In this work, a novel valence recognition system applied to EEG signals is presented. It consists of a feature extraction block followed by a wrapper classification algorithm. The proposed feature extraction method is based on measures of relative energies computed in short‐time intervals and certain frequency bands of EEG signal segments time‐locked to the stimuli presentation. These measures represent event‐related desynchronization/synchronization of underlying brain neural networks. The subsequent feature selection and classification steps comprise a wrapper technique based on two different classification approaches: an ensemble classifier, i.e., a random forest of classification trees and a support vector machine algorithm. Applying a proper importance measure from the classifiers, the feature elimination has been used to identify the most relevant features of the decision making both for intrasubject and intersubject settings, using single trial signals and ensemble averaged signals, respectively. The proposed methodologies allowed us to identify a frontal region and a beta band as the most relevant characteristics, extracted from the electrical brain activity, in order to determine the affective valence elicited by visual stimuli.
Part of the book: Emotion and Attention Recognition Based on Biological Signals and Images