Resistive switching at the nanoscale is at the heart of the memristor devices technology. These switching devices have emerged as alternative candidates for the existing memory and data storage technologies. Memristors are also considered to be the fourth pillar of classical electronics; extensive research has been carried out for over three decades to understand the physical processes in these devices. Due to their robust characteristics, resistive switching memory devices have been proposed for neuromorphic computation, in-memory computation, and on-chip data storage. In this chapter, the effects of various external stimuli on the characteristics of resistive switching devices are comprehensively reviewed. The emphasis will be given on 2-dimensional (2D) materials, which are exciting systems owing to superior electrical characteristics combined with their high stability at room temperature. These atomically thin 2D materials possess unique electrical, optical and mechanical properties in a broad spectrum, and open the opportunity for developing novel and more efficient electronic devices. Additionally, resistive switching due to light has also grabbed the attention of optoelectronic engineers and scientists for the advancement of optical switches and photo tuned memristors. The variety of material systems used in the fabrication of memristors is comprehensively discussed.
Part of the book: Electromagnetic Field in Advancing Science and Technology