB were varying as the parameter set changes. By minimizing the difference between simulated TB and that of satellite observation, the best parameter set can be obtained. The optimized parameters by LDAS-UT, therefore, are depended on models and also influenced by the quality of forcing data. The detail of this method can be found from Yang et al. (2009).
\n\t\t\tAfter Step 1, the optimal parameter values are then stored in the forward RTM. We then run the forward model by inputting all possible values of variables used in Equation (1), such as soil moisture content, soil temperature, vegetation water content and atmosphere optical thickness. A family of brightness temperatures is then generated. Based on this brightness temperature database, we select brightness temperatures of special frequencies and polarization to compile a lookup table or to calculate some indices to compile a lookup table. For example, in order to partly remove the influences of physical temperature, the ratio of TB at different frequencies and polarizations can be used. For instant, we can compile a look up table by using the index of soil wetness (ISW) (Koike et al., 1996; Lu et al., 2009), and Polarization Index (PI) (Paloscia & Pampaloni, 1988).
\n\t\t\tThe lookup table generated in Step 2 is reversed to give a relationship which maps the brightness temperature or indices obtained from satellite remote sensing data to the variables of interest (such as soil moisture, soil temperature and vegetation water content). Finally, we estimate soil moisture content by linear interpolation of the brightness temperature or indices into the inverted lookup table.
\n\t\t\tWe tested our algorithm by retrieving soil moisture and temperature from AMSR-E TB data at a Coordinate Enhanced Observing Period (CEOP) (Koike, 2004) reference site in the Mongolian Gobi. The results were validated by comparing with in situ measurements byAutomatic Stations for Soil Hydrology (ASSH) and Automatic Weather Stations (AWS).
\n\t\t\tThe application region of this research is the AMPEX (ADEOS II Mongolian Plateau EXperiment for Ground Truth) area. AMPEX has joined the CEOP as the Mongolia reference site. AMPEX is designed to validate the AMSR and AMSR-E soil moisture algorithm(s). In this area, meteorological and land hydrological factors are measured with very densely installed instruments. AMPEX is located in the Mongolian Plateau, 235 km south of Ulan Bator. The area stretches 160km in the longitudinal direction (106 E~108 30′E) and 120 km in the latitudinal direction (45 30′N~47 N) on the Mandalgobi, where 6 AWSs and 12 ASSHs were installed. Figure 1 illustrates the distribution of observation sites in this area. For more details of AMPEX, please visit the following website: http://home.hiroshima-u.ac.jp/~ampex/hm/index-e.htm.
\n\t\t\t\tDistribution of ASSH and AWS in AMPEX study area.
The ASSHs provide soil moisture and temperature profile measured at two depths, 3 cm and 10 cm below the surface. The AWSs provide soil moisture and temperature profiles measured at four depths: 3 cm, 10 cm, 40 cm and 100 cm below the surface. The soil moisture measurements used TDRs, and the soil temperature was measured by platinum resistance thermometers.
\n\t\t\t\tThrough matching the AMSR-E footprints to in situ stations, we generated a match-up data set consisting of brightness temperature data observed by AMSR-E and in situ data measured by SMTMS and AWS. The coverage of this data set is 2.5 by 2.5 degrees, with a resolution 0.05 degrees for all frequencies. The in situ data consists of soil moisture and soil temperature data. It is in the form of an image type and a text type. The text files record AMSR-E brightness temperature and in situ data at each ground station. The in situ data include observations made within 12 hours of the AMSR-E observation. In this research, the mach-up in situ data at each AMSR-E satellite over passing is calculated by interpolating the in situ data on the hour.
\n\t\t\t\tBased on the AMSR 2002 field experiment results, the soil bulk density in this region is 1.258 g•cm-3. The soil texture is obtained from the Net Primary Productivity (NPP) Database (Chuluun & Ojima, 1996): a sand fraction of 0.6, a silt fraction of 0.2 and a clay fraction of 0.2.
\n\t\t\t\tThere is sparse vegetation in study area. The vegetation water content was measured in June and August, 2003. Based on this in situ observation, we found that the maximum vegetation water content in our study area was 0.11 kg•m-2. It is a small value reflecting the sparse vegetation coverage.
\n\t\t\tWith the AMSR-E match-up data, the land surface parameters can be obtained easily by using the best-fitting methods. AMSR-E TB data obtained from low frequency channels (6.925, 10.65 and 18.7 GHz) were used to optimize model parameters. Since the wavelength of those channels is generally much larger than the diameter of atmospheric particles, the atmospheric effect is negligible for the data measured with those channels.
\n\t\t\t\tAs reported in the literature, it is reasonable to assume that there is little or no volume scattering for soil moisture levels over 10% (Ulaby et al., 1986). So, we first used the data observed on wet days to estimate the roughness parameters,
In order to run DMRT, we used uniform soil moisture and temperature vertical profiles with the value observed at 3 cm depth. The bottom of the soil medium was set to be 1.0m (layer thickness is 1cm) and the brightness temperature at the bottom was assumed to be the soil physical temperature at that level, that is, the emissivity was equal to one. The downward radiation from each soil layer, reflected at the bottom boundary, was not considered in this study. The interactions at the boundaries between neighboring soil layers were also neglected because of the vertically uniform soil moisture and temperature profiles.
\n\t\t\t\tFirst, we used the AIEM model to best fit several wet day observations by changing
Here, we use the A3 station as an example, to introduce the whole procedure and the result. Information about the data we used to calibrate the model is listed in following table.
\n\t\t\t\tcases | \n\t\t\t\t\t\t\tNumber of days | \n\t\t\t\t\t\t\tMv range (%) | \n\t\t\t\t\t\t\tT(3cm) range | \n\t\t\t\t\t\t\tPeriod | \n\t\t\t\t\t\t
Wet | \n\t\t\t\t\t\t\t32 | \n\t\t\t\t\t\t\t10~20 | \n\t\t\t\t\t\t\t275.26~291.25 | \n\t\t\t\t\t\t\tMay. 12 th ~ Aug. 20 th ,03 | \n\t\t\t\t\t\t
Dry | \n\t\t\t\t\t\t\t40 | \n\t\t\t\t\t\t\t1~7 | \n\t\t\t\t\t\t\t273.1~293.8 | \n\t\t\t\t\t\t\tApr.14 th ~Jul.13 th ,03 | \n\t\t\t\t\t\t
ALL | \n\t\t\t\t\t\t\t254 | \n\t\t\t\t\t\t\t1~20 | \n\t\t\t\t\t\t\t270~293.8 | \n\t\t\t\t\t\t\tApr. 12 th ,03 ~Apr, 30 th , 04 | \n\t\t\t\t\t\t
Data used for parameter optimization.
The calibrated parameter values of AIEM with consideration of shadowing effects are:
F(GHz) | \n\t\t\t\t\t\t\t6.925 | \n\t\t\t\t\t\t\t10.65 | \n\t\t\t\t\t\t\t18.7 | \n\t\t\t\t\t\t\t23.8 | \n\t\t\t\t\t\t\t36.5 | \n\t\t\t\t\t\t
Wave Length λ (cm) | \n\t\t\t\t\t\t\t1.997 | \n\t\t\t\t\t\t\t1.298 | \n\t\t\t\t\t\t\t0.739 | \n\t\t\t\t\t\t\t0.581 | \n\t\t\t\t\t\t\t0.379 | \n\t\t\t\t\t\t
R(cm) | \n\t\t\t\t\t\t\t0.45 | \n\t\t\t\t\t\t\t0.307 | \n\t\t\t\t\t\t\t0.165 | \n\t\t\t\t\t\t\t0.126 | \n\t\t\t\t\t\t\t0.084 | \n\t\t\t\t\t\t
R/λ | \n\t\t\t\t\t\t\t0.104 | \n\t\t\t\t\t\t\t0.109 | \n\t\t\t\t\t\t\t0.103 | \n\t\t\t\t\t\t\t0.100 | \n\t\t\t\t\t\t\t0.102 | \n\t\t\t\t\t\t
Best-fitting particle size parameters in Mongolia.
As in Table 2, the best-fit particle sizes change at different frequencies: longer wavelengths are matched with larger particle sizes. However, the ratio between the best-fit radius and the wavelength in the sand is nearly constant. Therefore, we call the best-fit radius the effective radius. The effective radii are generally larger than the physical values, consistent with similar results reported by Kendra and Sarabandi (1999).
\n\t\t\tBased on the best-fitted parameter sets, we build a lookup table composed of the soil physical temperature, soil moisture content, brightness temperature at 10.65GHz vertical polarization and an index
Lookup table for the AMSR-E soil moisture retrieval algorithm.
The lookup table of our AMSR-E algorithm is shown in Figure 2. It covers a region in which soil moisture content varies from 2% to 40%, and soil physical temperature varies from 270K to 303K. Compared with in situ observation values, this range is large enough to include all of the actual soil moisture and temperature states in Mongolia.
\n\t\t\t\tSince the one-to-one relationship in our lookup table is very clear, it becomes simple to reverse the lookup table, so that the soil moisture can easily be estimated from the AMSR-E data set.
\n\t\t\tIn this study, we retrieved soil moisture data for the period from July to August, 2003. The estimation is shown in Figure 3 for (a) time variation and (b) accuracy comparison.
\n\t\t\t\ta) Time series of retrieved soil moisture, observed soil moisture and precipitation. (b) Comparison of retrieval results with in situ observation.
It is clear from figure 3 that the algorithm gives a reliable soil moisture content estimate in both tendency and amplitude. The value of R-square is 0.3953, and the Standard Error of the Estimate (SEE) is 3.8%. From figure 3(a), we find some overestimation around Aug. 4, 14 and 20, when moderate rainfall (5~10 mm) occurred. Such errors can be attributed partly to the difference between the TDR sensor depth and the penetration depth of the X band and Ku band. Moderate rainfall makes the soil surface much wetter than the soil 3cm below the surface where the TDR sensors were located. Such vertical heterogeneity of soil moisture in the first 3cm of soil was not considered in our algorithm. On the other hand, the wet surface situation decreases the penetration depth dramatically. The combination of these reasons makes our algorithm estimate higher soil moisture content than the in situ observations for moderate rainfall periods.
\n\t\t\t\tOne advantage of our proposed algorithm is that it estimates soil physical temperature and soil moisture simultaneously. This is important for studies involving energy and water budget, such as studies of land surface processes and of weather forecasting.
\n\t\t\t\tThe average retrieved physical temperature for ASSH stations is shown in figure 4(a) and figure 4(b). As in soil moisture comparisons, the algorithm effectively retrieved physical temperature on average for 10 stations. The value of R-square is 0.5458, and the value of SEE is 4.4K. As with our soil moisture analysis, the overestimation of daily temperature variation can also be explained partly as the results of different observation depths.
\n\t\t\t\ta) Time series of retrieved and in situ observations of soil physical temperature. (b) Comparison of algorithm-estimated soil physical temperature with in situ observation.
Since the parameters used in our RTM have clear physical meaning, they are independent on the configuration of radiometers. The parameters used in AMSR-E soil moisture retrieval therefore can be directly used to the SSM/I data set, in the same region. In this test, we first checked the accuracy of TB simulation of our DMRT-AIEM model. And then a look up table for SSM/I data was generated and soil moisture was retrieved.
\n\t\t\tUsing the parameters optimized by AMSR-E math-up data set, with the in-situ observed soil moisture and temperature as input, we run the DMRT-AIEM model to generate TB at 19.35 and 37.0 GHz, two frequencies operated by SSM/I. The SSM/I TB validation results were shown in figure 5, for the A3 station, during the period from Jul. 1st to Jul. 30th, 2003.
\n\t\t\t\tComparison of simulated brightness temperature with the one observed by SSM/I.
From figure 5, it is clear that, for the vertical polarization, the TB simulated by DMRT-AIEM is in a good correlation with the SSM/I observation, with slight underestimation for 19 GHz and overestimation for 37 GHz. For the horizontal polarization, the performance of our RTM is not so good. Statistically, the Average Absolute Error (AAE, see equation (10)) and the square of correlation coefficient between observed brightness temperature and simulated one are listed in table 3.
\n\t\t\t\tChannel | \n\t\t\t\t\t\t\t19V | \n\t\t\t\t\t\t\t19H | \n\t\t\t\t\t\t\t37V | \n\t\t\t\t\t\t\t37H | \n\t\t\t\t\t\t
AAE (K) | \n\t\t\t\t\t\t\t4.34 | \n\t\t\t\t\t\t\t4.41 | \n\t\t\t\t\t\t\t3.45 | \n\t\t\t\t\t\t\t3.85 | \n\t\t\t\t\t\t
R 2 | \n\t\t\t\t\t\t\t0.66 | \n\t\t\t\t\t\t\t0.38 | \n\t\t\t\t\t\t\t0.63 | \n\t\t\t\t\t\t\t0.33 | \n\t\t\t\t\t\t
AAE and correlation coefficient of DMRT-AIEM model for SSM/I data.
where,
Through the TB validation, it was confirmed that our DMRT-AIEM model was able to produce reasonable TB at vertical polarization channels of SSM/I. But there was some gaps between the simulated TB with the one observed by SSM/I, especially for horizontal polarization channels. Moreover, as we know, the atmosphere effects should be considered for 37 GHz. All of these make it difficult to build a look up table with the same way used for AMSR-E. Authors proposed a simple solution by nudging the SSM/I TB data to fit the simulation and by using PI and ISW indexes to generate a look up table. Detail of the TB adjustments and look up table generation can be found from (Ohta et al., 2007). Figure 6 shows the look up table for SSM/I, in which the PI calculated from 19 GHz and the ISW calculated from the horizontal polarization of 37 and 19 GHz were used. The black points represent the PI and ISW values calculated from corresponding TB data observed by SSM/I.
\n\t\t\t\tDiagram of the Look Up Table for SSM/I soil moisture algorithm.
Comparison of soil moisture retrieved from SSM/I with in-situ observation.
By using the PI-ISW look up table, soil moisture was estimated from SSM/I TB data. The results are shown in figure 7, for the period from July to August, 2003. The line represents the in-situ soil moisture observation; the open cycles are SSM/I soil moisture estimate. From this figure, it is clear that the performance of SSM/I soil moisture retrieval algorithm is very good. So, it is feasible to get reasonable soil moisture estimation form SSM/I with the helps from AMSR-E. But we must keep it in mind that the TB adjustment was applied to the SSM/I data. Such good performance of SSM/I algorithm is therefore just for the special cases where the in-situ observation are available and the appropriate TB adjustment are possible.
\n\t\t\tSpatial distributed soil moisture information is an essential parameter for hydrological, meteorological and ecological studies. This paper presents the structure and contents of a soil moisture retrieval algorithm for the spaceborne passive microwave remote sensing. This algorithm was validated by using the AMSR-E match-up data set at CEOP Mongolia reference site. Comparing to the in-situ observation, reliable surface soil moisture was retrieved by the algorithm.
\n\t\t\tThe transferability of our algorithm was also tested by using SSM/I TB data. At first, it was demonstrated that the forward RTM of our algorithm was capable to represent the SSM/I TB data only after the parameters were calibrated by AMSR-E data set. And then, with some adjustments to the SSM/I TB data, reasonable surface soil moisture was also retrieved from SSM/I data by our algorithm.
\n\t\t\tThe results presented in this paper clearly show that we had built a bridge between the parameters retrieved from AMSR-E and those for SSM/I. With some further consideration about the difference between AMSR-E and SSM/I, e.g. the footprint size and the observation patterns, it is believed that our algorithm could provide a possibility to use the long historical global data observed by SSM/I. Moreover, it is possible to extend our algorithm to other available radiometers. And then, we can merge multi-sensor or/and multi-satellite observations to generate a long term global historical soil moisture product. Such a long term historic data set should be much useful for large scale hydrological and climatologic studies.
\n\t\t\tAs mentioned in section 1, the retrieval of surface soil moisture is physically limited by the current satellite instruments which are operating at high frequencies. The low frequency, i.e. L-band, passive microwave soil moisture observation will firstly be available through the launch of Soil Moisture Ocean Salinity (SMOS) mission of ESA (Kerr, et al., 2001). NASA will provide a combined L-band radiometer and L-band radar observation through the Soil Moisture Active and Passive (SMAP) mission (Entekhabi, et al., 2008). Since the configuration of our algorithm was not specified to any sensors, it is also possible to apply our algorithm to the incoming L-band radiometers. We hope this algorithm will be helpful for these future soil moisture missions and for connecting current available C-band and X-band observations to the L-band observations.
\n\t\tThis study was carried out as part of the Coordinated Enhanced Observing Period (CEOP) and Verification Experiment for AMSR/AMSR-E funded by the Japanese Science and Technology Corporation for Promoting Science and Technology Japan and by the Japan Aerospace Exploration Agency (JAXA). The authors express their great gratitude to them.
\n\t\tDeath is the final fate of cells and organisms and is a normal biological phenomenon in the living world. Cell death plays a crucial role in the development of plants and animals in nature and in maintaining ecological balance [1]. For example, in the developing vertebrate nervous system, as many as half or more of the nerve cells usually die soon after they are formed. In a healthy adult human, billions of cells die every hour in the bone marrow and intestines. So much cell death seems very wasteful, especially when the vast majority of cells are perfectly healthy at the time of suicide.
In general, cell death can be divided into two types: programmed cell death (PCD) and accidental cell death (necrosis) [2]. The former is a controlled process of intracellular death program, also vividly referred to as cellular suicide. The latter is caused by external factors (i.e., injury, infection, etc.). The study of PCD (especially apoptosis) processes has led to a better understanding of the pathogenesis of certain diseases. The 2002 Nobel Prize in Physiology and Medicine was awarded to Britons Sydney Brenner, Jone E. Sulston, and H Robert Horvitz for their discovery of how genes regulate organ growth and programmed cell suicide processes, using the nematode
A coordinated balance between cell proliferation and apoptosis is crucial for normal development and tissue homeostasis. Once this balance is permanently disrupted, normal cells may be transformed into mutant cells whose clonal survival and uncontrolled proliferation may lead to the development of tumors and various other diseases.
Apoptosis is the process of cellular suicide by activating an intracellular death program or by the orderly breakdown of cells from within. The term was first introduced by Kerr J. F. R. in the 1970s and was not accepted by the general public until the 1990s.
Although apoptosis is only one form of Programmed cell death (PCD), it is by far the most common and well-understood form, and, confusingly, biologists often use the terms PCD and apoptosis interchangeably [3].
For a multicellular organism, a highly organized community, cell numbers are tightly regulated not only by controlling the rate of cell division but also by controlling the rate of cell death. Thus, apoptosis is important not only for tissue remodeling and elimination of transitional organs during the development of an organism, but also for the clearance of cellular senescence inactive metabolic organs, such as blood cells and epithelial cells in the digestive system, and cells with damaged or mutated DNA [4, 5, 6]. In a nutshell, apoptosis is an essential mechanism complementary to proliferation to ensure homeostasis in all tissues.
Unlike apoptosis, necrosis is a form of cell injury that leads to the premature death of cells in living tissues due to autolysis, usually caused by stronger external factors such as infection, toxins, or trauma, ultimately resulting in the unregulated of cellular components, always harmful and potentially fatal to the organism [7, 8]. Necrosis usually causes a local inflammatory response. The reason for this is that when nearby macrophages engulf these necrotic cells, they may release microorganisms that destroy the surrounding tissue causing collateral damage and inhibiting the healing process.
Typically, cell death due to necrosis does not follow the apoptotic signaling transduction pathway, but rather various receptors are activated, leading to loss of cell membrane integrity and uncontrolled release of cell death products into the extracellular space. In contrast, apoptosis is a naturally occurring programmed and targeted cause of cell death and usually provides beneficial effects to the organism. A brief comparison of them can be summarized as follows (Figure 1).
Structural change of cells undergoing necrosis and apoptosis.
As mentioned above, necrosis is a form of traumatic cell death caused by acute cellular injury. In contrast, apoptosis is a process of active cellular suicide. Multicellular organisms eliminate mutated, damaged, or unwanted cells by this type of active suicide. Apoptosis plays an important role in tissue sculpting during embryonic development and in the maintenance of tissue homeostasis throughout life [6].
The process has distinct morphological features, including cell rounding and contraction, blebbing and PS externalization of the plasma membrane, cytoplasmic vacuolization including endoplasmic reticulum expansion and cisternae swelling to form vesicles and vacuoles, nuclear condensation, border aggregation or fragmentation, chromatin compaction, pyknosis, and ultimately fragmentation between nucleosomes by endonucleases, resulting in regular DNA degradation and inhibition of protein translation, and ultimately to the eventual rupture of the cell into small spheres surrounded by membranes called apoptotic bodies, which contain “packed” cell contents with an electron cloud density similar to chromatin; and a sub-G1 curve preceding the G1 phase peak is observed in cytometric histogram [9]. Apoptotic bodies can be recognized and digested by phagocytosis of neighboring macrophages through the presence of phosphatidylserine (PS) on their surface [10]. In this way, the apoptotic cells can be rapidly removed by tissue phagocytes through phagocytosis, without releasing harmful substances that can initiate inflammation, which can cause a significant amount of tissue damage. Because apoptotic cells are always rapidly eaten and digested, dead cells are usually rarely seen, even when large numbers of cells die from apoptosis. This may be the reason why biologists once ignored the phenomenon of apoptosis and may still underestimate its extent.
Abnormal apoptosis contributes to many important diseases, including cancer, autoimmune diseases, diabetes, and neurodegenerative diseases. Various types of cellular stress, such as DNA damage or growth factor deprivation, can trigger apoptosis through intrinsic or extrinsic pathways.
Apoptosis can be triggered by both internal stimuli, such as abnormalities in DNA, and external stimuli, such as certain cytokines from different pathways, respectively [11]; or it can be induced by physiological or pathological factors.
Specifically, physiological triggers can include the following two aspects [12]: (1) Direct action of certain hormones and cytokines: for example, glucocorticoids are typical signals of apoptosis in lymphocytes; thyroxine plays an important role in the apoptotic degeneration of tadpoles’ tails; TNF can induce apoptosis in a variety of cells. (2) Indirect effects of certain hormones and cytokines: for example, testosterone deficiency caused by testicular dysplasia can lead to apoptosis of prostate epithelial cells. Inadequate secretion of adrenocorticotropic hormone by the pituitary gland can promote apoptosis of adrenocortical cells, etc.
While pathological triggers usually include the following two aspects: (1) It is generally believed that apoptosis can be induced by many factors that can cause damage to cells, such as stress, radiation, chemical toxins, viral infections, and chemotherapeutic drugs, and even malnutrition and excessive functional complexes can induce apoptosis. (2) Some factors such as various chemical carcinogens and certain viruses (e.g., EBV) inhibit apoptosis. Therefore, it is thought that the ability to induce cells may be related to the type, intensity, and duration of the harmful factors.
The initiation of apoptosis is tightly regulated by different signaling pathways. The best-understood two are the intrinsic pathway (also known as the mitochondrial pathway) and the extrinsic pathway (also known as the death receptor pathway). The mitochondrial pathway is generally activated by intracellular signals and depends on proteins released from the intermembrane space between the mitochondrial bilayers. The death receptor pathway is activated by extracellular ligands, and the activated extracellular ligands bind to their specific death receptors on the cell surface, inducing the formation of death-inducing signaling complexes (DISC) [13, 14]. Here, we will discuss the extrinsic and intrinsic pathways separately. However, it should be noted that there is crosstalk between these pathways and that extracellular apoptotic signaling can also lead to activation of the intrinsic pathway.
The extrinsic death pathway triggers receptor-mediated apoptosis. Its major components include pro-apoptotic ligands, receptors that recognize/bind ligands, and adaptor proteins that bind to the cytoplasmic face of the receptor. In addition, the pathway recruits other molecules, including cysteine-specific proteases (caspases), the initiator of the death process, and the executors, to execute the apoptotic process [15]. For example, TNF is a common pro-apoptotic ligand and TNFR1 on the cell membrane is the receptor. When TNF binds to TNFR1, the activated receptor binds to two different cytoplasmic adaptor proteins (tumor necrosis factor-related death domain protein, TRADD, and fas-associating protein with death domain, FADD) and procaspase-8, forming a multi-protein complex on the inner surface of the plasma membrane, containing an 80 amino acid death structure domain through which a death-inducing signaling complex (DISC). The cytoplasmic structural domains of the TNF receptor, FADD, and TRADD interact through homologous regions called death structural domains present in each protein [16]. Procaspase-8 and FADD interact through homologous regions called death effector domains. Procaspase 8 in DISC is activated and active caspase 8 is released into the cytoplasm, where it cleaves and activates effector caspases (e.g., procaspase 3), triggering a caspase cascade that further cleaves a number of death substrates, including BID and cytoskeletal proteins, if glued, leading to apoptosis (Figure 2). Notably, inhibitors of apoptosis (IAPs) can inactivate caspases by specifically binding to their active sites. Caspase activator (SMAC)/Diablo and its functional homologs in flies, including Grim, Reaper, and Hid, can in turn target binding and degrade IAPs [17].
Schematic diagram of apoptotic signaling.
In addition, it should be noted that the interaction between TNF and TNFR1 may also activate other signaling pathways and allow cell survival rather than self-destruction.
In general, internal stimuli such as irreparable genetic damage, hypoxia (lack of oxygen), very high concentrations of cytosolic Ca2+, viral infection, or severe oxidative stress (i.e., production of large amounts of damaging free radicals) and cytotoxic drug treatment trigger apoptosis via the intrinsic pathway.
The intrinsic death pathway, i.e., the mitochondrial-received apoptotic pathway, is a death receptor non-dependent apoptotic pathway [18]. This pathway is activated by the release of cytochrome C (Cyto C) from mitochondria in response to various stresses and developmental death cues. The process specifically involves multiple steps as follows: apoptotic signals (various types of cellular stress), lead to the insertion of pro-apoptotic members of the Bcl-2 family of proteins (e.g., Bax), into the outer mitochondrial membrane, forming pores that mediate the release of Cyto C from the mitochondrial intermembrane space into the cell membrane. Once in the cell membrane, Cyto C molecules bind to Apaf-1 (a homolog of mammalian CED4) and further recruit procaspase-9 to form a complex of multiple subunits called the apoptosome. Then procaspase-9 is activated to become active caspase-9. Then the caspase-9 molecule cleaves and activates the downstream executor caspase (Caspase-3, 6,7) to carry out the apoptotic process (Figure 2) [19].
Bcl-2, the mammalian homolog of Ced-9, prevents apoptosis by inhibiting the release of CytoC from mitochondria [20]. IAPs, second mitochondrial activators of caspases (Smac), endonuclease G (Endo G), and AIF also have important roles in the apoptotic process [21]. Notably, Endo G and AIF are specifically activated by apoptotic stimuli and are able to induce ribosomal breakage of DNA independently of caspases. Endo G is a mitochondria-specific nuclease that translocates to the nucleus and cleaves chromatin DNA during apoptosis. AIF is a flavin adenine dinucleotide-containing, NADH-dependent oxidoreductase that resides in the mitochondrial intermembrane space, and its specific enzymatic activity remains unknown. In the presence of apoptosis, AIF undergoes proteolysis and translocates to the nucleus, where it triggers chromatin condensation and massive DNA degradation in a caspase-independent manner.
Previously, it was thought that the only apoptotic pathways were the mitochondrial pathway and the death receptor signaling pathway. Now, an increasing number of studies have shown that the endoplasmic reticulum (ER) also senses and transmits apoptotic signals [22, 23]. The sustained action of various apoptosis-inducing factors may induce a complex unfolded protein response (UPR) by interfering with the correct protein folding process. The UPR response causes endoplasmic reticulum stress, leading to cellular apoptosis due to the accumulation of intracellular misfolded proteins. ER, in addition to being the site of protein folding, it is also the main intracellular Ca2+ reservoir. Disturbing intracellular Ca2+ homeostasis can also induce the typical ER stress response. Interestingly, the localization of Bcl-2 family proteins (including Bcl-1, Bax, Bak,
It has been suggested that procaspase-12 is a proximal effector of apoptosis associated with the ER. Recent studies have found that although caspase-12 is processed and activated in ER stress-induced apoptosis in mouse cells, the enzyme is not absolutely necessary for this process. On the other hand, cells lacking caspase-8 or caspase-9 were highly resistant to ER stress-induced apoptosis. One of the mechanisms that could explain caspase-8 activation in the ER involves the recent discovery of an ER-resident potential apoptosis initiator, named neurotrophic receptor-like death domain protein (NRADD). This protein has a transmembrane and cytoplasmic region that is highly homologous to the death receptor. Induction of apoptosis by NRADD is dependent on caspase-8 activation but does not require the mitochondrial component of the death program.
In addition to propagating death-inducing stress signals, ER contributes to apoptosis initiated by cell surface death receptors and to pathways resulting from DNA damage. Modulation of ER calcium stores can sensitize mitochondria to direct pro-apoptotic stimuli and promote activation of cytoplasmic death pathways.
In short, the extrinsic (receptor-mediated), intrinsic (mitochondria-mediated), and endoplasmic reticulum stress-mediated apoptotic pathways ultimately converge by activating the same caspases, which cleave the same cellular targets. Apoptosis-inducing factors can be involved in diseases by activating apoptotic pathways that affect the rate of apoptosis, and may predominantly involve the first two pathways or all three of these pathways.
The mechanism by which apoptosis occurs is highly conserved in all animal cells. It is dependent on a family of proteins called caspases (c for cysteine and asp for aspartic acid). This family of proteins has many members and generally exists as inactive precursors (procaspases). Procaspases are generally activated by the catalytic cleavage of other (already active) caspases, forming an amplified network of protein cascades. The activation process of procaspases involves the formation of a heterodimer by cleavage and the combination of two dimers to form an active tetramer. During apoptosis, those responsible for initiation are known as initiator caspases; those responsible for cleavage of specific target proteins (e.g. nuclear lamina proteins, DNA degradation enzymes, cytoskeletal proteins, and cell–cell adhesion proteins) are the executor caspases.
Apoptotic mechanisms are present throughout the initial to final stages of animal development. Only the process requires a trigger to be activated for its occurrence. So, how is the first member of the caspase cascade reaction described above initiated? Initiator procaspases usually contain a caspase recruitment domain (CARD). This structural domain can assemble into an activation complex with an adaptor protein when the cell receives an apoptotic signal. The formation of this complex means that the promoter caspase will be activated by cleavage.
As mentioned above, there are numerous members of the caspases family, most of which are involved in apoptosis, but not all of them mediate apoptosis [24]. For example, the first discovered caspase, human interleukin-l-converting enzyme (ICE), was not associated with apoptosis but was responsible for mediating the inflammatory response. After the discovery of ICE, similar proteins to ICE were identified in
Peroxisomes, similar to the mitochondria, are a membranous subcellular organelle within eukaryotic cells. The peroxisome contains enzymes related to fatty acid and amino acid oxidation processes that produce hydrogen peroxide and also degrade hydrogen peroxide [25]. This gives the peroxisome its name and it plays an important role in maintaining intracellular oxidative metabolic homeostasis.
Because of the crucial role of the peroxisome, its dysfunction is associated with various pathological conditions, organ dysfunction, and aging [26, 27, 28]. For example, deficiency of Pex3, a peroxisomal membrane protein essential for membrane assembly, a member of the peroxisome (Pex) family, leads to complete loss of peroxisome function, while deficiency of Pex5, a peroxisome transporter, leads to Pex5 (a peroxisomal transporter) leads to the loss of peroxisomal matrix proteins. Mutations in this class of Pex genes may lead to human developmental abnormalities, such as human autosomal recessive disorders [29].
Peroxisomes play important roles in biosynthesis and signal transduction, which cannot be achieved without interaction with other organelles in the cell. In particular, peroxisomes interact functionally with mitochondria [30]. They cooperate with each other to perform biological functions such as production, fission, proliferation and degradation through vesicular transport, signaling, and membrane contact [31]. On the other hand, they can act synergistically to clear excess intracellular ROS, resist extracellular stresses through immune responses, and play an important role in the maintenance of lipid homeostasis through fatty acid β-oxidation [32, 33, 34]. In one word, peroxisomes are essential for the maintenance of normal mitochondrial and even whole cell function. Some chemotherapeutic drugs have been found to trigger mitochondrial dysfunction, leading to apoptosis by overwhelming cells with ROS. For example, Vorinostat (Vor), an FDA-approved histone deacetylase inhibitor (HDACi) for lymphoma treatment, has been well documented to trigger mitochondrial-mediated apoptosis through ROS accumulation. Acute Vor treatment has been shown to induce the expression of peroxisome proteins, thereby increasing peroxisome proliferation in a lymphoma model system. In addition, the knockdown of peroxisomes by gene silencing of Pex3 enhances Vor-induced ROS-mediated apoptosis [35].
In short, peroxisome dysfunction severely affects mitochondrial metabolism, cellular morphological stability, and biosynthesis, directly or indirectly contributing to a number of apoptosis-related diseases such as cancer [36, 37], cardiovascular disease [38, 39, 40], and neurodegenerative disorders [41].
Apoptosis is an important way for the organism to maintain the numerical homeostasis of the cell population. Excessive or insufficient apoptosis can lead to disease.
Crosstalk between mitochondria and other organelles is important in tumorigenesis. Mitochondria and peroxisomes are important organelles for ROS production and scavenging. Under normal conditions, both maintain intracellular ROS homeostasis. Impaired peroxisome function inevitably leads to increased levels of ROS in mitochondria, which impairs mitochondria, exacerbates impaired ROS clearance, leads to low levels of apoptosis, and thus promotes tumorigenesis and progression [42, 43, 44].
ROS act as signaling molecules to regulate various physiological and pathological processes [45]. H2O2 is a member of the ROS family and plays an important role in the signaling of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF). H2O2 prevents protein tyrosine phosphatase 1B (PTP1B) from dephosphorylating EGF, thereby facilitating EGF stimulation. In addition, activation of PDGF requires H2O2 to promote oxidation and inactivation of PDGF-receptor-associated phosphatases and SHP-2, thereby facilitating the signaling pathway [46, 47]. Excessive ROS production can lead to cellular genomic instability (including mutations in the mitochondrial genome) on the one hand. Notably, ROS can promote tumor cell proliferation under hypoxic conditions. The reason for this is that the transcription factors hypoxia-inducible factors (HIFs) are upregulated under hypoxic conditions, thus promoting the expression of oncogenes. Although some proteases such as prolyl hydroxylases (PHDs) can degrade HIFs, the increased release of ROS induced by hypoxia can prevent the action of PHDs on HIFs. In this case, HIFs can then promote tumor progression under hypoxic conditions.
Briefly, because disruption of the functional balance between mitochondria and peroxidases may lead to increased ROS production, the increased ROS may inhibit apoptosis-inducing genes (bcl2 and p53, etc.), resulting in non-apoptosis of cells that should be apoptotic. Alternatively, the apoptotic process may be inhibited due to a decrease in the activity of apoptosis-related enzymes (caspases, etc.), leading to malignant cell transformation and tissue malignant proliferation. Both of these aspects are considered to be one of the important mechanisms leading to tumorigenesis and infiltrative metastasis.
Apoptosis is a form of death of terminally differentiated cardiomyocytes. Clinical data suggest that ROS generation, DNA damage, and other factors activate apoptosis, resulting in the loss of large numbers of cardiomyocytes in patients with advanced congestive heart failure, patients with myocardial infarction, and patients with diabetic cardiomyopathy. The evidence suggests that apoptosis may be an important pathogenetic mechanism in cardiovascular disease [38]. Apoptosis, in concert with necrosis, may also lead to foam cell death and thus to the formation of a necrotic core, which contributes to lesion instability and increases the risk of lesion rupture and thrombosis.
Lower levels of ROS production can lead to chronic remodeling of the heart, whereas high levels of ROS can directly lead to apoptosis in the cardiomyocytes [48]. It is therefore interesting that catalase overexpression inhibits cardiomyocyte apoptosis by protecting the cells from ROS [49]. Peroxisomal antioxidant enzymes and plasmalogens protect cardiomyocytes via the degradation and trapping of ROS and the maintenance of ROS homeostasis. Apoptosis of cardiac cells has been demonstrated in several cardiovascular diseases, including myocardial ischemia–reperfusion injury (I/R) and atherosclerosis [50, 51, 52]. Atherosclerosis, a major cause of heart failure and myocardial infarction, can likewise predispose to acute coronary heart disease. There is evidence that thrombosis and plaque rupture may be due to apoptosis of a large number of smooth muscle cells and macrophages in unstable atherosclerotic plaques [53, 54]. Rupture of atherosclerotic plaques with concomitant thrombus formation may lead to coronary artery occlusion, which affects the blood supply to the myocardium, resulting in myocardial infarction and leading to patient death. Reperfusion is an effective treatment for acute myocardial infarction, but it may cause reperfusion injury while restoring blood flow [55]. Studies in the last decade or so have shown that cardiac cell death occurring during reperfusion after myocardial infarction is mainly apoptosis, not cell necrosis, which breaks the long-held misconception [56, 57, 58]. Usually, what occurs during I/R is mostly cell apoptosis, whereas necrosis occurs more often after prolonged ischemia. In addition, apoptosis also plays an important role in myocardial remodeling after infarction. There is evidence that a large number of apoptotic cells can be detected in myocardium at the marginal zone of myocardial infarction [56]. Since the regenerative capacity of myocardium is limited, people show great interest in preventing apoptosis of myocardial cells during I/R.
There is also a connection between chronic heart failure and apoptosis [59]. It has been reported that patients with advanced heart failure have higher rates of cardiac myocyte apoptosis than normal subjects. Using transgenic mice with cardiac tissue-specific expression of caspase-8, it was found that apoptosis of cardiomyocytes, even at very low levels, can lead to fatal dilated cardiomyopathy as long as it occurs chronically [60]. In addition, the use of caspase inhibitors prevented left ventricular dilatation and improved ventricular function, suggesting that long-term apoptosis can lead to a significant reduction in cardiomyocyte numbers, which in turn gradually decreases cardiac contractile function. As a result, the remaining cardiomyocytes become overcompensated and contribute to cardiac hypertrophy, leading to the development of heart failure [61].
Regarding the major pathways involved in apoptotic signaling in the heart, the death receptor pathway, the mitochondrial, and ER-stress death pathways are all involved [62]. The cross-talk between death receptors and mitochondrial cell death pathways has been demonstrated in cardiomyocytes and the heart [63, 64]. For example, Date
In recent years, ER stress pathway has been reported to be in cross-talk with both the death receptor pathway and the mitochondrial pathway [13, 67, 68]. One study found that application of TNF-α induced HL-1 myoblast cell lines that activated both caspase-3 and -12 [69]. Bcl-2, which targets ER, inhibited mitochondrial membrane depolarization in apoptotic cells and also inhibited cytochrome c release [70]. Caspase-8 cleaves BAP31, an ER-associated protein, and the cleaved fragment induces Ca2+ release from ER, into the mitochondria, and initiates apoptosis [71]. It has also been reported that Bik proteins can activate Bax/Bak in the ER membrane after localization to the mitochondria, initiating Ca2+ release [72].
Regardless of the causative factor, and regardless of which signal transduction pathway or pathways are involved, oxidative stress due to the interaction of peroxisomes and mitochondria plays a pivotal role in triggering apoptosis and thus contributing to the development of cardiovascular disease.
Apoptosis plays a key role in the normal development of the central nervous system and is involved in the pathogenesis of adult brain-related diseases, such as stroke [73] and neurodegenerative diseases [74].
There is growing evidence that the decline in peroxisome function with age may be associated with age-related neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD) [75]. In the brains of patients with Alzheimer’s disease and Parkinson’s disease, plasmin levels are significantly reduced [76, 77], which suggests peroxisome dysfunction in neurodegenerative diseases. The lack of peroxisome activity in aged cells accumulates cellular ROS, which can compromise the integrity of organelles including mitochondria and the peroxisome itself. Subsequent defects in energy production mediated by peroxisomal fatty acid metabolism and mitochondrial oxidative phosphorylation may lead to metabolic failure in aged postmitotic cells, thereby inducing apoptosis associated with neurodegeneration.
Huntington’s disease (HD), a prototypical neurodegenerative disorder, is caused by a mutation in the Huntingtin protein due to a repeat amplification of the CAG in the Huntington gene. Patients with this disease suffer from neuronal dysfunction due to massive apoptosis of nerve cells, which in turn manifests as mental cognitive and motor impairment, and even disability [74].
ROS can easily poison neurons due to their series of characteristics, such as rich in fatty acids, easy intracellular production of large amounts of hydroxyl radicals, weak antioxidant capacity, and low regenerative capacity. In addition, because of the high metabolic rates, neurons require a high energy supply from mitochondria, which are both the most important intracellular organelle for ROS production and also vulnerable to ROS attack. It has been shown that treatment of isolated cultured cerebellar granule neurons with hydrogen peroxide induces mitochondrial fission within 1 hour [78]. Furthermore, treatment of mice with nitric oxide in stroke leads to massive fission of neuronal mitochondria before the onset of neuronal loss [79]. In the presence of calcium, acute exposure to high levels of ROS can induce massive opening of mitochondrial membrane transition pores and increased permeability, which in turn causes cell Apoptosis or necrosis occurs. ROS production in mitochondria forms a vicious cycle with oxidative stress and is toxic to cells. There is some evidence in transgenic mouse models of HD that showed that Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid with antioxidant properties, prevents the production of reactive oxygen species, mitigates mitochondrial insufficiency and apoptosis, in part, by inhibiting Bax translocation from cytosol to the mitochondria [80]. TUDCA prevented striatal degeneration and ameliorated locomotor and cognitive deficits in a 3-NP (3-nitropropionic acid) rat model of HD. Keene
Apoptosis is a highly regulated cell death program that can be induced by a variety of physiological and pathological factors and has specific morphological and biochemical characteristics. The mechanism of its onset has not been completely elucidated to date, and it is now accepted that it is mediated by a number of pathways including the death receptor signaling pathway, the mitochondrial signaling pathway, and the endoplasmic reticulum signaling pathway. As an important way for the organism to maintain the numerical homeostasis of the cell population, apoptosis plays a key role in the pathogenesis of various human diseases. Peroxisomes and mitochondria are membrane-bound organelles in the cytoplasm of eukaryotic cells and are closely related to each other in their organelle synthesis and function. One of their important roles in cooperating with each other is to regulate the level and extent of apoptosis by maintaining the homeostasis of reactive oxygen species in the cell. Peroxisome dysfunction severely affects mitochondrial metabolism, cellular morphological stability, and biosynthesis, and therefore contributes directly or indirectly to a number of apoptosis-related diseases. Based on the available relevant findings, this chapter presents and summarizes the important potential role of peroxisomes in apoptosis-related diseases such as tumors, cardiovascular diseases, and neuropsychiatric disorders.
This work was supported in part by grants from National Natural Science Foundation of China (22176002), Anhui Provincial Natural Science Foundation (2008085 MB49), Natural Science Foundation of Anhui Provincial Department of Education (KJ2021A0215), Anhui Medical University Research Enhancement Program (2021xkjT004), and Open Project Fund of the Key Laboratory of the Ministry of Education for the Birth Population (JKZD20202).
The authors report no conflicts of interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6669},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2457},{group:"region",caption:"Asia",value:4,count:12710},{group:"region",caption:"Australia and Oceania",value:5,count:1016},{group:"region",caption:"Europe",value:6,count:17716}],offset:12,limit:12,total:134176},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"13"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11633",title:"Pseudomonas aeruginosa - New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"a7cd19791397a27a80526be0dc54bd8a",slug:null,bookSignature:"Associate Prof. Osama Darwesh and Dr. Ibrahim Matter",coverURL:"https://cdn.intechopen.com/books/images_new/11633.jpg",editedByType:null,editors:[{id:"298076",title:"Associate Prof.",name:"Osama",surname:"Darwesh",slug:"osama-darwesh",fullName:"Osama Darwesh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11634",title:"Mycobacterium - Epidemiology, Prevention, Diagnostic, and Management",subtitle:null,isOpenForSubmission:!0,hash:"aa972af90c14eb4ef39b6dc71911f623",slug:null,bookSignature:"Dr. Awelani Mutshembele",coverURL:"https://cdn.intechopen.com/books/images_new/11634.jpg",editedByType:null,editors:[{id:"468847",title:"Dr.",name:"Awelani",surname:"Mutshembele",slug:"awelani-mutshembele",fullName:"Awelani Mutshembele"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11796",title:"Cytomegalovirus - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"4e442adc2808f68ccc1aeac17e6ae746",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11796.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11798",title:"Listeria monocytogenes",subtitle:null,isOpenForSubmission:!0,hash:"678ca4185133438014939804bf8a05e6",slug:null,bookSignature:"Prof. Cristina Saraiva, Dr. Sónia Saraiva and Prof. Alexandra Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/11798.jpg",editedByType:null,editors:[{id:"226197",title:"Prof.",name:"Cristina",surname:"Saraiva",slug:"cristina-saraiva",fullName:"Cristina Saraiva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11799",title:"Salmonella - Past, Present and Future",subtitle:null,isOpenForSubmission:!0,hash:"6ddb13c31fb19c6f79d19f11ceeb860e",slug:null,bookSignature:"Ph.D. Hongsheng Huang and Dr. Sohail Naushad",coverURL:"https://cdn.intechopen.com/books/images_new/11799.jpg",editedByType:null,editors:[{id:"342722",title:"Ph.D.",name:"Hongsheng",surname:"Huang",slug:"hongsheng-huang",fullName:"Hongsheng Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11801",title:"Roundworms - A Survey From Past to Present",subtitle:null,isOpenForSubmission:!0,hash:"5edc96349630be8bb4e67170be677d8c",slug:null,bookSignature:"Dr. Nihal Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/11801.jpg",editedByType:null,editors:[{id:"169552",title:"Dr.",name:"Nihal",surname:"Dogan",slug:"nihal-dogan",fullName:"Nihal Dogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences",parent:{id:"2",title:"Life Sciences",slug:"life-sciences"},numberOfBooks:411,numberOfSeries:0,numberOfAuthorsAndEditors:11710,numberOfWosCitations:19646,numberOfCrossrefCitations:11678,numberOfDimensionsCitations:28661,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"5",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11354",title:"Pseudocereals",subtitle:null,isOpenForSubmission:!1,hash:"3cc4fe8120cec1dd33a3cbf656231b96",slug:"pseudocereals",bookSignature:"Viduranga Y. Waisundara",coverURL:"https://cdn.intechopen.com/books/images_new/11354.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11360",title:"Milk Protein",subtitle:"New Research Approaches",isOpenForSubmission:!1,hash:"f40a6194bc1f209dff3846fe6e34f45b",slug:"milk-protein-new-research-approaches",bookSignature:"Narongsak Chaiyabutr",coverURL:"https://cdn.intechopen.com/books/images_new/11360.jpg",editedByType:"Edited by",editors:[{id:"76047",title:"Prof.",name:"Narongsak",middleName:null,surname:"Chaiyabutr",slug:"narongsak-chaiyabutr",fullName:"Narongsak Chaiyabutr"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editedByType:"Edited by",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10903",title:"Genetically Modified Plants and Beyond",subtitle:null,isOpenForSubmission:!1,hash:"4d7ed4faab99c92cd4d676dc86501df9",slug:"genetically-modified-plants-and-beyond",bookSignature:"Idah Sithole Niang",coverURL:"https://cdn.intechopen.com/books/images_new/10903.jpg",editedByType:"Edited by",editors:[{id:"90172",title:"Prof.",name:"Idah",middleName:null,surname:"Sithole-Niang",slug:"idah-sithole-niang",fullName:"Idah Sithole-Niang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10899",title:"Postharvest Technology",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ce6f836b93e9e456c0f87a46deca8937",slug:"postharvest-technology-recent-advances-new-perspectives-and-applications",bookSignature:"Md Ahiduzzaman",coverURL:"https://cdn.intechopen.com/books/images_new/10899.jpg",editedByType:"Edited by",editors:[{id:"321606",title:"Dr.",name:"Md",middleName:null,surname:"Ahiduzzaman",slug:"md-ahiduzzaman",fullName:"Md Ahiduzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",isOpenForSubmission:!1,hash:"c5a7932b74fe612b256bf95d0709756e",slug:"plant-stress-physiology-perspectives-in-agriculture",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11032",title:"Bats",subtitle:"Disease-Prone but Beneficial",isOpenForSubmission:!1,hash:"b3d66958de87140d077b4df2f248b77d",slug:"bats-disease-prone-but-beneficial",bookSignature:"Heimo Mikkola",coverURL:"https://cdn.intechopen.com/books/images_new/11032.jpg",editedByType:"Edited by",editors:[{id:"144330",title:"Dr.",name:"Heimo",middleName:"Juhani",surname:"Mikkola",slug:"heimo-mikkola",fullName:"Heimo Mikkola"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:411,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"35141",doi:"10.5772/28157",title:"Antibiotics in Aquaculture – Use, Abuse and Alternatives",slug:"antibiotics-in-aquaculture-use-abuse-and-alternatives",totalDownloads:19288,totalCrossrefCites:136,totalDimensionsCites:288,abstract:null,book:{id:"2052",slug:"health-and-environment-in-aquaculture",title:"Health and Environment in Aquaculture",fullTitle:"Health and Environment in Aquaculture"},signatures:"Jaime Romero, Carmen Gloria Feijoo and Paola Navarrete",authors:[{id:"72898",title:"Dr.",name:"Jaime",middleName:null,surname:"Romero",slug:"jaime-romero",fullName:"Jaime Romero"},{id:"79684",title:"Dr.",name:"Paola",middleName:null,surname:"Navarrete",slug:"paola-navarrete",fullName:"Paola Navarrete"},{id:"83411",title:"Dr.",name:"Carmen",middleName:null,surname:"Feijoo",slug:"carmen-feijoo",fullName:"Carmen Feijoo"}]},{id:"46083",doi:"10.5772/57399",title:"Pesticides: Environmental Impacts and Management Strategies",slug:"pesticides-environmental-impacts-and-management-strategies",totalDownloads:12538,totalCrossrefCites:55,totalDimensionsCites:177,abstract:null,book:{id:"3801",slug:"pesticides-toxic-aspects",title:"Pesticides",fullTitle:"Pesticides - Toxic Aspects"},signatures:"Harsimran Kaur Gill and Harsh Garg",authors:[{id:"169137",title:"Dr.",name:"Harsh",middleName:null,surname:"Garg",slug:"harsh-garg",fullName:"Harsh Garg"},{id:"169846",title:"Dr.",name:"Harsimran",middleName:null,surname:"Gill",slug:"harsimran-gill",fullName:"Harsimran Gill"}]},{id:"43317",doi:"10.5772/54833",title:"Extreme Temperature Responses, Oxidative Stress and Antioxidant Defense in Plants",slug:"extreme-temperature-responses-oxidative-stress-and-antioxidant-defense-in-plants",totalDownloads:11577,totalCrossrefCites:70,totalDimensionsCites:153,abstract:null,book:{id:"3226",slug:"abiotic-stress-plant-responses-and-applications-in-agriculture",title:"Abiotic Stress",fullTitle:"Abiotic Stress - Plant Responses and Applications in Agriculture"},signatures:"Mirza Hasanuzzaman, Kamrun Nahar and Masayuki Fujita",authors:[{id:"47687",title:"Prof.",name:"Masayuki",middleName:null,surname:"Fujita",slug:"masayuki-fujita",fullName:"Masayuki Fujita"},{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"},{id:"166818",title:"MSc.",name:"Kamrun",middleName:null,surname:"Nahar",slug:"kamrun-nahar",fullName:"Kamrun Nahar"}]},{id:"21989",doi:"10.5772/17184",title:"Bacillus-Based Biological Control of Plant Diseases",slug:"bacillus-based-biological-control-of-plant-diseases",totalDownloads:17378,totalCrossrefCites:64,totalDimensionsCites:150,abstract:null,book:{id:"432",slug:"pesticides-in-the-modern-world-pesticides-use-and-management",title:"Pesticides in the Modern World",fullTitle:"Pesticides in the Modern World - Pesticides Use and Management"},signatures:"Hélène Cawoy, Wagner Bettiol, Patrick Fickers and Marc Ongena",authors:[{id:"27515",title:"Prof.",name:"Patrick",middleName:null,surname:"Fickers",slug:"patrick-fickers",fullName:"Patrick Fickers"},{id:"40395",title:"Dr.",name:"Marc",middleName:null,surname:"Ongena",slug:"marc-ongena",fullName:"Marc Ongena"},{id:"108031",title:"Ms.",name:"Hélène",middleName:null,surname:"Cawoy",slug:"helene-cawoy",fullName:"Hélène Cawoy"},{id:"108032",title:"Dr.",name:"Wagner",middleName:null,surname:"Bettiol",slug:"wagner-bettiol",fullName:"Wagner Bettiol"}]},{id:"40178",doi:"10.5772/52583",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]}],mostDownloadedChaptersLast30Days:[{id:"64570",title:"Banana Pseudo-Stem Fiber: Preparation, Characteristics, and Applications",slug:"banana-pseudo-stem-fiber-preparation-characteristics-and-applications",totalDownloads:9428,totalCrossrefCites:15,totalDimensionsCites:18,abstract:"Banana is one of the most well-known and useful plants in the world. Almost all the parts of this plant, that are, fruit, leaves, flower bud, trunk, and pseudo-stem, can be utilized. This chapter deals with the fiber extracted from the pseudo-stem of the banana plant. It discusses the production of banana pseudo-stem fiber, which includes plantation and harvesting; extraction of banana pseudo-stem fiber; retting; and degumming of the fiber. It also deals with the characteristics of the banana pseudo-stem fiber, such as morphological, physical and mechanical, durability, degradability, thermal, chemical, and antibacterial properties. Several potential applications of this fiber are also mentioned, such as the use of this fiber to fabricate rope, place mats, paper cardboard, string thread, tea bags, high-quality textile materials, absorbent, polymer/fiber composites, etc.",book:{id:"7544",slug:"banana-nutrition-function-and-processing-kinetics",title:"Banana Nutrition",fullTitle:"Banana Nutrition - Function and Processing Kinetics"},signatures:"Asmanto Subagyo and Achmad Chafidz",authors:[{id:"257742",title:"M.Sc.",name:"Achmad",middleName:null,surname:"Chafidz",slug:"achmad-chafidz",fullName:"Achmad Chafidz"},{id:"268400",title:"Mr.",name:"Asmanto",middleName:null,surname:"Subagyo",slug:"asmanto-subagyo",fullName:"Asmanto Subagyo"}]},{id:"40180",title:"Plant Tissue Culture: Current Status and Opportunities",slug:"plant-tissue-culture-current-status-and-opportunities",totalDownloads:66452,totalCrossrefCites:43,totalDimensionsCites:89,abstract:null,book:{id:"3568",slug:"recent-advances-in-plant-in-vitro-culture",title:"Recent Advances in Plant in vitro Culture",fullTitle:"Recent Advances in Plant in vitro Culture"},signatures:"Altaf Hussain, Iqbal Ahmed Qarshi, Hummera Nazir and Ikram Ullah",authors:[{id:"147617",title:"Dr.",name:"Altaf",middleName:null,surname:"Hussain",slug:"altaf-hussain",fullName:"Altaf Hussain"}]},{id:"66996",title:"Ethiopian Common Medicinal Plants: Their Parts and Uses in Traditional Medicine - Ecology and Quality Control",slug:"ethiopian-common-medicinal-plants-their-parts-and-uses-in-traditional-medicine-ecology-and-quality-c",totalDownloads:4059,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"The main purpose of this review is to document medicinal plants used for traditional treatments with their parts, use, ecology, and quality control. Accordingly, 80 medicinal plant species were reviewed; leaves and roots are the main parts of the plants used for preparation of traditional medicines. The local practitioners provided various traditional medications to their patients’ diseases such as stomachaches, asthma, dysentery, malaria, evil eyes, cancer, skin diseases, and headaches. The uses of medicinal plants for human and animal treatments are practiced from time immemorial. Stream/riverbanks, cultivated lands, disturbed sites, bushlands, forested areas and their margins, woodlands, grasslands, and home gardens are major habitats of medicinal plants. Generally, medicinal plants used for traditional medicine play a significant role in the healthcare of the majority of the people in Ethiopia. The major threats to medicinal plants are habitat destruction, urbanization, agricultural expansion, investment, road construction, and deforestation. Because of these, medicinal plants are being declined and lost with their habitats. Community- and research-based conservation mechanisms could be an appropriate approach for mitigating the problems pertinent to the loss of medicinal plants and their habitats and for documenting medicinal plants. Chromatography; electrophoretic, macroscopic, and microscopic techniques; and pharmaceutical practice are mainly used for quality control of herbal medicines.",book:{id:"8502",slug:"plant-science-structure-anatomy-and-physiology-in-plants-cultured-in-vivo-and-in-vitro",title:"Plant Science",fullTitle:"Plant Science - Structure, Anatomy and Physiology in Plants Cultured in Vivo and in Vitro"},signatures:"Admasu Moges and Yohannes Moges",authors:[{id:"249746",title:"Ph.D.",name:"Admasu",middleName:null,surname:"Moges",slug:"admasu-moges",fullName:"Admasu Moges"},{id:"297761",title:"MSc.",name:"Yohannes",middleName:null,surname:"Moges",slug:"yohannes-moges",fullName:"Yohannes Moges"}]},{id:"70658",title:"Factors Affecting Yield of Crops",slug:"factors-affecting-yield-of-crops",totalDownloads:4044,totalCrossrefCites:25,totalDimensionsCites:40,abstract:"A good understanding of dynamics involved in food production is critical for the improvement of food security. It has been demonstrated that an increase in crop yields significantly reduces poverty. Yield, the mass of harvest crop product in a specific area, is influenced by several factors. These factors are grouped in three basic categories known as technological (agricultural practices, managerial decision, etc.), biological (diseases, insects, pests, weeds) and environmental (climatic condition, soil fertility, topography, water quality, etc.). These factors account for yield differences from one region to another worldwide. The current chapter will discuss each of these three basic factors as well as providing some recommendations for overcoming them. In addition, it will provide the importance of climate-smart agriculture in the increase of crop yields while facilitating the achievement of crop production in safe environment. This goes in line with the second goal of 2030 Agenda for Sustainable Development of United Nations in transforming our world formulated as end hunger, achieve food security, improve nutrition and promote sustainable agriculture.",book:{id:"8153",slug:"agronomy-climate-change-food-security",title:"Agronomy",fullTitle:"Agronomy - Climate Change & Food Security"},signatures:"Tandzi Ngoune Liliane and Mutengwa Shelton Charles",authors:[{id:"313819",title:"Dr.",name:"Liliane",middleName:null,surname:"Tandzi",slug:"liliane-tandzi",fullName:"Liliane Tandzi"},{id:"314316",title:"Prof.",name:"Charles Shelton",middleName:null,surname:"Mutengwa",slug:"charles-shelton-mutengwa",fullName:"Charles Shelton Mutengwa"}]},{id:"59402",title:"Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB",slug:"robotic-harvesting-of-fruiting-vegetables-a-simulation-approach-in-v-rep-ros-and-matlab",totalDownloads:2797,totalCrossrefCites:7,totalDimensionsCites:8,abstract:"In modern agriculture, there is a high demand to move from tedious manual harvesting to a continuously automated operation. This chapter reports on designing a simulation and control platform in V-REP, ROS, and MATLAB for experimenting with sensors and manipulators in robotic harvesting of sweet pepper. The objective was to provide a completely simulated environment for improvement of visual servoing task through easy testing and debugging of control algorithms with zero damage risk to the real robot and to the actual equipment. A simulated workspace, including an exact replica of different robot manipulators, sensing mechanisms, and sweet pepper plant, and fruit system was created in V-REP. Image moment method visual servoing with eye-in-hand configuration was implemented in MATLAB, and was tested on four robotic platforms including Fanuc LR Mate 200iD, NOVABOT, multiple linear actuators, and multiple SCARA arms. Data from simulation experiments were used as inputs of the control algorithm in MATLAB, whose outputs were sent back to the simulated workspace and to the actual robots. ROS was used for exchanging data between the simulated environment and the real workspace via its publish-and-subscribe architecture. Results provided a framework for experimenting with different sensing and acting scenarios, and verified the performance functionality of the simulator.",book:{id:"6265",slug:"automation-in-agriculture-securing-food-supplies-for-future-generations",title:"Automation in Agriculture",fullTitle:"Automation in Agriculture - Securing Food Supplies for Future Generations"},signatures:"Redmond R. Shamshiri, Ibrahim A. Hameed, Manoj Karkee and\nCornelia Weltzien",authors:[{id:"182449",title:"Prof.",name:"Ibrahim",middleName:"A.",surname:"Hameed",slug:"ibrahim-hameed",fullName:"Ibrahim Hameed"},{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"},{id:"241193",title:"Dr.",name:"Manoj",middleName:null,surname:"Karkee",slug:"manoj-karkee",fullName:"Manoj Karkee"},{id:"241194",title:"Dr.",name:"Cornelia",middleName:null,surname:"Weltzien",slug:"cornelia-weltzien",fullName:"Cornelia Weltzien"}]}],onlineFirstChaptersFilter:{topicId:"5",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82307",title:"The Impact of Heavy Metals on the Chicken Gut Microbiota and their Health and Diseases",slug:"the-impact-of-heavy-metals-on-the-chicken-gut-microbiota-and-their-health-and-diseases",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105581",abstract:"It is important to consider the health and well-being of birds in various production methods. The microbial makeup and function of a bird’s gastrointestinal (GIT) system may vary based on the bird’s food, breed, age, and other environmental conditions. Gut flora play a critical role in maintaining intestinal homeostasis. Environmental exposure to contaminants such as heavy metals (HMs) has been linked to a wide range of disorders, including the development of dysbiosis in the gut, according to many studies. Changes in the gut microbiota caused by HMs are a major factor in the onset and progression of these illnesses. The microbiota in the gut is thought to be the first line of defense against HMs. Thus, HMs exposure modifies the gut microbiota composition and metabolic profile, affecting HMs uptake and metabolism by altering pH, oxidative balance, and concentrations of detoxifying enzymes or proteins involved in HM metabolism. This chapter will focus on the exposure of chicken to HMs from their feed or water and how these HMs affect the immune system resulting in various diseases.",book:{id:"11345",title:"Broiler Industry",coverURL:"https://cdn.intechopen.com/books/images_new/11345.jpg"},signatures:"Selina Acheampong"},{id:"82436",title:"Heavy Metal Residues in Milk and Milk Products and Their Detection Method",slug:"heavy-metal-residues-in-milk-and-milk-products-and-their-detection-method",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.105004",abstract:"Milk and milk products are an essential part of the human daily diet, and their consumption is steadily increasing. Milk is regarded as a complete food because it contains all of the macronutrients including protein, carbohydrates, fat and vitamins. Milk also has a high concentration of mineral elements (metals) such as sodium, potassium, iron, calcium, magnesium, selenium, copper and zinc. They are critical for proper body growth and maintenance but excess in these metals, particularly, heavy metals cause disturbances and pathological conditions. People nowadays are concerned about food safety issues involving microbial, chemical and physical hazards. Heavy metal residues such as cadmium (Cd), lead (Pb), arsenic (As) and mercury (Hg) pose a chemical hazard. These are the main contaminants. Heavy metals are any metallic chemical elements with a relatively high density (5 g/cc) whose levels must be monitored. Atomic absorption spectroscopy can be used to estimate the heavy metal contamination in milk and milk products.",book:{id:"11741",title:"Trends and Innovations in Food Science",coverURL:"https://cdn.intechopen.com/books/images_new/11741.jpg"},signatures:"Ankur Aggarwal, Tarun Verma and Sumangal Ghosh"},{id:"81372",title:"Context-Specific Food-Based Strategies for Improving Nutrition in Developing Countries",slug:"context-specific-food-based-strategies-for-improving-nutrition-in-developing-countries",totalDownloads:2,totalDimensionsCites:0,doi:"10.5772/intechopen.104586",abstract:"Viable food approaches for achieving nutrient needs in underdeveloped countries are not well documented. The existing evidence indicates that one out of three people is facing single or multiple forms of malnutrition globally, in which the highly affected sections of the population are children and women from less developed countries. Economic losses, which result from undernutrition are between 3% and 16% of the GDP in the majority of poor countries. This problem is far bigger than what the government and donors can tackle alone. Thus, a new strategy, which is donor-independent, is required to address the problem of undernutrition in developing countries. In this chapter, we report on a food approach that is context-specific for grappling with malnutrition problems in low-income countries. The approach employs the model which encompasses public and private sectors to allow cost-sharing and productivity gains in tackling malnutrition in under-resourced countries. The model urges all stakeholders to consider consumers’ views, which are often overlooked, and properly engross them as key players.",book:{id:"11741",title:"Trends and Innovations in Food Science",coverURL:"https://cdn.intechopen.com/books/images_new/11741.jpg"},signatures:"Jofrey Raymond"},{id:"82370",title:"Heat Shock Proteins (HSP70) Gene: Plant Transcriptomic Oven in the Hot Desert",slug:"heat-shock-proteins-hsp70-gene-plant-transcriptomic-oven-in-the-hot-desert",totalDownloads:4,totalDimensionsCites:0,doi:"10.5772/intechopen.105391",abstract:"Heat stress is considered to induce a wide range of physiological and biochemical changes that cause severe damage to plant cell membrane, disrupt protein synthesis, and affect the efficiency of photosynthetic system by reducing the transpiration due to stomata closure. A brief and mild heat shock is known to induce acquired thermo tolerance in plants that is associated with concomitant production of heat shock proteins’ (HSPs) gene family including HSP70. The findings from different studies by use of technologies have thrown light on the importance of HSP70 to heat, other abiotic stresses and environmental challenges in desserts. There is clear evidence that under heat stress, HSP70 gene stabilized the membrane structure, chlorophyll and water breakdown. It was also found that under heat stress, HSP70 decreased the malondialdehyde (MDA) content and increased the production of superoxide dismutase (SOD) and peroxidase (POD) in transgenic plants as compared to non-transgenic plants. Some reactive oxygen species (ROS) such as superoxide, hydrogen peroxide and hydroxyl radical are also synthesized and accumulated when plants are stressed by heat. Hence HSP70 can confidently be used for transforming a number of heat tolerant crop species.",book:{id:"11330",title:"Plant Response Mechanisms to Abiotic Stresses",coverURL:"https://cdn.intechopen.com/books/images_new/11330.jpg"},signatures:"Batool Fatima, Anicet Agossa Batcho, Zainab Y. Sandhu, Muhammad Bilal Sarwar, Sameera Hassan and Bushra Rashid"},{id:"82403",title:"Use of Plant Secondary Metabolites to Reduce Crop Biotic and Abiotic Stresses: A Review",slug:"use-of-plant-secondary-metabolites-to-reduce-crop-biotic-and-abiotic-stresses-a-review",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.104553",abstract:"Plant secondary metabolites (PSM) are small molecules of organic compounds produced in plant metabolism that have various ecological functions, such as defense against pathogens, herbivores, and neighboring plants. They can also help to reduce abiotic stresses, such as drought, salinity, temperature, and UV. This chapter reviewed the ecological functions of the PSM and how people utilize these metabolites to reduce crop biotic and abiotic stresses in agriculture. Specific topics covered in this review are (1) extraction of PSM from plant parts and its application on crops; (2) screening of crop/cover crop germplasms for high PSM content and with resistance to pathogens, herbivores, and/or neighboring plants; (3) regulation of PSM biosynthesis (including plant hormones and defense activators) to increase plant readiness for defense; (4) transcriptome and genome technology improvements in the last decade leading to valuable tools to characterize differential gene expression and gene composition in a genome, and lineage-specific gene family expansion and contraction. In addition, there is a critical need to understand how the biosynthesis and release of allelochemicals occur. Filling this knowledge gap will help us to improve and encourage sustainable weed control practices in agriculture.",book:{id:"11331",title:"Secondary Metabolites - Trends and Reviews",coverURL:"https://cdn.intechopen.com/books/images_new/11331.jpg"},signatures:"Ziming Yue, Varsha Singh, Josiane Argenta, Worlanyo Segbefia, Alyssa Miller and Te Ming Tseng"},{id:"82404",title:"Nutrition of Corals and Their Trophic Plasticity under Future Environmental Conditions",slug:"nutrition-of-corals-and-their-trophic-plasticity-under-future-environmental-conditions",totalDownloads:9,totalDimensionsCites:0,doi:"10.5772/intechopen.104612",abstract:"Scleractinian corals obtain metabolic energy from their endosymbiotic autotrophic microalgae, and from remineralization of organic matter by bacteria and viruses, along with the heterotrophic food sources. The mutualistic symbiosis is generally stable but can be disrupted when environmental conditions surrounding the corals, such as increasing seawater temperature, become unfavorable to sustain each component of the holobiont. In this connection, the effects of global stressors such as climate change, and local stressors such as pollution, and their combination, are posing serious threats to the metabolic resistance of corals. However, some more resilient coral species have developed specific mechanisms to cope with fluctuating environmental conditions according to the trophic strategy (autotrophy, heterotrophy, or mixotrophy), and by modulating their energy expenditure. In this chapter, the role of nutrition in the coral symbiosis as the energetic budget for metabolic performance will be discussed, with a focus on the role of acquisition of nutrients through feeding, regulation of energy reserves (lipids, proteins, and carbohydrates), and adaptation capability in the natural environment, including the expression of heat-shock proteins (Hsps). Future environmental conditions under a combination of global changes and local impacts will also be discussed, with the aim of identifying the trophic niches of corals and geographical areas as possible refugia.",book:{id:"11342",title:"Corals - Habitat Formers From the Shallow to the Deep",coverURL:"https://cdn.intechopen.com/books/images_new/11342.jpg"},signatures:"Walter Dellisanti, Davide Seveso and James Kar-Hei Fang"}],onlineFirstChaptersTotal:346},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:10,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null,editorialBoard:[{id:"241413",title:"Dr.",name:"Azhar",middleName:null,surname:"Rasul",slug:"azhar-rasul",fullName:"Azhar Rasul",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRT1oQAG/Profile_Picture_1635251978933",institutionString:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh",profilePictureURL:"https://mts.intechopen.com/storage/users/178316/images/system/178316.jfif",institutionString:null,institution:{name:"Novosibirsk State University",institutionURL:null,country:{name:"Russia"}}}]},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"243049",title:"Dr.",name:"Anca",middleName:null,surname:"Pantea Stoian",slug:"anca-pantea-stoian",fullName:"Anca Pantea Stoian",profilePictureURL:"https://mts.intechopen.com/storage/users/243049/images/system/243049.jpg",institutionString:null,institution:{name:"Carol Davila University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"203824",title:"Dr.",name:"Attilio",middleName:null,surname:"Rigotti",slug:"attilio-rigotti",fullName:"Attilio Rigotti",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:null,institution:{name:"Pontifical Catholic University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"300470",title:"Dr.",name:"Yanfei (Jacob)",middleName:null,surname:"Qi",slug:"yanfei-(jacob)-qi",fullName:"Yanfei (Jacob) Qi",profilePictureURL:"https://mts.intechopen.com/storage/users/300470/images/system/300470.jpg",institutionString:null,institution:{name:"Centenary Institute of Cancer Medicine and Cell Biology",institutionURL:null,country:{name:"Australia"}}}]},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null,editorialBoard:[{id:"72288",title:"Dr.",name:"Arli Aditya",middleName:null,surname:"Parikesit",slug:"arli-aditya-parikesit",fullName:"Arli Aditya Parikesit",profilePictureURL:"https://mts.intechopen.com/storage/users/72288/images/system/72288.jpg",institutionString:null,institution:{name:"Indonesia International Institute for Life Sciences",institutionURL:null,country:{name:"Indonesia"}}},{id:"40928",title:"Dr.",name:"Cesar",middleName:null,surname:"Lopez-Camarillo",slug:"cesar-lopez-camarillo",fullName:"Cesar Lopez-Camarillo",profilePictureURL:"https://mts.intechopen.com/storage/users/40928/images/3884_n.png",institutionString:null,institution:{name:"Universidad Autónoma de la Ciudad de México",institutionURL:null,country:{name:"Mexico"}}},{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany",profilePictureURL:"https://mts.intechopen.com/storage/users/81926/images/system/81926.png",institutionString:"Suez Canal University",institution:{name:"Suez Canal University",institutionURL:null,country:{name:"Egypt"}}}]}]},overviewPageOFChapters:{paginationCount:15,paginationItems:[{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}},{id:"81975",title:"Self-Sustained Communities: Food Security in Times of Crisis",doi:"10.5772/intechopen.104425",signatures:"Kriengsak Chareonwongsak",slug:"self-sustained-communities-food-security-in-times-of-crisis",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Food Systems Resilience",coverURL:"https://cdn.intechopen.com/books/images_new/10897.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:null,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:13,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9525",title:"Insights Into Drug Resistance in Staphylococcus aureus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9525.jpg",slug:"insights-into-drug-resistance-in-staphylococcus-aureus",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Amjad Aqib",hash:"98bb6c1ddb067da67185c272f81c0a27",volumeInSeries:10,fullTitle:"Insights Into Drug Resistance in Staphylococcus aureus",editors:[{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9614",title:"Advances in Candida albicans",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9614.jpg",slug:"advances-in-candida-albicans",publishedDate:"November 17th 2021",editedByType:"Edited by",bookSignature:"Xinhui Wang",hash:"31d6882518ca749b12715266eed0a018",volumeInSeries:9,fullTitle:"Advances in Candida albicans",editors:[{id:"296531",title:"Dr.",name:"Xinhui",middleName:null,surname:"Wang",slug:"xinhui-wang",fullName:"Xinhui Wang",profilePictureURL:"https://mts.intechopen.com/storage/users/296531/images/system/296531.jpg",institutionString:"Qinghai Normal University",institution:{name:"University of Luxembourg",institutionURL:null,country:{name:"Luxembourg"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Bacterial Infectious Diseases",value:3,count:2},{group:"subseries",caption:"Parasitic Infectious Diseases",value:5,count:4},{group:"subseries",caption:"Viral Infectious Diseases",value:6,count:7}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:2},{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:229,paginationItems:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",biography:"Dr. Aneesa Moolla has extensive experience in the diverse fields of health care having previously worked in dental private practice, at the Red Cross Flying Doctors association, and in healthcare corporate settings. She is now a lecturer at the University of Witwatersrand, South Africa, and a principal researcher at the Health Economics and Epidemiology Research Office (HE2RO), South Africa. Dr. Moolla holds a Ph.D. in Psychology with her research being focused on mental health and resilience. In her professional work capacity, her research has further expanded into the fields of early childhood development, mental health, the HIV and TB care cascades, as well as COVID. She is also a UNESCO-trained International Bioethics Facilitator.",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419588",title:"Ph.D.",name:"Sergio",middleName:"Alexandre",surname:"Gehrke",slug:"sergio-gehrke",fullName:"Sergio Gehrke",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000038WgMKQA0/Profile_Picture_2022-06-02T11:44:20.jpg",biography:"Dr. Sergio Alexandre Gehrke is a doctorate holder in two fields. The first is a Ph.D. in Cellular and Molecular Biology from the Pontificia Catholic University, Porto Alegre, Brazil, in 2010 and the other is an International Ph.D. in Bioengineering from the Universidad Miguel Hernandez, Elche/Alicante, Spain, obtained in 2020. In 2018, he completed a postdoctoral fellowship in Materials Engineering in the NUCLEMAT of the Pontificia Catholic University, Porto Alegre, Brazil. He is currently the Director of the Postgraduate Program in Implantology of the Bioface/UCAM/PgO (Montevideo, Uruguay), Director of the Cathedra of Biotechnology of the Catholic University of Murcia (Murcia, Spain), an Extraordinary Full Professor of the Catholic University of Murcia (Murcia, Spain) as well as the Director of the private center of research Biotecnos – Technology and Science (Montevideo, Uruguay). Applied biomaterials, cellular and molecular biology, and dental implants are among his research interests. He has published several original papers in renowned journals. In addition, he is also a Collaborating Professor in several Postgraduate programs at different universities all over the world.",institutionString:null,institution:{name:"Universidad Católica San Antonio de Murcia",country:{name:"Spain"}}},{id:"342152",title:"Dr.",name:"Santo",middleName:null,surname:"Grace Umesh",slug:"santo-grace-umesh",fullName:"Santo Grace Umesh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/342152/images/16311_n.jpg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"333647",title:"Dr.",name:"Shreya",middleName:null,surname:"Kishore",slug:"shreya-kishore",fullName:"Shreya Kishore",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333647/images/14701_n.jpg",biography:"Dr. Shreya Kishore completed her Bachelor in Dental Surgery in Chettinad Dental College and Research Institute, Chennai, and her Master of Dental Surgery (Orthodontics) in Saveetha Dental College, Chennai. She is also Invisalign certified. She’s working as a Senior Lecturer in the Department of Orthodontics, SRM Dental College since November 2019. She is actively involved in teaching orthodontics to the undergraduates and the postgraduates. Her clinical research topics include new orthodontic brackets, fixed appliances and TADs. She’s published 4 articles in well renowned indexed journals and has a published patency of her own. Her private practice is currently limited to orthodontics and works as a consultant in various clinics.",institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"323731",title:"Prof.",name:"Deepak M.",middleName:"Macchindra",surname:"Vikhe",slug:"deepak-m.-vikhe",fullName:"Deepak M. Vikhe",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/323731/images/13613_n.jpg",biography:"Dr Deepak M.Vikhe .\n\n\t\n\tDr Deepak M.Vikhe , completed his Masters & PhD in Prosthodontics from Rural Dental College, Loni securing third rank in the Pravara Institute of Medical Sciences Deemed University. He was awarded Dr.G.C.DAS Memorial Award for Research on Implants at 39th IPS conference Dubai (U A E).He has two patents under his name. He has received Dr.Saraswati medal award for best research for implant study in 2017.He has received Fully funded scholarship to Spain ,university of Santiago de Compostela. He has completed fellowship in Implantlogy from Noble Biocare. \nHe has attended various conferences and CDE programmes and has national publications to his credit. His field of interest is in Implant supported prosthesis. Presently he is working as a associate professor in the Dept of Prosthodontics, Rural Dental College, Loni and maintains a successful private practice specialising in Implantology at Rahata.\n\nEmail: drdeepak_mvikhe@yahoo.com..................",institutionString:null,institution:{name:"Pravara Institute of Medical Sciences",country:{name:"India"}}},{id:"204110",title:"Dr.",name:"Ahmed A.",middleName:null,surname:"Madfa",slug:"ahmed-a.-madfa",fullName:"Ahmed A. Madfa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204110/images/system/204110.jpg",biography:"Dr. Madfa is currently Associate Professor of Endodontics at Thamar University and a visiting lecturer at Sana'a University and University of Sciences and Technology. He has more than 6 years of experience in teaching. His research interests include root canal morphology, functionally graded concept, dental biomaterials, epidemiology and dental education, biomimetic restoration, finite element analysis and endodontic regeneration. Dr. Madfa has numerous international publications, full articles, two patents, a book and a book chapter. Furthermore, he won 14 international scientific awards. Furthermore, he is involved in many academic activities ranging from editorial board member, reviewer for many international journals and postgraduate students' supervisor. Besides, I deliver many courses and training workshops at various scientific events. Dr. Madfa also regularly attends international conferences and holds administrative positions (Deputy Dean of the Faculty for Students’ & Academic Affairs and Deputy Head of Research Unit).",institutionString:"Thamar University",institution:null},{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",biography:"Dr. Nermin Mohammed Ahmed Yussif is working at the Faculty of dentistry, University for October university for modern sciences and arts (MSA). Her areas of expertise include: periodontology, dental laserology, oral implantology, periodontal plastic surgeries, oral mesotherapy, nutrition, dental pharmacology. She is an editor and reviewer in numerous international journals.",institutionString:"MSA University",institution:null},{id:"204606",title:"Dr.",name:"Serdar",middleName:null,surname:"Gözler",slug:"serdar-gozler",fullName:"Serdar Gözler",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204606/images/system/204606.jpeg",biography:"Dr. Serdar Gözler has completed his undergraduate studies at the Marmara University Faculty of Dentistry in 1978, followed by an assistantship in the Prosthesis Department of Dicle University Faculty of Dentistry. Starting his PhD work on non-resilient overdentures with Assoc. Prof. Hüsnü Yavuzyılmaz, he continued his studies with Prof. Dr. Gürbüz Öztürk of Istanbul University Faculty of Dentistry Department of Prosthodontics, this time on Gnatology. He attended training programs on occlusion, neurology, neurophysiology, EMG, radiology and biostatistics. In 1982, he presented his PhD thesis \\Gerber and Lauritzen Occlusion Analysis Techniques: Diagnosis Values,\\ at Istanbul University School of Dentistry, Department of Prosthodontics. As he was also working with Prof. Senih Çalıkkocaoğlu on The Physiology of Chewing at the same time, Gözler has written a chapter in Çalıkkocaoğlu\\'s book \\Complete Prostheses\\ entitled \\The Place of Neuromuscular Mechanism in Prosthetic Dentistry.\\ The book was published five times since by the Istanbul University Publications. Having presented in various conferences about occlusion analysis until 1998, Dr. Gözler has also decided to use the T-Scan II occlusion analysis method. Having been personally trained by Dr. Robert Kerstein on this method, Dr. Gözler has been lecturing on the T-Scan Occlusion Analysis Method in conferences both in Turkey and abroad. Dr. Gözler has various articles and presentations on Digital Occlusion Analysis methods. He is now Head of the TMD Clinic at Prosthodontic Department of Faculty of Dentistry , Istanbul Aydın University , Turkey.",institutionString:"Istanbul Aydin University",institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",biography:"Dr. Al Ostwani Alaa Eddin Omar received his Master in dentistry from Damascus University in 2010, and his Ph.D. in Pediatric Dentistry from Damascus University in 2014. Dr. Al Ostwani is an assistant professor and faculty member at IUST University since 2014. \nDuring his academic experience, he has received several awards including the scientific research award from the Union of Arab Universities, the Syrian gold medal and the international gold medal for invention and creativity. Dr. Al Ostwani is a Member of the International Association of Dental Traumatology and the Syrian Society for Research and Preventive Dentistry since 2017. He is also a Member of the Reviewer Board of International Journal of Dental Medicine (IJDM), and the Indian Journal of Conservative and Endodontics since 2016.",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",country:{name:"India"}}},{id:"42847",title:"Dr.",name:"Belma",middleName:null,surname:"Işik Aslan",slug:"belma-isik-aslan",fullName:"Belma Işik Aslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/42847/images/system/42847.jpg",biography:"Dr. Belma IşIk Aslan was born in 1976 in Ankara-TURKEY. After graduating from TED Ankara College in 1994, she attended to Gazi University, Faculty of Dentistry in Ankara. She completed her PhD in orthodontic education at Gazi University between 1999-2005. Dr. Işık Aslan stayed at the Providence Hospital Craniofacial Institude and Reconstructive Surgery in Michigan, USA for three months as an observer. She worked as a specialist doctor at Gazi University, Dentistry Faculty, Department of Orthodontics between 2005-2014. She was appointed as associate professor in January, 2014 and as professor in 2021. Dr. Işık Aslan still works as an instructor at the same faculty. She has published a total of 35 articles, 10 book chapters, 39 conference proceedings both internationally and nationally. Also she was the academic editor of the international book 'Current Advances in Orthodontics'. She is a member of the Turkish Orthodontic Society and Turkish Cleft Lip and Palate Society. She is married and has 2 children. Her knowledge of English is at an advanced level.",institutionString:"Gazi University Dentistry Faculty Department of Orthodontics",institution:null},{id:"178412",title:"Associate Prof.",name:"Guhan",middleName:null,surname:"Dergin",slug:"guhan-dergin",fullName:"Guhan Dergin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178412/images/6954_n.jpg",biography:"Assoc. Prof. Dr. Gühan Dergin was born in 1973 in Izmit. He graduated from Marmara University Faculty of Dentistry in 1999. He completed his specialty of OMFS surgery in Marmara University Faculty of Dentistry and obtained his PhD degree in 2006. In 2005, he was invited as a visiting doctor in the Oral and Maxillofacial Surgery Department of the University of North Carolina, USA, where he went on a scholarship. Dr. Dergin still continues his academic career as an associate professor in Marmara University Faculty of Dentistry. He has many articles in international and national scientific journals and chapters in books.",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"178414",title:"Prof.",name:"Yusuf",middleName:null,surname:"Emes",slug:"yusuf-emes",fullName:"Yusuf Emes",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/178414/images/6953_n.jpg",biography:"Born in Istanbul in 1974, Dr. Emes graduated from Istanbul University Faculty of Dentistry in 1997 and completed his PhD degree in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery in 2005. He has papers published in international and national scientific journals, including research articles on implantology, oroantral fistulas, odontogenic cysts, and temporomandibular disorders. Dr. Emes is currently working as a full-time academic staff in Istanbul University faculty of Dentistry Department of Oral and Maxillofacial Surgery.",institutionString:null,institution:{name:"Istanbul University",country:{name:"Turkey"}}},{id:"192229",title:"Ph.D.",name:"Ana Luiza",middleName:null,surname:"De Carvalho Felippini",slug:"ana-luiza-de-carvalho-felippini",fullName:"Ana Luiza De Carvalho Felippini",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/192229/images/system/192229.jpg",biography:null,institutionString:"University of São Paulo",institution:{name:"University of Sao Paulo",country:{name:"Brazil"}}},{id:"256851",title:"Prof.",name:"Ayşe",middleName:null,surname:"Gülşen",slug:"ayse-gulsen",fullName:"Ayşe Gülşen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256851/images/9696_n.jpg",biography:"Dr. Ayşe Gülşen graduated in 1990 from Faculty of Dentistry, University of Ankara and did a postgraduate program at University of Gazi. \nShe worked as an observer and research assistant in Craniofacial Surgery Departments in New York, Providence Hospital in Michigan and Chang Gung Memorial Hospital in Taiwan. \nShe works as Craniofacial Orthodontist in Department of Aesthetic, Plastic and Reconstructive Surgery, Faculty of Medicine, University of Gazi, Ankara Turkey since 2004.",institutionString:"Univeristy of Gazi",institution:null},{id:"255366",title:"Prof.",name:"Tosun",middleName:null,surname:"Tosun",slug:"tosun-tosun",fullName:"Tosun Tosun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255366/images/7347_n.jpg",biography:"Graduated at the Faculty of Dentistry, University of Istanbul, Turkey in 1989;\nVisitor Assistant at the University of Padua, Italy and Branemark Osseointegration Center of Treviso, Italy between 1993-94;\nPhD thesis on oral implantology in University of Istanbul and was awarded the academic title “Dr.med.dent.”, 1997;\nHe was awarded the academic title “Doç.Dr.” (Associated Professor) in 2003;\nProficiency in Botulinum Toxin Applications, Reading-UK in 2009;\nMastership, RWTH Certificate in Laser Therapy in Dentistry, AALZ-Aachen University, Germany 2009-11;\nMaster of Science (MSc) in Laser Dentistry, University of Genoa, Italy 2013-14.\n\nDr.Tosun worked as Research Assistant in the Department of Oral Implantology, Faculty of Dentistry, University of Istanbul between 1990-2002. \nHe worked part-time as Consultant surgeon in Harvard Medical International Hospitals and John Hopkins Medicine, Istanbul between years 2007-09.\u2028He was contract Professor in the Department of Surgical and Diagnostic Sciences (DI.S.C.), Medical School, University of Genova, Italy between years 2011-16. \nSince 2015 he is visiting Professor at Medical School, University of Plovdiv, Bulgaria. \nCurrently he is Associated Prof.Dr. at the Dental School, Oral Surgery Dept., Istanbul Aydin University and since 2003 he works in his own private clinic in Istanbul, Turkey.\u2028\nDr.Tosun is reviewer in journal ‘Laser in Medical Sciences’, reviewer in journal ‘Folia Medica\\', a Fellow of the International Team for Implantology, Clinical Lecturer of DGZI German Association of Oral Implantology, Expert Lecturer of Laser&Health Academy, Country Representative of World Federation for Laser Dentistry, member of European Federation of Periodontology, member of Academy of Laser Dentistry. Dr.Tosun presents papers in international and national congresses and has scientific publications in international and national journals. He speaks english, spanish, italian and french.",institutionString:null,institution:{name:"Istanbul Aydın University",country:{name:"Turkey"}}},{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",biography:"Zühre Akarslan was born in 1977 in Cyprus. She graduated from Gazi University Faculty of Dentistry, Ankara, Turkey in 2000. \r\nLater she received her Ph.D. degree from the Oral Diagnosis and Radiology Department; which was recently renamed as Oral and Dentomaxillofacial Radiology, from the same university. \r\nShe is working as a full-time Associate Professor and is a lecturer and an academic researcher. \r\nHer expertise areas are dental caries, cancer, dental fear and anxiety, gag reflex in dentistry, oral medicine, and dentomaxillofacial radiology.",institutionString:"Gazi University",institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"256417",title:"Associate Prof.",name:"Sanaz",middleName:null,surname:"Sadry",slug:"sanaz-sadry",fullName:"Sanaz Sadry",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/256417/images/8106_n.jpg",biography:null,institutionString:null,institution:null},{id:"272237",title:"Dr.",name:"Pinar",middleName:"Kiymet",surname:"Karataban",slug:"pinar-karataban",fullName:"Pinar Karataban",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/272237/images/8911_n.png",biography:"Assist.Prof.Dr.Pınar Kıymet Karataban, DDS PhD \n\nDr.Pınar Kıymet Karataban was born in Istanbul in 1975. After her graduation from Marmara University Faculty of Dentistry in 1998 she started her PhD in Paediatric Dentistry focused on children with special needs; mainly children with Cerebral Palsy. She finished her pHD thesis entitled \\'Investigation of occlusion via cast analysis and evaluation of dental caries prevalance, periodontal status and muscle dysfunctions in children with cerebral palsy” in 2008. She got her Assist. Proffessor degree in Istanbul Aydın University Paediatric Dentistry Department in 2015-2018. ın 2019 she started her new career in Bahcesehir University, Istanbul as Head of Department of Pediatric Dentistry. In 2020 she was accepted to BAU International University, Batumi as Professor of Pediatric Dentistry. She’s a lecturer in the same university meanwhile working part-time in private practice in Ege Dental Studio (https://www.egedisklinigi.com/) a multidisciplinary dental clinic in Istanbul. Her main interests are paleodontology, ancient and contemporary dentistry, oral microbiology, cerebral palsy and special care dentistry. She has national and international publications, scientific reports and is a member of IAPO (International Association for Paleodontology), IADH (International Association of Disability and Oral Health) and EAPD (European Association of Pediatric Dentistry).",institutionString:null,institution:null},{id:"202198",title:"Dr.",name:"Buket",middleName:null,surname:"Aybar",slug:"buket-aybar",fullName:"Buket Aybar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202198/images/6955_n.jpg",biography:"Buket Aybar, DDS, PhD, was born in 1971. She graduated from Istanbul University, Faculty of Dentistry, in 1992 and completed her PhD degree on Oral and Maxillofacial Surgery in Istanbul University in 1997.\nDr. Aybar is currently a full-time professor in Istanbul University, Faculty of Dentistry Department of Oral and Maxillofacial Surgery. She has teaching responsibilities in graduate and postgraduate programs. Her clinical practice includes mainly dentoalveolar surgery.\nHer topics of interest are biomaterials science and cell culture studies. She has many articles in international and national scientific journals and chapters in books; she also has participated in several scientific projects supported by Istanbul University Research fund.",institutionString:null,institution:null},{id:"260116",title:"Dr.",name:"Mehmet",middleName:null,surname:"Yaltirik",slug:"mehmet-yaltirik",fullName:"Mehmet Yaltirik",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/260116/images/7413_n.jpg",biography:"Birth Date 25.09.1965\r\nBirth Place Adana- Turkey\r\nSex Male\r\nMarrial Status Bachelor\r\nDriving License Acquired\r\nMother Tongue Turkish\r\n\r\nAddress:\r\nWork:University of Istanbul,Faculty of Dentistry, Department of Oral Surgery and Oral Medicine 34093 Capa,Istanbul- TURKIYE",institutionString:null,institution:null},{id:"172009",title:"Dr.",name:"Fatma Deniz",middleName:null,surname:"Uzuner",slug:"fatma-deniz-uzuner",fullName:"Fatma Deniz Uzuner",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/172009/images/7122_n.jpg",biography:"Dr. Deniz Uzuner was born in 1969 in Kocaeli-TURKEY. After graduating from TED Ankara College in 1986, she attended the Hacettepe University, Faculty of Dentistry in Ankara. \nIn 1993 she attended the Gazi University, Faculty of Dentistry, Department of Orthodontics for her PhD education. After finishing the PhD education, she worked as orthodontist in Ankara Dental Hospital under the Turkish Government, Ministry of Health and in a special Orthodontic Clinic till 2011. Between 2011 and 2016, Dr. Deniz Uzuner worked as a specialist in the Department of Orthodontics, Faculty of Dentistry, Gazi University in Ankara/Turkey. In 2016, she was appointed associate professor. Dr. Deniz Uzuner has authored 23 Journal Papers, 3 Book Chapters and has had 39 oral/poster presentations. She is a member of the Turkish Orthodontic Society. Her knowledge of English is at an advanced level.",institutionString:null,institution:null},{id:"332914",title:"Dr.",name:"Muhammad Saad",middleName:null,surname:"Shaikh",slug:"muhammad-saad-shaikh",fullName:"Muhammad Saad Shaikh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Jinnah Sindh Medical University",country:{name:"Pakistan"}}},{id:"315775",title:"Dr.",name:"Feng",middleName:null,surname:"Luo",slug:"feng-luo",fullName:"Feng Luo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sichuan University",country:{name:"China"}}},{id:"423519",title:"Dr.",name:"Sizakele",middleName:null,surname:"Ngwenya",slug:"sizakele-ngwenya",fullName:"Sizakele Ngwenya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of the Witwatersrand",country:{name:"South Africa"}}},{id:"419270",title:"Dr.",name:"Ann",middleName:null,surname:"Chianchitlert",slug:"ann-chianchitlert",fullName:"Ann Chianchitlert",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419271",title:"Dr.",name:"Diane",middleName:null,surname:"Selvido",slug:"diane-selvido",fullName:"Diane Selvido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"419272",title:"Dr.",name:"Irin",middleName:null,surname:"Sirisoontorn",slug:"irin-sirisoontorn",fullName:"Irin Sirisoontorn",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Walailak University",country:{name:"Thailand"}}},{id:"355660",title:"Dr.",name:"Anitha",middleName:null,surname:"Mani",slug:"anitha-mani",fullName:"Anitha Mani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"355612",title:"Dr.",name:"Janani",middleName:null,surname:"Karthikeyan",slug:"janani-karthikeyan",fullName:"Janani Karthikeyan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}},{id:"334400",title:"Dr.",name:"Suvetha",middleName:null,surname:"Siva",slug:"suvetha-siva",fullName:"Suvetha Siva",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"SRM Dental College",country:{name:"India"}}}]}},subseries:{item:{id:"9",type:"subseries",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11405,editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",biography:"Dr. Luis Villarreal is a research professor from the Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México. Dr. Villarreal is the editor in chief and founder of the Revista de Ciencias Tecnológicas (RECIT) (https://recit.uabc.mx/) and is a member of several editorial and reviewer boards for numerous international journals. He has published more than thirty international papers and reviewed more than ninety-two manuscripts. His research interests include biomaterials, nanomaterials, bioengineering, biosensors, drug delivery systems, and tissue engineering.",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343"},editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",slug:"cecilia-cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",slug:"gil-goncalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",slug:"johann-f.-osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",slug:"mani-t.-valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",slug:"marco-chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}}]},publishedBooks:{},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/39731",hash:"",query:{},params:{id:"39731"},fullPath:"/profiles/39731",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()