In hot-humid climates, cooling greenhouses and barns are needed to protect crops from extremely high temperature and to ensure high-yielding dairy cows. In Qatar, outside air temperature exceeds 46°C during summer, and the wet-bulb temperature can exceed 30°C which makes greenhouses and barns unworkable during this season. This study provides theoretical and experimental data for cooling greenhouses and barns using highly efficient and low-carbon technology (QGreen). QGreen uses groundwater (geothermal) for indirect-direct evaporative cooling coupled with desiccant dehumidification. The desiccant used is seawater bittern which is a by-product of the desalination process. A desiccant indirect-direct evaporative cooling panel system is designed and analyzed. The results show that the use of groundwater will enhance the efficiency and reduce the wet-bulb temperature dramatically. As a result, the efficiency of the overall cooling system is enhanced by more than 50% compared to the direct evaporative cooling efficiency that was recorded.
Part of the book: Low Carbon Transition