Design and operation of NZEB buildings versus conventional buildings.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"713",leadTitle:null,fullTitle:"Irrigation Systems and Practices in Challenging Environments",title:"Irrigation Systems and Practices in Challenging Environments",subtitle:null,reviewType:"peer-reviewed",abstract:"The book Irrigation Systems and Practices in Challenging Environments is divided into two interesting sections, with the first section titled Agricultural Water Productivity in Stressed Environments, which consists of nine chapters technically crafted by experts in their own right in their fields of expertise. Topics range from effects of irrigation on the physiology of plants, deficit irrigation practices and the genetic manipulation, to creating drought tolerant variety and a host of interesting topics to cater for the those interested in the plant water soil atmosphere relationships and agronomic practices relevant in many challenging environments, more so with the onslaught of global warming, climate change and the accompanying agro-meteorological impacts. The second section, with eight chapters, deals with systems of irrigation practices around the world, covering different climate zones apart from showing casing practices for sustainable irrigation practices and more efficient ways of conveying irrigation waters - the life blood of agriculture, undoubtedly the most important sector in the world.",isbn:null,printIsbn:"978-953-51-0420-9",pdfIsbn:"978-953-51-5262-0",doi:"10.5772/1222",price:139,priceEur:155,priceUsd:179,slug:"irrigation-systems-and-practices-in-challenging-environments",numberOfPages:384,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"f4906d58c1ed14c504112886206ce496",bookSignature:"Teang Shui Lee",publishedDate:"March 28th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/713.jpg",numberOfDownloads:61008,numberOfWosCitations:66,numberOfCrossrefCitations:28,numberOfCrossrefCitationsByBook:2,numberOfDimensionsCitations:98,numberOfDimensionsCitationsByBook:2,hasAltmetrics:0,numberOfTotalCitations:192,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 3rd 2011",dateEndSecondStepPublish:"March 31st 2011",dateEndThirdStepPublish:"August 5th 2011",dateEndFourthStepPublish:"September 4th 2011",dateEndFifthStepPublish:"January 2nd 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"111060",title:"Dr.",name:"Teang Shui",middleName:null,surname:"Lee",slug:"teang-shui-lee",fullName:"Teang Shui Lee",profilePictureURL:"https://mts.intechopen.com/storage/users/111060/images/2467_n.jpg",biography:"Dr Teang Shui Lee is a professor of Water Resources Engineering at the Department of Agricultural and Biological Engineering, Faculty of Engineering, Universiti Putra Malaysia. He holds a BSc in Agricultural Engineering (Water Resources Engineering) from the University of Canterbury, New Zealand, a MSc in Irrigation and Drainage Engineering from Utah State University, United States of America, and a PhD in Structural Engineering from Universiti Putra Malaysia. Upon graduating, he worked as an assistant engineer with the then Water & Soil Division of the Ministry of Works and Development, Christchurch, New Zealand, for a year, involved with the irrigation schemes of the Canterbury Plains. Dr Lee is a member of the Board of Engineers Malaysia (2009-2012) and Board of Quantity Surveyors Malaysia (2011-2013), and is also the Honorary Secretary of the Institution of Engineers Malaysia (2010-2012). He is a registered professional engineer in Malaysia.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"3",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"308",title:"Agrometeorology",slug:"agronomy-agrometeorology"}],chapters:[{id:"34104",title:"Effects of Irrigation on the Flowering and Maturity of Chickpea Genotypes",doi:"10.5772/29981",slug:"effects-of-irrigation-on-the-flowering-and-maturity-of-chickpea-genotypes",totalDownloads:3999,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Kamel Ben Mbarek, Boutheina Douh and Abdelhamid Boujelben",downloadPdfUrl:"/chapter/pdf-download/34104",previewPdfUrl:"/chapter/pdf-preview/34104",authors:[{id:"80212",title:"Dr.",name:"Kamel",surname:"Ben Mbarek",slug:"kamel-ben-mbarek",fullName:"Kamel Ben Mbarek"}],corrections:null},{id:"34105",title:"Deficit (Limited) Irrigation - A Method for Higher Water Profitability",doi:"10.5772/29500",slug:"deficit-limited-irrigation-a-method-for-higher-water-profitability-in-agriculture",totalDownloads:2528,totalCrossrefCites:2,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Saeideh Maleki Farahani and Mohammad Reza Chaichi",downloadPdfUrl:"/chapter/pdf-download/34105",previewPdfUrl:"/chapter/pdf-preview/34105",authors:[{id:"78156",title:"Dr.",name:"Saeideh",surname:"Maleki Farahani",slug:"saeideh-maleki-farahani",fullName:"Saeideh Maleki Farahani"},{id:"129155",title:"Dr.",name:"Mohammad Reza",surname:"Chaichi",slug:"mohammad-reza-chaichi",fullName:"Mohammad Reza Chaichi"}],corrections:null},{id:"34106",title:"Water Productivity and Fruit Quality in Deficit Drip Irrigated Citrus Orchards",doi:"10.5772/30667",slug:"water-productivity-and-fruit-quality-in-deficit-drip-irrigated-citrus-orchards",totalDownloads:2873,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ana Quiñones, Carolina Polo-Folgado, Ubaldo Chi-Bacab, Belén Martínez-Alcántara and Francisco Legaz",downloadPdfUrl:"/chapter/pdf-download/34106",previewPdfUrl:"/chapter/pdf-preview/34106",authors:[{id:"83625",title:"Dr.",name:"Ana",surname:"Quinones",slug:"ana-quinones",fullName:"Ana Quinones"}],corrections:null},{id:"34107",title:"Crop Evapotranspiration and Water Use Efficiency",doi:"10.5772/29777",slug:"crop-evapotransportation-and-water-use-efficiency",totalDownloads:4824,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Bergson Guedes Bezerra",downloadPdfUrl:"/chapter/pdf-download/34107",previewPdfUrl:"/chapter/pdf-preview/34107",authors:[{id:"79271",title:"Ph.D.",name:"Bergson",surname:"Bezerra",slug:"bergson-bezerra",fullName:"Bergson Bezerra"}],corrections:null},{id:"34108",title:"Strategies for Improving Water Productivity and Quality of Agricultural Crops in an Era of Climate Change",doi:"10.5772/29275",slug:"strategies-for-improving-water-productivity-and-quality-of-agricultural-crops-in-an-era-of-climate-c",totalDownloads:3596,totalCrossrefCites:3,totalDimensionsCites:9,hasAltmetrics:0,abstract:null,signatures:"Zorica Jovanovic and Radmila Stikic",downloadPdfUrl:"/chapter/pdf-download/34108",previewPdfUrl:"/chapter/pdf-preview/34108",authors:[{id:"77140",title:"Prof.",name:"Zorica",surname:"Jovanovic",slug:"zorica-jovanovic",fullName:"Zorica Jovanovic"},{id:"80319",title:"Prof.",name:"Radmila",surname:"Stikic",slug:"radmila-stikic",fullName:"Radmila Stikic"}],corrections:null},{id:"34109",title:"A Review on Creating Drought Tolerant Crop Varieties",doi:"10.5772/30650",slug:"a-review-on-creating-drought-tolerant-crop-varieties",totalDownloads:2538,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Ramesh Thatikunta",downloadPdfUrl:"/chapter/pdf-download/34109",previewPdfUrl:"/chapter/pdf-preview/34109",authors:[{id:"83537",title:"Dr.",name:"Ramesh",surname:"Thatikunta",slug:"ramesh-thatikunta",fullName:"Ramesh Thatikunta"}],corrections:null},{id:"34110",title:"Drought Stress and the Need for Drought Stress Sensing in a World of Global Climate Change",doi:"10.5772/31485",slug:"drought-stress-and-the-need-for-drought-stress-sensing-in-a-world-of-global-climate-change",totalDownloads:2725,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Rita Linke",downloadPdfUrl:"/chapter/pdf-download/34110",previewPdfUrl:"/chapter/pdf-preview/34110",authors:[{id:"87392",title:"Dr.",name:"Rita",surname:"Linke",slug:"rita-linke",fullName:"Rita Linke"}],corrections:null},{id:"34111",title:"Sustainable Rice Yield in Water-Short Drought-Prone Environments: Conventional and Molecular Approaches",doi:"10.5772/30696",slug:"sustainable-rice-yield-in-water-short-drought-prone-environments-conventional-and-molecular-approach",totalDownloads:3081,totalCrossrefCites:5,totalDimensionsCites:27,hasAltmetrics:0,abstract:null,signatures:"B. P. Mallikarjuna Swamy and Arvind Kumar",downloadPdfUrl:"/chapter/pdf-download/34111",previewPdfUrl:"/chapter/pdf-preview/34111",authors:[{id:"83808",title:"Dr",name:"Arvind",surname:"Kumar",slug:"arvind-kumar",fullName:"Arvind Kumar"},{id:"94123",title:"Dr.",name:"B.P. Mallikarjuna",surname:"Swamy",slug:"b.p.-mallikarjuna-swamy",fullName:"B.P. Mallikarjuna Swamy"}],corrections:null},{id:"34112",title:"Effects of Salinity on Vegetable Growth and Nutrients Uptake",doi:"10.5772/29976",slug:"effects-of-salinity-on-vegetable-growth-and-nutrients-uptake",totalDownloads:5939,totalCrossrefCites:3,totalDimensionsCites:16,hasAltmetrics:0,abstract:null,signatures:"Ivana Maksimovic and Žarko Ilin",downloadPdfUrl:"/chapter/pdf-download/34112",previewPdfUrl:"/chapter/pdf-preview/34112",authors:[{id:"80173",title:"Prof.",name:"Ivana",surname:"Maksimovic",slug:"ivana-maksimovic",fullName:"Ivana Maksimovic"},{id:"84955",title:"Prof.",name:"Zarko",surname:"Ilin",slug:"zarko-ilin",fullName:"Zarko Ilin"}],corrections:null},{id:"34113",title:"Experiments on Alleviating Arsenic Accumulation in Rice Through Irrigation Management",doi:"10.5772/36899",slug:"water-regime-management-an-approach-to-alleviate-arsenic-accumulation-in-rice",totalDownloads:2413,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Shayeb Shahariar and S. M. Imamul Huq",downloadPdfUrl:"/chapter/pdf-download/34113",previewPdfUrl:"/chapter/pdf-preview/34113",authors:[{id:"110352",title:"Dr",name:"Imamul",surname:"Huq",slug:"imamul-huq",fullName:"Imamul Huq"}],corrections:null},{id:"34114",title:"Effects of Irrigation-Fertilization and Irrigation-Mycorrhization on the Alimentary and Nutraceutical Properties of Tomatoes",doi:"10.5772/32580",slug:"effects-of-irrigation-fertilization-and-irrigation-mycorrhization-on-the-alimentary-and-nutraceutica",totalDownloads:2514,totalCrossrefCites:2,totalDimensionsCites:6,hasAltmetrics:0,abstract:null,signatures:"Luigi Francesco Di Cesare, Carmela Migliori, Valentino Ferrari, Mario Parisi, Gabriele Campanelli, Vincenzo Candido and Domenico Perrone",downloadPdfUrl:"/chapter/pdf-download/34114",previewPdfUrl:"/chapter/pdf-preview/34114",authors:[{id:"92003",title:"Dr",name:"Luigi Francesco",surname:"Di Cesare",slug:"luigi-francesco-di-cesare",fullName:"Luigi Francesco Di Cesare"},{id:"92602",title:"Dr.",name:"Carmela",surname:"Migliori",slug:"carmela-migliori",fullName:"Carmela Migliori"},{id:"92603",title:"Dr.",name:"Valentino",surname:"Ferrari",slug:"valentino-ferrari",fullName:"Valentino Ferrari"},{id:"92605",title:"Dr.",name:"Mario",surname:"Parisi",slug:"mario-parisi",fullName:"Mario Parisi"},{id:"92608",title:"Dr",name:"Gabriele",surname:"Campanelli",slug:"gabriele-campanelli",fullName:"Gabriele Campanelli"},{id:"95058",title:"Dr.",name:"Vincenzo",surname:"Candido",slug:"vincenzo-candido",fullName:"Vincenzo Candido"},{id:"123090",title:"Dr.",name:"Domenico",surname:"Perrone",slug:"domenico-perrone",fullName:"Domenico Perrone"}],corrections:null},{id:"34115",title:"Experimentation on Cultivation of Rice Irrigated with a Center Pivot System",doi:"10.5772/30502",slug:"experimentation-on-cultivation-of-rice-irrigated-with-a-center-pivot-system",totalDownloads:2927,totalCrossrefCites:5,totalDimensionsCites:14,hasAltmetrics:0,abstract:null,signatures:"Gene Stevens, Earl Vories, Jim Heiser and Matthew Rhine",downloadPdfUrl:"/chapter/pdf-download/34115",previewPdfUrl:"/chapter/pdf-preview/34115",authors:[{id:"82842",title:"Prof.",name:"Gene",surname:"Stevens",slug:"gene-stevens",fullName:"Gene Stevens"}],corrections:null},{id:"34116",title:"Large-Scale Pressurized Irrigation Systems Diagnostic Performance Assessment and Operation Simulation",doi:"10.5772/34341",slug:"large-scale-pressurized-irrigation-systems-diagnostic-performance-assessment-and-operation-simulatio",totalDownloads:2995,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Daniele Zaccaria",downloadPdfUrl:"/chapter/pdf-download/34116",previewPdfUrl:"/chapter/pdf-preview/34116",authors:[{id:"99711",title:"Dr.",name:"Daniele",surname:"Zaccaria",slug:"daniele-zaccaria",fullName:"Daniele Zaccaria"}],corrections:null},{id:"34117",title:"Sustainable Irrigation Practices in India",doi:"10.5772/30805",slug:"sustainable-irrigation-practices-in-india",totalDownloads:7652,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Rajapure V. A. and Kothari R. M.",downloadPdfUrl:"/chapter/pdf-download/34117",previewPdfUrl:"/chapter/pdf-preview/34117",authors:[{id:"84331",title:"Dr.",name:"Ramanlal",surname:"Kothari",slug:"ramanlal-kothari",fullName:"Ramanlal Kothari"},{id:"115872",title:"Dr.",name:"Vikram Ashok",surname:"Rajapure",slug:"vikram-ashok-rajapure",fullName:"Vikram Ashok Rajapure"}],corrections:null},{id:"34118",title:"Irrigation in Mediterranean Fruit Tree Orchards",doi:"10.5772/31350",slug:"irrigation-in-mediterranean-fruit-tree-orchards",totalDownloads:3787,totalCrossrefCites:4,totalDimensionsCites:8,hasAltmetrics:0,abstract:null,signatures:"Cristos Xiloyannis, Giuseppe Montanaro and Bartolomeo Dichio",downloadPdfUrl:"/chapter/pdf-download/34118",previewPdfUrl:"/chapter/pdf-preview/34118",authors:[{id:"42991",title:"Dr.",name:"Giuseppe",surname:"Montanaro",slug:"giuseppe-montanaro",fullName:"Giuseppe Montanaro"},{id:"42996",title:"Prof.",name:"Bartolomeo",surname:"Dichio",slug:"bartolomeo-dichio",fullName:"Bartolomeo Dichio"},{id:"42997",title:"Prof.",name:"Cristos",surname:"Xiloyannis",slug:"cristos-xiloyannis",fullName:"Cristos Xiloyannis"}],corrections:null},{id:"34119",title:"Urban Irrigation Challenges and Conservation",doi:"10.5772/29023",slug:"urban-irrigation-challenges-and-conservation",totalDownloads:1886,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Kimberly Moore",downloadPdfUrl:"/chapter/pdf-download/34119",previewPdfUrl:"/chapter/pdf-preview/34119",authors:[{id:"76240",title:"Dr.",name:"Kimberly",surname:"Moore",slug:"kimberly-moore",fullName:"Kimberly Moore"}],corrections:null},{id:"34120",title:"Irrigation: Types, Sources and Problems in Malaysia",doi:"10.5772/29710",slug:"irrigation-types-sources-and-problems-in-malaysia",totalDownloads:4739,totalCrossrefCites:3,totalDimensionsCites:10,hasAltmetrics:0,abstract:null,signatures:"M. E. Toriman and M. Mokhtar",downloadPdfUrl:"/chapter/pdf-download/34120",previewPdfUrl:"/chapter/pdf-preview/34120",authors:[{id:"79054",title:"Dr.",name:"Mohd Ekhwan",surname:"Toriman",slug:"mohd-ekhwan-toriman",fullName:"Mohd Ekhwan Toriman"},{id:"129566",title:"Prof.",name:"Mazlin",surname:"Mokhtar",slug:"mazlin-mokhtar",fullName:"Mazlin Mokhtar"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"4501",title:"Research and Practices in Water Quality",subtitle:null,isOpenForSubmission:!1,hash:"353b80b8f2a53085f1de6ea766d1d955",slug:"research-and-practices-in-water-quality",bookSignature:"Teang Shui Lee",coverURL:"https://cdn.intechopen.com/books/images_new/4501.jpg",editedByType:"Edited by",editors:[{id:"111060",title:"Dr.",name:"Teang Shui",surname:"Lee",slug:"teang-shui-lee",fullName:"Teang Shui Lee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2080",title:"Water Quality, Soil and Managing Irrigation of Crops",subtitle:null,isOpenForSubmission:!1,hash:"9d7b26c538c89c4dcc35c7a399a458bb",slug:"water-quality-soil-and-managing-irrigation-of-crops",bookSignature:"Teang Shui Lee",coverURL:"https://cdn.intechopen.com/books/images_new/2080.jpg",editedByType:"Edited by",editors:[{id:"111060",title:"Dr.",name:"Teang Shui",surname:"Lee",slug:"teang-shui-lee",fullName:"Teang Shui Lee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8489",title:"Drought",subtitle:"Detection and Solutions",isOpenForSubmission:!1,hash:"d7c48c817f290b0ed1e97a940a68a52b",slug:"drought-detection-and-solutions",bookSignature:"Gabrijel Ondrasek",coverURL:"https://cdn.intechopen.com/books/images_new/8489.jpg",editedByType:"Edited by",editors:[{id:"46939",title:"Prof.",name:"Gabrijel",surname:"Ondrasek",slug:"gabrijel-ondrasek",fullName:"Gabrijel Ondrasek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9643",title:"Agrometeorology",subtitle:null,isOpenForSubmission:!1,hash:"492510d45d202e73a8a7d6eb6cc60be8",slug:"agrometeorology",bookSignature:"Ram Swaroop Meena",coverURL:"https://cdn.intechopen.com/books/images_new/9643.jpg",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"68989",slug:"erratum-public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-inter",title:"Erratum - Public Perceptions of Values Associated with Wildfire Protection at the Wildland-Urban Interface: A Synthesis of National Findings",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/68989.pdf",downloadPdfUrl:"/chapter/pdf-download/68989",previewPdfUrl:"/chapter/pdf-preview/68989",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/68989",risUrl:"/chapter/ris/68989",chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]}},chapter:{id:"65057",slug:"public-perceptions-of-values-associated-with-wildfire-protection-at-the-wildland-urban-interface-a-s",signatures:"Jason Gordon, Adam S. Willcox, A.E. Luloff, James C. Finley and Donald G. Hodges",dateSubmitted:"June 21st 2018",dateReviewed:"October 22nd 2018",datePrePublished:"December 31st 2018",datePublished:"February 19th 2020",book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"264298",title:"Dr.",name:"Jason",middleName:null,surname:"Gordon",fullName:"Jason Gordon",slug:"jason-gordon",email:"jason.gordon@uga.edu",position:null,institution:{name:"University of Georgia",institutionURL:null,country:{name:"United States of America"}}}]},book:{id:"8295",title:"Landscape Reclamation",subtitle:"Rising From What's Left",fullTitle:"Landscape Reclamation - Rising From What's Left",slug:"landscape-reclamation-rising-from-what-s-left",publishedDate:"February 19th 2020",bookSignature:"Luis Loures",coverURL:"https://cdn.intechopen.com/books/images_new/8295.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"108118",title:"Dr.",name:"Luis",middleName:null,surname:"Loures",slug:"luis-loures",fullName:"Luis Loures"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11127",leadTitle:null,title:"Electrospinning - Material Technology of the Future",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tThe evolution of virtually all fields of science and industry is inextricably linked with access to modern functional materials with special physical properties. The development of material technologies based on efficiency, economy and environmental impact is also of great importance. In view of the challenges of the future in the field of sustainable industrial development, it is necessary to constantly search for materials that enable the implementation of the designers' assumptions. One of the most promising directions for the materials engineering based on materials with special properties (electrical, optical, mechanical, chemical) is the nano-scale operation. The famous saying of prof. Richard Feynman "There's Plenty of Space at the Bottom" is a great illustration of the possibilities of nanotechnology. In the case of nano-structured materials, the reduction to the nano-scale size results in a complete change of physical properties, eg.mechanical, electrical, and causes known materials to be somehow rediscovered.
\r\n\r\n\tTherefore, the aim of the presented work is to briefly describe the latest research on one of the most interesting directions of material nanoengineering. The use of the modern technique of producing nanostructures, which is electrospinning, allows to obtain one-dimensional nanometric structures, both organic and inorganic, in a fast, economical process with low environmental impact. The work contains information on the basics of technology and detailed descriptions of individual parameters along with their influence on the structure and properties of the obtained materials. As shown by the available research, the perspective use of one-dimensional materials is extremely wide, it includes, among others, automotive, electronics, optics, medicine, environmental protection. Hence the necessity to collect and catalog the available information in a compact form of the presented book. In addition, the book will describe the prospects for the future development of electrospun materials with regard to applications.
",isbn:"978-1-80355-343-6",printIsbn:"978-1-80355-342-9",pdfIsbn:"978-1-80355-344-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"4ea265f539dc64d666469f298a224027",bookSignature:"Prof. Tomasz Arkadiusz Tański",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11127.jpg",keywords:"Electrostatic Repulsion, One-Dimensional Nanostructures, Mechanical Properties, Optoelectronic Properties, Flow Rate, Nanostructural Reinforcement, Semiconductors, Optical Parameters, Photocatalysis, Biocompatibility, Hybrid Nanocomposites, Portable",numberOfDownloads:148,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,numberOfTotalCitations:0,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 2nd 2021",dateEndSecondStepPublish:"September 30th 2021",dateEndThirdStepPublish:"November 29th 2021",dateEndFourthStepPublish:"February 17th 2022",dateEndFifthStepPublish:"April 18th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"8 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"A recognized expert in the field of materials engineering and nanotechnology, author of over 400 scientific studies, and winner of numerous international awards.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",middleName:null,surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański",profilePictureURL:"https://mts.intechopen.com/storage/users/15700/images/system/15700.png",biography:"Prof. Tomasz Tański is the Head of the Department of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland, and a member of the Polish Academy of Sciences, Committee of Metallurgy. He is a specialist in non-ferrous alloys, composite materials, and nanostructured, manufacturing engineering. He has authored or co-authored more than 400 scientific publications worldwide, including 15 monographs and books and more than 116 publications on the Thomson Scientific Master Journal List. He has won twenty national and international awards. He is and has been a supervisor or contractor for more than fifteen research and didactic projects in Poland and abroad. He is a reviewer and promoter of numerous scientific papers, including eight doctoral theses in the field of nanotechnology and materials.",institutionString:"Silesian University of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"10",totalChapterViews:"0",totalEditedBooks:"7",institution:{name:"Silesian University of Technology",institutionURL:null,country:{name:"Poland"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"14",title:"Materials Science",slug:"materials-science"}],chapters:[{id:"81611",title:"Biomass Electrospinning: Recycling Materials for Green Economy Applications",slug:"biomass-electrospinning-recycling-materials-for-green-economy-applications",totalDownloads:18,totalCrossrefCites:0,authors:[null]},{id:"80458",title:"Production of Nanofibers from Plant Extracts by Electrospinning Method",slug:"production-of-nanofibers-from-plant-extracts-by-electrospinning-method",totalDownloads:17,totalCrossrefCites:0,authors:[null]},{id:"81245",title:"Functional Nanofibers for Sensors",slug:"functional-nanofibers-for-sensors",totalDownloads:16,totalCrossrefCites:0,authors:[null]},{id:"79949",title:"Active Electrospun Mats: A Promising Material for Active Food Packaging",slug:"active-electrospun-mats-a-promising-material-for-active-food-packaging",totalDownloads:98,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"247041",firstName:"Dolores",lastName:"Kuzelj",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/247041/images/7108_n.jpg",email:"dolores@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"5474",title:"Study of Grain Boundary Character",subtitle:null,isOpenForSubmission:!1,hash:"591ee927a4e438667ce39c8251cdacfa",slug:"study-of-grain-boundary-character",bookSignature:"Tomasz Tanski and Wojciech Borek",coverURL:"https://cdn.intechopen.com/books/images_new/5474.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6501",title:"Electrospinning Method Used to Create Functional Nanocomposites Films",subtitle:null,isOpenForSubmission:!1,hash:"c28620c5ccc64e4b32eb9758302a1679",slug:"electrospinning-method-used-to-create-functional-nanocomposites-films",bookSignature:"Tomasz Tański, Pawel Jarka and Wiktor Matysiak",coverURL:"https://cdn.intechopen.com/books/images_new/6501.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7232",title:"Magnesium Alloys",subtitle:"Selected Issue",isOpenForSubmission:!1,hash:"968e7fbf2920c8d89c013c5a8be0dbb3",slug:"magnesium-alloys-selected-issue",bookSignature:"Tomasz Tański, Wojciech Borek and Mariusz Król",coverURL:"https://cdn.intechopen.com/books/images_new/7232.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6172",title:"Creep",subtitle:null,isOpenForSubmission:!1,hash:"e4bebb76aea6fbaad3502b8de2a43e7c",slug:"creep",bookSignature:"Tomasz Tanski, Marek Sroka and Adam Zielinski",coverURL:"https://cdn.intechopen.com/books/images_new/6172.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7221",title:"Atomic-force Microscopy and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"2320402a229f880b0be7c73b247ebcf4",slug:"atomic-force-microscopy-and-its-applications",bookSignature:"Tomasz Tański, Marcin Staszuk and Bogusław Ziębowicz",coverURL:"https://cdn.intechopen.com/books/images_new/7221.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8369",title:"Creep Characteristics of Engineering Materials",subtitle:null,isOpenForSubmission:!1,hash:"810e34ac2596856d53111a3b50fd2542",slug:"creep-characteristics-of-engineering-materials",bookSignature:"Tomasz Ta?ski, Marek Sroka, Adam Zieli?ski and Grzegorz Gola?ski",coverURL:"https://cdn.intechopen.com/books/images_new/8369.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9926",title:"Magnesium Alloys Structure and Properties",subtitle:null,isOpenForSubmission:!1,hash:"a6d1a99f4befe885857743f77e81524c",slug:"magnesium-alloys-structure-and-properties",bookSignature:"Tomasz Tański and Paweł Jarka",coverURL:"https://cdn.intechopen.com/books/images_new/9926.jpg",editedByType:"Edited by",editors:[{id:"15700",title:"Prof.",name:"Tomasz Arkadiusz",surname:"Tański",slug:"tomasz-arkadiusz-tanski",fullName:"Tomasz Arkadiusz Tański"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6320",title:"Advances in Glass Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6d0a32a0cf9806bccd04101a8b6e1b95",slug:"advances-in-glass-science-and-technology",bookSignature:"Vincenzo M. Sglavo",coverURL:"https://cdn.intechopen.com/books/images_new/6320.jpg",editedByType:"Edited by",editors:[{id:"17426",title:"Prof.",name:"Vincenzo Maria",surname:"Sglavo",slug:"vincenzo-maria-sglavo",fullName:"Vincenzo Maria Sglavo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6517",title:"Emerging Solar Energy Materials",subtitle:null,isOpenForSubmission:!1,hash:"186936bb201bb186fb04b095aa39d9b8",slug:"emerging-solar-energy-materials",bookSignature:"Sadia Ameen, M. Shaheer Akhtar and Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/6517.jpg",editedByType:"Edited by",editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6188",title:"Solidification",subtitle:null,isOpenForSubmission:!1,hash:"0405c42586170a1def7a4b011c5f2b60",slug:"solidification",bookSignature:"Alicia Esther Ares",coverURL:"https://cdn.intechopen.com/books/images_new/6188.jpg",editedByType:"Edited by",editors:[{id:"91095",title:"Dr.",name:"Alicia Esther",surname:"Ares",slug:"alicia-esther-ares",fullName:"Alicia Esther Ares"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"75944",title:"The History and Development of Endovascular Neurosurgery",doi:"10.5772/intechopen.97139",slug:"the-history-and-development-of-endovascular-neurosurgery",body:'Endovascular neurosurgery is now the most commonly practiced therapeutic approach for most vascular lesions involving the brain and spinal cord [1]. At the beginning, balloons are the only available techniques; latter coils, embolic agents, and stents are introduced [2]. With expansion of the endovascular devices and techniques, the treatment strategies for cerebrospinal vascular diseases has been refined [3]. Neurosurgeons must have the mindset to embrace and nurture the progress and technologic advances. The pioneers of endovascular neurosurgery considered the impossible and tenaciously stood by their dreams [4]. Their revolutionary ideas and inventions truly reflected their courage, faith, and determination. The shift away from open surgical approaches has had far-reaching implications for how we train neurosurgical residents and fellows and how we certify these individuals once their training is completed [5]. With the maturity of endovascular neurosurgery technology, we need to re-examine the resident and fellow training for neurovascular surgery. This chapter traces the evolution of endovascular neurosurgery and its current role as the dominant and frequently standard therapy for cerebral and spinal vascular diseases.
Endovascular neurosurgery is based on cerebral angiography. It is well known that Portuguese neurologist Antonio Egas Moniz, the recipient of the Nobel Prize in Physiology and Medicine in 1949, developed and described cerebral angiography firstly in 1927 [6]. Before using cadaveric specimens of human to develop the technique, he had successfully obtained cerebral angiograms in dogs. His first cerebral angiography was performed in a 48-year-old patient with Parkinson’s disease. The internal carotid artery (ICA) was ligated temporarily for 2 minutes and a 70% solution of strontium bromide was injected into the ICA at a dose of 13 to 14 ml. The middle and posterior cerebral arteries were demonstrated on his first film. Unfortunately, the patient died from thrombophlebitis 8 hours later. This invention ushered in the age of diagnostic and therapeutic angiography.
Cerebral angiography had a prominent role in defining neurosurgery as a specialty distinct from surgery. The cerebral angiography is based on X-ray imaging [7]. Contrast injection plus X-ray exposure combined with mask subtraction generates images of high resolution of the cerebral vasculature. In early angiogram systems, cut film and film cassettes were used, which required a technologist to exchange multiple cassettes to obtain series and angiography “runs”. At that time, angiography generated radiopaque images of the cerebral vasculature and could be used to identify vessel occlusions and eventually identify vascular lesions [8]. Distortion and displacement of the vascular anatomy could be used for hematoma or tumor localization.
There has been an ongoing evolution of the cerebral angiography, first as a diagnostic tool but then the potential for intervening in vascular pathology became possible. Subsequently, the eventual introduction of braided catheters and hydrophilic wires, which allowed quick and safe catheterizations, set the foundation for intervention. Modern digital subtraction angiography (DSA) machines consist of an image intensifier and digital subtraction flat panel detectors that utilize a fraction of the radiation dosage for the acquisition of images of the finest detail [9]. The ability to rotate the image intensifier around the patient allowed the development of 3D rotational images [10].
Although cerebral angiography remains a mainstay in the diagnosis and endovascular treatment of cerebrospinal vascular disorders [11], several limitations of this technique are evident. X-ray based cerebral angiography cannot view neurovascular structures clearly in complex vascular lesions, lack resolution necessary to visualize small vessels and critical perforating vessels, which are essential to the treatment of many cerebrovascular disorders. As a real-time guide during therapy, intraluminal imaging with ultrasonography, maybe a resolution in the future. This technique will provide not only therapeutic guidance but also real-time documentation of the completeness of therapy.
Endovascular treatment of cerebral aneurysms had its start in neurosurgery. Werner et al. firstly reported successful electrothermic thrombosis of an intracranial aneurysm in 1941 [12]. With a transorbital puncture, “thirty feet of No. 34 gauge coin silver enameled wire was introduced into the aneurysm through a special needle” and “the wire was heated to an average temperature of 80°C for a total of 40 seconds. The aneurysm no longer bled when the needle was cleared at the conclusion of the operation” [12].
After these early attempts, particularly in the 1960s and early 1970s, several neurosurgeons and neuroradiologists sought therapeutic alternatives to conventional surgery [2]. Lacking devices suitable for safe navigation in the intracranial vasculature, their efforts originally concentrated on the extravascular route. Under radiographic guidance, thrombosis was initiated by passing electrical current to an electrode needle introduced within the aneurysm sac through a burr hole [13]. Mullan et al. described the treatment of intracranial aneurysms in a series of 12 patients, 10 of whom had presented with aneurysmal subarachnoid hemorrhage, by inducing electrothrombosis [13].
Until 1964, Luessenhop and Velasquez made the first endovascular attempt to treat a cerebral aneurysm [14]. They attempt to occlude a supraclinoid aneurysm with a silicone balloon. Subsequently, Serbinenko developed a balloon-mounted microcatheter with flow-directional capabilities for more effective intracranial catheterization [15]. He further developed detachable and nondetachable balloon catheters to make parent artery sacrifice or direct aneurysmal obliteration and to allow temporary balloon occlusion safe and reliable in the 1970s. His contributions gave birth to endovascular neurosurgery [15]. Balloon occlusion techniques were further used with a vast amount of clinical experience during the 1970s and 1980s [16, 17, 18].
Several major limitations of balloon occlusion technique are apparent. Aneurysmal catheterization was difficult without help of guidewire. The balloon shape often could not adequately filling an irregular aneurysm with leaving the fundus unprotected or creating a ball-valve effect of aneurysmal refilling. Therefore, the endovascular therapy of cerebral aneurysms shifted from balloon occlusion to free (pushable) platinum coil occlusion [2]. At this time, coil embolization for cerebral aneurysms is a dangerous procedure because of the inability to retrieve the pushed coils that migrated into the distal intracranial vasculature.
The innovation of electrolytic detachable coils by the Italian neurosurgeon Guido Guglielmi in the early 1990s updated the endovascular treatment of cerebral aneurysms [19, 20]. In the early 1980s, Guglielmi found accidental electrolytic detachment of the electrode tip while applying current to a stainless steel electrode inserted into an experimental aneurysm to promote electrothrombosis. After several years, he worked with Ivan Sepetka, an engineer at Target Therapeutics, Inc., to combine the two processes of endovascular electrolysis and electrothrombosis, which eventually resulted in the development of the present-day Guglielmi detachable coil (GDC; Boston Scientific/Target Therapeutics, Fremont CA) [21]. The Guglielmi detachable coil (GDC) can be re-positioned and examined before the coil was released electrolytically from its tether. On the other hand, the flexibility and softness of the coil enabled the safe filling of an irregular aneurysm with a low risk of rupture. The first intracranial aneurysm was treated using this new technology on April 12, 1990 [19]. The first multicenter GDC clinical trial result was published by Guglielmi et al. in 1992 [20]. Immediate complete occlusion was obtained in 81% of small-necked and 15% of wide-necked aneurysms with low procedure-related morbidity and mortality rates less than 5%. The GDC system was immediately accepted worldwide and became the focus of most published works on cerebral aneurysm management (Figure 1).
A 46-year-old woman with a ruptured anterior communicating artery aneurysm was coiled with GDCs (Boston Scientific, USA) in 1998. A, frontal view of the left internal carotid artery injection. B, lateral view of the left internal carotid artery injection. Showing the aneurysm of the left anterior communicating artery (arrows). C, frontal view of the roadmap image of the left internal carotid artery injection showing the aneurysm (arrow). D, frontal view of the roadmap image after aneurysm coiling showing the disappearance of the aneurysm (arrow). E, frontal view of the left internal carotid artery injection after aneurysm coil embolization. F, lateral view of the left internal carotid artery injection after aneurysm coil embolization. Showing the aneurysm was completely occluded (arrows).
Despite the advantages of the GDC system, wide-necked and large aneurysms remained difficult to treat. New techniques were performed to keep the detached coils within the aneurysmal sac. Moret et al. was the pioneer of the “remodeling technique” using a balloon as a mechanical barrier to keep coils within the aneurysmal sac during its delivery (Figure 2) [22]. Moret et al. [22] published their results with use of the “balloon-remodeling technique” for the treatment of 56 cases of previously untreatable wide-necked cerebral aneurysms in 1997 with low morbidity and mortality rates.
A 37-year-old man presented with subarachnoid hemorrhage. A, frontal view of the left vertebral artery injection showing a basilar tip aneurysm (arrow). B, roadmap of the left vertebral artery injection showing the first orbit 3-D 7 mm × 13 cm coil and a 4 mm × 20 mm Hyperglide balloon catheter (Medtronic ev3, USA) (arrow). C, the left vertebral artery injection showing the aneurysm was completely occluded after subsequent coils (Microplex 6 mm × 15 cm,6 mm × 10 cm, 5 mm × 10 cm, orbit 5 mm × 15 cm, HydroCiol 3 mm × 7 cm, 2 mm × 4 cm, helix standard fiber 2 mm × 4 cm).
An alternative approach to introduce a stent to maintain a patent lumen and provid a buttress to prevent coil herniation. After some early attempts of Wakhloo et al. [23] and Geremia et al. [24], this stent-assisting technique has been further explored and expanded by an increasing number of neurosurgeons [25]. Neurosurgeons and neurointerventional radiologists at several centers began to borrow stents from the interventional cardiology at the same time and publish their case reports about treating wide-necked aneurysms with a combination of stents and coils (Figure 3). These stents were designed specifically for cardiac usage and were stiffer and more difficult to use in the tortuous neurovascular anatomy.
A vertebral artery aneurysm treated with coronary artery stent and coiling in 1990s. A, 3-D angiogram of the right vertebral artery injection showing a dissecting aneurysm of vertebral artery-inferior posterior cerebellar artery (arrow). B, angiogram of the right vertebral artery injection showing a microwire was passed through the aneurysm for navigation of a BX coronary artery stent (Medtronic, USA). C, angiogram of the right vertebral artery injection showing the aneurysm was coiled with assistance of a 3.0 mm × 18 mm BX coronary artery stent (Medtronic, USA)(arrow). D, angiogram of the right vertebral artery injection showing the aneurysm was completely occluded (arrow).
With the introduction of neurovascular stents, specifically designed for intracranial use (Neuroform stent, Boston Scientific Target), borrowing cardiac stents soon became unnecessary [26]. Although the use of stents required a regimen of antiplatelet medication adding to the risk of the procedure itself as well as risks associated with the recovery period, these risks were quickly accommodated by interventionalists and improved overall occlusion rates as decreased the aneurysm recurrence (Figure 4) [27].
A 62-year-old woman presented with an incidental paraclinoid aneurysm of the internal carotid artery. A, 3-D reconstruction of the right internal carotid artery injection showing the 6 mm × 6 mm paraclinoid aneurysm of the internal carotid artery (arrow), which was treated with 4 mm × 30 mm Neuroform stent and coils. B, the unsubtracted image showing the Neuroform stent (black arrow) and the first 3-D coil (white arrow). C, oblique view of the right internal carotid artery injection after treatment showing the aneurysm was occluded completely (arrow).
Bioactive coils were explored by some manufacturers to promote thrombus formation and endothelialization. However, these modified coils were shown to have limited efficacy and no clear advantage over pure platinum coils when used alone [28]. The use of polymers was also explored by some authors to treat cerebral aneurysms, but the increased risk and patient morbidity derailed this strategy and prevented its widespread acceptance [29].
It was firstly confirmed by the International Subarachnoid Aneurysm Trial (ISAT) that more and more aneurysm patients were being treated worldwide with the introduction of detachable coils and various intracranial stents [30]. An overall decreased risk of death and morbidity in the endovascular group treated with detachable coils when compared to those treated with open surgery were found [30]. The worldwide treatment of both ruptured and unruptured aneurysms by detachable coils quickly has surpassed open surgery as the primary treatment modality. Covered stents already are used successfully in the treatment of cerebral aneurysms, iatrogenic pseudoaneurysms, and carotid-cavernous fistulas (CCF) [31, 32].
The introduction of flow diverter had a dramatic effect on the management of cerebral aneurysms. The concept of flow diverter was initially explored by Wakhloo in 2014, but Nelson and colleagues developed the first commercially available flow diverter [33]. Flow diverter introduced the concept of a more physiological therapy for aneurysms, focusing on treating the parent vessel without the requirement of entering the aneurysm dome [34]. With data that indicated complete occlusion rates that approached 90% at follow-up in systematic review, treatment recommendations for selected intracranial aneurysms was made [35]. Even giant aneurysms, in the past managed with balloon test occlusion and vessel sacrifice or complex bypasses, can now be managed with flow diverter with great efficacy and considerably lower morbidity [36, 37] (Figure 5). Moreover, the indications for flow diversion have been extended to smaller aneurysms that are usually treated with coiling, stent-coiling, or clipping [38]. Cerebral aneurysms, both ruptured and unruptured, can be treated with flow diverters [3]. Research into surface modification of devices to mitigate or negate the need for anticoagulation or antiplatelet medications is actively being pursued [3]. However, careful must be always taken in evaluating benefits and risks. In a recent paper by Gory et al., a total of 21.8% of interventions experienced at least 1 morbidity during the 12-month follow-up [39]. Among the serious events, 5.9% were considered permanent and related to the procedure. Moreover sixty-six (16%) of the 412 interventions had a complication, and 10 of them caused a neurological deficit [40].
A 58-year-old woman presented with visual deficit caused by a giant supraclinoid aneurysm of the internal carotid artery, which was treated by flow diverter. a, right internal carotid artery (ICA) angiogram (anteroposterior) demonstrating a giant aneurysm of the supraclinoid internal carotid artery. b, right ICA angiogram (anteroposterior) after pipeline flex flow diverter and coil embolization showing nearly complete occlusion of the aneurysm. c, right ICA angiogram (anteroposterior) at 1-year follow-up showing complete occlusion of the aneurysm.
Carotid-cavernous fistulas (CCF) are usually treated endovascularly by interventional neuroradiologists or neurosurgeons. The endovascular treatment strategies of CCF has dramatically changed with the evolution of endovascular neurosurgery. A series of treatment modalities have been traditionally attempted, including the carotid artery ligation or trapping, muscle embolization via cervical exposure of the carotid artery, and balloon embolization with or without carotid artery sacrifice [41]. Brooks reported successful closure of a CCF with a muscle embolus introduced surgically into the carotid artery in 1930 [42]. Serbinenko revolutionized the therapy for CCF in the 1970s by introducing detachable intravascular balloons [43]. Though these lesions were often treated with balloon test occlusion and vessel sacrifice in the early stage (Figure 6), CCFs are now almost exclusively treated by an endovascular strategy with preservation of the internal carotid artery. Balloon embolization of CCF through a transfemoral access with preservation of the distal ICA has reduced the morbidity related to the treatment. This method is the primary therapy in most cases of CCF [44]. In addition to the balloon embolization, several other modalities have been deemed useful in the treatment of CCF in recent years [45], such as detachable coils, covered stents, ethylene vinyl alcohol copolymer (EVOH) and flow diverter placement [45, 46] (Figure 7). Transvenous embolization via the inferior petrosal sinus, superior ophthalmic vein and EVOH embolization modalities have been used with success [46]. Spontaneous resolution and/or thrombosis of CCF has also been reported, especially in indirect CCF, but it is really rare. For less directly accessible lesions, superior ophthalmic vein access or direct puncture of the cavernous sinus and catheterization as an alternative approach to the cavernous sinus as well as transvenous routes can all be used [47].
A 50-year-old male patient of carotid-cavernous fistula was treated with detachable balloon in 1985. A, right internal carotid artery (ICA) angiogram (anteroposterior) and lateral (B) showing a direct carotid cavernous fistula and early opacification of right cavernous sinus with no antegrade flow beyond the cavernous sinus. C, left vertebral artery angiogram (lateral) showing opacification of right cavernous sinus. Because the patient had no neurological symptoms with no contribution from the right ICA, no balloon test occlusion was performed before sacrifice of the ICA. D, fluoroscopic view of the head (anteroposterior) and lateral (E) showing the placement of one detachable balloon in the ICA of fistula site. F, left vertebral artery angiogram confirming complete occlusion of the fistula with reconstitution of the distal ICA blood flow from the vertebral artery. No retrograde filling of the fistula is seen.
A 33-year-old male patient of traumatic carotid-cavernous fistula was treated with preservation of the internal carotid artery. A, lateral view of the right external carotid artery showed an arteriovenous shunt between the anterior meningeal branch of the middle meningeal artery and the right superior ophthalmic vein (arrowhead). B, lateral view of the right carotid artery showed the high-flow carotid-cavernous fistula drained by the right superior ophthalmic vein and the right inferior petrosal sinus (arrow). C lateral view of unsubtracted image showed the inflated scepter C balloon (4 mm × 20 mm, Microvention, USA) in the right internal carotid artery (arrow) and the coils. Note the external carotid artery fistula was occluded with coils (arrowhead). D, lateral view of the left carotid artery angiogram after balloon-assisted onyx injection showed complete obliteration of the both fistulas and the intact left internal carotid artery.
Exponential advances in catheter technology and refinements of embolic agents have greatly facilitated the rapid evolution of AVM embolization. In 1960’s, Luessenhop and Spence performed the first embolization procedure on a cerebral AVM by surgically introducing silastic spheres made of methyl methacrylate into the ICA [48]. At that time, silk sutures, porcelain beads, Gelfoam, steel balls, Teflon-coated spheres, and polyvinyl alcohol were explored for AVM embolization with varying degrees of efficacy [49]. The use of these particle emboli was associated with a high complication rate secondary to inadvertent embolization of a normal cerebral vessel because the technologies and devices were not for direct nidus embolization.
Kerber developed the first calibrated-leak balloon, which allowed the direct embolization of an AVM nidus with the use of a rapidly solidifying polymer in 1976 [50]. This new system in combination with advances in imaging techniques and liquid embolic materials ushered in the modern era of AVM embolization. However, the use of calibrated-leak balloon catheters was associated with a high risk of arterial rupture. The introduction of liquid embolic agents, initially in the form of n-BCA, an acrylic adhesive [51], and advances in microcatheter and microwire design facilitated the distal catheterization of vascular malformations so that embolization of AVMs has evolved immensely over the last few decades to become a highly valuable therapy, and even an alternative in some cases, to surgery or stereotactic radiosurgery [52, 53]. The introduction of polymer non-adhesives (EVOH) allowed deep and extensive nidal penetration without the need for repeat distal catheterization and could be performed over long embolization procedure time periods [52].
Cerebral angiography detailed morphology study of the arteriovenous malformation involves evaluating the hemodynamic and anatomic characteristics of the lesion, including examination of the feeding arteries, the nidus itself, venous drainage of the lesion, coexisting aneurysms and arteriovenous fistulas [54]. A variety of strategies emerged, including multiple pedicle embolizations of the nidus. This was used by Lv et al. to “embolize AVM for cure” with low morbidity and mortality [55] (Figures 8 and 9). Endovascular surgery has specific indications in the treatment of AVMs, such as ruptured AVM, AVM of small size or deep locations, AVM with coexisting aneurysm and high flow fistula. Theoretically discussed and considered in the past, transvenous embolization is now being extensively explored, but its initial reports documented higher procedure-related hemorrhage rates [56].
A 40-year-old male patient presented brain stem hemorrhage caused by a small arteriovenous malformation. Anteroposterior angiography views (A-D) and lateral angiography views (E-H) . Showing a posterior pons arteriovenous malformation (AVM) fed by the left perforating artery of the basilar trunk (arrows in panels of a, E). Superselective angiogram demonstrating the ectasia of draining vein (arrows in panels of B, F). Angiograms after superselective onyx embolization showing complete disappearance of the AVM (arrows in panels of C, G). Postoperative images demonstrating onyx cast (arrows in panels of D, H).
A 5-year-old boy presented with intracranial hemorrhage caused by a small arteriovenous malformation. a, anteroposterior angiography of the left vertebral artery showing a small arteriovenous malformation (AVM) fed by the left posterior cerebral artery. b, anteroposterior angiography of the left vertebral artery after superselective onyx embolization showing complete disappearance of the AVM.
Vein of Galen malformations are extremely rare lesions occurring in one out of a million live births [57]. They are treated almost exclusively with endovascular surgery. The lesions are amenable to endovascular embolization in the newborn presenting with heart failure or diagnosed in utero. An initial treatment stage is necessary and followed by additional staged embolization when the child is large enough to undergo more extensive embolization. Embolization strategies include closing the individual arteriovenous shunts or the initial venous side of the malformation.
Dural arteriovenous fistulas (DAVFs) represent a specific vascular lesion that incorporates the dural suppliers of the cranium or spine, contributing direct arterial shunting toward venous structures. Venous hypertension can lead to cortical dysfunction, venous hypertension, and hemorrhage when DAVF occurs intracranially [58]. However, dilation of venous structures along the spinal cord can lead to myelopathy from tissue engorgement and venous hypertension as well as physical compression when DAVF occurs in the spine. The complex anatomy and points of arteriovenous shunting make their management complex. EVOH-based embolic materials have been proved to be useful in the endovascular obliteration of these lesions [59] (Figure 10). When these materials are combined with balloon catheters, a deep penetration to the point of arteriovenous shunts can be achieved [60]. Transvenous approaches are also routinely employed and highly successful when arterial access to the fistula point cannot be achieved (Figure 11) [61].
A dural fistula fed by pial branches of the frontobasal artery was cured with onyx emblization. A, later internal carotid artery (ICA) angiogram showing a dural fistula fed by pial branches of the frontobasal artery and early opacification of frontal polar vein (arrowhead). Note the pseudoaneurysm on the feeding artery (arrow). B, superselective angiography by the microcatheter showing the pseudoaneurysm (arrow) and the fistula point (arrowhead). C, lateral internal carotid artery angiogram confirming complete occlusion of the aneurysm and the dural fistula.
A cavernous sinus dural fistula was cured with tranvenous access. a, lateral view of the left carotid artery showed the left indirect carotid-cavernous fistula drained by the left superior ophthalmic vein and the left inferior petrosal sinus was invisible. b, under roadmap image, the left inferior petrosal sinus was catheterized. c, under roadmap image, coils were delivered through the microcatheter in the left cavernous sinus through the left inferior petrosal sinus. d, frontal view of the left carotid artery showed complete obliteration of the carotid-cavernous fistula and the intact left internal carotid artery.
Vascular lesions of the spine and spinal cord can be categorized into intramedullary and extramedullary lesions [62]. These lesions are rare and comprise a heterogeneous spectrum of diseases. They were first reported in the 19th century with the autopsy-based classification of Virchow and Picard [63]. However, it was in the 1970s, with the advent of selective spinal angiography, that they became better understood [64]. Their identification and localization have progressed significantly with the development of imaging techniques [65]. Several classification systems have been proposed over time to describe vascular lesions of the spine [66]. The well known classification proposed by Anson and Spetzler in 1992 is type I, dural arteriovenous fistula (AVF); type II, glomus intramedullary AVM (Figure 12); type III, juvenile malformations (Figure 13); and type IV, perimedullary AVF [67]. With recent advances in embolic materials and devices in endovascular treatment, transarterial embolization plays an increasingly important role in the treatment of spinal AVMs. Complete angiographical obliteration of the nidus is not necessarily the goal of embolization, but rather, the treatment aims to reduce shunting volume and stabilize the symptoms [68].
A 49-year-old man presented weakness of two legs. a, left T-8 intercostal pedicle injection reveals the anterior spinal artery from above and below along the axis to supply the perimedullary fistula. b, under roadmap image a microcatheter was accessed to the fistulous point. c, control angiogram after onyx embolization reveals obliteration of the fistula with preservation of the anterior spinal axis.
A 37-year-old woman presented with SAH caused by a juvenile type spinal AVM. A, the right subclavian angiogram. B, aortic artery angiogram. Reveal supply to the AVM in the vertebra and the soft tissue around with feeders arising from right subclavian and intercostal arteries. After treatment, aortic artery angiogram (C) and the right subclavian angiogram (D), partial embolization with coils to reduce the venous congestion was performed through the left radiculomedullary artery (arrow).
Transvenous approaches have become quite useful in the treatment of dural sinus stenosis, often associated with a diverticulum of the sinus [69, 70]. With venous sinus stenting, promising results have been achieved in treating intracranial hypertension and venous stenosis–related pulsatile tinnitus. King et al. (1995) were the first to describe the venous stenosis through venography and manometry in intracranial hypertension but Higgins et al. became the first to stent the venous sinus in 2002 on a female with medically refractory intracranial hypertension [71]. Venography revealed bilateral transverse sinus stenosis and after stenting of one side, there was a significant improvement in trans-stenosis gradient and symptomatic control. Only in severe cases of cerebral sinus thrombosis that do not improve or deteriorate despite anticoagulant therapy, endovascular treatment would be considered.
The development of angioplasty and stenting was influenced by the early work of endoluminal dilation of peripheral atherosclerotic disease. Until 1980, cerebral transluminal balloon catheter dilatation was reported to treat two patients with frequent, severe, progressive symptoms despite anticoagulation and high-grade intracranial atherosclerotic stenosis (ICAS) of the basilar artery [72]. The excellent angiographic and short-term clinical in these two patients and the prevalence of ICAS had favored further research of this approach. Unfortunately, frequent complications were reported in the next case series, including arterial dissection with consecutive thrombosis or rupture, residual stenosis due to sequestration or vessel recoiling and acute or subacute vascular occlusion due to the formation of a wall hematoma [72]. In order to reduce periprocedural complications of angioplasty alone, the rigid coronary Palmaz-Schatz stent was introduced for the first time in 1996 in a patient with recurrent TIA caused by severe ICAS of the right carotid artery despite antiplatelet and anticoagulant therapy [73]. The stent deployment led to a better angiographic result compared to angioplasty alone.
The first self-expanding, nitinol-composed Wingspan stent (Boston Scientific, Fremont, CA, USA) was approved by the US Food and Drug Administration (FDA) for patients with 50% or higher ICAS, symptomatic despite medical therapy in 2005 [74]. These patients might benefit from endovascular therapy since their plaques might not stabilize with best medical therapy alone and cause recurrent artery-to-artery embolic strokes. The development of new angioplasty balloon catheters and flexible stents has redefined the management strategy for symptomatic intracranial stenosis. A growing number of studies have reported a low complication profile and satisfactory rates of angiographic patency at follow-up [75].
Angioplasty with stenting of carotid stenosis does not require general anesthesia and requires only a few seconds of carotid artery occlusion. Endoluminal revascularization has been proposed for the treatment of carotid stenosis in high-risk patients such as those with contralateral carotid occlusion [76], postendarterectomy stenosis [77], and/or severe coronary and other systemic diseases [78]. In a meta-analysis by Texakalidis et al. in 2018 including 13 comparative studies, compared to carotid artery endarterectomy carotid artery stenting had a lower incidence of cranial nerve injury, the two treatment approaches were similarly safe in terms of periprocedural stroke, myocardial infarction and death rates and carotid artery stent was associated with decreased restenosis risk (defined as either 60% or 70% stenosis) in the follow-up; however, without a significant difference in the risk of target lesion revascularization [79].
At present, we suggest that endovascular therapy may be considered as a treatment option for patients with recurrent ischaemic stroke despite best medical therapy and especially if pathophysiologically attributed to hypoperfusion with/without bad collaterals [80] (Figures 14 and 15). In future, better experience of interventionalists and improved features of stents deployed are also expected to boost outcome of endovascular therapy in ICAS.
A 79-year-old man presented with dizziness. a, CT perfusion image showing the low perfusion of the right cerebral hemisphere. b, right carotid artery angiogram showing the severe stenosis of the internal carotid artery. c, right carotid artery angiogram showing the stenosis was treated with angioplasty and stenting.
A 64-year-old man presented with transient ischemic attack. A, left internal carotid artery (ICA) angiogram (anteroposterior) showing a severe stenosis of the M1 segment of the middle cerebral artery (arrow). B, under roadmap image showing a XT27 catheter (Stryker, USA) was advanced to the distal middle cerebral artery after balloon angioplasty (arrow). C, left internal carotid artery angiogram confirming the reconstitution of the middle cerebral artery (arrow). D, fluoroscopic view of the head showing the placement of a Neuroform EZ stent (arrow).
Before 1995, stroke therapy consisted exclusively of supportive management and efforts to prevent recurrence [81]. In 1995, the National Institute of Neurological Disorders and Stroke reported that early intravenous thrombolysis using tissue plasminogen activator was more effective than placebo [81]. The use of Alteplase for acute ischemic strokes was approved by The Food and Drug Administration (FDA) in 1996 [82]. Thrombolytic therapy was initially offered to eligible patients up to 4.5 hours from symptom onset. IV Alteplase was determined not to be as effective a therapy for patients with large vessel occlusions although it was proved to be an effective treatment. The concept of intraarterial pharmacologic thrombolysis was further expanded and solidified in 1999 with the completion of the Prolyse in Acute Cerebral Thromboembolism study [83]. Intravenous thrombolysis and intra-arterial thrombolysis received widespread acceptance and truly revolutionized the management of acute stroke.
Mechanical thrombectomy has transformed our field, leading to an explosion in intervention for large vessel occlusion. Endovascular thrombectomy became the standard of care of the large vessel occlusion as a result of 5 randomized control trials (RCTs) in 2015 [84]. These 5 trials, MR CLEAN, ESCAPE, SWIFT PRIME, EXTEND-IA, and REVASCAT, extended the field of endovascular neurosurgery. These RCTs proved that patients who had improved functional outcome scores at 90 days after thrombectomy with successful recanalization [84]. This was compared with patients who received IV thrombolytic therapy alone or were unable to receive IV thrombolytic therapy. Improved functional outcomes were also demonstrated by two additional landmark trials, DAWN and DEFUSE [85]. Endovascular thrombectomy for large vessel occlusion beyond the window of 3 to 4.5 hours has provided new treatment options and supportive data demonstrating improved functional outcome scores. Patients meeting eligibility criteria for mechanical thrombectomy had no additional risks in the extended window of 16 to 24 hours. The second generation of devices, including stent retrievers and aspiration catheters, has demonstrated a significantly improved safety, revascularization, and patient outcome. Therefore, the criteria for mechanical thrombectomy, including time limit and physiological preconditions should be re-examined. Not only were time limits extended, but also discussions on the ability to preserve additional tissue at risk, even in the setting of an established stroke, have made stroke intervention a significant part of the foundation of endovascular practice. “Stroke center,” “mechanical thrombectomy ready,” and “comprehensive stroke center” designations have all been applied.
Direct vascular access to brain tumors both benign and malignant has been exploited since the 1970s [86]. Preoperative embolization can facilitate resection and decrease intraoperative blood loss in the treatment of meningiomas. As with all endovascular strategies, keen understanding of the vascular anatomy is required to prevent unnecessary risk. Over the past few years, intra-arterial chemotherapy for more malignant tumors, such as gliomas, has had a resurgence. In future, the new neuro-pharmaceutical/chemotherapy/immunotherapy drugs, which could be delivered intra-arterially, will be developed [87].
Chronic subdural hematoma may be one of the most common neurological conditions requiring treatment in the future because of an aging population and the regular use of antiplatelet and anticoagulation medications. Chronic subdural hematoma has been managed with craniotomy and/or drainage both operatively and at the bedside. Embolization of the middle meningeal artery supply to the dura and subdural membranes as a renewed treatment of chronic subdural hematoma has been originally described by Japanese neurosurgeons almost 20 years ago [88]. The technique can be used as a rescue technique in patients who have undergone previous craniotomy as well as a primary treatment in patients with significant comorbidities. Particle embolization and liquid embolic agents have demonstrated excellent results in recent publications [89]. These encouraging results suggested the need for a large prospective randomized trial to investigate the true role of middle meningeal artery embolization as a stand-alone treatment for chronic subdural hematoma.
The expansion of endovascular techniques has led to a need to train neurosurgical residents in the application of endovascular therapies, just as they would learn newer techniques in spine or tumor neurosurgery. The Neurosurgery Residency Review Committee and American Board of Neurological Surgeons (ABNS) have correctly made regular adjustments in the area of endovascular case minimums for neurosurgery residents not only to include cerebral angiography, but now also to include more complex intervention experience, such as aneurysm coiling [90].
The future of endovascular neurosurgery would be inseparable from the future of neurosurgery. Residents interested in the vascular disease processes that affect the central nervous system must understand the application of neuroendovascular techniques and if they want to treat these pathologies must be adequately trained in their implementation. In Japan and China, most endovascular surgery is carried out by neurosurgeons who carry out cerebral and spinal cord angiography and interpret the images obtained. This experience not only increases their knowledge of vascular anatomy, but also improves their surgical acumen.
We do not believe that the vascular neurosurgeon of the future must carry out both surgical and endovascular treatments. Precisely in order to reach the required excellence, there must be two figures, a vascular neurosurgeon who deals with the traditional surgical management knows the strengths and weaknesses of endovascular treatment, and an endovascular neurosurgeon knows the strengths and weaknesses of surgical treatment. To remain at the forefront of evaluating, caring for, and treating patients with cerebrovascular disease, vascular neurosurgery must evolve toward a specialty, mastering the knife as well as the catheter. We think it is time for neurosurgeons to start training residents in endovascular neurosurgery in the same way we train neurosurgeons in every other neurosurgical discipline.
Endovascular neurosurgery provides management of neurovascular conditions encountered in clinical practice, such as aneurysms (with or without subarachnoid hemorrhage), AVMs, dural AVFs, and carotid disease. The success of endovascular thrombectomy for large vessel occlusion is now irrefutable, making it an accepted standard of care. Endovascular treatment of cerebral aneurysms is no longer limited to primary coiling but now includes options such as stent or balloon assistance, flow diversion, intrasaccular and bifurcation-specific devices. Balloons, liquid embolic agents, and distal access catheters have updated the treatment of arteriovenous malformations and fistulae. The evolution of the neuroendovascular field has resulted in the development of program requirements for residency or fellowship education in endovascular neurosurgery.
Buildings are a central part of the transition to a low-carbon society, with less environmental impact and energy efficiency, as they are responsible for consuming 32% of all energy generated in the world. This is equivalent to 19% of greenhouse gas emissions [1], in addition to consuming 50% of all raw material extracted by human action [2]. Initiatives such as the Sustainable Development Goals (SDGs) of the United Nations (UN) [3], the New Urban Agenda [4], and the Paris Agreement [5] point to the need for the reduction of energy consumption in buildings, generation of clean energy and more sustainable cities and communities to mitigate climate change and environmental crisis.
Buildings with zero energy balance, also known as the term Zero-Energy Buildings (ZEB), have an equivalent demand and generation of renewable energy within a year [6]. However, the equivalence between consumption and generation is not enough, because it is essential to achieve a demand reduction. For this, conservation and energy efficiency strategies are needed from the preliminary design [7], since they also provide thermal and lighting comfort, in addition to minimizing the environmental impact of the building in its operating phase. This includes integration with passive strategies, particularly in terms of natural lighting and ventilation, and high-performance enclosures. According to [8], new buildings have the potential to reduce energy demand by 50% if compared to the traditional ones, only by adopting commercially available energy conservation and efficiency strategies.
Thereby, the idea of NZEB emerged in the 1990s and afterward became part of energy policies in several countries. In Europe, the EU Directive on Energy Performance of Buildings [9] set goals to turn all buildings nearly zero-energy by 2020. The US Department of Energy’s Building Technologies Program established similar objectives: achieving zero energy homes by 2020 and zero-energy commercial buildings by 2025 [10]. In addition, this building category is aligned with the 7 and the 11 UN Goals of Sustainable Development. According to O´Brien et al. [7], the NZEBs are characterized by a rigorous design and operation of the building as an integrated energy system, with a good indoor environment suited to its role. Some key points are mentioned, such as: an integrated approach to energy efficiency, passive and active design and building operation; optimization of solar collection, requiring building design and roofs used for conversion to electrical energy, useful heat, and natural lighting. Table 1 shows the difference in project design and operation between conventional buildings and NZEB buildings.
Design and operation of building systems | Conventional buildings | NZEB buildings |
---|---|---|
Building envelope’s materials | Passive, not designed as an energy system | Optimized in passive design integrated with active solar systems |
Heating and ventilation air conditioning (HVAC) | Large systems, oversized | Optimized small HVAC systems, integrated with solar systems, combining heating and power, seasonal storage, and district energy |
Solar systems / renewable energy technologies (RET) | No systematic integration – an afterthought | Fully integrated: natural lighting, solar thermal, photovoltaic, hybrid, geothermal, biofuels integrated with smart microgrids |
Building automation systems | Building automation system not effectively used | Building Controls for optimizing performance |
Design and operation | Design and operation are considered separately | Fully integrated and optimized design and operation, considering environmental comfort |
Design and operation of NZEB buildings versus conventional buildings.
In Brazil, there is still no regulation regarding NZEBs, but specific actions have been taken to leverage the improvement of energy efficiency in buildings, through regulations and standards [11], building performance [12], and distributed energy generation [13]. However, concrete actions for the construction and monitoring of NZEB buildings are recommended to enable the dissemination of the concept. In this context, the National Program for Energy Efficiency in Buildings (Procel Edifica) carried out a Public Call in 2019 to support the construction of up to 4 (four) NZEB’s in strategic locations throughout the country [14]. The objectives of the call included: to foster knowledge, research, and development of NZEB project designs; to create a demonstration effect of NZEB buildings, enabling large-scale adoption, and, finally, to verify the technical and financial feasibility of the construction and operation of NZEB buildings. The Public Call was launched on December 2nd, 2019, and the deadline was set to February 20th, 2020. The call requested the submission of the Basic Project Design of the NZEB new construction or to undergo retrofit, bringing together “the elements that define the building, aiming at the accuracy of its basic characteristics and its desired performance in the work, with the estimated cost and execution time” [14].
The University of Brasília (UnB) has been investing in strengthening sustainability actions on its campuses; according to Taucher and Brandli [15] (2006) “the socio-environmental dimension, in this context, stands as a principle for institutional development”. Thus, the construction of a zero-energy balance building and possibly replicable typology proves to be an important step towards the dissemination and consolidation of sustainable practices at the University, with positive consequences and impacts even for the city. Therefore, to advance on sustainability purposes, UnB’s multidisciplinary team developed a project design for a laboratory and coworking space, called LabZERO|UnB, which was one of the 4 buildings included in the so-called Procel Edifica Public Call (3rd place overall).
This study presents in detail the design process experience of this NZEB building - initially, all design phases, results, barriers, and potential are addressed. Afterward, the final design and the analysis of environmental and energy performance are presented, and the challenges to the implementation of this type of practice, and the relevance of initiatives to promote the dissemination of zero-energy balance buildings, are discussed.
Note that the characteristic of this type of building involves a project that integrates passive and active systems, in addition to the specification of optimized ventilation and air conditioning systems, connecting natural light and power generation. On the other hand, design practice must shift from a traditional linear process to a collaborative approach between architects, structural engineers, mechanics, electricians, and other professionals. By definition, the Integrated Design Process (IDP) guides decision-making in various professional specialties, including the use of natural resources, energy consumption, and the achievement of environmental quality [7, 10]. Kwok and Grondzik [16] define the IDP as one that synergistically involves several disciplines, to create more efficient and responsible buildings with a lower life cycle cost. Keeler and Burke [10] conceptualize it as a synonym for sustainable design. The authors emphasize that in the case of integrated design, it is important to understand the design variables as a unified whole, involving decisions about energy consumption, natural resources, and environmental quality.
The main features of the integrated project are:
These authors mention strategies and aspects related to the design of the NZEB building, by pointing out the design issue and listing the iterative phases of design in
Iterative phases of the NZEB design process. Source: Adapted from [
Another aspect mentioned by the same authors is related to technical and research matters, in which they highlight the computational model simulation that is going to be used. The importance of research inputs to be applied during the design process is also emphasized. In order words, the development of an NZEB project requires prior knowledge and research, especially in cases of restricted deadlines. Monteiro et al. [17] state that in this type of project, computer simulation has become a mandatory step in the process, adding complexity, but favoring the improvement of the project.
Mendes and Amorim [18] report an experience of applying the concepts of Integrated Project in a graduate discipline, during which the method proposed by O’Brien et al. [7] was used with two crucial factors: well-defined project objectives shared by the entire team and the presence of a facilitator (coordinator), who sets the tone for collaboration and effective communications during the design process. There was also the creation of teams of specialists in the various themes to be addressed in the project, along with the establishment of periodic meetings with the entire group to share results and align actions. A team specialized in computer simulations acted transversally, receiving and providing inputs to the others. The experience proved to be efficient, noting that the design process reached appropriate fluidity and the project proposed in the discipline achieved appropriate technical results, with an energy consumption lower than its production, reaching the goal of becoming an energy balance building null [18]. This was defined as the basis of the method to be used in the LabZERO|UnB integrated design experience.
NZEB design, monitoring, and benchmarking experiences reported by Garde and Donn [19] present 30 residential and non-residential case studies, grouped into cold, moderate, and hot climates. Three of these buildings can be compared to the conditions of LabZERO|UnB due to the similarities in use and climatic conditions. In these cases, energy demands ranging from 16 to 66 kWh/m2.year are identified, with energy production ranging from 44 to 115 kWh/m2.year. In one case, energy production is 7 times greater than the demand. Table 2 presents energy demand and production data.
Building and location | Typology | Energy demand Kwh/m2.year | Energy production KWH/m2.year |
---|---|---|---|
ENERPOS- La Réunion (21°S, 55°L) | Offices and classrooms | 16 | 115 |
Illedu Centre - La Réunion (21°S, 55°L) | Offices | 66 | 92 |
ZEB@BCA Singapure (1°20 N, 103°L) | Offices and classrooms | 40 | 44 |
Energy demand and production in 3 NZEBs. Source: [19].
The definition of the team is an important part of the project conception, as their profile must be able to provide the full development of the products, within the stipulated time limit. It also established the involvement of administrative bodies linked to the project and construction management of the University, as it is a proposal for the construction of a building on the campus, involving bureaucratic issues and administrative actions. Furthermore, the expertise of technicians linked to the university’s construction sector is essential for the development of the project in accordance with internal rules. More than that, the technicians carry out theoretical work, resulting from research in the area, and act at the same time in training regarding the bioclimatic project, energy efficiency, etc. This partnership between research and project/action is seen as crucial to leverage more effective actions towards greater efficiency in construction on the University campuses as a whole. In conclusion, there is a need for a mixed team that combines a variety of researchers and professionals from different specialties and modes of activity, able to apply the concepts of previous research and work developed by teams of professors and researchers and implement them in the project proposal in an agile way.
Once defining the team, meetings there will be meetings to take preliminary decisions regarding the nature and size of the project, considering budget and deadline limitations. Other decisions taken preliminarily are related to the type of the building (residential, commercial), function, and location on the University campus. According to the methodology proposed by O’Brien et al. [7], the team facilitator should have the task of delimiting attributions for each of the participants and defining the delivery deadlines, depending on the necessary feedback from each phase of the project. The technical drawings required by the contest announcement were: topographic survey; location and situation plan; architectural project; hydraulic installations design; electrical installations; air conditioning; lighting; and distributed generation project from renewable sources. Besides the Basic Project, there were other mandatory items to be delivered, such as Requirements of Use, Descriptive Memorandum, Budget, Schedule, Energy consumption, and distributed generation evaluation report and Preliminary Visitation Plan. It is noteworthy that the building must be open to visitation and monitored within 24months of its construction, to allow the measurement of its real performance.
The preliminary design of the building was done with a defined area due to budget constraints. Initial decisions and common goals must be developed with the participation of all.
According to the premises established in the methodology, the participants chosen were members of the research groups and laboratories at the University of Brasilia and those working closely with the NZEB theme and disciplines related, such as the postgraduate course Integrated Environmental Project, created in 2017 and taught in the Postgraduate Program in Architecture and Urbanism at the University of Brasília. This core team is coordinated by professors of the Architecture and Urban Planning -(Laboratory of Environmental Control and Energy Efficiency - LACAM), alongside with professors of Mechanical Engineering (Air-Conditioning Laboratory - LaAr) and Electrical (LARA - Automation and Laboratory) Robotics), partners since 2014 in the development of disciplines, undergraduate and graduate final works on the subject [20, 21, 22]. Professors of Geology and Environmental Science were also involved to develop themes related to the project’s sustainability (water, waste, etc.).
The team was defined with 24 members, as follows: 2 architects specialized in energy efficiency, process coordinators; 2 specialists in a computer simulation, who transit between all other teams; 1 architect specialized in energy efficiency; 3 architects and 1 civil engineer without training in energy efficiency; 1 mechanical engineer specialized in energy efficiency (responsible for HVAC); 2 specialists in electrical engineers (1 responsible for photovoltaic energy generation, the other for controls and automation); 2 engineers specialized in budgeting; 2 engineers specialized in the use of water and waste; and 4 undergraduate students in Architecture. There was also the collaboration of a company residing in the University’s Science and Technology Park, a specialist in energy efficiency labeling in buildings, and a junior company active in the field of civil construction, composed of graduate students in Civil Engineering and experts in the preparation of budgets for construction.
It was initially considered to use an NZEB residential building project, the result of an existing master’s dissertation [22], but impasses regarding the use and occupation of a residential establishment on a university campus, in particular related to security and monitoring, eliminated this proposal. The second hypothesis dealt with the use of a retrofit project, carried out previously [15], in an existing building on the campus. In this case, the limiting factor was the cost, since it is a large building, the budget would exceed the amount offered by the Public Call. The Birck project [20], previously mentioned, due to its large area would also present a high cost. It was therefore decided to carry out a new building project on the campus.
After the initial discussions, the project’s objective was defined as follows: to build an open and collaborative laboratory, which would allow for some flexibility in the plant without specific programmatic needs.
The city of Brasilia, where LabZERO|UnB will be constructed, is located in the central area of Brazil (latitude 15°46’South and longitude 47°55´ West) (Figure 2) and it has a climate that is classified as high-altitude tropical climate or Tropical savanna climate (
Koppen-Geiger classification map for South America. Source: Beck, H.E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., berg, a.; wood, E. F.; present and future Köppen-Geiger climate classification maps at 1-km resolution nature scientific data. DOI:
Initial design guidelines included local climate recommendations in bioclimatic zone 4 as per ABNT 15220 [23], which indicates shading, controlled natural ventilation, light and insulated roof, limited window-wall ratio, and light colors. Additionally, a floor plan with reduced depth was defined to favor natural lighting and it was installed with the largest façades facing North and South, to reduce the incidence of sunlight and optimize the protection of the façades. The roof houses the photovoltaic panels, as well as the North façade, which receives photovoltaic brises that also work as solar protection. The first design sketches (Figure 3) were developed based on these guidelines, but they gradually evolved as a result of discussions of the various aspects with the entire team. It is worth noting that the design process sought to harmonize esthetics with the local context of the university campus.
Sketches with the first preliminary design risk, later revised (plan, volume, and section). Source: Authors.
Computer simulations are carried out after the definition of the preliminary design to validate the first decisions regarding the implementation and orientation, the form of building, glazed area, solar protection systems, solar exposure for solar and photovoltaic panels. Some design variations and sensitive variables that feedback into the design process are tested in an integrated design action, in which team members participate. This process takes several weeks until an ideal energy solution is obtained.
To assess the building’s energy performance, the Energyplus software was used through the DesignBuilder graphical interface for a period of a typical year. The results are presented by the energy consumption in kWh/m2.year. The same software is used to perform the passive potential performance of the building’s coworking area. In this case, the results are checked by the percentage of hours occupied in comfort using the adaptive comfort model of ASHRAE-55 for both 80% acceptability and 90%. As for the evaluation of the luminous performance of the coworking area, the Radiance program is used, through the Rhinoceros 3D program and its visual programming language Grasshopper and the add-on HoneyBee. The Daylight Autonomy (DA) is evaluated at 300 lux, and the Useful Daylight Illuminance (UDI) above 2000 lux.
The Basic Project, which is the level that the NZEB building proposal should be delivered for the PROCEL EDIFICA 2019 call notice [14], was defined after some alternatives were tested by simulation, in particular regarding sun protection, types of glass (light transmission and solar factor) and building materials (roofing and walls). In this phase, automation, and control strategies (HVAC and lighting), location of photovoltaic panels, such as Renewable Energy Technology (RET), lighting design, and other sustainability strategies, such as rational use of water and waste treatment, were also defined by teams of engineers and experts. The team participated in an integrated way. The group responsible for the simulations brought about results, which were evaluated under different aspects (energy, esthetic, functional, cost) before taking the final decision on the project.
Due to the first thermo-energetic simulations and daylighting, the preliminary design of the building was established.
After another round of simulations, the Basic Project was defined, bringing details of the preliminary project, such as envelope materials with thermal transmittance and absorptance suitable for the bioclimatic context (external walls, fiber cement panels, rock wool insulation, and plasterboard, U = 0.89 W/m2.K; steel deck slab coverage, metallic tile, and insulation, U = 0.57 W/m2.K); artificial lighting system with efficient lamps, luminaires, and task lighting; and automation for HVAC and artificial lighting.
After the definitions of the Basic Project, the feedback from the initial simulations, and the tests of several hypotheses, the final simulations of energy consumption involved the same software mentioned above. In addition to these, the RELUX software was used for simulations of the lighting project, the SAM software of the National Renewable Energy Laboratory (NREL) for dimensioning and calculation of two independent photovoltaic systems: on-grid and off-grid. Finally, energy efficiency labeling calculations, primary energy consumption, and budgets for final solutions, required by the notice, were performed. Regarding the budgets, a junior civil engineering company was counted on, which made the quotations of 21 items, plus the percentage of BDI, according to the model of the Public Call [14].
The simulations and final calculations prove that the building achieves an average annual consumption of electrical energy of 34.29 kWh/m2. year (7099.18 kWh/year), which corresponds to a primary energy consumption value of 54.88 kWh/m2.year (11,358.68 kWh/year), that is significantly lower compared to the average consumption of electricity in office buildings in Brasília, which is around 130 kWh/m2.year [24]. As for the distributed generation of electricity in the photovoltaic system installed on the roof and side area, the value obtained is 58.29 kWh/m2.year. The results are consistent with international experiences in similar climates, presented above (Table 2). With these data, the achievement of the goal of building NZEB, or energy balance close to zero or nil, is proven.
The building’s reduced energy consumption is achieved through architectural and technological strategies (passive and active). In addition to aspects of energy efficiency and comfort, the building proposes strategies for the rational use of water and waste management. Sustainability aspects are also highlighted, such as the steel structure and the sealings in prefabricated panels, allowing for quick and clean construction, with less waste generation and possible replicability of the typology.
The building obtained a level A energy efficiency label (the higher efficiency level, according to Brazilian National standards) as expected due to the inclusion of bioclimatic and energy efficiency strategies since its conception. In isolation, the envelope obtained EqNum = 5, the lighting obtained EqNum DPI = 5, and the air conditioning EqNumVent = 5, related to the Coefficient of Performance (COP) of the machines, with partial level A labels being obtained individually. As a bonus, it was counted the rational use of water (40% savings) and the energy savings from the network (more than 30%). The general prerequisite of dividing electrical circuits was also fulfilled. Therefore, the overall energy efficiency label obtained for the building is level A.
As indicated by the literature [3], the architecture started along with the conception of Renewable Energy Technologies (RET), which, in the present case, consisted of photovoltaic energy. Feedback cycles took place periodically between the thematic teams, together with the facilitators. The design of the building for the use of natural lighting also took place from the preliminary design. Soon after, the HVAC project, starting with passive strategies (ventilation, evaporative cooling, solar chimney) was initiated. The active HVAC strategies were designed right after the first thermo-energetic simulations, due to the hours of discomfort not passively resolved, giving rise to the preliminary project. At this point, an initial calculation of the building’s energy balance was carried out (with data from the first thermo-energetic simulations and the photovoltaic panels still only on the roof). Then the sunshades and openings were readjusted to correct some identified problems. As a result of natural lighting simulations, with the building being better defined, the lighting, electrical, controls, and automation projects were carried out. In this preliminary project phase, strategies were also conceived for the rational use of water (hydro-sanitary project) and waste treatment, which are complementary aspects of the project’s sustainability. The final thermo-energetic simulations, labeling, primary energy calculations, and final energy balance of the building were carried out after the definition of the envelope materials, the internal finishes, and the basic project, Figure 4 presents the design process, products, and flows, relating them to the iterative phases mentioned in Figure 1.
Design process, with products and design flow. Source: authors.
The process took place relatively smoothly, due to the aforementioned previous tests, involving part of the team. However, some important points that emerged from the experience with time and budget limitations should be mentioned: 1. The role of the facilitators is essential to coordinate the various decisions to be taken that require inputs and results from different thematic teams; good facilitators are crucial for meeting deadlines and are potential drivers of positive results; 2. Efficient communication with the various thematic teams is included in the role of the facilitators, to delimit the level of detail of the solutions proposed by each one, in each phase. In the early design phases, the level of detail should be lower, to avoid wasting time and rework; in the final stages, the level of detail is higher. There seems to be a tendency among specialists to get the phases in detail from the beginning., to be controlled by the facilitators, as it represents a barrier to the fluid development of the process; 3. The simulation team also has a fundamental role and interacts with other teams, as they need to “translate” the architectural proposals into simulation results, which feedback the new architectural proposals. For this, communication must be effective, and the language adapted to reach all professional profiles, which is not simple and can become a barrier in the process; 4. Periodic meetings, sharing information, and decisions are important for team involvement and motivation. However, in some moments, quick decisions must be taken and for this, again, the role of the facilitators is fundamental.
This section presents the final design of LabZERO|UnB building, as a result of the previously described design process. The performance analysis, computational simulation process, and final energy balance are also presented.
The LabZERO|UnB construction is predicted to be done at the Science and Technology Park, at the Darcy Ribeiro campus of the University of Brasília (UnB), which aims at socio-economic development and strengthening research, development, and innovation (RD&I) structures. The privileged location on the campus provides the building with excellent visibility and easy access for the visitors (Figure 5).
Location of UnB campus Darcy Ribeiro in Brasilia.
Once built, the LabZERO|UnB building will be used for office activities in a coworking regime, to house research groups of UnB’s Architecture and Engineering Faculties dedicated to the study of zero energy balance and sustainability in buildings, (Figure 6).
Building plot on the Darcy Ribeiro campus (left) and implementation (right). Source: [
In terms of architectural design, the basic assumption was the adequacy of the architecture to favor the use of passive resources, respecting the local climate recommended strategies for bioclimatic zone 4 (Bioclimatic Zone 4, [23]), which includes shading, controlled natural ventilation, roof insulation, among others, as mentioned before in 2.2.
It was also a premise that architectural style was in accordance with the construction standards of the University of Brasília, highlighting, in the volumetry, some of the innovative systems used in the building.
Considering the educational and representative character of LabZERO|UnB, both internally and externally, the architecture uses innovative systems as elements of a visual framework, to highlight the applied design decisions, such as the steel structure, apparent electrical installations, and visual integration between the technical area and the work environment. As for the building’s morphology (Figure 7), the elongated and shallow shape, with larger façades towards the North–South orientation, allows the use of natural light and optimized and effective sun protection [25]. The glazed area on the façades is limited to 35% and duly protected from excessive sun radiation using louvers. On the North façade, they are indeed a BIPV (building-integrated solar photovoltaics) solar louvers, whilst a solar chimney system is present on the West façade to intensify natural ventilation, combined with forced ventilation when necessary (Figure 7).
3D perspective view of LabZERO|UnB building from northeast [
The floor plan has 207 m2, arranged as an office area (with an area reserved for meetings), a pantry, a bathroom, a dressing room, a technical area, and a bicycle rack, in addition to an outdoor balcony. Figure 8 shows the layout of the building plan.
Floor plan of LabZERO|UnB building. Source: [
The constructive systems elected to be used in this project are envisaged to strengthen sustainability and technological innovation. In addition, institutional criteria had to be met regarding the possibility of reproducibility, relocation, and integration with industrialized dry-construction systems, which reduce losses and waste in construction, ensuring faster execution. The building envelope systems are composed of a composite steel deck slab plus 12 cm of concrete employed on the floor and the roofs, whereas external walls are constituted by external fiber cement panel and drywall internally, filled with 4 cm of rock wool for insulation. Internally, all partitions are composed of two drywall panels with an air cavity, except for the partition between the office area and the technical area, which employs a clear 6 mm glass.
As complementary processes, in addition to natural lighting and ventilation, it was included an induced (or forced) ventilation system using a solar chimney. When comfort conditions with natural ventilation and induction were not sufficient, a set of high-efficiency exhaust fans with speed control is activated, maintaining the necessary airflow for the occupied space. Additionally, to the several passive systems and techniques envisaged to maintain thermal and lightning comfort conditions, the building’s energy efficiency is guaranteed by highly efficient artificial lighting and HVAC appliances. The project will have a rational use of drinking water, besides the use of alternative water sources, distributed generation with grid-connected photovoltaic generators, waste management, accessibility, and new technologies (Figure 9).
On the left, the perspective shows the BIPV solar louvers on the north façade and a solar chimney on the west façade; on the right, the perspective of the south façade source: [
From the early stages, the building was conceived to achieve high performance and renewable energy generation instead of contemplating only conservation, efficiency, and energy generation measures in the final stages of the project. This is especially relevant because it is in the initial design stage that there is the opportunity to reduce the project costs and avoid future rework [26]. However, in order for this to happen, the project methodology contemplated interaction and collaboration between the various agents and disciplines that interfere in the project development, which in fact occurred in the experience of LabZero at the University of Brasília (LabZERO|UnB).
Several aspects of the project were evaluated using computer simulation tools, not only to estimate electricity consumption, generation demands, and comfort conditions, essential for the development of a zero-energy balance building project but also to support the decision-makers in design. The computer simulation tools also helped to envision the building’s tagging process. In this section, the main guidelines and assumptions for environmental and energy performance analysis of the LabZERO|UnB project are presented.
For daylighting analysis, the Radiance program was used through the Daysim/Honeybee graphic interface, and Grasshopper/Rhinocerous3D plugin (Figure 10). To evaluate the performance of daylighting, 2 metrics were used: DA (Daylight Autonomy – or Natural Lighting Autonomy) considering 300 lux, and UDI (Useful Daylight Illuminance) considering a maximum of 2000 lux. In both cases, the measurement plane considers the height of the work plane at 80 cm in relation to the floor and the mesh of stitches distributed every 50 cm. In terms of the availability of natural light during the period of occupation of the building, the interval from 8 am to 6 pm was considered valid, during all 12 months of the year.
On the left, modeling in DesignBuilder and on the right modeling in rhinoceros 3D [
Artificial lighting was designed considering daylighting availability. The computer simulations used to verify the condition of artificial lighting in the building were carried out by modeling and calculating the data through the/Relux software, version 2019.3. The objective was to optimize the energy efficiency of the system, ensure adequate lighting rates, according to [27], and serve as a basis for an energy assessment. The input data were: the building geometry (height, width, depth, and useful ceiling height); the artificial lighting equipment in each environment; and the height of the work plane (70 cm).
To analyze the building energy performance and to verify the electricity demand, EnergyPlus 8.9 was used, through the graphic interface DesignBuilder 6.0 (Figure 10). The model’s geometry followed the architectural design, and the climate file was a Swera type for the city of Brasília-DF.
The loads and schedules utilized are based on the ASHRAE Handbook of Fundamentals [28] mostly for generic office area, which is the predominant occupation. The office breakroom in the outside area and bathrooms follow also the same indications [25], however, they are adapted to the Brazilian reality, so no plug load is considered in these areas. Additionally, since the technical area does not have heavy machinery, instead of the 52 W/m2 considered to this kind of area in the ASHRAE Handbook of Fundamentals (2017), it is employed the same value of generic office area, of 11 W/m2, which allows a general load closer to the generic offices found in Brasilia by Costa et al. (2018). The attic is considered unoccupied with no internal loads. Furthermore, the artificial lighting energy values are obtained from the lighting design, with an overall 5 W/m2 for all environments, meanwhile, in the office area, there is an additional 1 W/m2 for task lighting. Table 3 summarize these data:
Item | Office | Breakroom | Water closet | Technical area | Attic |
---|---|---|---|---|---|
Occupation (person/m2) | 0,1100 | 0,2889 | 0,1124 | 0,1110 | — |
Equipment (W/m2) | 11,77 | — | — | 11,00 | — |
Artificial lighting (W/m2) | 5 + 1 | 5 | 5 | 5 | — |
Occupation, equipment, and lighting power per area type.
Additionally, the building operation varies from 8 h to 22 h on weekdays and all schedules are derived from this operation period. The simulation is carried out for the whole year and the data analyzed is Energy Use Intensity (EUI) in kWh.year/m2, considering only the occupied area (not including the attic).
The reflectance of materials is based on the general guidelines of [12], which defines absorbance values for light colors as 0.4 and for dark colors as 0.7. The floor and the ceiling were modeled as dark, while other surfaces were defined as light.
The building envelope thermal properties follow the standards of [23], with [29] reference for modeling in EnergyPlus. The external vertical sealing composition comes from [22], external walls of fiber cement and rock wool (0.89 W/m2K), in addition to a covering composed of metallic tile with insulation (0.80 W/m2K), ventilated cavity (10 ren/h), and steel deck slab (3.16 W/m2K). The thermal properties of all layers of the opaque envelope are presented in Table 4.
Systems | Layers | Width (cm) | Conductivity (W/m.K) | Specific Heat Capacity(J/kg.K) | Density (kg/m3) | U-Value (W/m2K) |
---|---|---|---|---|---|---|
Steel Deck Slab | Steel | 0,6 | 55,000 | 460 | 7800 | 3,16 |
Concrete | 12,0 | 1130 | 1000 | 2000 | ||
Double Metal Roofing with Insulation | Steel | 0,6 | 55,000 | 460 | 7800 | 0,47 |
Rock Wool | 9,0 | 0,045 | 800 | 100 | ||
Steel | 0,6 | 55,000 | 460 | 7800 | ||
External Wall | Fiber Cement Siding | 1,0 | 0,950 | 840 | 550 | 0,89 |
Rock Wool | 4,0 | 0,045 | 800 | 100 | ||
Drywall | 2,0 | 0,350 | 870 | 900 | ||
Internal Partition | Drywall | 2,0 | 0,350 | 870 | 900 | 1,80 |
Air Cavity | 11,0 | Fixed R-Value of 0,18 m2.K/W | ||||
Drywall | 2,0 | 0,350 | 870 | 900 |
Opaque envelope thermal characterization.
The glass employed on the windows is a clear laminate 13 mm glass (6 mm+1 mm PVB+6 mm) (Table 5). All windows have external shading elements, as recommended for this climate.
Characteristics | Clear glass 6 mm |
---|---|
SHGC (W/W) | 0.74 |
Light transmission (W/W) | 0.86 |
U-value (W/m2K) | 5.29 |
Glass thermal properties.
As for electrical equipment, the installed power follows the RTQ-C as a reference [11], except for lighting that respects the project presented in the analysis of the artificial lighting system. The usage routine is from 8 am to 10 pm 5 days a week. With the exception of the coworking area, the other areas have natural ventilation. Bathrooms, technical area, and balcony have the ventilation network model (airflow network). According to the project, the frames opening rate is 88%.
For the attic zone, a constant rate of 10 renewals per hour is used. The office working area will be equipped with a highly efficient direct expansion HVAC system for cooling purposes. No heating will be employed since it is most frequently necessary late at night when there is no occupation in the building. It is employed ideal air loads for the mechanical systems with a Coefficient of Performance (CoP) of 5, which is a theoretical constant value for the equipment employed. There is also a cooling setpoint of 24 °C operative temperature with no setbacks. Finally, a water condensing unit is used in combination with an evaporator fan, which blows cold air from a plenum under the floor of the working area.
In addition, there is artificial lighting control in this zone, with setpoints of 150 lux for the balcony area and 300 lux for the coworking area.
To analyze the potential of photovoltaic energy generation, the SAM software from the National Renewable Energy Laboratory (NREL) was used. Two different photovoltaic systems were designed. The first one was a photovoltaic field of a kind that is connected to the public distribution network (on-grid), integrated to the coverage of the technical area of the building, facing North, with an inclination of 15o. The other photovoltaic system was conceived as an integrated field to the design of the brise-soleil that shade the North façade – using a battery bank for storage (off-grid), and will not be directly connected to the public grid. This unusual design is intended to address future research regarding demand energy management.
A system with 12 TRINASOLAR TSM-DE15MII-400 W TALLMAX modules of 400 Wp of monocrystalline silicon was considered for the on-grid system and YINGLI YL100P-17B 2/3 panels 36,100 W POLYCRYSTALLINE CELLS with measures 2.5x66x101cm and 100 W of power in the standard STC test conditions for the off-grid system. For the calculation, the methodology of Pinho and Galdino [30] was used.
The daylighting simulation reveals the availability of this resource in the coworking area, as shown in the Daylight Autonomy map (Figure 11). There is a predominance of natural light autonomy in the environment for over 80% of the hours during the year, with more than 300 lux. Illuminance values above 2000 lux, which can lead to glare and excessive thermal loads, are punctual and appear less than 40% of the time. In addition, they are concentrated exclusively along the building openings, as shown in Figure 11.
300 lux daylight autonomy (DA) map for the Coworking and balcony area [
In general, and in terms of the high daylight availability when the environments are occupied, the results are satisfactory. Values with an autonomy of 300 lux less than 80% of the time are punctual (behind the wall and in rooms such as pantry and hallway, which usually do not have high lighting demand). Likewise, the compensation to reach higher levels, such as 500 lux in the work planes, can be contemplated by the work luminaires foreseen in the lighting project (task lighting). Furthermore, it is noteworthy that it would be highly restrictive to demand that the entire environment be served by 500 lux. In terms of potential glare, the 2000 lux Useful Daylight Illuminance analysis indicates dew occurrences near the windows, which can eventually be avoided by adopting simple solar protection systems, such as blinds. In the external area and balcony, there are naturally higher rates, especially at the end of the building, which would probably benefit from some kind of greater protection (Figure 12).
Useful daylight Illuminance (UDI) map above 2000 lux for the Coworking and balcony area [
The adoption of high-efficiency solutions enabled an average illuminance of 411 lux in the coworking environment, as indicated by the simulations in Relux. At the workstations, the use of task luminaires that increase the illuminance to 500 lux on average is foreseen, as required by the NBR ISO/CIE 8995-1:2013 standard [31].
Thus, the project predicts a total of 54 luminaires, considering all areas and environments, with a total power of 801 W and a lighting power density (LPD) of 3.87 W/m2. The minimum illuminance level required by NBR ISO/CIE 8995-1:2013 [31], entails an increase of 1 W/m2, which raises the DPI to 4.87 W/m2. Even so, this performance is considerably higher than the limit estimated by label A, according to the PBE Edifica PROCEL classification [11]. This demonstrates, in part, the potential for reducing LPD by using high-efficiency equipment.
This low LPD, combined with the control and automation system with sensors and dimming of the integration system between day and artificial lighting, allows a significant reduction in energy consumption. These elements are considered and verified later in the evaluation through simulation of energy performance.
The building’s energy consumption results assume a conservative scenario, with artificial conditioning of the coworking area throughout its occupation. However, the main objective of the project proposal foresees that conditioning should be applied only in situations when thermal comfort is not provided. Especially due to the great potential of using passive strategies. Nevertheless, it is prudent to take a conservative stance to ensure that the project will reach its goal of a building with a zero-energy balance.
Given the potential of taking advantage of natural light, the low demand for artificial lighting, the high-performance envelope, and efficient air conditioning equipment, it is possible to obtain an energy consumption of 34.30 kWh/m2.year, as shown in Table 6. As a comparison criterion, the value obtained is considerably lower than the standards for corporate environments in Brasília-DF listed by [27], which demonstrates an average consumption of 131 kWh/m2.year.
End uses | Annual electrical energy consumption (KWH/year) | Annual electrical energy consumption (KWH/m2. year) | Percentage (%) |
---|---|---|---|
Office Equipment | 3451,13 | 16,67 | 49 |
Lighting | 874,20 | 4,22 | 12 |
HVAC | 2773,95 | 13,40 | 39 |
Total | 7099,28 | 34,30 | 100 |
Consumption data by final and total uses per year and per year per square meter for the entire building [25].
Thus, the division of consumption by final use, as shown in Figure 13, is considerably different from the typical consumption for commercial buildings foreseen by [32]. Unlike almost half (47%) of the energy consumption being related to the conditioning system, at LabZERO|UnB the conditioning system corresponds to 39%. It is worth noting that this reduction could be even more significant if a less conservative scenario were used regarding the air conditioning adoption. However, a greater reduction, from 22–12%, is seen in the artificial lighting system.
Energy consumption by end-use [
As for other electrical loads (equipment), demand exceeds the 31% predicted by [32], reaching 49% at LabZERO|UnB. This percentage does not reflect a quantitative increase in this type of load. However, it shows that its participation in the energy matrix of the building is greater. In part, this is justified by the fact that air conditioning and lighting systems are the main focus of these studies, being directly linked to architecture. For the calculation of energy demand of other electrical equipment, the standard was kept as a default. According to the very concept of building efficiency, the equipment adopted will probably follow the high-efficiency standards, which reduces its demand. However, as the proposal aims to seek a more conservative scenario, this reduction was not considered for these environmental and energy performance analyses in the design stage.
The graph in Figure 14 shows the results of potential photovoltaic energy generation for the 2 systems (on-grid and off-grid), while Table 7 presents the total values. It is observed that the on-grid system placed on the roof has significantly higher generation than the off-grid system, located in the brises, of 7,933 kWh/year and 4,155 kWh/year, respectively, which totals 12,088 kWh/year.
Monthly estimated PV solar energy generation for LabZERO|UnB [
On-grid (kWh) | Off-grid (kWh) | Total (kWh) | |
---|---|---|---|
Power generation | 7933.02 | 4155.18 | 12,088.2 |
Total values of photovoltaic energy generation potential in on-grid and off-grid systems.
The building obtained a level A of energy efficiency label (the higher efficiency level, according to Brazilian National standard), as expected due to the inclusion of bioclimatic and energy efficiency strategies since its conception. Individually, the building envelope obtained EqNum = 5, the lighting system obtained EqNum DPI = 5, and the air conditioning system obtained EqNumVent = 5, related to the Coefficient of Performance (COP) of the machines. Considering a partial level A labeling obtained individually by these systems, plus a bonus for the rational use of water (40% savings), the energy savings from the network (more than 30%), and the general prerequisite of dividing electrical circuits fulfilled, the overall energy efficiency label obtained for the building is A, the most efficient.
The graph in Figure 15 shows the energy balance between consumption and generation. Even when considering the most conservative consumption, with the use of the conditioning system during the entire period of occupation, the simulations and final calculations prove that the building achieves an average annual electrical energy consumption of 34,29 kWh/m2.year (7,099.18 kWh/year), which corresponds to a primary energy consumption value of 54,88 kWh/m2.year (11,358.68 kWh/year). This is a significantly lower number if compared to the average consumption of electricity in office buildings in Brasília, which is close to 130 kWh/m2.year [24]. As for the distributed generation of electricity in the photovoltaic system, installed on the roof and side area, the value of 58,29 kWh/m2.year is obtained. The results are consistent with international experiences in similar climates, presented before (Table 2). With these data, the achievement of the building NZEB goals, or energy balance close to zero or nil, is achieved. There is, therefore, full compliance with the condition of the NZEB building (almost zero energy balance). It is also proposed that the energy generated in excess should be used to supply electric bikes and other buildings at the University of Brasília campus.
Graph of the energy balance between building consumption and generation [
The building’s reduced energy consumption is achieved through architectural and technological strategies (passive and active). In addition to aspects of energy efficiency and comfort, the building project proposes strategies for the rational use of water and waste management. Sustainability aspects are also highlighted. An example is the steel structure and the sealing in prefabricated panels, which allow for quick and clean construction, reducing waste generation and the replicability of the typology.
The integrated design process, used as a methodology, proved to be efficient and highlighted the possibility of transposing research experiences into design practice. The barriers and potentialities related to the coordination of a multidisciplinary team and the organization, planning, and achievement of the goals in the integrated project process stand out. It is important to highlight the role of the computer simulation and the team in charge of this item in the design process, which must interact with others and effectively communicate the results. The project also underlines the importance of the facilitators, who coordinate the feedback loops of the computer simulations and architectural, the technological decisions between specialized teams and the group as a whole, in addition to defining deadlines and levels of detail for each specialty. Communication problems in the team can constitute barriers in the process, and the tendency of excessive detailing by experts at the beginning of the design process must be monitored by the facilitators.
The tools for analyzing environmental and energy performances through computer simulations are key parts to verify the zero-energy balance of a building and the fundamental elements in design decision-making. With these tools, the performance results can be accurately estimated.
In addition to being a building with a zero-energy balance, LabZERO|UnB is a project with the capability to achieve a positive energy balance, by offering an annual generation higher than its consumption. It has a demand of 34,29 kWh/m2. year and a generation of 54, 88 kWh/m2. year, which represents the potential to become a construction that has a positive energy balance with a 60% margin. This result occurs even considering conservative hypotheses of consumption reduction – such as constant use of artificial conditioning, with passive potential and office equipment with regular efficiency. Thus, the reduction in the energy consumption pattern from 131 kWh/m2. year to 34 kWh/m2. year is mainly due to solutions linked to the characteristics of the architectural project, such as shape, envelope, quantity, and opening orientation, combined with high-performance, artificial lighting, and mechanical conditioning systems. These indicate the advantage of considering environmental performance demands from the early stages of the project to achieve high-performance buildings.
It is expected that the construction of LabZERO|UnB, as well as the ELETROBRAS/PROCEL competition initiative, will be a milestone in the development of high-energy performance buildings in Brazil and zero-energy balance constructions. However, there is a need to incorporate environmental and energy performances analysis tools in the scope of the architectural project development from the preliminary stages, keeping in mind the operation and monitoring phases.
As a result, the project achieved an energy consumption of almost four times lower than the local average for office buildings, and this is compatible with international experiences. As the energy generation exceeds the demand, the NZEB building has the potential to supply other constructions or equipment. The strategies used for this combine the architecture plan conceived according to the local climate and directed towards the energy production in the building itself; and the main adoption of passive strategies, with the use of controlled active methods to optimize energy expenditure. After its construction, the building may be open to the public with a demonstrative purpose, allowing for large-scale dissemination.
Creating LabZERO|UnB reinforces the necessity of developing more sustainable and resilient buildings, with a possibility to extend the adopted strategies to other similar constructions creating, therefore, more efficient cities. This building will be a great model on the University campus, and it can be a prototype for future structures. It also works as a laboratory, in which people can better understand the importance of bioclimatic design and the incorporation of energy production on the building. Some architectural premises that were used on this project could also be applied in other constructions in the Brazilian context. Ultimately, LabZERO gives data to the Brazilian government to support public policies related to energy efficiency and sustainable energy production, all objectives which are bonded to the UN Sustainable Development Goals (SDG). In the context of the climate crisis, energy efficiency must be the natural strategy for developing countries in a tropical climate zone.
To the Infrastructure Secretariat and to the senior management of the University of Brasília, for their institutional support. Eletrobrás/Procel Edifica for supporting the project and CNPq for the Research Productivity grant.
IntechOpen books and journals are available online by accessing all published content on a chapter/article level.
",metaTitle:"Access policy",metaDescription:"IntechOpen books are available online by accessing all published content on a chapter level",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\\n\\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\\n\\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\\n\\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\\n\\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\\n\\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\\n\\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\\n\\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\\n\\nPolicy last updated: 2022-04-14
\\n"}]'},components:[{type:"htmlEditorComponent",content:"All IntechOpen published chapters and articles are available OPEN ACCESS and can be read without the requirement for registration of any kind, immediately upon publication, without any barrier.
\n\nThe HTML version, as well as the PDF version of publications dated before 2012 that are accessible through a reader, are available to readers with no restriction.
\n\nThe full content of chapters and articles can be read, copied and printed from the link location of the chapter/article and these actions are not limited or restricted in any way.
\n\nRegistration is requested only to download the PDF of the chapter/article. There are no subscription fees and there is no charge to user groups.
\n\nIntechOpen chapters and articles are distributed under CC BY 3.0 licences allowing users to “copy, use, distribute, transmit and display the work publicly and to make and distribute derivative works, in any digital medium for any responsible purpose, subject to proper attribution of authorship...” and there is no non-commercial restriction.
\n\nAuthors may post published works to any repository or website with no delay, and Authors and Editors of IntechOpen books have direct access to the PDF of the full book.
\n\nAll published content can be crawled for indexing. Full text and metadata may be accessed with instructions publicly posted.
\n\nAll IntechOpen books and Journal articles are indexed in CLOCKSS and preservation of access to published content is clearly indicated.
\n\nPolicy last updated: 2022-04-14
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:132968},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP",topicId:"10"},books:[{type:"book",id:"11834",title:"Steppe Geography",subtitle:null,isOpenForSubmission:!0,hash:"363517fa6f079daf94c51ea1b91fed2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11834.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11836",title:"Estuary Research",subtitle:null,isOpenForSubmission:!0,hash:"ef822fc9eee5600aeb7e45492e04a6e7",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11836.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11837",title:"The Mediterranean",subtitle:null,isOpenForSubmission:!0,hash:"bbb25987a982d61da4f47fb13614ba3c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11846",title:"Seabed",subtitle:null,isOpenForSubmission:!0,hash:"1b1698a2d8d36b5ec3571c20486eb2c9",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11846.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12000",title:"Natural Hazards",subtitle:null,isOpenForSubmission:!0,hash:"d9fad96ccf42b288f2134775f6a8a1be",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12000.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12001",title:"Polar Climate",subtitle:null,isOpenForSubmission:!0,hash:"b226f7ff46cf93d4dc25aa49b23cc118",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12001.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12002",title:"Oceanography",subtitle:null,isOpenForSubmission:!0,hash:"b48da2053b7a270a24db1eeaea08f16b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12002.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12003",title:"Rural Areas",subtitle:null,isOpenForSubmission:!0,hash:"5d6bf787bf04690d8773b4d47bc54353",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12003.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12004",title:"Tropical Forests",subtitle:null,isOpenForSubmission:!0,hash:"1478a073e834c74e589098e43f49d1d8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12004.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12008",title:"Soil Erosion",subtitle:null,isOpenForSubmission:!0,hash:"1eaa50d78d66b865dad58f70ea80a0cb",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12008.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12010",title:"New Findings on Black Holes",subtitle:null,isOpenForSubmission:!0,hash:"5e31be1486a9d2981dcadb9451f33793",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12010.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12267",title:"Monsoon Systems",subtitle:null,isOpenForSubmission:!0,hash:"f9cfa86ddfce9980a9c86101d53f299a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/12267.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:95},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:14},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"964",title:"Integral Calculus",slug:"integral-calculus",parent:{id:"162",title:"Analysis & Calculus",slug:"analysis-and-calculus"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:1,numberOfWosCitations:0,numberOfCrossrefCitations:0,numberOfDimensionsCitations:0,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"964",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"3729",title:"Orbital Integrals on Reductive Lie Groups and Their Algebras",subtitle:null,isOpenForSubmission:!1,hash:"0e1538fba70d1a9ed222ff4e8d5b8d90",slug:"orbital-integrals-on-reductive-lie-groups-and-their-algebras",bookSignature:"Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/3729.jpg",editedByType:"Authored by",editors:[{id:"92918",title:"Dr.",name:"Francisco",middleName:null,surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"43550",doi:null,title:"Orbital Integrals on Reductive Lie Groups and Their Algebras",slug:"orbital-integrals-on-reductive-lie-groups-and-their-algebrasB",totalDownloads:2365,totalCrossrefCites:0,totalDimensionsCites:null,abstract:null,book:{id:"3729",slug:"orbital-integrals-on-reductive-lie-groups-and-their-algebras",title:"Orbital Integrals on Reductive Lie Groups and Their Algebras",fullTitle:"Orbital Integrals on Reductive Lie Groups and Their Algebras"},signatures:"Francisco Bulnes",authors:null}],mostDownloadedChaptersLast30Days:[{id:"43550",title:"Orbital Integrals on Reductive Lie Groups and Their Algebras",slug:"orbital-integrals-on-reductive-lie-groups-and-their-algebrasB",totalDownloads:2367,totalCrossrefCites:0,totalDimensionsCites:null,abstract:null,book:{id:"3729",slug:"orbital-integrals-on-reductive-lie-groups-and-their-algebras",title:"Orbital Integrals on Reductive Lie Groups and Their Algebras",fullTitle:"Orbital Integrals on Reductive Lie Groups and Their Algebras"},signatures:"Francisco Bulnes",authors:null}],onlineFirstChaptersFilter:{topicId:"964",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"14",title:"Artificial Intelligence",doi:"10.5772/intechopen.79920",issn:"2633-1403",scope:"Artificial Intelligence (AI) is a rapidly developing multidisciplinary research area that aims to solve increasingly complex problems. In today's highly integrated world, AI promises to become a robust and powerful means for obtaining solutions to previously unsolvable problems. This Series is intended for researchers and students alike interested in this fascinating field and its many applications.",coverUrl:"https://cdn.intechopen.com/series/covers/14.jpg",latestPublicationDate:"May 18th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:9,editor:{id:"218714",title:"Prof.",name:"Andries",middleName:null,surname:"Engelbrecht",slug:"andries-engelbrecht",fullName:"Andries Engelbrecht",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRNR8QAO/Profile_Picture_1622640468300",biography:"Andries Engelbrecht received the Masters and PhD degrees in Computer Science from the University of Stellenbosch, South Africa, in 1994 and 1999 respectively. He is currently appointed as the Voigt Chair in Data Science in the Department of Industrial Engineering, with a joint appointment as Professor in the Computer Science Division, Stellenbosch University. Prior to his appointment at Stellenbosch University, he has been at the University of Pretoria, Department of Computer Science (1998-2018), where he was appointed as South Africa Research Chair in Artifical Intelligence (2007-2018), the head of the Department of Computer Science (2008-2017), and Director of the Institute for Big Data and Data Science (2017-2018). In addition to a number of research articles, he has written two books, Computational Intelligence: An Introduction and Fundamentals of Computational Swarm Intelligence.",institutionString:null,institution:{name:"Stellenbosch University",institutionURL:null,country:{name:"South Africa"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:6,paginationItems:[{id:"22",title:"Applied Intelligence",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",isOpenForSubmission:!0,annualVolume:11418,editor:{id:"27170",title:"Prof.",name:"Carlos",middleName:"M.",surname:"Travieso-Gonzalez",slug:"carlos-travieso-gonzalez",fullName:"Carlos Travieso-Gonzalez",profilePictureURL:"https://mts.intechopen.com/storage/users/27170/images/system/27170.jpeg",biography:"Carlos M. Travieso-González received his MSc degree in Telecommunication Engineering at Polytechnic University of Catalonia (UPC), Spain in 1997, and his Ph.D. degree in 2002 at the University of Las Palmas de Gran Canaria (ULPGC-Spain). He is a full professor of signal processing and pattern recognition and is head of the Signals and Communications Department at ULPGC, teaching from 2001 on subjects on signal processing and learning theory. His research lines are biometrics, biomedical signals and images, data mining, classification system, signal and image processing, machine learning, and environmental intelligence. He has researched in 52 international and Spanish research projects, some of them as head researcher. He is co-author of 4 books, co-editor of 27 proceedings books, guest editor for 8 JCR-ISI international journals, and up to 24 book chapters. He has over 450 papers published in international journals and conferences (81 of them indexed on JCR – ISI - Web of Science). He has published seven patents in the Spanish Patent and Trademark Office. He has been a supervisor on 8 Ph.D. theses (11 more are under supervision), and 130 master theses. He is the founder of The IEEE IWOBI conference series and the president of its Steering Committee, as well as the founder of both the InnoEducaTIC and APPIS conference series. He is an evaluator of project proposals for the European Union (H2020), Medical Research Council (MRC, UK), Spanish Government (ANECA, Spain), Research National Agency (ANR, France), DAAD (Germany), Argentinian Government, and the Colombian Institutions. He has been a reviewer in different indexed international journals (<70) and conferences (<250) since 2001. He has been a member of the IASTED Technical Committee on Image Processing from 2007 and a member of the IASTED Technical Committee on Artificial Intelligence and Expert Systems from 2011. \n\nHe has held the general chair position for the following: ACM-APPIS (2020, 2021), IEEE-IWOBI (2019, 2020 and 2020), A PPIS (2018, 2019), IEEE-IWOBI (2014, 2015, 2017, 2018), InnoEducaTIC (2014, 2017), IEEE-INES (2013), NoLISP (2011), JRBP (2012), and IEEE-ICCST (2005)\n\nHe is an associate editor of the Computational Intelligence and Neuroscience Journal (Hindawi – Q2 JCR-ISI). He was vice dean from 2004 to 2010 in the Higher Technical School of Telecommunication Engineers at ULPGC and the vice dean of Graduate and Postgraduate Studies from March 2013 to November 2017. He won the “Catedra Telefonica” Awards in Modality of Knowledge Transfer, 2017, 2018, and 2019 editions, and awards in Modality of COVID Research in 2020.\n\nPublic References:\nResearcher ID http://www.researcherid.com/rid/N-5967-2014\nORCID https://orcid.org/0000-0002-4621-2768 \nScopus Author ID https://www.scopus.com/authid/detail.uri?authorId=6602376272\nScholar Google https://scholar.google.es/citations?user=G1ks9nIAAAAJ&hl=en \nResearchGate https://www.researchgate.net/profile/Carlos_Travieso",institutionString:null,institution:{name:"University of Las Palmas de Gran Canaria",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"23",title:"Computational Neuroscience",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",isOpenForSubmission:!0,annualVolume:11419,editor:{id:"14004",title:"Dr.",name:"Magnus",middleName:null,surname:"Johnsson",slug:"magnus-johnsson",fullName:"Magnus Johnsson",profilePictureURL:"https://mts.intechopen.com/storage/users/14004/images/system/14004.png",biography:"Dr Magnus Johnsson is a cross-disciplinary scientist, lecturer, scientific editor and AI/machine learning consultant from Sweden. \n\nHe is currently at Malmö University in Sweden, but also held positions at Lund University in Sweden and at Moscow Engineering Physics Institute. \nHe holds editorial positions at several international scientific journals and has served as a scientific editor for books and special journal issues. \nHis research interests are wide and include, but are not limited to, autonomous systems, computer modeling, artificial neural networks, artificial intelligence, cognitive neuroscience, cognitive robotics, cognitive architectures, cognitive aids and the philosophy of mind. \n\nDr. Johnsson has experience from working in the industry and he has a keen interest in the application of neural networks and artificial intelligence to fields like industry, finance, and medicine. \n\nWeb page: www.magnusjohnsson.se",institutionString:null,institution:{name:"Malmö University",institutionURL:null,country:{name:"Sweden"}}},editorTwo:null,editorThree:null},{id:"24",title:"Computer Vision",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",isOpenForSubmission:!0,annualVolume:11420,editor:{id:"294154",title:"Prof.",name:"George",middleName:null,surname:"Papakostas",slug:"george-papakostas",fullName:"George Papakostas",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002hYaGbQAK/Profile_Picture_1624519712088",biography:"George A. Papakostas has received a diploma in Electrical and Computer Engineering in 1999 and the M.Sc. and Ph.D. degrees in Electrical and Computer Engineering in 2002 and 2007, respectively, from the Democritus University of Thrace (DUTH), Greece. Dr. Papakostas serves as a Tenured Full Professor at the Department of Computer Science, International Hellenic University, Greece. Dr. Papakostas has 10 years of experience in large-scale systems design as a senior software engineer and technical manager, and 20 years of research experience in the field of Artificial Intelligence. Currently, he is the Head of the “Visual Computing” division of HUman-MAchines INteraction Laboratory (HUMAIN-Lab) and the Director of the MPhil program “Advanced Technologies in Informatics and Computers” hosted by the Department of Computer Science, International Hellenic University. He has (co)authored more than 150 publications in indexed journals, international conferences and book chapters, 1 book (in Greek), 3 edited books, and 5 journal special issues. His publications have more than 2100 citations with h-index 27 (GoogleScholar). His research interests include computer/machine vision, machine learning, pattern recognition, computational intelligence. \nDr. Papakostas served as a reviewer in numerous journals, as a program\ncommittee member in international conferences and he is a member of the IAENG, MIR Labs, EUCogIII, INSTICC and the Technical Chamber of Greece (TEE).",institutionString:null,institution:{name:"International Hellenic University",institutionURL:null,country:{name:"Greece"}}},editorTwo:null,editorThree:null},{id:"25",title:"Evolutionary Computation",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",isOpenForSubmission:!0,annualVolume:11421,editor:{id:"136112",title:"Dr.",name:"Sebastian",middleName:null,surname:"Ventura Soto",slug:"sebastian-ventura-soto",fullName:"Sebastian Ventura Soto",profilePictureURL:"https://mts.intechopen.com/storage/users/136112/images/system/136112.png",biography:"Sebastian Ventura is a Spanish researcher, a full professor with the Department of Computer Science and Numerical Analysis, University of Córdoba. Dr Ventura also holds the positions of Affiliated Professor at Virginia Commonwealth University (Richmond, USA) and Distinguished Adjunct Professor at King Abdulaziz University (Jeddah, Saudi Arabia). Additionally, he is deputy director of the Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI) and heads the Knowledge Discovery and Intelligent Systems Research Laboratory. He has published more than ten books and over 300 articles in journals and scientific conferences. Currently, his work has received over 18,000 citations according to Google Scholar, including more than 2200 citations in 2020. In the last five years, he has published more than 60 papers in international journals indexed in the JCR (around 70% of them belonging to first quartile journals) and he has edited some Springer books “Supervised Descriptive Pattern Mining” (2018), “Multiple Instance Learning - Foundations and Algorithms” (2016), and “Pattern Mining with Evolutionary Algorithms” (2016). He has also been involved in more than 20 research projects supported by the Spanish and Andalusian governments and the European Union. He currently belongs to the editorial board of PeerJ Computer Science, Information Fusion and Engineering Applications of Artificial Intelligence journals, being also associate editor of Applied Computational Intelligence and Soft Computing and IEEE Transactions on Cybernetics. Finally, he is editor-in-chief of Progress in Artificial Intelligence. He is a Senior Member of the IEEE Computer, the IEEE Computational Intelligence, and the IEEE Systems, Man, and Cybernetics Societies, and the Association of Computing Machinery (ACM). Finally, his main research interests include data science, computational intelligence, and their applications.",institutionString:null,institution:{name:"University of Córdoba",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"26",title:"Machine Learning and Data Mining",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",isOpenForSubmission:!0,annualVolume:11422,editor:{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"27",title:"Multi-Agent Systems",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",isOpenForSubmission:!0,annualVolume:11423,editor:{id:"148497",title:"Dr.",name:"Mehmet",middleName:"Emin",surname:"Aydin",slug:"mehmet-aydin",fullName:"Mehmet Aydin",profilePictureURL:"https://mts.intechopen.com/storage/users/148497/images/system/148497.jpg",biography:"Dr. Mehmet Emin Aydin is a Senior Lecturer with the Department of Computer Science and Creative Technology, the University of the West of England, Bristol, UK. His research interests include swarm intelligence, parallel and distributed metaheuristics, machine learning, intelligent agents and multi-agent systems, resource planning, scheduling and optimization, combinatorial optimization. Dr. Aydin is currently a Fellow of Higher Education Academy, UK, a member of EPSRC College, a senior member of IEEE and a senior member of ACM. In addition to being a member of advisory committees of many international conferences, he is an Editorial Board Member of various peer-reviewed international journals. He has served as guest editor for a number of special issues of peer-reviewed international journals.",institutionString:null,institution:{name:"University of the West of England",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"81791",title:"Self-Supervised Contrastive Representation Learning in Computer Vision",doi:"10.5772/intechopen.104785",signatures:"Yalin Bastanlar and Semih Orhan",slug:"self-supervised-contrastive-representation-learning-in-computer-vision",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Pattern Recognition - New Insights",coverURL:"https://cdn.intechopen.com/books/images_new/11442.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"79345",title:"Application of Jump Diffusion Models in Insurance Claim Estimation",doi:"10.5772/intechopen.99853",signatures:"Leonard Mushunje, Chiedza Elvina Mashiri, Edina Chandiwana and Maxwell Mashasha",slug:"application-of-jump-diffusion-models-in-insurance-claim-estimation-1",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Data Clustering",coverURL:"https://cdn.intechopen.com/books/images_new/10820.jpg",subseries:{id:"26",title:"Machine Learning and Data Mining"}}},{id:"81557",title:"Object Tracking Using Adapted Optical Flow",doi:"10.5772/intechopen.102863",signatures:"Ronaldo Ferreira, Joaquim José de Castro Ferreira and António José Ribeiro Neves",slug:"object-tracking-using-adapted-optical-flow",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}},{id:"81558",title:"Thresholding Image Techniques for Plant Segmentation",doi:"10.5772/intechopen.104587",signatures:"Miguel Ángel Castillo-Martínez, Francisco Javier Gallegos-Funes, Blanca E. Carvajal-Gámez, Guillermo Urriolagoitia-Sosa and Alberto J. Rosales-Silva",slug:"thresholding-image-techniques-for-plant-segmentation",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Information Extraction and Object Tracking in Digital Video",coverURL:"https://cdn.intechopen.com/books/images_new/10652.jpg",subseries:{id:"24",title:"Computer Vision"}}}]},overviewPagePublishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",hash:"e7ea7e74ce7a7a8e5359629e07c68d31",volumeInSeries:2,fullTitle:"Swarm Intelligence - Recent Advances, New Perspectives and Applications",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null}]},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}]},{type:"book",id:"9963",title:"Advances and Applications in Deep Learning",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9963.jpg",slug:"advances-and-applications-in-deep-learning",publishedDate:"December 9th 2020",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"0d51ba46f22e55cb89140f60d86a071e",volumeInSeries:4,fullTitle:"Advances and Applications in Deep Learning",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",biography:"Dr. Marco Antonio Aceves Fernandez obtained his B.Sc. (Eng.) in Telematics from the Universidad de Colima, Mexico. He obtained both his M.Sc. and Ph.D. from the University of Liverpool, England, in the field of Intelligent Systems. He is a full professor at the Universidad Autonoma de Queretaro, Mexico, and a member of the National System of Researchers (SNI) since 2009. Dr. Aceves Fernandez has published more than 80 research papers as well as a number of book chapters and congress papers. He has contributed in more than 20 funded research projects, both academic and industrial, in the area of artificial intelligence, ranging from environmental, biomedical, automotive, aviation, consumer, and robotics to other applications. He is also a honorary president at the National Association of Embedded Systems (AMESE), a senior member of the IEEE, and a board member of many institutions. His research interests include intelligent and embedded systems.",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}]}]},openForSubmissionBooks:{paginationCount:4,paginationItems:[{id:"11445",title:"Multi-Agent Technologies and Machine Learning",coverURL:"https://cdn.intechopen.com/books/images_new/11445.jpg",hash:"d980826615baa6e33456e2a79064c5e8",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 29th 2022",isOpenForSubmission:!0,editors:[{id:"265237",title:"Prof.",name:"Igor",surname:"Sheremet",slug:"igor-sheremet",fullName:"Igor Sheremet"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11446",title:"Industry 4.0 - Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11446.jpg",hash:"be984f45b90c1003798661ef885d8a34",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 12th 2022",isOpenForSubmission:!0,editors:[{id:"303193",title:"Dr.",name:"Meisam",surname:"Gordan",slug:"meisam-gordan",fullName:"Meisam Gordan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11448",title:"Artificial Neural Networks - Recent Advances, New Perspectives and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11448.jpg",hash:"e57ff97a39cfc6fe68a1ac62b503dbe9",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 3rd 2022",isOpenForSubmission:!0,editors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",surname:"Hui",slug:"chi-leung-patrick-hui",fullName:"Chi Leung Patrick Hui"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11447",title:"Swarm Intelligence - Recent Advances and Current Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11447.jpg",hash:"f68e3c3430a74fc7a7eb97f6ea2bb42e",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 14th 2022",isOpenForSubmission:!0,editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:5,paginationItems:[{id:"81972",title:"The Submicroscopic Plasmodium falciparum Malaria in Sub-Saharan Africa; Current Understanding of the Host Immune System and New Perspectives",doi:"10.5772/intechopen.105086",signatures:"Kwame Kumi Asare",slug:"the-submicroscopic-plasmodium-falciparum-malaria-in-sub-saharan-africa-current-understanding-of-the-",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81821",title:"Pneumococcal Carriage in Jordanian Children and the Importance of Vaccination",doi:"10.5772/intechopen.104999",signatures:"Adnan Al-Lahham",slug:"pneumococcal-carriage-in-jordanian-children-and-the-importance-of-vaccination",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}},{id:"81813",title:"Schistosomiasis: Discovery of New Molecules for Disease Treatment and Vaccine Development",doi:"10.5772/intechopen.104738",signatures:"Andressa Barban do Patrocinio",slug:"schistosomiasis-discovery-of-new-molecules-for-disease-treatment-and-vaccine-development",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"New Horizons for Schistosomiasis Research",coverURL:"https://cdn.intechopen.com/books/images_new/10829.jpg",subseries:{id:"5",title:"Parasitic Infectious Diseases"}}},{id:"81644",title:"Perspective Chapter: Ethics of Using Placebo Controlled Trials for Covid-19 Vaccine Development in Vulnerable Populations",doi:"10.5772/intechopen.104776",signatures:"Lesley Burgess, Jurie Jordaan and Matthew Wilson",slug:"perspective-chapter-ethics-of-using-placebo-controlled-trials-for-covid-19-vaccine-development-in-vu",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"SARS-CoV-2 Variants - Two Years After",coverURL:"https://cdn.intechopen.com/books/images_new/11573.jpg",subseries:{id:"6",title:"Viral Infectious Diseases"}}},{id:"80546",title:"Streptococcal Skin and Skin-Structure Infections",doi:"10.5772/intechopen.102894",signatures:"Alwyn Rapose",slug:"streptococcal-skin-and-skin-structure-infections",totalDownloads:48,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Streptococcal Infections",coverURL:"https://cdn.intechopen.com/books/images_new/10828.jpg",subseries:{id:"3",title:"Bacterial Infectious Diseases"}}}]},subseriesFiltersForOFChapters:[{caption:"Viral Infectious Diseases",value:6,count:1,group:"subseries"},{caption:"Bacterial Infectious Diseases",value:3,count:2,group:"subseries"},{caption:"Parasitic Infectious Diseases",value:5,count:2,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}},{id:"351158",title:"Prof.",name:"David W.",middleName:null,surname:"Anderson",slug:"david-w.-anderson",fullName:"David W. Anderson",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Calgary",country:{name:"Canada"}}}]}},subseries:{item:{id:"14",type:"subseries",title:"Cell and Molecular Biology",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11410,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null,series:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983"},editorialBoard:[{id:"79367",title:"Dr.",name:"Ana Isabel",middleName:null,surname:"Flores",slug:"ana-isabel-flores",fullName:"Ana Isabel Flores",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRpIOQA0/Profile_Picture_1632418099564",institutionString:null,institution:{name:"Hospital Universitario 12 De Octubre",institutionURL:null,country:{name:"Spain"}}},{id:"328234",title:"Ph.D.",name:"Christian",middleName:null,surname:"Palavecino",slug:"christian-palavecino",fullName:"Christian Palavecino",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000030DhEhQAK/Profile_Picture_1628835318625",institutionString:null,institution:{name:"Central University of Chile",institutionURL:null,country:{name:"Chile"}}},{id:"186585",title:"Dr.",name:"Francisco Javier",middleName:null,surname:"Martin-Romero",slug:"francisco-javier-martin-romero",fullName:"Francisco Javier Martin-Romero",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSB3HQAW/Profile_Picture_1631258137641",institutionString:null,institution:{name:"University of Extremadura",institutionURL:null,country:{name:"Spain"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"94",title:"Climate Change and Environmental Sustainability",scope:null,coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",keywords:null},{id:"92",title:"Health and Wellbeing",scope:"\r\n\tSustainable approaches to health and wellbeing in our COVID 19 recovery needs to focus on ecological approaches that prioritize our relationships with each other, and include engagement with nature, the arts and our heritage. This will ensure that we discover ways to live in our world that allows us and other beings to flourish. We can no longer rely on medicalized approaches to health that wait for people to become ill before attempting to treat them. We need to live in harmony with nature and rediscover the beauty and balance in our everyday lives and surroundings, which contribute to our well-being and that of all other creatures on the planet. This topic will provide insights and knowledge into how to achieve this change in health care that is based on ecologically sustainable practices.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",keywords:"Ecology, Ecological, Nature, Health, Wellbeing, Health production"},{id:"93",title:"Inclusivity and Social Equity",scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",keywords:"Sustainable, Society, Economy, Digitalization, KPIs, Decision Making, Business, Digital Footprint"},{id:"95",title:"Urban Planning and Environmental Management",scope:"