Cytogenetics, with its fundamental role in the field of genetic investigation, continues to be an indispensable tool for studying phylogenetics, given that currently molecular evolutionary analyses are more commonly utilized. Chromosomal evolution indicated that genomic evolution occurs at the level of chromosomal segments, namely, the genomic blocks in the size of Mb‐level. The recombination of homologous blocks, through the mechanisms of insertion, translocation, inversion, and breakage, has been proven to be a major mechanism of speciation and subspecies differentiation. Meanwhile, molecular cytogenetics (fluorescence in situ hybridization‐based methodologies) had been already widely applied in studying plant genetics since polyploidy is common in plant evolution and speciation. It is now recognized that comparative cytogenetic studies can be used to explore the plausible phylogenetic relationships of the extant mammalian species by reconstructing the ancestral karyotypes of certain lineages. Therefore, cytogenetics remains a feasible tool in the study of comparative genomics, even in this next generation sequencing (NGS) prevalent era.
Part of the book: Phylogenetics