MODerate Resolution Imaging Spectroradiometer (MODIS) retrieved aerosol and cloud products at the nine selected stations over Western Himalayan and Deccan Plateau regions were inferred to bring out their salient features and to investigate aerosol–cloud interaction. Annually, Ångström exponent (AE) decreases with aerosol optical depth (AOD) while in winter it increases with AOD at most of the stations. Results bring out positive and/or negative association between AOD and almost all the cloud parameters over the selected stations. Aerosol indirect effect (AIE) is quantified for fixed liquid water path (LWP) bins ranging from 1 to 350 g/m2 at an interval of 25 g/m2 for three categories of stations, viz., CAT‐H, CAT‐M, and CAT‐L based on heavy, moderate, and low aerosol loading, respectively. AIE is negative at CAT‐H (−0.04 ± 0.14), while it is positive at CAT‐M (0.01 ± 0.07) and CAT‐L (0.10 ± 0.48). During winter, negative AIE has been observed for all three categories. In pre‐monsoon, the majority of LWP bins (86% at CAT‐H and 60% at CAT‐M) showed positive AIE, while about 71% of LWP bins indicted negative AIE at CAT‐L. However, during monsoon about 63–71% of LWP bins showed negative AIE at these categories. Study elucidates the influence of factors like cloud type, cloud dynamics/thermodynamics on aerosol–cloud interactions.
Part of the book: Aerosols