Fitting parameters
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 179 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 252 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"657",leadTitle:null,fullTitle:"Congenital Anomalies - Case Studies and Mechanisms",title:"Congenital Anomalies",subtitle:"Case Studies and Mechanisms",reviewType:"peer-reviewed",abstract:"This book is in essence a collection of essays which are state of the art in their respective areas of knowledge. They inform the reader of all sorts of mechanistic considerations when developing understanding of issues surrounding the origins of congenital abnormalities. These chapters are written by world renown authorities in this area of science and represent a wide range of expertise from a clinician perspective, through to genetic mechanisms. Unlike some books which take a formal textual, somewhat plodding way through pathophysiology here instead we have cut through chapters in which the student , or scientist or medic is lead to understand just how complex the origins can be via examples from different parts of the body. With the erudite chapters are relevant tables and other diagrams to help clarify the text . These chapters represent a starter text for the stimulus for further knowledge of what is an increasingly important area of human health.",isbn:null,printIsbn:"978-953-51-0075-1",pdfIsbn:"978-953-51-5208-8",doi:"10.5772/1165",price:119,priceEur:129,priceUsd:155,slug:"congenital-anomalies-case-studies-and-mechanisms",numberOfPages:144,isOpenForSubmission:!1,isInWos:1,hash:"bf42dd0375c160601747bb9fd32a97ce",bookSignature:"Alastair Sutcliffe",publishedDate:"February 22nd 2012",coverURL:"https://cdn.intechopen.com/books/images_new/657.jpg",numberOfDownloads:25746,numberOfWosCitations:4,numberOfCrossrefCitations:4,numberOfDimensionsCitations:8,hasAltmetrics:0,numberOfTotalCitations:16,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 28th 2011",dateEndSecondStepPublish:"April 25th 2011",dateEndThirdStepPublish:"August 30th 2011",dateEndFourthStepPublish:"September 29th 2011",dateEndFifthStepPublish:"January 27th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"87220",title:"Dr.",name:"Alastair",middleName:null,surname:"Sutcliffe",slug:"alastair-sutcliffe",fullName:"Alastair Sutcliffe",profilePictureURL:"https://mts.intechopen.com/storage/users/87220/images/3679_n.jpg",biography:"Professor Sutcliffe has been looking after sick children for over 20 years and is fully aware of the potentially devastating effects of congenital anomalies on the health of children and the burden they can put on their parents and health services.\nHe qualified from the University of Manchester and has spent the last 15 years in academic posts in University College London. As an internationally regarded expert on the health of children conceived from assisted reproductive technologies , since his first seminal studies of children born afer embryo freeze thawing, he has watched the proportion of IVF births rise from 0.5% to the present 2% in the UK, with some coutries double that. Some of his studies have focussed on congenital anomalies. Professor Sutcliffe also has expertise in paediatric therapeutics and is presently conducting studies looking at pharmacovigillance of medicines given to both Mothers in pregnancy and children. Dr Sutcliffe has two doctorates and has received international prizes for his work.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University College London",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"400",title:"Molecular Genetics",slug:"human-genetics-molecular-genetics"}],chapters:[{id:"28900",title:"Hox Genes and Teratogenic Factors",doi:"10.5772/33431",slug:"hox-genes-and-teratogenic-factors",totalDownloads:2561,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Takuya Kojima and Naoki Takahashi",downloadPdfUrl:"/chapter/pdf-download/28900",previewPdfUrl:"/chapter/pdf-preview/28900",authors:[{id:"95462",title:"Prof.",name:"Naoki",surname:"Takahashi",slug:"naoki-takahashi",fullName:"Naoki Takahashi"}],corrections:null},{id:"28901",title:"Signalling Mechanisms Underlying Congenital Malformation: The Gatekeepers, Glypicans",doi:"10.5772/33099",slug:"signalling-mechanisms-underlying-congenital-malformation-the-gatekeepers-glypicans",totalDownloads:1213,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Annalisa Fico and Rosanna Dono",downloadPdfUrl:"/chapter/pdf-download/28901",previewPdfUrl:"/chapter/pdf-preview/28901",authors:[{id:"19877",title:"Dr.",name:"Annalisa",surname:"Fico",slug:"annalisa-fico",fullName:"Annalisa Fico"},{id:"94025",title:"Dr.",name:"Rosanna",surname:"Dono",slug:"rosanna-dono",fullName:"Rosanna Dono"}],corrections:null},{id:"28902",title:"Central Nervous System Vascular Malformations",doi:"10.5772/31901",slug:"central-nervous-system-vascular-malformations",totalDownloads:2139,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Andrew S. Davidson and Marcus A. Stoodley",downloadPdfUrl:"/chapter/pdf-download/28902",previewPdfUrl:"/chapter/pdf-preview/28902",authors:[{id:"89237",title:"Prof.",name:"Marcus",surname:"Stoodley",slug:"marcus-stoodley",fullName:"Marcus Stoodley"},{id:"89261",title:"Dr.",name:"Andrew",surname:"Davidson",slug:"andrew-davidson",fullName:"Andrew Davidson"}],corrections:null},{id:"28903",title:"Ultrasound Diagnosis of Congenital Brain Anomalies",doi:"10.5772/31337",slug:"ultrasound-diagnosis-of-congenital-brain-anomalies",totalDownloads:15821,totalCrossrefCites:2,totalDimensionsCites:4,signatures:"Brankica Vasiljevic, Miroslava Gojnic and Svjetlana Maglajlic-Djukic",downloadPdfUrl:"/chapter/pdf-download/28903",previewPdfUrl:"/chapter/pdf-preview/28903",authors:[{id:"34475",title:"Dr.",name:"Miroslava",surname:"Gojnic",slug:"miroslava-gojnic",fullName:"Miroslava Gojnic"},{id:"86664",title:"PhD.",name:"Brankica",surname:"Vasiljevic",slug:"brankica-vasiljevic",fullName:"Brankica Vasiljevic"},{id:"98702",title:"Prof.",name:"Svjetlana",surname:"Maglajlic-Djukic",slug:"svjetlana-maglajlic-djukic",fullName:"Svjetlana Maglajlic-Djukic"}],corrections:null},{id:"28904",title:"An Autopsy Case of Congenital Pulmonary Lymphangiectasis Masquerading as Pulmonary Interstitial Emphysema",doi:"10.5772/31453",slug:"an-autopsy-case-of-congenital-pulmonary-lymphangiectasis-masquerading-as-pulmonary-interstitial-emph",totalDownloads:1896,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Sohsuke Yamada and Yasuyuki Sasaguri",downloadPdfUrl:"/chapter/pdf-download/28904",previewPdfUrl:"/chapter/pdf-preview/28904",authors:[{id:"87204",title:"Dr.",name:"Sohsuke",surname:"Yamada",slug:"sohsuke-yamada",fullName:"Sohsuke Yamada"},{id:"122435",title:"Prof.",name:"Yasuyuki",surname:"Sasaguri",slug:"yasuyuki-sasaguri",fullName:"Yasuyuki Sasaguri"}],corrections:null},{id:"28905",title:"Assisted Reproductive Technology and Congenital Malformations",doi:"10.5772/32304",slug:"assisted-reproductive-technology-and-congenital-malformations",totalDownloads:2119,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Johanna A. Reed and Alastair G. Sutcliffe",downloadPdfUrl:"/chapter/pdf-download/28905",previewPdfUrl:"/chapter/pdf-preview/28905",authors:[{id:"87220",title:"Dr.",name:"Alastair",surname:"Sutcliffe",slug:"alastair-sutcliffe",fullName:"Alastair Sutcliffe"},{id:"126644",title:"Dr.",name:"Johanna",surname:"Reed",slug:"johanna-reed",fullName:"Johanna Reed"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1282",title:"DNA Repair",subtitle:null,isOpenForSubmission:!1,hash:"fd9649a587843768849e0ae8ef79cf35",slug:"dna-repair",bookSignature:"Inna Kruman",coverURL:"https://cdn.intechopen.com/books/images_new/1282.jpg",editedByType:"Edited by",editors:[{id:"40791",title:"Dr.",name:"Inna",surname:"Kruman",slug:"inna-kruman",fullName:"Inna Kruman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"267",title:"DNA Replication",subtitle:"Current Advances",isOpenForSubmission:!1,hash:"7098366ef9c3671e3699a9528f8a310c",slug:"dna-replication-current-advances",bookSignature:"Herve Seligmann",coverURL:"https://cdn.intechopen.com/books/images_new/267.jpg",editedByType:"Edited by",editors:[{id:"118814",title:"Dr.",name:"Herve",surname:"Seligmann",slug:"herve-seligmann",fullName:"Herve Seligmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"723",title:"Meiosis",subtitle:"Molecular Mechanisms and Cytogenetic Diversity",isOpenForSubmission:!1,hash:"2943f3b51b4256fe3a7d949e8488b6c1",slug:"meiosis-molecular-mechanisms-and-cytogenetic-diversity",bookSignature:"Andrew Swan",coverURL:"https://cdn.intechopen.com/books/images_new/723.jpg",editedByType:"Edited by",editors:[{id:"119027",title:"Dr.",name:"Andrew",surname:"Swan",slug:"andrew-swan",fullName:"Andrew Swan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"342",title:"Genetic Transformation",subtitle:null,isOpenForSubmission:!1,hash:"458f41f1953f32c1ada346898c78b031",slug:"genetic-transformation",bookSignature:"María Alvarez",coverURL:"https://cdn.intechopen.com/books/images_new/342.jpg",editedByType:"Edited by",editors:[{id:"62781",title:"Prof.",name:"María",surname:"Alvarez",slug:"maria-alvarez",fullName:"María Alvarez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3141",title:"Apoptosis and Medicine",subtitle:null,isOpenForSubmission:!1,hash:"42aa17cdb57c3b0a54443cc3dadddaaf",slug:"apoptosis-and-medicine",bookSignature:"Tobias M. Ntuli",coverURL:"https://cdn.intechopen.com/books/images_new/3141.jpg",editedByType:"Edited by",editors:[{id:"96243",title:"Dr.",name:"Tobias",surname:"Ntuli",slug:"tobias-ntuli",fullName:"Tobias Ntuli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"835",title:"Viral Genomes",subtitle:"Molecular Structure, Diversity, Gene Expression Mechanisms and Host-Virus Interactions",isOpenForSubmission:!1,hash:"18304f62e2e54bf78671783e00fff538",slug:"viral-genomes-molecular-structure-diversity-gene-expression-mechanisms-and-host-virus-interactions",bookSignature:"Maria Laura Garcia and Victor Romanowski",coverURL:"https://cdn.intechopen.com/books/images_new/835.jpg",editedByType:"Edited by",editors:[{id:"66923",title:"Prof.",name:"Maria",surname:"Garcia",slug:"maria-garcia",fullName:"Maria Garcia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2569",title:"Protein Phosphorylation in Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8c0b00cb583f566e77b3e553b1aa5920",slug:"protein-phosphorylation-in-human-health",bookSignature:"Cai Huang",coverURL:"https://cdn.intechopen.com/books/images_new/2569.jpg",editedByType:"Edited by",editors:[{id:"142646",title:"Dr.",name:"Cai",surname:"Huang",slug:"cai-huang",fullName:"Cai Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"346",title:"DNA Repair",subtitle:"On the Pathways to Fixing DNA Damage and Errors",isOpenForSubmission:!1,hash:"962f1357bb182c3d5e01b7cac964f529",slug:"dna-repair-on-the-pathways-to-fixing-dna-damage-and-errors",bookSignature:"Francesca Storici",coverURL:"https://cdn.intechopen.com/books/images_new/346.jpg",editedByType:"Edited by",editors:[{id:"40385",title:"Dr.",name:"Francesca",surname:"Storici",slug:"francesca-storici",fullName:"Francesca Storici"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1967",title:"Molecular Interactions",subtitle:null,isOpenForSubmission:!1,hash:"522b62bf32423a57eeceb0bf150e5a66",slug:"molecular-interactions",bookSignature:"Aurelia Meghea",coverURL:"https://cdn.intechopen.com/books/images_new/1967.jpg",editedByType:"Edited by",editors:[{id:"104880",title:"Prof.",name:"Aurelia",surname:"Meghea",slug:"aurelia-meghea",fullName:"Aurelia Meghea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2518",title:"Binding Protein",subtitle:null,isOpenForSubmission:!1,hash:"6e70c7a9b0007d8f78ae4f3effba9664",slug:"binding-protein",bookSignature:"Kotb Abdelmohsen",coverURL:"https://cdn.intechopen.com/books/images_new/2518.jpg",editedByType:"Edited by",editors:[{id:"144861",title:"Dr.",name:"Kotb",surname:"Abdelmohsen",slug:"kotb-abdelmohsen",fullName:"Kotb Abdelmohsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73639",slug:"corrigendum-to-single-photon-emission-computed-tomography-spect-radiopharmaceuticals",title:"Corrigendum to: Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73639.pdf",downloadPdfUrl:"/chapter/pdf-download/73639",previewPdfUrl:"/chapter/pdf-preview/73639",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73639",risUrl:"/chapter/ris/73639",chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:null,book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]}},chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:null,book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]},book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"6911",leadTitle:null,title:"Milk Production, Processing and Marketing",subtitle:null,reviewType:"peer-reviewed",abstract:"Milk is considered as a complete diet for an infant and contains essential nutrients for the development of young mammals. The substances in milk provide energy and antibodies that help protect against infection. Most farmers are paid for the quality and composition of their milk. Whole milk, once approved for use, is pumped into storage silos where it undergoes pasteurization, homogenization, separation, and further processing. Milk is a highly perishable commodity because it is an excellent medium for the growth of microorganisms - particularly bacterial pathogens - that can cause spoilage as well as diseases in consumers. Milk processing allows the preservation of milk for days, weeks, or months and helps to reduce food-borne illness.",isbn:"978-1-78985-730-6",printIsbn:"978-1-78985-729-0",pdfIsbn:"978-1-78985-919-5",doi:"10.5772/intechopen.73442",price:119,priceEur:129,priceUsd:155,slug:"milk-production-processing-and-marketing",numberOfPages:202,isOpenForSubmission:!1,hash:"d0b383fbc5e2a2fcc9da5bd58766529d",bookSignature:"Khalid Javed",publishedDate:"July 17th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/6911.jpg",keywords:null,numberOfDownloads:6071,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,numberOfTotalCitations:4,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 12th 2018",dateEndSecondStepPublish:"August 2nd 2018",dateEndThirdStepPublish:"October 1st 2018",dateEndFourthStepPublish:"December 20th 2018",dateEndFifthStepPublish:"February 18th 2019",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"136829",title:"Dr.",name:"Khalid",middleName:null,surname:"Javed",slug:"khalid-javed",fullName:"Khalid Javed",profilePictureURL:"https://mts.intechopen.com/storage/users/136829/images/system/136829.jpeg",biography:"Dr. Khalid Javed is a Professor of Animal Breeding and Genetics in the Department of Livestock Production at the University of Veterinary and Animal Sciences, Lahore. He graduated in Animal Husbandry from University of Agriculture, Faisalabad in 1982. He earned his Master’s and Doctorate degrees in Animal Breeding and Genetics from University of Agriculture, Faisalabad. He joined Government of Punjab, Livestock and Dairy Development as Veterinary Officer in 1983 and remained engaged in research in different capacities. Dr. Khalid conducted research, trainings and teaching in the fields of Animal Breeding, Population/Quantitative Genetics, and Statistical Genetics. He analyzed the production data of various livestock species (e.g., cattle, buffalo, sheep, goats, chicken) to characterize the phenotypic and genetic structure related to different traits of economic importance and subsequent selection. Moreover, he has been engaged in inter-disciplinary collaborative research with colleagues from various academic and research institutes to study the genetic, breeding, management and environmental factors affecting productivity of livestock species. He joined University of Veterinary and Animal Sciences during 2003 as Assistant Professor where he was later selected and appointed as Associate Professor and Professor, in 2006 and 2011 respectively. His research focus is on selection and breeding of large and small ruminants. He also supervises and evaluates postgraduate research to ensure successful and timely completion of the projects focusing on genetic improvement, enhancing breeding efficiency and production enhancement of farm animals. In addition, he participates and conducts trainings, workshops, conferences and seminars, and writes scientific publications to disseminate knowledge and techniques to the researchers and livestock producers about various areas of animal husbandry for improving behaviour, health, growth, fertility and production of livestock. He has more than 200 publications/research articles published and is working as Senior Editor of an internationally recognized Journal of Animal and Plant Sciences-JAPS.",institutionString:"University of Veterinary and Animal Sciences",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Veterinary and Animal Sciences",institutionURL:null,country:{name:"Pakistan"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"326",title:"Food Industry",slug:"food-industry"}],chapters:[{id:"65652",title:"Current Standing and Future Challenges of Dairying in Pakistan: A Status Update",slug:"current-standing-and-future-challenges-of-dairying-in-pakistan-a-status-update",totalDownloads:1359,totalCrossrefCites:0,authors:[{id:"270832",title:"Dr.",name:"Muhammad Naeem",surname:"Tahir",slug:"muhammad-naeem-tahir",fullName:"Muhammad Naeem Tahir"},{id:"281816",title:"Dr.",name:"Roshan",surname:"Riaz",slug:"roshan-riaz",fullName:"Roshan Riaz"},{id:"298338",title:"Dr.",name:"Muhammad",surname:"Bilal",slug:"muhammad-bilal",fullName:"Muhammad Bilal"},{id:"298339",title:"Dr.",name:"Hafiz Muhammad",surname:"Nouman",slug:"hafiz-muhammad-nouman",fullName:"Hafiz Muhammad Nouman"}]},{id:"65936",title:"Reconnoitering Milk Constituents of Different Species, Probing and Soliciting Factors to Its Soundness",slug:"reconnoitering-milk-constituents-of-different-species-probing-and-soliciting-factors-to-its-soundnes",totalDownloads:435,totalCrossrefCites:0,authors:[{id:"229220",title:"Dr.",name:"Amjad",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib"},{id:"242125",title:"Dr.",name:"Muhammad",surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz"},{id:"242230",title:"Dr.",name:"Shahid",surname:"Farooqi",slug:"shahid-farooqi",fullName:"Shahid Farooqi"},{id:"269636",title:"Prof.",name:"Aftab",surname:"Anjum",slug:"aftab-anjum",fullName:"Aftab Anjum"},{id:"269637",title:"Mr.",name:"Muhammad",surname:"Shoaib",slug:"muhammad-shoaib",fullName:"Muhammad Shoaib"},{id:"269639",title:"Mr.",name:"Muhammad",surname:"Alam",slug:"muhammad-alam",fullName:"Muhammad Alam"}]},{id:"64764",title:"Composition and Properties of Camel Milk",slug:"composition-and-properties-of-camel-milk",totalDownloads:1066,totalCrossrefCites:1,authors:[{id:"271007",title:"Dr.",name:"Rita",surname:"Rahmeh",slug:"rita-rahmeh",fullName:"Rita Rahmeh"},{id:"271059",title:"Dr.",name:"Husam",surname:"Alomirah",slug:"husam-alomirah",fullName:"Husam Alomirah"},{id:"271060",title:"Dr.",name:"Jiwan",surname:"Sidhu",slug:"jiwan-sidhu",fullName:"Jiwan Sidhu"},{id:"278685",title:"Dr.",name:"Abrar",surname:"Akbar",slug:"abrar-akbar",fullName:"Abrar Akbar"}]},{id:"67207",title:"In vitro Evaluation of the Phagocytosis Activity of Neutrophils and Characterization of Staphylococcus aureus Mastitis in Dairy Cows of Small Family Farms",slug:"-em-in-vitro-em-evaluation-of-the-phagocytosis-activity-of-neutrophils-and-characterization-of-em-st",totalDownloads:328,totalCrossrefCites:0,authors:[{id:"199849",title:"Dr.",name:"Velazquez",surname:"Valente",slug:"velazquez-valente",fullName:"Velazquez Valente"},{id:"280175",title:"MSc.",name:"Nancy",surname:"Montoya García",slug:"nancy-montoya-garcia",fullName:"Nancy Montoya García"},{id:"280176",title:"MSc.",name:"Ana María",surname:"García-Gama",slug:"ana-maria-garcia-gama",fullName:"Ana María García-Gama"},{id:"280177",title:"MSc.",name:"Gerardo",surname:"Mancera Cuadros",slug:"gerardo-mancera-cuadros",fullName:"Gerardo Mancera Cuadros"},{id:"280178",title:"Dr.",name:"Esvieta",surname:"Tenorio-Borroto",slug:"esvieta-tenorio-borroto",fullName:"Esvieta Tenorio-Borroto"},{id:"280179",title:"Dr.",name:"Benjamín",surname:"Valladares-Carranza",slug:"benjamin-valladares-carranza",fullName:"Benjamín Valladares-Carranza"},{id:"280180",title:"MSc.",name:"Jl Carlos",surname:"Bedolla-Cedeño",slug:"jl-carlos-bedolla-cedeno",fullName:"Jl Carlos Bedolla-Cedeño"},{id:"280182",title:"Dr.",name:"Patricia",surname:"Cervantes-Acosta",slug:"patricia-cervantes-acosta",fullName:"Patricia Cervantes-Acosta"},{id:"280184",title:"Dr.",name:"Jorge",surname:"Acosta-Dibarrat",slug:"jorge-acosta-dibarrat",fullName:"Jorge Acosta-Dibarrat"},{id:"280186",title:"Dr.",name:"Beatriz Silvana",surname:"Carro-Techera",slug:"beatriz-silvana-carro-techera",fullName:"Beatriz Silvana Carro-Techera"},{id:"295164",title:"Dr.",name:"Antonio",surname:"Hernández Beltrán",slug:"antonio-hernandez-beltran",fullName:"Antonio Hernández Beltrán"}]},{id:"65346",title:"Quality and Safety of Bovine Raw Milk: Present Challenges and Technological Solutions",slug:"quality-and-safety-of-bovine-raw-milk-present-challenges-and-technological-solutions",totalDownloads:636,totalCrossrefCites:0,authors:[{id:"85402",title:"Prof.",name:"Tapani",surname:"Alatossava",slug:"tapani-alatossava",fullName:"Tapani Alatossava"},{id:"269448",title:"Dr.",name:"Patricia",surname:"Munsch-Alatossava",slug:"patricia-munsch-alatossava",fullName:"Patricia Munsch-Alatossava"}]},{id:"67180",title:"Analysis of Additives in Milk Powders with SPE-HPLC or 2D-HPLC Method",slug:"analysis-of-additives-in-milk-powders-with-spe-hplc-or-2d-hplc-method",totalDownloads:407,totalCrossrefCites:0,authors:[{id:"264844",title:"Associate Prof.",name:"Xiaofang",surname:"Hou",slug:"xiaofang-hou",fullName:"Xiaofang Hou"},{id:"286482",title:"Prof.",name:"Sicen",surname:"Wang",slug:"sicen-wang",fullName:"Sicen Wang"},{id:"286618",title:"Ms.",name:"Xiaoshuang",surname:"He",slug:"xiaoshuang-he",fullName:"Xiaoshuang He"},{id:"286619",title:"Dr.",name:"Liang",surname:"Chen",slug:"liang-chen",fullName:"Liang Chen"},{id:"286917",title:"Dr.",name:"Jing",surname:"Ma",slug:"jing-ma",fullName:"Jing Ma"}]},{id:"65575",title:"Dulce de Leche—Chemistry and Processing Technology",slug:"dulce-de-leche-chemistry-and-processing-technology",totalDownloads:541,totalCrossrefCites:0,authors:[{id:"268565",title:"Prof.",name:"Luiz Fernando",surname:"Cappa De Oliveira",slug:"luiz-fernando-cappa-de-oliveira",fullName:"Luiz Fernando Cappa De Oliveira"},{id:"268576",title:"Dr.",name:"Rodrigo",surname:"Stephani",slug:"rodrigo-stephani",fullName:"Rodrigo Stephani"},{id:"268989",title:"Dr.",name:"Antonio Fernandes",surname:"Carvalho",slug:"antonio-fernandes-carvalho",fullName:"Antonio Fernandes Carvalho"},{id:"268991",title:"Dr.",name:"Italo Tuler",surname:"Perrone",slug:"italo-tuler-perrone",fullName:"Italo Tuler Perrone"},{id:"279278",title:"Dr.",name:"Julia",surname:"Francisquini",slug:"julia-francisquini",fullName:"Julia Francisquini"}]},{id:"65796",title:"Production, Processing, Commercialization and Analysis of Costumer Preferences of Sheep Cheese in Chile",slug:"production-processing-commercialization-and-analysis-of-costumer-preferences-of-sheep-cheese-in-chil",totalDownloads:404,totalCrossrefCites:0,authors:[{id:"175967",title:"Dr.",name:"Manuel",surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo"},{id:"270986",title:"Ph.D.",name:"Sergio",surname:"Radic",slug:"sergio-radic",fullName:"Sergio Radic"},{id:"281919",title:"Ms.",name:"María C.",surname:"Barrón Rivas",slug:"maria-c.-barron-rivas",fullName:"María C. Barrón Rivas"},{id:"281920",title:"Prof.",name:"Carlos",surname:"Palacios Riocerezo",slug:"carlos-palacios-riocerezo",fullName:"Carlos Palacios Riocerezo"},{id:"281921",title:"Mr.",name:"Ignacio A.",surname:"Dominguez Vara",slug:"ignacio-a.-dominguez-vara",fullName:"Ignacio A. Dominguez Vara"}]},{id:"66091",title:"Goat and Sheep Milk as Raw Material for Yogurt",slug:"goat-and-sheep-milk-as-raw-material-for-yogurt",totalDownloads:581,totalCrossrefCites:0,authors:[{id:"190314",title:"Prof.",name:"António",surname:"Monteiro",slug:"antonio-monteiro",fullName:"António Monteiro"},{id:"287922",title:"MSc.",name:"Susana",surname:"Matos",slug:"susana-matos",fullName:"Susana Matos"},{id:"287924",title:"MSc.",name:"Soraia",surname:"Loureiro",slug:"soraia-loureiro",fullName:"Soraia Loureiro"},{id:"294629",title:"Prof.",name:"Paula",surname:"Correia",slug:"paula-correia",fullName:"Paula Correia"}]},{id:"67758",title:"Optimal Procedures to Valorize High-Quality Traditional Dairy Products",slug:"optimal-procedures-to-valorize-high-quality-traditional-dairy-products",totalDownloads:319,totalCrossrefCites:0,authors:[{id:"83688",title:"Dr.",name:"Margherita",surname:"Caccamo",slug:"margherita-caccamo",fullName:"Margherita Caccamo"},{id:"270709",title:"BSc.",name:"Rosario",surname:"Petriglieri",slug:"rosario-petriglieri",fullName:"Rosario Petriglieri"},{id:"270710",title:"MSc.",name:"Catia",surname:"Pasta",slug:"catia-pasta",fullName:"Catia Pasta"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"225753",firstName:"Marina",lastName:"Dusevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/225753/images/7224_n.png",email:"marina.d@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"2360",title:"Livestock Production",subtitle:null,isOpenForSubmission:!1,hash:"46c36e93eb608c1f03c2c5dcab467d39",slug:"livestock-production",bookSignature:"Khalid Javed",coverURL:"https://cdn.intechopen.com/books/images_new/2360.jpg",editedByType:"Edited by",editors:[{id:"136829",title:"Dr.",name:"Khalid",surname:"Javed",slug:"khalid-javed",fullName:"Khalid Javed"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3424",title:"Food Industry",subtitle:null,isOpenForSubmission:!1,hash:"26d230385a4b7a517b44d60bf75e83de",slug:"food-industry",bookSignature:"Innocenzo Muzzalupo",coverURL:"https://cdn.intechopen.com/books/images_new/3424.jpg",editedByType:"Edited by",editors:[{id:"93139",title:"Dr.",name:"Innocenzo",surname:"Muzzalupo",slug:"innocenzo-muzzalupo",fullName:"Innocenzo Muzzalupo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5505",title:"Superfood and Functional Food",subtitle:"An Overview of Their Processing and Utilization",isOpenForSubmission:!1,hash:"1c054794ab111a6e0a6bfebeb77baa8e",slug:"superfood-and-functional-food-an-overview-of-their-processing-and-utilization",bookSignature:"Viduranga Waisundara and Naofumi Shiomi",coverURL:"https://cdn.intechopen.com/books/images_new/5505.jpg",editedByType:"Edited by",editors:[{id:"194281",title:"Dr.",name:"Viduranga Yashasvi",surname:"Waisundara",slug:"viduranga-yashasvi-waisundara",fullName:"Viduranga Yashasvi Waisundara"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6074",title:"Technological Approaches for Novel Applications in Dairy Processing",subtitle:null,isOpenForSubmission:!1,hash:"0dfa7481fd3aa113a670d789ca1ae319",slug:"technological-approaches-for-novel-applications-in-dairy-processing",bookSignature:"Nurcan Koca",coverURL:"https://cdn.intechopen.com/books/images_new/6074.jpg",editedByType:"Edited by",editors:[{id:"206952",title:"Prof.",name:"Nurcan",surname:"Koca",slug:"nurcan-koca",fullName:"Nurcan Koca"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8174",title:"Current Issues and Challenges in the Dairy Industry",subtitle:null,isOpenForSubmission:!1,hash:"65801e53dbd318f8f50a65e32f6ffcb0",slug:"current-issues-and-challenges-in-the-dairy-industry",bookSignature:"Salam A. Ibrahim, Tahl Zimmerman and Rabin Gyawali",coverURL:"https://cdn.intechopen.com/books/images_new/8174.jpg",editedByType:"Edited by",editors:[{id:"107905",title:"Prof.",name:"Salam",surname:"Ibrahim",slug:"salam-ibrahim",fullName:"Salam Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45302",title:"Femtosecond Laser Lithography in Organic and Non-Organic Materials",doi:"10.5772/56579",slug:"femtosecond-laser-lithography-in-organic-and-non-organic-materials",body:'The lithography is a well established technology for fabrication of microelectronic components, integrated optics, microfluidic devices and Micro-Electro-Mechanical-Systems (MEMS) [1,2]. Using energy sources like ultra-violet (UV) photons or X-ray, various patterns are transferred from photo lithographic masks to photoresist materials. Developed for MEMS fabrications, the photoresists are light-sensitive materials. During exposure, chemical reactions are initiated in the irradiated volume, changing the chemical properties of the material. An imprinted pattern can be obtained when the exposed or unexposed material is removed by chemical solvents.
The size of the structures created through lithographic methods depends on the radiation wavelength. The optical diffraction limit represents the limiting factor for obtaining the minimum feature size. As a result, in the UV lithography the exposure wavelength was reduced initially from g-line (436 nm) to h-line (405 nm) and then to i-line (365 nm).
When smaller structures were required for the metal–oxide–semiconductor (MOS) circuits improvement, the UV lamps were replaced with excimer lasers. Deep UV lithography (DUV), based on 248 nm (KrF) and 194 nm (ArF) wavelengths [3,4], is used in semiconductor industry to produce transistors with 90 nm gate lengths. A further decrease of the radiation source to 157 nm wavelength (molecular fluorine) [5] was limited by the low transmission of fused silica material in this spectral range.
High quality crystalline calcium fluoride with low birefringence was grown for mask substrate and refractive lenses fabrication. Some technical difficulties, related to the mask protection, the requirement of special vacuum chambers and the growth of calcium fluoride material [6,7], have limited the implementation of this technology on large scale.
The 194 nm technology was reconsidered when a new technology, based on a liquid immersion between the last optical components and the photoresist material, was proposed [8]. In this case, the achieved resolution becomes similar to the 157 nm technology in air.
Despite some difficulties, like impurities from liquid immersion or bubbles formation [9,10], the immersion technology was used to manufacture 45 nm features in mass production. Using high-index fluids, it was tested for a 32 nm feature target too [11].
Other nano-technologies, like X-ray lithography [12] and ion/electron beam lithography [13,14], are used to obtain smaller feature size. Using exposure wavelengths under 100 nm, structures smaller than 30 nm were obtained [15]. The high cost of the mask fabrication for X-ray lithography limits the implementation of this technology on large scale production.
Another challenging technique, extreme ultraviolet lithography (EUV), uses a very short wavelength, 13.5 nm, to induce feature size down to 11 nm in photoresist materials [16]. The implementation of this technology is limited due to the complexity of installations for EUV radiation generation and photoresist characteristics like sensitivity and resolution.
Alternative methods like electron/ion beam lithography are used to produce nanometric structures in photoresist materials. A focused electron beam can generate chemical reactions in photoresist materials. This method does not require a photomask to create a pattern. The beam is focused directly in the photoresist material where structures with dimensions less than 30 nm can be obtained [17]. The implementation of this technology as mass volume production is limited by the high price of installations and the long exposure time for large area.
Alternative techniques like nano-imprint (soft) lithography can be used for low-cost pattern imprint. By this method, to create a pattern replica, a stamp or mold is pressed on a photoresist or thermoplastic material. The resulting mold replica can be used to multiply the original mold without complex and high cost production installations. Structures with dimensions under 100 nm were regularly imprinted, becoming the preferred method for high number microdevices fabrication.
All these lithographic methods which use masks or expose directly the photoresist material are limited to bi-dimensional structures. In some applications, such as photonic devices or microfluidics, three-dimensional (3D) structures with high-aspect ratio are needed. In order to create 3D structures, other exposure techniques, like laser holography or laser lithography with near infrared (NIR) femtosecond lasers, are required.
In case of holographic methods, based on the interference of several laser beams, the pattern is directly reconstructed in the photoresist volume. Using the holographic method [18,19], several research groups have obtained periodical structures with sub micrometer features on large surfaces. Nevertheless, the holographic method has some limitations when the design of the structure imposes localized defects in a complex 3D structure.
To overcome this drawback, infrared (IR) femtosecond laser installations with high repetition rate can be used to create 3D structures in photoresist materials. Due to the transparency in the NIR spectral band, the femtosecond laser pulses can be focused deeply in the photoresist volume. The high NIR photons density created in the focused spot induce two-photons or multi-photons absorption. Chemical reactions are initiated and structural modifications take place similar to the case of a single UV photon absorption.
In this paper we present an IR femtosecond laser processing method which can be used in organic and non-organic photoresist materials lithography. Section 2 is dedicated to microstructures created by two-photon polymerization (TPP) in organic materials irradiated with femtosecond lasers. The TPP principle, the experimental set-up and processing procedure, as well as some applications of photoresist microstructures, are presented in this section. The non-organic photoresist materials and the main effects related to their interaction with the laser radiation are described in Section 3. Optical micro-lenses and photonic crystals, manufactured by photoresist laser lithography, are presented too. Conclusions are presented in Section 4.
Organic photoresist materials are composed by two main molecular components: monomers/oligomers (M) and photo-initiators (I). The monomers are unsaturated molecules and represent 90% from the photoresist material composition. These molecules can be bound in polymeric chains using the energy from a radiation source like photons. Two different photo-mechanisms, Chain Polymerizations and Step Polymerization (Photo-crosslinking), can be used to initiate this conversion.
When the light is used as an exposure energy source, the commonly encountered polymerization mechanism is based on chain propagation. Three stages: initiation, propagation and termination, are involved in this mechanism. The initiation stage starts when the excited photo-initiators (I*), produced in the presence of light, generate active species [20-22] like free radicals (R*), (Equation 1). Afterwards, these radicals interact with monomers, creating a new molecule which has an active termination (Equation 2). Once the process is started, a new monomer is added through this termination to the molecule (Equation 3). In this way, the polymeric chains grow rapidly without any supplementary photons excitations.
During propagation stage (Equation 4), the polymeric chains increase in length, until the active termination encounter a free radical (Equation 5) or an other active termination from a second polymeric chain (Equation 6). Through this coupling effect the formation of the polymeric chain comes to an end.
Usually, depending on the concentration and the photo-initiator type, the commercially available photoresist materials have a high absorption for the UV photons and are highly transparent to NIR radiation. The photo-initiator molecule excitation can be realized using the energy from UV photons or by two IR photons absorption. The non-linear optical effect of the two photon absorption (TPA), represents the rule behind the Two Photon Photopolymerization (TPP) method, where 3D structures can be realized deeply in the photoresist volume.
Two-photons absorption process was early emphasized in 1965 [23] using a ruby laser focused in a styrene and p-isopropylstyrene photoresist. The importance of this method was proved when a 3D spiral coil microstructure was created in SCR 500 (urethane acrylate) by an infrared femtosecond laser [24].
Like other commercially available photoresist materials, the SCR 500 was developed for UV lithography. Under specific conditions, the photo-polymerization mechanism can be initiated by infra-red photons. The probability to obtain the photo-polymerization effect using IR photons strongly depends on the radiation intensity. A much higher photon density is necessary compared with the UV exposure. IR lasers which work in continuous wave (CW) regime can not achieve this high density without inducing thermal damages in material. For this reason, low energy short-pulses IR lasers are tightly focused in the photoresist volume. When a femtosecond laser pulse is focused in the photoresist volume, high power density can be reached. In the central area of the focused laser beam, the photo-polymerization effect is induced in a very tiny volume (voxel). The voxel dimensions, that can be smaller than the size of the focused spot, correspond to the TPA volume (Figure 1).
Longitudinal beam profile of the laser waist and the photopolymerized volume (voxel).
By translating the focused laser spot through the photoresist volume, complex 3D microstructures can be obtained (Figure 2a). The voxel size and geometry can be modified by controlling the laser intensity or by using focusing optics with different numerical apertures (NA). Depending on the geometry created in the photoresist material, the NA of the focusing optics can be selected in order to control the axial resolution. The voxel shape is defined by an ellipsoid with a long axis dz, which represent the axial resolution, and a short axis dxy, which is the voxel thickness (Figure 2b).
a) The sketch of the 3D structuring inside the transparent photopolymer. b) The geometry of the photo-polymerized voxel.
The voxel dimensions are also related to the photo-initiator used in the chemical composition of the photoresist material. Used in TPA processing method, the photo-initiator absorption efficiency is defined through a cross-section value (δ ). Commercially available photoresists used in UV exposure are not created specially for the TPA processing. The low δ value of this processing method implies an increasing of laser energy and time exposure [25,26]. New photoresist materials with photo-initiators adapted for laser processing such as IP-L (Nanoscribe) were developed in order to obtain higher δ values.
This necessity generates new applications like up-converted lasing [27], where molecules with a large TPA cross-section are used. Several methods can be used to measure the δ value and to evaluate the TPA photo-initiators [28-30]. The elongation ratio value (dz /dxy) depends on the NA and can be reduced to 1.5 – 3, when focusing optics with high NA (~1.4 NA) are used. This NA value can be obtained only with immersion oil/water microscope objectives where the lateral spatial resolution can be less than 100 nm [31]. For smaller elongation value, shaded-rings [32] or annular binary filters [33] can be used to control the axial component (dz) of the intensity distribution.
A common Direct Laser Writing (DLW) setup for processing photoresist materials consists of the femtosecond laser source with high repetition rate, the attenuator for controlling the laser intensity, the focusing optics and translation stages with displacements at submicrometer resolution or better. For the 3D microstructuring experiments (Figure 3), a femtosecond laser oscillator with 5 nJ pulse energy, 15 fs pulse duration and 80 MHz repetition rate at 800 nm central wavelength was used. In order to preserve the laser pulse duration, the optical components of the experimental setup must be designed for a spectral bandwidth larger than 100 nm. Silver coated broadband optics were used for laser beam steering.
Schematic diagram of the DLW setup for 3D microprocessing using temporal compressor (TC): MS - Mechanical shutter; WP - Half wave-plate; P1 and P2 - Reflection Polarizers; P - BK7 prism; HR - Hollow Retro-reflector; RM - Roof Mirror; CCD - video camera; MO - microscope objective; M1 to M7 - Steering mirrors; M6 - Dichroic mirror.
Positive group delay dispersion (GDD) generated by the glass in the optical path (focusing optics, polarizers, waveplates, beam colimators) produces a stretching of the pulse duration of the order of few hundreds of femtoseconds up to picosecond range. The temporal broadening of the pulses implies a considerable reduction of the laser peak power, leading to reduction of the photo-polymerization efficiency. In order to recover the pulse duration, for spectrally broad femtosecond laser sources, a dispersion compensator has to be used. The pulse chirp and pulse duration is controlled by tuning the GDD. In a standard dispersion compensator with prisms, four or two prisms are used, with total length of the beam path up to few meters. For minimizing the set-up foot-print, the compensator can be folded by a hollow corner cube reflector (HR) and a roof mirror (RM) [34]. The femtosecond laser beam passes four time through a BK7 single prism. By changing the distance between the dispersive prism and the hollow reflector, variable GDD is introduced. In this approach, the temporal compression can be adjusted in a flexible way, even if the focusing optics or other optical components are changed in the optical path. The laser intensity is adjusted by a variable attenuator, which consists in a half wave-plate and two reflection polarizers.
For processing the photoresist, the laser was coupled with a work station realized in a modular configuration. The work station consists in focusing optics, sample translations with piezo and motorized stages, and the visualization module. The focusing optics were selected depending on the resolution and the desired working distance. A 100x IR Mitutoyo microscope objective with 0.5 NA and 12 mm working distance was used for microfabrication of high-aspect-ratio structures [35]. For sub-micrometer feature size, a 100x Zeiss oil immersion microscope objective with NA 1.4 is more appropriate. However, the total high of the structures is limited by the short working distance of such objective of 0.17 mm.
The photoresist samples are translated by a piezoelectric translation stage with 300 μm displacement on all XYZ axes. A software controls the scanning path, scanning speed and the laser shutter according to a programmed design. Pre-defined geometries can be selected from a library, or can be imported in stereolithography (STL) format. A CCD camera is used for monitoring the laser focus on the sample surface and for direct observation of the irradiated area during the laser processing.
The CCD camera can be replaced by a photomultiplier, or by a spectrometer for spectroscopy measurements working with the focusing optics in confocal regime. Using the above presented DLW setup, both organic photoresist materials and non-organic materials (chalcogenide glasses) were processed.
When photoresist materials are used in micro-device fabrication, a processing protocol including some steps has to be followed. Substrate cleaning, photoresist deposition, material exposure, and development are the main stages (Figure 4).
Usual process flow for the organic photoresist materials.
Micro and nano processing technologies require a rigorous impurities control in order to prevent the sample contamination with dust particles or other chemical elements. The wafer substrate cleaning represents one critical stage. Here, several procedures have to be carried out for a good adhesion between photoresist material and substrate. First, a ultrasonic bath with chemicals solvents, like acetone or piranha solution, is used to remove the impurities from the substrate surface. Then, the substrate is rinsed in pure deionised water in order to eliminate the remaining solvent. After this stage, water molecules are left on the substrate surface, inducing a weak photoresist adhesion to the substrate. A water desorption step, which can be realized by heating the substrates to 150 oC for 30 minutes or using oxygen plasma cleaning, is necessary. The photoresist adhesion to different substrates can be poor, even if the water desorption was performed. Several methods can be used to eliminate this drawback. Reactive plasma etching, chemical corrosion or adding a promoter adhesion layer can be used. These treatments are usually recommended by the photoresist manufacturer.
The photoresist material can be deposited on the substrate using various methods. Spray-coating, spin-coating, drop-cast or roller-coating are few methods which can be used. The most used common technique is spin-coating. Characterized through uniform and thin film thickness, this method uses the spinning speed to control the photoresist deposition. In order to use this deposition method, the photoresist must be in a liquid state. For this reason, the viscosity of the photoresist material is controlled using chemical solvents. For different viscosities, photoresist manufacturers provide informations about the evolution of the film thickness reported to spin rate (rpm) and time (s). Varying the ratio between the solid content and the solvent, photoresist materials can be deposited from 1 μm up to 1 mm.
One of the most popular negative photoresists, SU-8, is an epoxies based material where the polymerization is done by a cationic photo-polymerization mechanism. For this material a wide range of viscosities can be found. When the required thickness of the film is less than few micrometers, the manufacturer recommends to use a photoresist version which has 40% solid content and 60% solvent. For this viscosity, 1 ml of liquid SU-8 is necessary for every inch diameter of the substrate. The distribution of this quantity on the substrate surface begins with low spinning speed (500 rpm) for few seconds. Then, the speed is increased up to 8000 rpm in order to obtain 1 μm film thickness.
After deposition stage, for some photoresist materials a soft bake step is required. For SU-8 material, a thermal treatment was performed. A hot plate heated at 950 C is recommended to be used. During this step, the solvent is eliminated from the material, resulting a solidified material. A baking time ranging from 2-3 minutes for 4-10 microns photoresist thickness up to 15-40 minutes for 40-100 microns thickness is required. Because an insufficient thermal treatment could create a weak adhesion to the substrate and deformed structures, this step is very important.
The dimensions of the photoresist structures produced through TPP method depend on the focusing optics and processing parameters like fluence and scanning speed. The importance of the focusing optics, especially the NA, to voxel shape has been detailed in subsection 2.2. Here, the importance of the fluence and the scanning speed will be emphasized. These two parameters control the dimension and strength of the photoresist structures. Usually, in order to determine the most suitable conditions, a processing map is plotted for a given fluence F and different scanning speeds. The process is repeated for different fluence values (e.g. 2F, 3F, …, nF). In this way, through combinations between scanning speed and fluence, photoresist structures with different thickness are produced (Figure 5). After the imprinted pattern is investigated, the optimum exposure conditions are selected.
Pillars realised in OrmoComp photoresist by translating the IR focused beam (SynergyPro oscillator) in Z directions with different scanning speed. The fluence was fixed at 8.9 mJ/cm2 and the scanning speed was : a) 5 µm/s b) 10 µm/s c) 50 µm/s.
In the SU-8 photoresist case, after exposure, the refractive index difference between the exposed and unexposed area is very low due to the fact that the polymerization is not realized instantaneously during exposure. In order to complete the formation of the polymeric chains, a supplementary post-exposure bake step is required.
Unlike the SU-8, the Ormocers and OrmoComp hybrid photoresists are laser photo-polymerized in a single irradiation step, without any additional thermal treatment. In these classes of inorganic-organic hybrid photoresists, the polymerization is instantly produced.
After exposure, for all photoresist materials a chemical etching stage is performed. Depending on the photoresist type, different chemical solvents are used to remove the exposed or unexposed photoresist material.
When the photo-polymerization mechanism is accomplished, chemical solvents are used to develop the sample. Two classes of photoresists are identified: positive and negative. In the negative photoresists case, the irradiated material is transformed in polymer chains and becomes insoluble to solvents. Therefore, the non-irradiated material is removed. Unlike negative photoresists, the positive irradiated photoresists become soluble, being removed by the solvent.
Photoresist materials developed for nano-processing lithography have to satisfy several conditions in order to be used for MEMS mass production. The physical and chemical material properties, temperature conditions storage, chemical reactions with other materials, film thickness, minimum dot size, etching rate, are important parameters for semiconductor industry. Besides these parameters, other limiting factors are encountered in photoresist materials processing.
One limiting factor, which can induce some deviations from the initial design, is the shrinkage effect. Due to the photoresist chemical properties, the shrinkage effect appears after the etching stage where the structure becomes temporally a swollen gel. After complete removal of the solvent, the volume of the structure reduces and the initially designed opto-mechanical characteristics are changed. The shrinkage effect can be pre-compensated by adjusting the initial design of the structure. This way, a final photoresist structure with the desired symmetry and dimensions can result after the shrinkage. An attenuation of the shrinkage effect can be also obtained by developing new improved photoresist materials or by adjusting the photoresist protocol [36].
Even if the shrinkage was compensated, another limiting factor can appear after chemical etching. Here, the microstructures created are stand alone, immersed in the solvent. During the sample extraction from solvent, the capillary forces can induce pattern distortions. To avoid this, methods like super-critical drying (SCD) [37] or the change of the contact angle between the structure and solvent during extractions were used [38].
Several materials (e.g Zr, Mo, Au, Ag, Al) can be used as laser targets in experiments like fast ignition [39], X-ray emission [40], shock compression [41], ion acceleration [42] or hot electrons generation [43]. When a high power laser pulse interacts with a material, due to the strong electromagnetic field, hot dense, highly ionized plasma is generated. The resulted electrons, protons, ions or X-rays are analysed and used in many applications. Concepts of fusion or fast ignitions lead to new targets geometry, where the properties of the emitted particles like energy and directionality are analysed and improved. Using micro-cones target geometry, highly charged and collimated particles were produced through a better coupling between laser energy and material. Plasma structuring and optimization of radiation emission [44], represent two advantages of the new targets geometry. When the thickness [45] and lateral dimensions [46] of the target are reduced, the proton energy and the laser energy conversion efficiency increase.
With a sub-micrometer resolution, the photoresist materials offer an alternative to conventional high power laser targets fabrication methods. Using a microscope objective with 0.5 NA, capillary microstructures were created in Ormocore material through TPP method (Figure 6). Keeping the IR femtosecond beam focused on the substrate surface and by translating the sample, capillary structures with reduced height and thickness were obtained (Figure 6a). The capillary height can be increased by translating the focused beam along the Z axis through the photoresist volume (Figure 6b).
Capillary microstructures obtained in Ormocore photoresist by TPP method.
The photoresist structures can be used as template for more complex geometries. Other materials like metal or ceramics can be afterward deposited on the photopolimerised structures by different techniques, such as electroplating, thermal evaporation, pulsed laser deposition. After deposition, the photoresist material is eliminated by thermal treatment. The final target will reproduce the photoresist microstructure design.
Other applications of photoresist microstructures are in the optical contact lithography [47] and laser interference surface processing [48]. In both cases, a transparent photoresist mask with a periodic pattern is used to change the electromagnetic field propagation, generating a phase-shift during the propagation through the mask. Due to the periodic phase-shift introduced by the mask, an interference pattern is obtained. If the mask is placed in the proximity of a sample, the interference pattern and the localized high laser fluence induce modifications on the surface of the material or even inside the transparent photoresists. Initially used for photoresist processing, where sub-wavelength photoresist structure were produced, this method was implemented for semiconductor processing too.
We created a photoresist mask in a PMMA positive photoresist for light coupling mask (LCM) experiments. Using the spin-coating method, a photoresist layer with 300 nm thickness was deposited on a glass substrate. The photoresist mask, with a grid pattern periodicity of 2 μm, has been created by electron beam lithography (Figure 7a). We placed the photoresist mask in contact with a silicon wafer, without any additional pressure.
The mask was irradiated by an IR femtosecond laser pulse (775 nm central wavelength, 200 fs pulse duration) through a focusing lens with 75 mm focal length (Figure 7b). The laser fluency on silicon surface was 0.15 J/cm2, below the silicon ablation threshold. Due to the electromagnetic field enhancement under photoresist mask, the laser fluency was enough to locally ablate the silicon wafer. Periodic grooves with 350 nm width and few nm depth, were obtained on silicon wafer surface (Figure 8). The imprinted pattern is identical with the configuration of the mask. In order to imprint a large area, the size of the spot was increased by changing the focus position with 1 cm below the photoresist mask position (Figure 7b).
A large silicon wafer surface was structured with a single IR laser pulse (Figure 9). Both the photoresist mask and the imprinted pattern were investigated by Atomic Force Microscopy (AFM).
Because the exposed area dimensions are limited only by the laser available energy and not by the photoresist mask, this method represents a fast and low cost surface processing technology.
Large areas processing using LCM. a) The 3D AFM image of the PMMA photoresist mask. b) The experimental setup for large area processing.
AFM image and profile of the periodic grooves imprinted in silicon wafer using LCM.
Extended area of imprinted pattern on silicon surface using LCM.
The actual computing speed of the micro-processors is limited mainly by the resistive heating resulting from the electrons current in circuits and it is hard to be improved. To overcome this limitation a new technology which uses light instead of electrons is foreseen. A photonic device will provide a fast signal processing, transmission of higher information volume and lower power consumption.
In such devices the propagation of the light is controlled by the so called photonic bandgap structures. These structures usually consist of periodic arrangements of photonic "atoms" with designed voids or defects such as cavities, or waveguides. The dimension of the photonic "atoms" and the period of the photonic structures are comparable with the light wavelength. Special designs and material configurations could even lead to non-conventional optical effects such as negative refraction index, negative refraction, cloaking at visible frequencies. The structures presenting such fascinating effect are widely known as negative index metamaterials (NIM). The dimension of an elementary cell in a metamaterial is several times smaller than the light wavelength and could decrease down to 100 nm for optical frequencies. For this reason, the fabrication of the photonic bandgap structures and metamaterials for visible spectral range requires complex processing techniques which are able to generate 3D structures with dimensions of the order of few hundreds nm and even below 100 nm. DLW is one of these techniques providing high accuracy in 3D. Such processing equipments are already commercially available for producing 2D and 3D structures with minimum linewidth of about 100 nm. Using a 3D lithography system (Photonic Professional - Nanoscribe) based on TPP, we have obtained structures with dimensions of 90 nm (Figure 10a). A scanning speed of 50 µm/s and a 0,1 nJ pulse energy at 80 MHz repetition rate were used to create a periodic pattern. An immersion oil microscope objective 100x and 1.4 numerical aperture was used for focusing the pulsed laser beam in the comercial photoresist IP-L (Nanoscribe), specially developed for TPP method.
Nanostructures produced in IP-L photoresist. a) periodic lines; b) woodpile structure.
The organic materials have low refractive index, usually at the order of 1.4-1.6 at the visible wavelengths. In simple geometries, such as periodic arrangements of pillars in hexagonal or rectangular symmetry, the structures will not show photonic bandgaps. Complex geometries such as woodpiles has to be designed. 3D structures can be obtained by scanning the photoresist layer by layer. Recently, we have fabricated a woodpile structure with a period of 500 nm between lines and 5 µm tall (Figure 10b). For this value of the period, these structures could show photonic bandgaps for the visible spectral domain.
An alternative solution to these complex designs is to realize microstructures in non-organic photoresist materials, like chalcogenide glasses, with higher refractive index.
The chalcogenides are materials either in crystalline or amorphous states, which are based on the chalcogen elements (Sulphur, Selenium and Tellurium) in combination with other elements (Arsenic, Phosphorus, Germanium, Tin, etc.). The structure of the chalcogenides is based on a network of covalent bonds, which gives the specific properties to these materials. While the crystalline state of the chalcogenide can be hardly obtained, the amorphous phase can be easily obtained by the melt cooling [49].
The properties of the amorphous (glassy) compositions are quite different from the crystalline counterparts. The basic structure at the atomic level consists in chains of atoms for elemental chalcogen and disordered layers for complex chalcogenides. A typical chalcogenide structure (Arsenic trisulphide, As2S3) in a bulk glass is shown in Figure 11a, while a disordered layer is presented in Figure 11b. Arsenic trisulphide glass is intensively studied due to its optical properties and versatility in structural modifications. It is characterized by a high nonlinear refractive index (Figure 12a), high transmission in infrared regions, and low phonon energies.
The study of the optical features of non-crystalline vitreous semiconductors near the absorption edge is of great interest. The absorption edge of non-crystalline materials is very sensitive to material composition and structure as well as external factors such as electric and magnetic fields, heat, light, and other radiation. Under the influence of these factors the optical properties of non-crystalline semiconductors are reversible or irreversible modified. They are suitable for optical investigations because their absorption edge is in the visible region of the spectrum. The absorption edge of As2S3 is at 2.4 eV (Figure 12b). Moreover, vitreous materials can be easily obtained in bulk samples, thin film, and optical fibers. These properties make them suitable to be used as materials for components in optoelectronic devices, as solid electrolites, photonic crystals, IR-transmitters, optical and electrical phase change memories or rewritable memory materials for CD’s and DVD’s.
Due to their sensitivity to different radiation wavelengths, chalcogenide glasses are suitable for laser lithography. They have small molecular units thus having the possibility to obtain higher resolution. They are much harder than polymers and can maintain the shape.
Due to the metal photodissolution in chalcogenide glasses, dry grayscale lithography can be done [50,51]. Chalcogenide glasses can also be used for wet lithography. Much simpler etching can be done without any treatments and they are resistant to acids. Thereby, there is easy to transfer patterns in substrates using reactive ion etching.
Depending on the type of glasses, both positive and negative resists can be obtained. Besides currently available organic photoresists, chalcogenide glasses offer a new powerful class of photoresists for a versatile lithography.
a) The structure of As2S3 glass in a bulk glass. b) A thin disordered film. (As – red, S – yellow)
Optical properties of As2S3 glass. a) The variation of the refractive index with the wavelength. b) The absorption edge.
Many applications of the glassy chalcogenides are based on their interaction with light. Recently, different effects produced in chalcogenide glasses and thin films were investigated [52]. The main effects related to the interaction of the light with the glass are:
Photodarkening and photobleaching
Photoexpansion of the material
Change of composition with the elimination of one chalcogen
Vaporization of the material
The photodarkening [53 - 57] and photobleaching [58] effects were the first optical effects discovered in chalcogenide glasses. The optical absorption edge can be shifted toward higher wavelengths (photodarkening) or toward lower wavelengths region (photobleaching) under laser light illumination with photon energy near absorption edge (2.4 eV). These processes are reversible as a function of heat treatment (under the glass transition temperature (Tg)).
The photoexpansion is one of the main phenomena which produce photoinduced volume change. The irradiation of amorphous chalcogenides films with bandgap light produces an increase in thickness and is termed photoexpansion [59, 60]. It has been demonstrated that amorphous As2S3 thin films irradiated with bandgap and sub-bandgap light expand with about 0.5 % and 4 % (giant photoexpansion) [61], respectively. Both photoexpansion and giant photoexpansion vanish after annealing close to the glass transition temperature. On the other hand, when the material is irradiated with super-bandgap light, photocontraction effects ascribed to ablation or photovaporization [62] are induced. Photoexpansion and photocontraction are usually produced in chalcogenides, the sign of the effect depending on the glass composition [63 – 68].
One important effect occurring during interaction of high power light with the chalcogenide material is the vaporization in the chalcogenide mass. The vaporization occurs by elimination of clusters of different composition and size [69]. Vaporization is preceded by photofluidity effect discovered by Hisakuni and Tanaka [70]. The standard processing protocol of a chalcogenide photoresist is described in the next section.
As shown in the previous section, chalcogenide materials have specific properties that make them suitable for lithography. The steps of the lithographic process in chalcogenide glasses are presented in Figure 13. First, a chalcogenide thin layer is deposited on a glass substrate using the pulsed laser deposition method (PLD). As2S3 films were deposited on glass substrate by PLD using a KrF* excimer laser, with 80 mJ pulse energy and 25 ns pulse duration at 248 nm wavelength. Homogeneous films were obtained with thickness of around 2 micrometers. Secondly, the layer is irradiated using femtosecond laser pulses (λ = 800 nm).
The lithographic process in As2S3 chalcogenide glass.
In this case the chalcogenide glass acts like a negative photoresist. In the final step, the sample is etched using an amine based aqueous etchant. The removal of the irradiated regions by etching leaves behind the selected regions of the photoresist. In the following subsections we present the main methods used for chalcogenide glasses processing using laser irradiation: direct laser writing by pulsed femtosecond laser irradiation and interference lithography.
It is known that the chalcogenide glasses exhibits a characteristic one-photon absorption spectrum. The absorption edge consists of three functional curves, i.e., a square-root dependence, the so-called Urbach edge, and an exponential weak-absorption tail. The weak-absorption tail limits optical transparency of chalcogenide glasses [71]. The two-photon absorption spectrum of As2S3 glass has an exponential form β=exp(hω/Εβ), where Εβ ~ 150 meV [72].
This exponential form implies that the two photon process is enhanced by the gap states, which cause the weak-absorption tail. When the incident light intensity is less than 10 MW/cm2, one-photon excitation of the gap states occurs more frequently than two-photon excitation of free carriers, and accordingly, the former could be responsible for the phenomena photoinduced by sub bandgap photons.
From the studies of the 3D optical data storage into As2S3 blocks via photodarkening with 800-nm femtosecond laser pulses [73] it was shown that two photon absorption can be achieved using relatively low energy laser pulses. The two-photon absorption cross-section was found to be 6.2 ± 0.5 GM (Goeppert-Mayer units, where 1 GM is 10-50 cm4 s photon-1) at around 800 nm wavelength.
AFM images of laser irradiated As2S3 thin film surface using an average laser power of a) 8 mW, b) 12 mW, c) 18 mW, d) 20 mW, e) 25 mW, f) 30 mW, g) 50 mW
Some results of femtosecond laser imprints on As2S3 film surface have been reported in reference [74].
Using a femtosecond laser with 80 MHz repetition rate and 15 femtosecond pulse durations, a network of nano-lenslets was created by local exposure of individual sites separated by 5 µm × 5 µm. The irradiation was performed for 300 ms in each point. The average laser power was varied from 8 to 50 mW, corresponding to femtosecond pulse laser energy from 0.1 nJ to 0.63 nJ.
In Figure 14, one can see the formation of hillocks and/or holes on the surface of a thin amorphous As2S3 film by direct laser writing method using femtosecond laser pulses (central wavelength, λc = 800 nm). The shape of the modified surface is found to be a function of the laser power. Thus, a network of nano-lenslets could be imprinted at appropriate laser power and might be used in planar optoelectronic circuits.
It can be observed a boundary between the low energy laser pulses and high energy laser pulses. For low energy laser pulses the main evidenced effect is the photoexpansion. For higher energy pulses, over 0.25 nJ, a process of material ablation takes place and determines the holes formation into the film.
Interference lithography (IL) is widely used for the fabrication of one dimensional nanostructures [75], production of the master mold for nano-imprinting lithography [76], formation of grating structures on semiconductor surfaces [77,78], pre-patterning of the substrate before the formation of photonic crystals by electrochemical etching [79] or vacuum deposition [80] etc.
We used As2S3-As2Se3 as an inorganic photoresist for the fabrication of submicrometer periodic relief on silicon wafers using interference lithography [81]. A 300 nm thick photoresist of As2S3-As2Se3 was vacuum evaporated on a (100) silicon substrate on which a 50 nm thick chromium layer was previously deposited. The obtained samples were exposed to an interference pattern that was generated by an argon laser (λ = 488 nm) using a holographic setup. To generate interference fringes, light beam has to be divided into two waves which afterwards are recombined. In an amplitude-division system, a beam splitter is used to divide the light into two beams travelling in different directions, which are then superimposed to produce the interference pattern. The laser fluence was around 0.5 J/cm2. For the formation of bi-gratings each exposure can be 1.5-2 times reduced. The two-dimensional periodic structures on Si (100) surface were formed by double exposure on two perpendicular orientations of the Si wafers.
AFM images of the created relief on the surface of Si (100). a) Relief and groove profile of a grating obtained on by 50 s silicon etching. b) Profile of bi-grating with symmetrical elements obtained by a 15 s etching time.
During the first exposure, Si (100) wafers were aligned by a base cut in parallel to interference grating lines and during the second irradiation the wafers were rotated with 90o. The size of the exposed part on the substrate reached up to 0,075 mmx 0,075 mm.
After exposure, the samples were chemically treated in non-water alkaline organic solutions (negative etching) to form a relief pattern. The removal of Cr layer using water solution of HCl through a chalcogenide mask was the next step. Thus, the obtained two-layer resistive mask As2S3-As2Se3-Cr was used to form a corresponding relief on Si surface. Anisotropic etching of silicon was carried out using ethylene diamine solutions.
As ethylene diamine actively dissolves chalcogenides, etching of silicon occurred, mainly, through a Cr resistive mask that is neutral to alkaline solutions.
Figure 15a shows the AFM image of a diffraction grating formed on the silicon (100) surface by the anisotropic etching through As2S3-As2Se3-Cr resistive mask (grating period is near 1.0 μm). Figure 15b shows the bi-grating structure that was formed using double exposure of 0.3 J/cm2. Symmetrical photoresist islands were obtained, with the ratio of the island diameter to the interval width between islands closed to unity. Time of the silicon etching was 15 s. Depth of the obtained relief is 0.15 micrometers. The size of photoresist islands depends on the value of exposure, and the form of islands depends on the ratio of exposures in two mutually perpendicular directions.
Two applications of the lithographic process in chalcogenide glasses are presented in the next section.
A first application is related to the formation of microlenslets on the surface of the chalcogenide film. By irradiating a thin chalcogenide film with the above mentioned femtosecond laser (Section 3.3.1), As2S3 microlenses were obtained. The profile of the lenslet measured from the AFM data was fitted with an asymmetric double sigmoidal curve (Figure 16). The fitting curve is given by equation (7), where y0 is the offset, A is the amplitude, xc is centroid and w1, w2, w3 are width parameters.
Chalcogenide microlenses. a) A lens represented by a 3D-plot. b) The shape of the lens fitted by an asymmetric double sigmoidal curve.
\n\t\t\t\tFitting parameter\n\t\t\t | \n\t\t\t\n\t\t\t\tValue\n\t\t\t | \n\t\t\t\n\t\t\t\tStandard error\n\t\t\t | \n\t\t
y0\n\t\t\t | \n\t\t\t-0.09925 | \n\t\t\t0.00382 | \n\t\t
xc\n\t\t\t | \n\t\t\t8.30668 | \n\t\t\t0.00035 | \n\t\t
A | \n\t\t\t0.33291 | \n\t\t\t0 | \n\t\t
w1\n\t\t\t | \n\t\t\t1.34572 | \n\t\t\t0.00763 | \n\t\t
w2\n\t\t\t | \n\t\t\t0.18998 | \n\t\t\t0.00267 | \n\t\t
w3\n\t\t\t | \n\t\t\t0.20191 | \n\t\t\t0 | \n\t\t
Fitting parameters
The lenslet profile is very well fitted to the parameters of the fitting curve presented in Table 1. The geometrical characteristics of the lenslet are: a diameter of 2.03 μm and a height of 0.21 µm. The focal length was between 1.21 µm at λ = 650 nm and 1.37 µm at λ = 5 µm (Figure 17). For computing the focal length we used the values of the refractive indices at different wavelengths from [82]. The transmission of light through the lenslets is limited by the As2S3 optical absorption edge of 2.41 eV.
The variation of the focal length of the microlenslets with the radiation wavelength.
Photonic structures are important components of the optoelectronic circuits used in telecommunications and in non-linear optics, as lossless guiding [83] and tightly bent 90o waveguides [84]. They can combine optical waveguides, resonators, dispersive devices and modulators for on-chip integration. Recently, it was shown that various 2D or 3D structures can be inscribed on the surface and bulk of an arsenic sulphide glass by the action of femtosecond laser pulses followed by etching in alkali or amine based etchants [85,86]. The laser installation is presented in section 2.3.
A 2D photonic crystal structure was imprinted on the surface of bulk As2S3 chalcogenide glass. Regular bumps obtained by photoexpansion of the glassy material have the height of 150 – 200 nm (Figure 18a) [87].
After etching, using an amine based etchant, a hexagonal lattice of holes having the diameter of about 2 micrometers was obtained (Figure 18b).
In order to obtain photonic devices for the visible light domain, further investigations are in progress to improve the processing parameters.
photonic crystal. a) Before etching. b) After etching.
The laser lithography can be considered an alternative to the classical lithography methods. In this chapter we emphasize the possibility to obtain nano/micro-structures in organic and non-organic materials by femtosecond laser lithography.
The organic and non-organic photoresist materials properties are presented. Photo-chemical reactions induced by femtosecond laser irradiation of photoresists are described. Due to the transparency at IR wavelengths, the laser pulses can be focused deeply in the photoresist volume. A Direct Laser Writing station coupled with a high repetition rate femtosecond laser was used to process the photoresist materials.
Various geometry structures were obtained in organic photoresists and chalcogenide glasses. When photoresist materials specially developed for the TPP method were used, nanostructures with dimensions under 100 nm were obtained.
Using the TPP method, high power laser targets were fabricated in organic photoresist materials. These structures can be used as template for other materials. An other domain where the organic photoresist structures can be used is optical contact lithography. Based on the electromagnetic field enhancement produced by the photoresist masks, structures with 350 nm width were created in a silicon wafer.
Besides the organic photoresists, the femtosecond laser lithography can be used to process other photoresist materials, like chalcogenide glasses. Taking advantage of their higher refractive index in comparison with organic photoresists, the chalcogenide glasses are suitable for visible and near-IR micro-optical devices fabrication. They act either as negative or positive photoresists. Optical microlenses and photonic crystals structures where produced in As2S3 chalcogenide glasses using DLW method. The microlenses imprinted on the surface of PLD deposited As2S3 thin films could be used to focus the red-infrared laser light transmitted through optical fibers. Transition from the bump to the hole configuration has been revealed when the laser pulse power was increased. Bi-dimensional photonic structures characterized by a hexagonal assembly of bumps or gratings with traces of micrometer width have been obtained.
The possibility of structure direct writing by translating the focused spot through the photoresists volume, recommends the femtosecond laser lithography technique as a fast, cheap and flexible processing method.
Retail stores manage millions of items on a day to day basis to deliver to their customers. Point of Sales (POS) systems with barcodes were among the first technologies used to track products across the supply chain and in stores. Barcodes, as an identification technology, are not utilized at item-level but usually represent a group of products. Retailers need to scan products at pallet level at the point of receiving shipments, in inventories entrance and exit places, and at the POS to keep track of what is coming into and leaving stores [1]. With barcode systems, inventory inaccuracy is created because stores barcode scanning are not always performed at the right time and the right location. This inventory inaccuracy leads to a significant loss at retailers. Retailers needed to explore new ways of tracking their items to lower the inventory inaccuracy and prevent consequent losses. Radio Frequency Identification (RFID) technology appears to be the new technology solution that could improve the inventory record accuracy of stores for various items.
\nRFID technology applications have been recognized in many areas such as healthcare, finance, manufacturing, and retail. The share of the RFID market in retail is projected to be the largest of all sectors with about 34% by 2026, followed by transportation sector (25%), financial and security services (22%), and other industries such as healthcare and manufacturing at smaller portions [2]. RFID tags can store more information about each item at real time and can have individualized identification for items versus barcodes with a small data storage capacity that can only identify a group of items. RFID readers do not need to be on the line of sight to read RFID tags information which means items can be scanned more frequently and faster at any movement. These capabilities allow little mistakes in tracking records and largely eliminates inventory inaccuracy.
\nRFID technology’s benefits to retailers were identified early at the beginning of the 21st century. However, RFID’s applications in retail stores on a large scale took a while to be implemented. This paper reviews utilizing RFID, as an ideal solution to retail operations, since earlier this century and will cover a twenty-year horizon (2001–2020) divided into three equally long periods of 2001–2007, 2008–2014, and 2015–2020.
\nIn studies done earlier in this century, RFID was recognized as the next major identification technology to replace barcode systems in the retail industry [3, 4, 5, 6, 7]. Barcode systems have been used to track customer purchases, to manage inventory records, and to offer promotion and advertising in retail since 1970 [8]. Barcode tags, however, need to be on the line of readers to be read, a requirement that makes physical inventory counting a labor-intensive task and prevents stores from updating their inventory records frequently and on time. Therefore, with barcode systems, inventory inaccuracy is significant [9]. Inventory inaccuracy refers to the difference between inventory on record and the actual number of items on hand in stores. Inventory inaccuracy is caused by many factors such as transaction errors in the POS system, or shrinkage caused by possible employee/customer theft. Inventory inaccuracy means that stores may not be able to place inventory orders on time, resulting in out-of- stock conditions and consequently losing sales and hurting customer shopping experience. RFID technology, on the other hand, enhances product visibility in store operations and across the supply chain through the ease of reading RFID tag information and updating inventory records on a real-time basis.
\nStudies have investigated RFID benefits in different areas of retail operations, such as supply chain management, and show how inventory inaccuracy and consequently out-of-stock conditions are improved with the implementation of RFID across the supply chain [10, 11, 12]. Enhanced information visibility, provided by RFID in the supply chain, decreases uncertainties and lowers high inventory costs associated with the uncertainties [13, 14].
\nMany pilot studies during this period investigated and explored the applications of this technology at the pallet level, case level, and item levels in stores [1, 6, 12, 15, 16]. [1] conducted a case study in 2005 to analyze pallet and case-level implementation of RFID and enhanced visibility generated at the receiving gates and entrance doors from backstore to sales floors. They demonstrated that safety stock and inventory holdings can be significantly reduced and RFID benefits are broad, ranging from labor efficiencies to inventory management improvements. Cost–benefit analyses in this period showed that pallet-level implementations of RFID were more cost effective than case-level implementations.
\nMetro Group in Germany conducted some case studies in their stores to show item-level RFID applications can improve customers’ shopping experiences as well. They introduced some tools provided by RFID technology such as automatic checkout, smart carts that help customers navigate stores and find their items easier and faster, and smart dressing rooms that help customers find their desired apparel items more conveniently [6, 16]. They demonstrated that utilizing these tools significantly enhances customers’ shopping experience.
\nWalmart retail stores in the US were the first retailers that decided to mandate the implementation of RFID at pallet and case level across some of their supply chain in 2005. Walmart also did a pilot study with 24 stores over a period of around 6 months to measure how RFID can improve inventory management. They demonstrated out-of-stock conditions were significantly reduced with the implementation of RFID technology [12].
\nIn Asia, two Singaporean fashion retailers piloted item-level RFID on their apparel stores and reported significant reduction in stocking time from hours to minutes that consequently increased the frequency of counting items with handheld readers and improved inventory accuracy [17].
\nFinancial crises and the great recession that started in 2008 did not work to the advantage of retailers that were planning to implement RFID applications in their stores. During financial crises, businesses tend to adopt strategies that could help them sustain and survive by spending low and investing less. RFID technology implementation plans were mostly postponed or slowed down during the financial crises. However, this period was the best time to develop some foundations with respect to policies, regulations, and standardization of the technology.
\nPrivacy issues raised by consumer protection agencies and standardization issues across different platforms put forward by case studies and pilot projects led to the development of some regulations and privacy policies by governments, institutions, and businesses. European Commission (EC) took an active role by funding many initiatives across Europe [18]. Initiatives such as Coordinating European efforts for promoting the European RFID value chain (CE RFID) [19] and Building Radio frequency Identification solutions for the Global Environment (BRIDGE) [20], conducted from 2006 to 2009, highlighted that wide implementation of RFID technology needs some regulations, standardizations, and privacy policies in place. For example, the BRIDGE project, coordinated by GS1, helped the industry to develop standardizations such as establishing a common format for the data stored on RFID tags, or the availability of possible frequency bands.
\nRFID tags can store identifiable consumers’ private data, which need to be protected. Therefore, EU members signed an agreement on the Privacy Impact Assessment framework in order to protect consumer privacy [21, 22, 23]. This agreement established some rules to be followed in the design of smart chips such as RFID tags to protect the privacy of consumers’ data. Consumers should be informed if RFID tags are utilized in stores. In addition, tags must be deactivated at the point of sales at no cost [24]. This framework was later expanded to cover some rules for smart meters as well. In the United States, lawsuits against RFID application patents as well as privacy issues in 2011–2013 were setbacks for large-scale implementations of the technology. The National Institute of Standards and Technology (NIST) in the US has helped to establish some guidelines to help retailers; however, most of the development of policies and standardizations have been initiated by corporations in the US.
\nIn addition to developing policies and standardizations, businesses had more chances to identify and learn broader applications of RFID technology in retail. The focus of most of earlier pilot studies was how this new tracking technology helps manage inventories better in order to avoid out-of-stock conditions. However, the applications of the technology go beyond only inventory management and tracking items throughout the supply chain. As shown in the balanced scorecard developed in [25], RFID benefits extend to marketing and merchandising operations in retail as well (Figure 1).
\nBalanced scorecard for RFID applications in retail.
In marketing, stores can monitor the behavior of consumers better when customers use tools such as smart carts or smart dressing rooms provided by RFID. Retailers can learn about consumers’ preferences and reflect that in the promotion and advertising offered to customers in real time while they shop. The available tools such as smart dressing rooms and smart carts also enhance customer shopping experience. Use of these tools enables customers to find their desired items more conveniently and faster, which eventually leads to higher customer satisfaction and increase in sales.
\nIn merchandising, enhanced visibility on consumer behavior in stores provided by RFID can help retailers identify better assortments of products. In addition, an enhanced visibility means better shelf-replenishment; that is stores can reduce the shelf space since enhanced visibility on shelves allows retailers to replenish them as soon as they become emptied. Less shelf space leads to holding less number of items on shelves at any given time and consequently less inventory and capital held in stores, which allows retailers to invest in carrying more variety for products in stores.
\nThere were also more studies during this period conducting cost–benefit analysis of the implementation of the technology. The fixed cost of implementation includes middleware, fixed antennas, sensors, and readers and the variable cost includes the cost of tags per item. The cost of tags can be added to the cost of each product but then the big question is who has to pay for that cost. Should the cost be transferred to consumers or should that be shared between retailers and manufacturers? The tag cost as the variable cost of utilizing the technology is huge and cost–benefit analysis studies have shown it to be a major barrier to the implementation of the technology during this period. [26] showed that the cost of tags in item-level implementation of RFID, as the variable cost, is cumbersome. Moreover, the cost can exceed the benefits in some cases depending on the extent to which stores implement RFID applications. The cost barrier was expected to weigh less as the cost of tags became lower over time.
\nSurveys of businesses show the implementation of RFID has picked up in this period. A survey of 60 retail executives throughout the United States and Europe showed about 73% of retailers had plans to implement RFID in 2016 [27]. Another survey in 2018 [28], however, showed that 92% of retailers in North America plan on implementing RFID, which is about a 20% increase from the 2016 results.
\nThe cost of implementation has been decreasing over time, as expected, and at the same time retailers have learned how to partially implement the technology. Retailers realized that they do not need to fully implement the technology. In some cases, only tags and hand-held readers are used to add visibility of items in stores without many of the infrastructures such as antennas. Cloud services, on the other hand, have allowed retailers to eliminate some of the middleware cost as well. The leading European fashion stores C & A is one of many retailers that explored lower cost implementations with partial utilization of the technology [29].
\nRFID platforms can generate big data that are the records of tracking items throughout the supply chain and stores in real time. Businesses need big data and business analytics capabilities to fully utilize technologies [30]. The results of the analysis of such data can help retailers improve their processes such as shelf-replenishment process as well as variety and assortment planning that have been used in the same format for many years. A new timely replenishment process can result in better management of physical space, layouts, and lowering holding costs in stores. Furthermore, a better variety and assortment planning means fulfilling customers’ expectations and eliminating unpopular items that releases some capital and allow investment opportunities in other areas in retail.
\nCompeting technologies to RFID have been developed and utilized over time as well. For example, Quick Response (QR) codes give retailers better ability to manage items compared to barcodes, Near-Field Communication (NFC) technology has some capabilities compared to UHF RFID, and most recently Amazon’s cameras increase product visibilities in stores for fast checkouts. In addition, retailers have different priorities in investing in new technologies and there is competition for dollars invested in various technologies by retailers. For instance, a retail chain can focus on improving inventory operations, but another retailer may be focused on improving marketing operations and customer shopping experience in stores by developing new apps that can assist customers make decisions during their shopping time in stores. In a different example, Gucci as an Italian luxury brand name does not suffer from inventory inaccuracy issues but their priority is customer shopping experience and they have utilized RFID tags to protect customers against counterfeiting across the supply chain until products reach their customers [31].
\nOmnichannel retail has been widely available during this period of time. Retailers’ customers can shop at any time, in any place, and via any shopping channel. Omnichannel retailing needs accurate inventories and enhanced product visibility more than any other time. Item-level RFID can, therefore, accommodate the needs of omnichannel retail more than other technologies available [32]. In addition, blockchain as the latest technology in retail can provide automatic exchange of product data carried by RFID tags between different partners across the supply chain. The blockchain in retail solutions are currently being studied in a consortium of large retailers such as Nike, Macy’s, and Dillard’s in an RFID lab at Auburn University [33].
\nThe 3-S model (substitution, scale, and structure) introduced in [34] discussed and projected different phases of the adoption of RFID earlier when this technology was introduced. Later the 3-S model was adapted by [35] to describe the current stage of retailers’ implementation of RFID applications in retail (Figure 2). The substitution and scale stages are covering mostly what has been achieved during the three periods discussed in this paper. In the substitution phase, the RFID technology was utilized to replace the applications of barcode systems in tracking products. In the scale phase, the RFID applications are enabling retailers to manage their operations with more accuracy, efficiencies, and at a higher speed and scale. The structure phase, that is re-engineering processes and completely overhauling retail operations, is still underway. The RFID technology will enable retailers to accomplish things they could not imagine before and allows retailers to tap into completely new domains and applications.
\n3-S model for RFID retail adoption.
Retailers have different needs based on the way they operate in stores. Some retailers must manage large inventories in stores. An enhanced visibility on their products help them improve inventory accuracies and avoid out-of-stock and increase their efficiencies. On the other hand, some retailers have small backstore inventories and every item they receive is put directly on their shelves and available to their customers. Inventory management is not their priority, but they need to focus more on customer shopping experience. Therefore, the enhanced visibility of items in stores is expected to promote retailers’ marketing operations. Depending on the way retailers operate and what their priorities are, retailers have to plan on implementing appropriate applications of RFID technology.
\nAs discussed in this paper, RFID has been utilized broadly with various applications. As a revolutionary technology, RFID’s implementation can go beyond improving the current processes in retail operations. The current processes can innovatively change to debut completely new applications that are only possible with the enhanced visibility of items in real time. The ensuing big data that is derived from the visibility provided by RFID tags can be analyzed, leading to innovations in retail operations.
\nImplementing item-level RFID needs to be part of omnichannel strategy in the retail sector. With the wide-spread usage of online retail services such as Amazon, the competition in retail is tougher than ever before. In omnichannel services, retailers need to grant their customers easy access via different channels and make their products available in a variety of delivery services. The accessibility and fast delivery will not be possible with the level of visibility provided by barcode systems. Utilization of technology in retail is evolving quickly and RFID technology is the one that can definitely help retailers win in this overhaul.
\nIn line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\\n\\n9. Please send any complaints about advertising to: info@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\n\n9. Please send any complaints about advertising to: info@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5703},{group:"region",caption:"Middle and South America",value:2,count:5174},{group:"region",caption:"Africa",value:3,count:1690},{group:"region",caption:"Asia",value:4,count:10246},{group:"region",caption:"Australia and Oceania",value:5,count:889},{group:"region",caption:"Europe",value:6,count:15653}],offset:12,limit:12,total:117316},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"24"},books:[{type:"book",id:"10287",title:"Smart Metering Technology",subtitle:null,isOpenForSubmission:!0,hash:"2029b52e42ce6444e122153824296a6f",slug:null,bookSignature:"Mrs. Inderpreet Kaur",coverURL:"https://cdn.intechopen.com/books/images_new/10287.jpg",editedByType:null,editors:[{id:"94572",title:"Mrs.",name:"Inderpreet",surname:"Kaur",slug:"inderpreet-kaur",fullName:"Inderpreet Kaur"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:10},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:14},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:55},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:1},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5150},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"231",title:"Quantum Physics",slug:"quantum-physics",parent:{title:"Physics",slug:"physics"},numberOfBooks:13,numberOfAuthorsAndEditors:227,numberOfWosCitations:225,numberOfCrossrefCitations:120,numberOfDimensionsCitations:205,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"quantum-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7788",title:"Progress in Relativity",subtitle:null,isOpenForSubmission:!1,hash:"258de121f66ce548dbf7a88bc569b58e",slug:"progress-in-relativity",bookSignature:"Calin Gheorghe Buzea, Maricel Agop and Leo Butler",coverURL:"https://cdn.intechopen.com/books/images_new/7788.jpg",editedByType:"Edited by",editors:[{id:"99400",title:"Dr.",name:"Calin Gheorghe",middleName:null,surname:"Buzea",slug:"calin-gheorghe-buzea",fullName:"Calin Gheorghe Buzea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8907",title:"Advances in Quantum Communication and Information",subtitle:null,isOpenForSubmission:!1,hash:"6b074960b5f71319aa57217e7b54216e",slug:"advances-in-quantum-communication-and-information",bookSignature:"Francisco Bulnes, Vasilios N. Stavrou, Oleg Morozov and Anton V. Bourdine",coverURL:"https://cdn.intechopen.com/books/images_new/8907.jpg",editedByType:"Edited by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5213",title:"Research Advances in Quantum Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"15678b0555c714101f8d707a46b4ac60",slug:"research-advances-in-quantum-dynamics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/5213.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4503",title:"Selected Topics in Applications of Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"49ea5b364e379eac3ca7747bc170c217",slug:"selected-topics-in-applications-of-quantum-mechanics",bookSignature:"Mohammad Reza Pahlavani",coverURL:"https://cdn.intechopen.com/books/images_new/4503.jpg",editedByType:"Edited by",editors:[{id:"101263",title:"Prof.",name:"Mohammad Reza",middleName:null,surname:"Pahlavani",slug:"mohammad-reza-pahlavani",fullName:"Mohammad Reza Pahlavani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3527",title:"Ferromagnetic Resonance",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:"5018d38d6945912cc51b5733fff95ea7",slug:"ferromagnetic-resonance-theory-and-applications",bookSignature:"Orhan Yalcin",coverURL:"https://cdn.intechopen.com/books/images_new/3527.jpg",editedByType:"Edited by",editors:[{id:"101308",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Yalçın",slug:"dr.-orhan-yalcin",fullName:"Dr. Orhan Yalçın"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3513",title:"Advances in Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"bbea1c081216f267a4480707f4ead9cf",slug:"advances-in-quantum-mechanics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/3513.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1861",title:"Wavelet Transforms and Their Recent Applications in Biology and Geoscience",subtitle:null,isOpenForSubmission:!1,hash:"17f3d0e20293bdad1d8f4c760e6826b3",slug:"wavelet-transforms-and-their-recent-applications-in-biology-and-geoscience",bookSignature:"Dumitru Baleanu",coverURL:"https://cdn.intechopen.com/books/images_new/1861.jpg",editedByType:"Edited by",editors:[{id:"105623",title:"Dr.",name:"Dumitru",middleName:null,surname:"Baleanu",slug:"dumitru-baleanu",fullName:"Dumitru Baleanu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1613",title:"Theoretical Concepts of Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"f9c6e9ac171d39eecb718608fb626430",slug:"theoretical-concepts-of-quantum-mechanics",bookSignature:"Mohammad Reza Pahlavani",coverURL:"https://cdn.intechopen.com/books/images_new/1613.jpg",editedByType:"Edited by",editors:[{id:"101263",title:"Prof.",name:"Mohammad Reza",middleName:null,surname:"Pahlavani",slug:"mohammad-reza-pahlavani",fullName:"Mohammad Reza Pahlavani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2138",title:"Measurements in Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"3487ee0a57a3bb9087dcf65c25e1b73d",slug:"measurements-in-quantum-mechanics",bookSignature:"Mohammad Reza Pahlavani",coverURL:"https://cdn.intechopen.com/books/images_new/2138.jpg",editedByType:"Edited by",editors:[{id:"101263",title:"Prof.",name:"Mohammad Reza",middleName:null,surname:"Pahlavani",slug:"mohammad-reza-pahlavani",fullName:"Mohammad Reza Pahlavani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2139",title:"Some Applications of Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"78dac0afd6b5ae98402487ae1f1e836f",slug:"some-applications-of-quantum-mechanics",bookSignature:"Mohammad Reza Pahlavani",coverURL:"https://cdn.intechopen.com/books/images_new/2139.jpg",editedByType:"Edited by",editors:[{id:"101263",title:"Prof.",name:"Mohammad Reza",middleName:null,surname:"Pahlavani",slug:"mohammad-reza-pahlavani",fullName:"Mohammad Reza Pahlavani"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1660",title:"Quantum Gravity",subtitle:null,isOpenForSubmission:!1,hash:"f5e880374e06a33f8c90db6877074d51",slug:"quantum-gravity",bookSignature:"Rodrigo Sobreiro",coverURL:"https://cdn.intechopen.com/books/images_new/1660.jpg",editedByType:"Edited by",editors:[{id:"101446",title:"Dr.",name:"Rodrigo",middleName:null,surname:"Sobreiro",slug:"rodrigo-sobreiro",fullName:"Rodrigo Sobreiro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1615",title:"Advances in Quantum Theory",subtitle:null,isOpenForSubmission:!1,hash:"292f0a763e50627eed224ef40ec75962",slug:"advances-in-quantum-theory",bookSignature:"Ion I. Cotaescu",coverURL:"https://cdn.intechopen.com/books/images_new/1615.jpg",editedByType:"Edited by",editors:[{id:"108083",title:"Prof.",name:"Ion",middleName:"I.",surname:"Cotaescu",slug:"ion-cotaescu",fullName:"Ion Cotaescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:13,mostCitedChapters:[{id:"47567",doi:"10.5772/59040",title:"Physical Vacuum is a Special Superfluid Medium",slug:"physical-vacuum-is-a-special-superfluid-medium",totalDownloads:1804,totalCrossrefCites:10,totalDimensionsCites:13,book:{slug:"selected-topics-in-applications-of-quantum-mechanics",title:"Selected Topics in Applications of Quantum Mechanics",fullTitle:"Selected Topics in Applications of Quantum Mechanics"},signatures:"V.I. Sbitnev",authors:[{id:"93881",title:"Dr.",name:"Valeriy",middleName:null,surname:"Sbitnev",slug:"valeriy-sbitnev",fullName:"Valeriy Sbitnev"}]},{id:"30722",doi:"10.5772/37914",title:"Energy Distribution of EEG Signal Components by Wavelet Transform",slug:"energy-distribution-of-eeg-signal-components-by-wavelet-transform",totalDownloads:3126,totalCrossrefCites:6,totalDimensionsCites:12,book:{slug:"wavelet-transforms-and-their-recent-applications-in-biology-and-geoscience",title:"Wavelet Transforms and Their Recent Applications in Biology and Geoscience",fullTitle:"Wavelet Transforms and Their Recent Applications in Biology and Geoscience"},signatures:"Ibrahim Omerhodzic, Samir Avdakovic, Amir Nuhanovic, Kemal Dizdarevic and Kresimir Rotim",authors:[{id:"104339",title:"MSc.",name:"Samir",middleName:null,surname:"Avdakovic",slug:"samir-avdakovic",fullName:"Samir Avdakovic"},{id:"112941",title:"Dr.",name:"Amir",middleName:null,surname:"Nuhanovic",slug:"amir-nuhanovic",fullName:"Amir Nuhanovic"},{id:"114763",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Omerhodzic",slug:"ibrahim-omerhodzic",fullName:"Ibrahim Omerhodzic"},{id:"114765",title:"Prof.",name:"Kemal",middleName:null,surname:"Dizdarevic",slug:"kemal-dizdarevic",fullName:"Kemal Dizdarevic"},{id:"114766",title:"Prof.",name:"Kresimir",middleName:null,surname:"Rotim",slug:"kresimir-rotim",fullName:"Kresimir Rotim"}]},{id:"29585",doi:"10.5772/33510",title:"Application of the Nikiforov-Uvarov Method in Quantum Mechanics",slug:"application-of-the-nikiforov-uvarov-method-in-quantum-mechanics",totalDownloads:6818,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"theoretical-concepts-of-quantum-mechanics",title:"Theoretical Concepts of Quantum Mechanics",fullTitle:"Theoretical Concepts of Quantum Mechanics"},signatures:"Cüneyt Berkdemir",authors:[{id:"95927",title:"Dr.",name:"Cuneyt",middleName:null,surname:"Berkdemir",slug:"cuneyt-berkdemir",fullName:"Cuneyt Berkdemir"}]}],mostDownloadedChaptersLast30Days:[{id:"45527",title:"Ferromagnetic Resonance",slug:"ferromagnetic-resonance",totalDownloads:10484,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Orhan Yalçın",authors:[{id:"101308",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Yalçın",slug:"dr.-orhan-yalcin",fullName:"Dr. Orhan Yalçın"}]},{id:"45526",title:"FMR Measurements of Magnetic Nanostructures",slug:"fmr-measurements-of-magnetic-nanostructures",totalDownloads:5623,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"ferromagnetic-resonance-theory-and-applications",title:"Ferromagnetic Resonance",fullTitle:"Ferromagnetic Resonance - Theory and Applications"},signatures:"Manish Sharma, Sachin Pathak and Monika Sharma",authors:[{id:"166931",title:"Dr.",name:"Manish",middleName:null,surname:"Sharma",slug:"manish-sharma",fullName:"Manish Sharma"},{id:"166932",title:"Dr.",name:"Sachin",middleName:null,surname:"Pathak",slug:"sachin-pathak",fullName:"Sachin Pathak"},{id:"166933",title:"Dr.",name:"Monika",middleName:null,surname:"Sharma",slug:"monika-sharma",fullName:"Monika Sharma"}]},{id:"67463",title:"Quantum Algorithms for Fluid Simulations",slug:"quantum-algorithms-for-fluid-simulations",totalDownloads:879,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"advances-in-quantum-communication-and-information",title:"Advances in Quantum Communication and Information",fullTitle:"Advances in Quantum Communication and Information"},signatures:"René Steijl",authors:null},{id:"29128",title:"Quantum Mechanics on Surfaces",slug:"quantum-mechanics-on-surfaces",totalDownloads:2332,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"some-applications-of-quantum-mechanics",title:"Some Applications of Quantum Mechanics",fullTitle:"Some Applications of Quantum Mechanics"},signatures:"Bjørn Jensen",authors:[{id:"96491",title:"Dr.",name:"Bjorn",middleName:null,surname:"Jensen",slug:"bjorn-jensen",fullName:"Bjorn Jensen"}]},{id:"47634",title:"The Measurement Problem in Quantum Mechanics Revisited",slug:"the-measurement-problem-in-quantum-mechanics-revisited",totalDownloads:1460,totalCrossrefCites:4,totalDimensionsCites:6,book:{slug:"selected-topics-in-applications-of-quantum-mechanics",title:"Selected Topics in Applications of Quantum Mechanics",fullTitle:"Selected Topics in Applications of Quantum Mechanics"},signatures:"M. E. Burgos",authors:[{id:"96880",title:"Prof.",name:"Maria Esther",middleName:null,surname:"Burgos",slug:"maria-esther-burgos",fullName:"Maria Esther Burgos"}]},{id:"47651",title:"Implications of Quantum Informational Entropy in Some Fundamental Physical and Biophysical Models",slug:"implications-of-quantum-informational-entropy-in-some-fundamental-physical-and-biophysical-models",totalDownloads:1314,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-applications-of-quantum-mechanics",title:"Selected Topics in Applications of Quantum Mechanics",fullTitle:"Selected Topics in Applications of Quantum Mechanics"},signatures:"Maricel Agop, Alina Gavriluț, Călin Buzea, Lăcrămioara Ochiuz, Dan\nTesloianu, Gabriel Crumpei and Cristina Popa",authors:[{id:"24020",title:"Dr.",name:"Maricel",middleName:null,surname:"Agop",slug:"maricel-agop",fullName:"Maricel Agop"},{id:"99400",title:"Dr.",name:"Calin Gheorghe",middleName:null,surname:"Buzea",slug:"calin-gheorghe-buzea",fullName:"Calin Gheorghe Buzea"},{id:"171634",title:"Dr.",name:"Alina",middleName:null,surname:"Gavrilut",slug:"alina-gavrilut",fullName:"Alina Gavrilut"},{id:"171636",title:"Dr.",name:"Lacramioara",middleName:null,surname:"Ochiuz",slug:"lacramioara-ochiuz",fullName:"Lacramioara Ochiuz"},{id:"171638",title:"Dr.",name:"Cristina",middleName:null,surname:"Popa",slug:"cristina-popa",fullName:"Cristina Popa"},{id:"173061",title:"Dr.",name:"Gabriel",middleName:null,surname:"Crumpei",slug:"gabriel-crumpei",fullName:"Gabriel Crumpei"},{id:"173062",title:"Dr.",name:"Dan",middleName:null,surname:"Tesloianu",slug:"dan-tesloianu",fullName:"Dan Tesloianu"}]},{id:"43824",title:"Classical and Quantum Conjugate Dynamics – The Interplay Between Conjugate Variables",slug:"classical-and-quantum-conjugate-dynamics-the-interplay-between-conjugate-variables",totalDownloads:3108,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"advances-in-quantum-mechanics",title:"Advances in Quantum Mechanics",fullTitle:"Advances in Quantum Mechanics"},signatures:"Gabino Torres-Vega",authors:[{id:"93519",title:"Dr.",name:"Gabino",middleName:null,surname:"Torres-Vega",slug:"gabino-torres-vega",fullName:"Gabino Torres-Vega"}]},{id:"43857",title:"Decoding the Building Blocks of Life from the Perspective of Quantum Information",slug:"decoding-the-building-blocks-of-life-from-the-perspective-of-quantum-information",totalDownloads:2278,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"advances-in-quantum-mechanics",title:"Advances in Quantum Mechanics",fullTitle:"Advances in Quantum Mechanics"},signatures:"Rodolfo O. Esquivel, Moyocoyani Molina-Espíritu, Frank Salas, Catalina Soriano, Carolina Barrientos, Jesús S. Dehesa and José A. Dobado",authors:[{id:"98696",title:"Dr.",name:"Rodolfo",middleName:null,surname:"Esquivel",slug:"rodolfo-esquivel",fullName:"Rodolfo Esquivel"}]},{id:"47683",title:"Photons and Signals in the Age of Information",slug:"photons-and-signals-in-the-age-of-information",totalDownloads:1211,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-applications-of-quantum-mechanics",title:"Selected Topics in Applications of Quantum Mechanics",fullTitle:"Selected Topics in Applications of Quantum Mechanics"},signatures:"Cynthia Kolb Whitney",authors:[{id:"103463",title:"Dr.",name:"Cynthia",middleName:null,surname:"Whitney",slug:"cynthia-whitney",fullName:"Cynthia Whitney"}]},{id:"47559",title:"Computation of Materials Properties at the Atomic Scale",slug:"computation-of-materials-properties-at-the-atomic-scale",totalDownloads:2252,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"selected-topics-in-applications-of-quantum-mechanics",title:"Selected Topics in Applications of Quantum Mechanics",fullTitle:"Selected Topics in Applications of Quantum Mechanics"},signatures:"Karlheinz Schwarz",authors:[{id:"171618",title:"Emeritus Prof.",name:"Karlheinz",middleName:null,surname:"Schwarz",slug:"karlheinz-schwarz",fullName:"Karlheinz Schwarz"}]}],onlineFirstChaptersFilter:{topicSlug:"quantum-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/39674/nikita-k-yurchenko",hash:"",query:{},params:{id:"39674",slug:"nikita-k-yurchenko"},fullPath:"/profiles/39674/nikita-k-yurchenko",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()