Evapotranspiration (ET) is an essential process for defining the mass and energy relationship between soil, crop and atmosphere. This study was conducted in the Eastern Region of Saudi Arabia, to estimate the actual daily, monthly and annual evapotranspiration (ETa) for different land-use systems using Landsat-8 satellite data during the year 2017/2018. Initially, six land-use and land-cover (LULC) types were identified, namely: date palm, cropland, bare land, urban land, aquatic vegetation, and open water bodies. The Surface Energy Balance Algorithm for Land (SEBAL) supported by climate data was used to compute the ETa. The SEBAL model outputs were validated using the FAO Penman-Monteith (FAO P-M) method coupled with field observation. The results showed that the annual ETa values varied between 800 and 1400 mm.year−1 for date palm, 2000 mm.year−1 for open water and 800 mm.year−1 for croplands. The validation measure showed a significant agreement level between the SEBAL model and the FAO P-M method with RMSE of 0.84, 0.98 and 1.38 mm.day−1 for date palm, open water and cropland respectively. The study concludes that the ETa produced from the satellite data and the SEBAL model is useful for water resource management under arid ecosystem of the study area.
Part of the book: Climate Change in Asia and Africa