\r\n\t
",isbn:"978-1-80356-495-1",printIsbn:"978-1-80356-494-4",pdfIsbn:"978-1-80356-496-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"2d409a285bea682efb34a817b0651aba",bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",keywords:"PCR, Genotyping, ELISA, Cell Lines, 2D Culture, 3D Culture, PRRs, CD4 Responses, CD8 Responses, Behavior Manipulation, Parasite Cysts, Psychiatric Disorders",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 4th 2022",dateEndSecondStepPublish:"May 6th 2022",dateEndThirdStepPublish:"July 5th 2022",dateEndFourthStepPublish:"September 23rd 2022",dateEndFifthStepPublish:"November 22nd 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. El-Ashram's research focuses on apicomplexan parasites, such as Toxoplasma and Eimeria. He has more than 96 SCI publications, he acted as an academic editor, reviewer, and he holds several registered patents.",coeditorOneBiosketch:"Researcher in enteric health, most notably probiotics and their relationship to nutrition and disease protection in poultry as well as the design of avian enteric inflammation models for the study of the impact of diet and microbiome on growth and development.",coeditorTwoBiosketch:"My research focuses mainly on apicomplexan parasites, such as Toxoplasma Cryptosporidium, Eimeria, and minor on nematodes. Prof.Alali has more than 30 publications and he acts as a reviewer in many journals.",coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",middleName:null,surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram",profilePictureURL:"https://mts.intechopen.com/storage/users/209746/images/system/209746.png",biography:"Dr. Saeed El-Ashram is a professor at Foshan University, China, and Kafrelsheikh University, Egypt, and a research professor at Zhaoqing Dahuanong Biology Medicine Co., Ltd., China. Dr. El-Ashram\\'s research focuses on parasitic diseases. He has more than 100 journal publications to his credit. He is currently an academic editor and reviewer and holds several registered patents. The primary focus of his research is to understand how the animal immune system recognizes and responds to parasitic infections with and/or without a microbial community. Some are the causative agents of significant diseases in humans, such as toxoplasmosis, cryptosporidiosis, alveolar echinococcosis, and fascioliasis. Others are a substantial financial burden to food producers because of the effects these parasites have on domestic animals, for example, coccidiosis and cryptosporidiosis (livestock and poultry).",institutionString:"Foshan University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Foshan University",institutionURL:null,country:{name:"China"}}}],coeditorOne:{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez",profilePictureURL:"https://mts.intechopen.com/storage/users/73465/images/system/73465.jpg",biography:"Guillermo Tellez-Isaias received his DVM and MS in Veterinary Sciences from the National Autonomous University of Mexico (UNAM), and his Ph.D. from Texas A&M University. He worked as a professor at UNAM for sixteen years, eight as head of the Avian Medicine Department, College of Veterinary Medicine. Dr. Tellez was president of the National Poultry Science Association of Mexico and is a member of the Mexican Veterinary Academy and the Mexican National Research System. Currently, he works as a research professor at the Center of Excellence in Poultry Science, University of Arkansas. His research is focused on poultry gastrointestinal models to evaluate the beneficial effects of functional foods to enhance intestinal health and disease resistance.",institutionString:"University of Arkansas at Fayetteville",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Arkansas at Fayetteville",institutionURL:null,country:{name:"United States of America"}}},coeditorTwo:{id:"437285",title:"Dr.",name:"Firas",middleName:null,surname:"Alali",slug:"firas-alali",fullName:"Firas Alali",profilePictureURL:"https://mts.intechopen.com/storage/users/437285/images/17927_n.jpg",biography:"Academic reviewer for many journals.\r\nAssociate Professor at University of Kerbala, Iraq. Firas Alali works at the Department of Veterinary Parasitology of Veterinary Medicine college, Kerbala University. Firas does research in Parasitology, Entomology, and Vector-Borne Diseases including zoonoses.",institutionString:"University of Kerbala",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"13",title:"Immunology and Microbiology",slug:"immunology-and-microbiology"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"453623",firstName:"Silvia",lastName:"Sabo",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/453623/images/20396_n.jpg",email:"silvia@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"18391",title:"Multi-Faceted Search and Navigation of Biological Databases",doi:"10.5772/18456",slug:"multi-faceted-search-and-navigation-of-biological-databases",body:'The field of biology has clearly emerged as a data intensive domain. As such, several challenges facing the design and integration systems for biological data exist [1] and continue to persist [2] despite the efforts of the bioinformatics community to reduce their impact. These challenges include 1) the large number of available databases, 2) their often http/HTML based mode of access, 3) their syntactic and semantic heterogeneity. The challenges are strongly supported by the number of increasing databases publically available—varying from 96 databases in 2001 to more than 1,330 in 2011 [3]. The available databases cover different data types including nucleotide databases such as GenBank [4], protein databases such as Uniprot [5], and 3D protein structure databases such as PDB [6]. While the majority of available secondary and tertiary databases are derived from primary databases such as PDB or Swissprot [7], and therefore contain redundant data, they generally provide the research community with added features resultant from studies conducted by the database providers.
Parallel to the exponential increase in volume and diversity of available data, there has been an exponential increase in querying these databases as a routine task when conducting research in biology. Retrieved data is often integrated with other data produced from remote or local sources and/or manipulated using analytical tools. Consider, for example, the study of genes associated with a particular biological process or structure. An isolated DNA sequence would be screened against known gene sequences in GenBank, converted to a putative protein sequence and screened against SwissProt. Finally, any region showing similarity to a known gene or protein can then be queried for known 3D structures and be visualized using the PDB database to obtain a general idea of putative structure and function of a newly isolated gene. A subsequent search of various specialized databases would still be necessary to obtain up-to-date information regarding analogous research in other model organisms and associated pathway structures. To support the types of studies involving multiple biological databases, several integration systems have been proposed [8-13]. To characterize the existing systems several dimensions have been proposed [1, 2], including the aim of integration and the integration approach. When analyzing the aim of integration, the existing systems can be largely classified as either portals-oriented or query-oriented. Portals-oriented systems have their focus on providing an integrated view to the accessed databases, where notable examples include SRS [14] and NCBI Entrez [15]. Query-oriented systems, focus on supporting user queries that can span more than one database. Examples include TAMBIS [9], BACIIS [12] and Biomediator [16]; and to some extent workflow systems such as Taverna [17]. With respect to data integration approaches, three main alternatives have been deployed: data warehouse, data linkage, and wrapper-mediator.
In the wrapper-mediator approach, the integrated data is not physically stored at the integration system as it is in the warehouse approach. Rather, it is obtained at the time of the query using the wrappers to interface with the data sources and the mediator to generate a uniform view of the data for the integration system. This principal advantage of the mediator approach is that it fits very well with the ever growing number of databases and their short life expectancy [2].
The data search behavior of pre-genomics era researchers was largely a one-gene-at-a-time approach. Indeed, transitioning from wet-lab experiments progressively towards more in-silico experiments, post-genomics researchers will often start from an incomplete biological entity, such as the DNA sequence, and use available databases to annotate the entity with multiple biological features (or facets) to build a more comprehensive perspective. To address these types of queries, current databases and the majority of existing portal systems typically provide users with a keyword search, where results are given as a list of top-ranked records that match the query. Clicking on, or selecting, any record will retrieve additional annotated information about the target record including references to other databases. This record-based approach is clearly not scalable when considering the number of returned records from databases, especially with portals integrating several complementary databases. Systems such as GeneCards [18] are closer to providing users with a more comprehensive view of the records without having to search for other databases (in addition to other options such as advanced search and output parameters). However, the record-based approach requires the user to “click” on each record sequentially to progress through the rest of the features (facets) and to manually compare returned records.
High-throughput technologies and advances in next-generation sequencing have placed an increasing emphasis on the need for a systems level approach to the study of the life sciences, with the generation of hundreds of thousands of genomic and proteomic data points rather than only a few hundreds. Concurrent with these developments, there is an increasing need to perform bioinformatics studies at this systems level, as well as the gene level. For example, a protein such as Notch1 which is involved in lymphocyte development acting at the cell surface, could be the starting point for searches on associated signaling and metabolic pathways, protein-protein interactions, transcriptional regulatory networks, and drug targets important in this system. A holistic systems level search will provide the geneticist or developmental biologist a clear an advantage in terms of time, effort, and knowledge gain, previously unattainable by record-based searches. Specific applications exploring the relationships between biological entities such as protein-protein interactions, e.g., the DIP database [19], already provide a systems view. Biological databases and database portals are currently lacking in this pivotal capability. A faceted classification approach provides a multi-dimensional view of the data that can be used to both group and aggregate the data. Similar to the OLAP approach and data cube technology [20], biological data can be represented by a set of biological features or facets (i.e. dimensions) such as gene information, pathway information, drug targets information, etc. These facets can in turn be used to conduct an interactive, discovery-driven search where the user can navigate through the multi-dimensional data, refining the search by drilling down or rolling-up any hierarchical facet and/or by combining multiple facets.
We propose Biofacets, a multi-faceted data integration system for querying biological databases. The key feature of Biofacets is the support of multi-faceted searching/browsing of biological databases, thus providing a true representation of the system view of biological data. Biofacets is based on a wrapper approach where search queries submitted to Biofacets are relayed to the integrated biological databases, and results are aggregated on the fly using the multi-faceted scheme.
The main contribution of the paper encompasses the following:
Demonstrate the potential of multi-faceted paradigm in advancing biomedical research.
Understand the challenges that surround the building of wrapper-based multi-faceted data integration system for biological databases.
Describe the solution we propose to address these challenges. Specifically, we describe the evolution of Biofacets architecture that led to a more scalable and reliable infrastructure.
While the focus of Biofacets is to primarily empower biological databases with faceted searching/browsing, data integration issues are closely linked to the project. As described in section 1, several integration systems have been proposed in the bioinformatics community (see [2] for a recent survey). Integration Systems vary from simple but powerful settled- warehouse solutions to more flexible ones using technologies such as mashups that expose the researchers to a greater control and therefore more apriori informatics knowledge in resolving the integration issues. Recently, hybrid solutions [21] involving the semantic web and the wrapper-mediator integration approach (also known as view integration) have provided a step forward towards leveraging the flexibility of the available integration architectures while reducing the impact of the semantic heterogeneity that characterizes biological databases. Note though, we have yet to see the impact of new paradigms such as dataspace systems [22, 23] that offer a less rigid but perhaps more expandable integration architecture in designing new biological data integration systems.
Biofacets uses a wrapper mediated approach on Local As View (LAV) data model approach as opposed to a Gloabl As View (GAV) approach [24]. This approach is particularly flexible for data sources that are less stable as is the case for biological databases (see section 3 for more details). Another feature of the Biofacets data integration approach is that, as a portal, the mapping between the global schema and the source schema is straigtforward and the emphasis is on mapping the source schema into the global schema.
Faceted searching, the main motivation behind building Biofacets, is less explored in bioinformatics despite its popularity in other applications and in the research community [20, 25, 26]. The majority of research effort providing automatic support for faceted data search is related to (a) the automatic generation of the facets and their hierarchies (hereafter referred to as the
In Biofacets, the browsing scheme serves as the global schema for the wrapper-mediator data model. Moreover, in the current version of Biofacets, the scheme is generated manually as the main current focus is to showcase how multi-faceted browsing can be leveraged when searching biological databases.
Biofacets is designed as a client server application to be used as an enhanced portal between researchers and the wealth of databases publicly available in the Web. Figure 1 highlights the various modules of the Biofacets system and their current status in the design/implementation process [43-45]. The user query is forwarded to the Query Module, which in turn passes it to the Cache Management Module, to determine whether the query has already been cached; in which case the results’ URLs are immediately available. In case the query is not cached, it is processed by the Query Module. A keyword search is launched against each integrated database using the source information from the Source Knowledgebase. As results become available from each database, they are passed on to the Faceted Classification Module, which assigns facet values to each record using the Facet Knowledgebase. Finally, the data records, together with the corresponding facet values, are passed on to the Presentation Module, which prepares a presentation file to be viewed via the Web Interface. Note that the results are grouped by facets and no specific ranking is used to list them within a facet.
Overall Architecture of Biofacets
In the following sections we will detail the core modules essential to Biofacets.
Biofacets is both a meta-search engine and an integration system. Results retrieved from the databases can be integrated into a uniform internal representation, thus resolving the heterogeneity issue characterizing biological databases. More precisely, the role of the wrapper is to ensure (i) querying of the supported databases, (ii) extraction of data from retrieved results pages, and (iii) integration of results using a shared terminology into an internal representation. The last two tasks are performed together, though they are two distinct processes.
To perform the data integration phase we distinguish between two types of databases: databases that rely only on http-html protocols to make available their data, and databases that support XML as an option for results output. Within the latter group we find databases that provide XML as an output in addition to the HTML support, and databases that provide support for web APIs to query their data with XML as one of the options for output. Next we will describe the wrapper solution for each of these two types of databases.
Most of the web-based biological databases are only accessed through http protocol using a web interface requiring integration systems to mimic user search behavior to query them. Biofacets stores the base URL for wrapper use as part of the database schemas in the
The first version of Biofacets uses an extended version of HLRT rules [46] for data extraction. The main principle of HLRT rules is the identification of landmarks from which to precisely extract the value of the identified labels. The landmarks located left of the target value are known as “Head” and “Left” delimiters, and those located to the right are known are “Tail” and “Right” delimiters. The wrapper engine uses extraction rules for extracting entities and their values from both summary and extended pages; where summary pages usually include summary information for each record retrieved, and extended pages provide detailed information for one record. The wrapper will use the schema defined for each database to generate the internal representation (both summary and extended) of the results, serialized in XML, to be used by the faceted classification and the presentation modules (Figures 2 and 3).
Sample Summary extraction rules
Note that the entity labels (e.g. protein_definition, ncbi_protein_identifier) used to generate the internal representation of the results are part of the facet knowledgebase used to integrate the results of queries resulting from different and heterogeneous databases.
Within the first version of Biofacets the database schema (Figure 2) was manually generated. Currently we are working on providing automation support to the process of data extraction and data labeling (see Section 4).
Databases schemas include the information necessary to query the database (i.e. the base URL) and to extract the facets and facet values of the labels providing the uniform view of the integrated data, in addition to HLRT rules. These labels are part of the Biofacets knowledgebase (see section 4).
Sample Summary extraction rules
The majority of biological databases offering support for XML output are from NCBI [47] and EBI [48]. Both provide access to a large number of databases using (i) APIs to facilitate the querying of databases and/or (ii) an XML representation of query results. For example NCBI Entrez makes available Esearch and Efetch utilities [47].
When dealing with this type of databases, querying still requires URL submission. However, writing extraction rules is reduced to writing XSLT transformation rules [49]; a standard process as compared to custom HLRT rules.
While the XML presentation option is increasing in availability for results presentation, mapping is still required between database-specific entity names (i.e. XML element names/attributes) provided by the database XML output result and the internal labels used by the internal XML result presentation as provided by the facet knowledgebase (for integration purposes).
The main feature of the Biofacets system is the proposal of a dynamic, hierarchical, and faceted classification approach that supports the categorization of query results by dynamically assigning facets to retrieved data records. The main difference between a static facet approach and a dynamic approach lies in the fact that for a static approach, the assignment of facets to data items is statically performed
A facet is simply a method of classification. It groups together results with the same value for a particular category or field and provides a view of the result set classified according to each of these categories. The categories defined are mutually exclusive and hence facets are orthogonal. Using faceted classification, a record is described by combining facet values. In Amazon.com a subset of the facets used to describe clothes, for example, are price, brand and size.
We define a facet using three criteria: (i) its
Regarding the assignment of values to facets, we identify two approaches:
Facet depth generation concerns hierarchical facets and specifies whether the hierarchy of the facet is known a priori before it is deployed by the classification process or it is dynamically generated during the classification process. The need for dynamically generating a facet hierarchy is proposed to take into account large exhaustive hierarchies such as the organism hierarchy for which only a subset is generally needed for a query. Moreover this hierarchy is developed and maintained by third party organizations, such as Newt [50] and NCBI for organism facet. For dynamically generated facet hierarchies, the classification rule is a combination of
Assignment of facet values to records is decided at the data source level. Thus, records from the same data source will share the same set of facets; each facet is assigned using the same rule. Therefore, for each database supported by Biofacets, one needs to specify the set of rules that apply to the data source, and the instantiation of the facet rule. For a static facet (e.g. “Data Type”), the static value is specified (e.g. “protein type” for NCBI Entrez (Protein)). For a dynamic facet, we specify the type of rule applied, as well as the fields or the third party data sources involved (figure 4).
Faceted classification specification extract
The set of classification rules that assigns facet values to each facet, for each database, is referenced hereafter as the
The algorithm we propose for assignment of facet values described in [51] uses
Note that for the databases with support of XML output, the summary XML pages contain only the identifiers of records that satisfy the search query. The information to be used by Biofacets is in the extended XML pages.
Faceted classification can be used to support researchers (1) in browsing the results returned by the integrated databases; (2) and in targeting the search (i.e. advanced) query; with the ability to specify a set of values for a given facet at the time the query is submitted; for example, searching within the facet protein name for records with protein name “tyr”. These values submitted to guide the search will then be used to filter out the results before they are displayed to the user. While the first goal is overall supported by the current prototype (Figures 5-7), the second goal is supported to the extent that researchers can specify the facet they are interested to find data records about.
Biofacets Main Entry Page
With keyword search, users can specify which facets they want results to be grouped by. Once the results are displayed, the user can refine them by zooming-in (specialization) or zooming-out (generalization) in the facet hierarchy. As part of the refinement, the user can also select another main facet to narrow down the results using a combination of facets. To facilitate the process of searching and refinement, we incorporate state-of-the-art guidelines into building Biofacets’ interface [52]. This include features such as the display of the record count at each level of the facet hierarchy, and the indication of the list of the facets involved in the current displayed results with the bread crumb technique.
The main entry page to Biofacets (Figure 5) includes information about the main facets supported by the integration system, and the databases currently supported At the time the screenshots were taken only databases that support XML output are searched as the Biofacets system is currently in the process of redesigning its component that handles databases with no XML support.
Results Returned
Figure 6, depicts the results returned by the search for records related to “tyr”. The facets data source, protein information and gene information are expanded to highlight some of their sub-facets. To each (sub) facet the number of records for which the facet has a value is displayed. The records matching are summarized using a table. This summarization technique is becoming very popular with biological databases. We choose the following facets to summarize the content of the records: database name, gene name, protein name, pathway ID, organism name, gene ontology term, and literature pubmed ID. Links to the original records are also provided for each record.
NCBI Database Results
In figure 7, the user clicks on NCBI databases facet and the initial results are filtered using this facet. Only the records corresponding to NCBI databases are displayed in the main frame of the results page. Figure 7 also shows the progression of the bread crumb option to help the user keep track of the filtering process he/she is performing. Note that the bread crumb option can also be used to zoom-in and zoom-out in the results.
Part of the future work is to conduct an evaluation and validation of Biofacets’ browsing interface in order to ensure that Biofacets is tailored to researchers searching and browsing needs.
Biofacets knowledgebase is the backbone for Biofacets system. It includes (1) the source knowledgebase deployed by the query module, and is composed of the schema of the integrated databases; (2) the facet knowledgebase composed of the faceted scheme and its formal description,
An ontology is the specification of a conceptualization as it consists of a set of concepts expressed by using a controlled vocabulary and the relationships among these concepts, which are used to infer the meanings of these concepts. In bioinformatics, ontologies are becoming popular data models. They can be classified, according to their use, into three categories: domain-specific, task-oriented, and general [53]. An example of a domain-specific ontology includes Gene Onotology GO [54]. Examples of task-oriented ontologies include EcoCyc [55], TAMBIS [9] and BACIIS [56]. Biofacets ontology falls into this category as its purpose is to facilitate the task of categorizing data records. More precisely, Biofacets ontology was designed to satisfy the following:
Provide a shared terminology to allow mapping between databases’ specific terms by having them correspond to unique terms provided by the terminology
Provide support for the hierarchical structure that characterizes faceted classification schemes
Provide support for other relationships between concepts in addition of the parent-child relationship.
While the first two conditions can be provided by a general taxonomy, the third condition requires the use of ontologies to represent more than subsumption relations between concepts. Provision for such relationships is important to support automatic assignment of facets to databases (see section 4).
In addition to including concepts in biology domains (e.g. DNA sequence), concepts related to bioinformatics (e.g. id of a protein) also need to be represented in the ontology. Moreover, general concepts such as those related to disease or literature information are also part of the shared vocabulary. Task-oriented ontologies such as Mygrid [57] and SIBIOS [58] are too complex for the purposes of Biofacets, as these ontologies are designed to support in-silico experiments, deploying both databases and analytical tools such as NCBI Blastn [59]. Leveraging on our experiences building BACIIS [56] and SIBIOS [58] ontologies, we adopted an incremental design of Biofacets ontology. More precisely, the purpose was not to provide a comprehensive ontology that will support all potential databases before starting to use Biofacets, but rather to provide an
Surveying ontologies: this includes not only standard ontologies such as GO ontology and Mesh ontology, but also task specific ontologies such as TAMBIS and Mygrid ontologies
Utilizing popular categorizations such as the categorization supporting the nucleic acid research collection [3] and DBCat categorization [60]. This will provide insight with respect to the hierarchical structure of the ontology and the concepts names to be used
Initializing the integration process with popular databases such as UniProt [61] and data centers such as NCBI. The aim is to leverage on the popularity of these databases and utilize as much as possible of their terminologies when defining Biofacets ontology terms.
The current Biofacets portal is supported by a manually generated faceted scheme. The design is based on the study of a list of the 25 most popular databases specializing in different topics selected from the Nucleic Acid Research (NAR) database collection [62]. The main facets identified in the study are “data-type, data-source, literature, protein-info, gene-info, organism-hierarchical”. Each main facet contains up to 3 hierarchy levels including the facet values. The facet “data-type” groups the results based on the type of the data described in the record (e.g. protein, gene, literature, alternative splicing). “Data-source” facet has two sub-facets: “NCBI-databases” and “other-databases”. EBI databases facet was added at a later stage. The facet “hierarchical organism”, grouping records according to their lineage information, is special in the sense that facet hierarchy is not stored locally; but it is generated dynamically by integrating the facet paths provided by each record This facet is currently not available waiting for the Biofacets redesign to complete.
Biofacets is designed as a meta-search engine for biological databases enhanced with a classification mechanism of queried results. Two main factors pose a bottleneck for the overall query response time: (1) the time necessary to query remote databases and get the results back and (2) the time necessary to classify the results due to the dynamic nature of the faceted classification approach.
In the domain of biology, indexing biological data seems inappropriate purely due to its sheer volume and heterogeneity; which makes the prediction of user queries an unpractical task. To reduce the impact of these factors, the solution we propose consists of (1) caching the query results, especially the most frequent queries and (2) querying all supported databases in parallel, while progressively providing the results to the user as soon as they become available.
The main role of a cache management component is to ensure efficient retrieving/storing of results from/into the cache, and appropriate cache replacement/refreshment strategies. A number of cache management schemes have been proposed and currently deployed by search engines such as Google, including [63-70]. These strategies mainly differ in terms of what data to cache and the data refreshing/replacement strategy. Biofacets strategy is mainly dictated by the first criteria as it deals with different types of data in terms of formats and levels of processing. The aim is to balance between the time necessary for internal processing, and the space available for data storage.
The solution we designed relies on storing both the internal representation (summary and extended) of the record and the URL. While the record URL is essential to retrieve the data, the argument on whether or not to store the record information locally is still in early stage. The experiments run on a limited data set clearly show the performance gain that the approach provides when compared to “no caching” policy. These results are supported by an efficient database design and heavy indexing support. However, more experiments need to be performed to assess the system scalability with the increased number of users and queries in order to determine a tradeoff between a satisfactory query response time and a manageable database. More studies and experimental support are needed to assess the adequacy of the proposed cache based on LRU (Least Resource Used) update strategy [71], especially as the system get deployed by the research community and the cache size limit is experienced in real time. Similarly, while the strategy of querying all supported databases seems to be appealing, especially that we provide the results to the users as soon as they are received by Biofacets, it remains to be tested to assess its impact on the system resources (see section 4).
The Biofacets prototype demonstrates that the faceted search of biological databases is feasible. Such a tool should be advantageous to researchers. On the one hand, it provides results from many biological databases in one standard format, obviating the need for researchers to learn the varied interfaces of several biological database providers. On the other hand, Biofacets provides links back to the original data in the source databases if the researchers need to view these data. Biofacets is only a prototype and needs several enhancements.
As mentioned earlier, the current facets and sub-facets were manually identified. This process of finding facets could be semi-automated. We are currently investigating the use of clustering techniques to generate the faceted scheme. The initial results we obtained suggest that the fully automated faceted generation process needs knowledge expertise to guide the clustering process. This thread of research will be the part of the future research on Biofacets.
An additional enhancement would be to allow researchers to establish their own faceted scheme and then apply this scheme to the data. This may require the use of different technologies than are currently used in Biofacets.
Biofacets currently supports only a small number of biological databases. Many more databases need to be added to its repertoire.
As mentioned earlier, manual generation and maintenance of XSLT files and wrappers (to support HTML based databases) is not effective and will not scale to the numbers of biological databases available. These tasks need to be semi-automated and that work is already underway. In the context of the latter type of databases we are involved in a research collaboration that is interested in using active learning [72] to propose a new scalable semi-automated approach to generate wrappers.
Finally, for Biofacets to be a truly usable tool, it needs to be accepted by the researchers who will be using it. Plans are being developed to allow various groups of potential users of Biofacets to experiment with Biofacets and provide their feedback. This feedback will be evaluated and incorporated into Biofacets as is feasible.
We would like to thank Myron Snelson, school of Informatics, IUPUI, for his insightful suggestions and help in proofreading the document. This project was supported in part by NSF CAREERDBI-DBI-0133946 and NSF DBI-0110854.
It is known that external environmental conditions provoke to the phenotypic and genetic plasticity of plant during vegetative and generative growth and lead to change of duration of ontogenesis of both individual species and populations [1]. Given that exposed to a specific exogenous factor, some plants experience stress, and for other plant species this factor is the optimal condition for life, the definition of stress for the plant is quite complex and problematic. According to many definitions, stress is a harmful adverse force or condition that inhibits the normal functioning of a biological system, such as a plant. According to [2], stress for a plant is its response to the action of adverse or even detrimental to growth and development of plant. For the plant, stress is measured by both signs of survival and signs of adaptation, yield, growth parameters and assimilation. External signals of the environment, such as light, temperature, water status of the soil ̶ these are the most important signals that affect the growth of the plant. The perception of these signals and the plant’s response to them affects a whole cascade of events that require knowledge of the signal and its transduction into a physiological response [3]. In the perception of signals of adverse abiotic stresses, primarily involved protein receptors of the cell wall, that send this signal to the transport system into the cytoplasm. Such receptors of ell wall appear to be arabinogalactan protein molecules that bind the cell wall to the plasmalemma, cytoskeleton elements, and apoplast components. In addition to these proteins, stress receptors can be mitogen-activated protein, numerous kinases, and several transcription factors [4]. Stress is first perceived by cell wall receptors, which send a signal to the receptors of the cytoplasmic membrane, then the signal is reformed and reduced, and the result of this transformation is the participation of secondary mediators [3, 4, 5, 6].
Determination of the plant state in a changing environment in conditions of increased anthropogenic pressure and global climate changes is becoming one of the main problems of plant biology and ecology. In natural conditions plants can be influenced by a complex of unfavorable environmental factors. Despite the long list of abiotic and biotic stresses, including: cold, high temperature, salinity, drought, floods, radiation, air and soil pollutants, pathogens and others, we will consider the most significant adverse environmental factors: drought and flooding, which negatively affect plants’ growth, up to their death. The search for universal biomarkers that would make it possible to determine the state of plants regardless of nature and number of stress factors is urgent. The cell wall of plants can be such a marker, since it is the growth and differentiation of the cell wall during primary and secondary growth that undergoes significant changes under conditions of changes in the water balance of the plant. The basis of this section is the idea that the stability of ontogenesis under conditions of unfavorable climatic and anthropogenic changes in the environment is due to the plasticity of the structural and functional organization of plant cell walls. We put forward a hypothesis about the existence of a coordinated response of the structural and functional systems of the cell wall and the cytoplasm of plant cells, which is involved in the adaptation of the plant to the action of extreme natural factors—drought and flooding.
Drought is a deficit of water in the soil, which affects the growth and development of the plant. Drought stress is seen as a condition in which water potential and turgor of a cell are reduced, although the plant can function normally. Water stress is considered as the loss of water by the plant, which leads to the closure of the stomata and restriction of gas exchange by the plant. Wilting of plants is characterized by an intensive loss of water, which leads to next changes, including of plant metabolism and cell structure, to change of activation of catalytic enzymatic reactions, to inhibiting the process of photosynthesis and destructed metabolism, which can lead to cell death [7, 8]. Drought can be chronic or temporary. The latter is observed when the weather changes rapidly and unpredictably. Moderate drought is a phenomenon in which the plant begins to feel the effects of drought. Under such conditions, plants have developed specific mechanisms of acclimatization and adaptation in response to the short-term or long-term action of the factor [9, 10].
In this respect, the reaction of plants to drought is well studied in psammophytes growing on sand dunes has been better studied. Psammophytes develop mechanisms and specific features that ensure not only a normal state of life, but also functioning under stressful conditions. These mechanisms are reflected in the morpho-anatomical changes in the vegetative organs of plants [7, 11] that help psammophytes to adapt to environmental conditions, and manifested in a decrease in the size of leaf blades, the formation of water-retaining parenchyma, a change in the size of the leaf conducting system, twisting of leaf blades, a change in the cell wall structure, change of density of stomata, an optimization of transpiration, enhanced synthesis of wax and lignin, the formation of trichomes and silicon inclusions in cell walls and formation a thick cuticle [7, 12].
It is showed that even with a slight drought, the growth rate of plant organs decreases: roots and aboveground organs react very strongly to such stress, their growth reduce [13, 14] that connected with structural-functional changes of cell walls [15]. Drought cell growth decreases have been described for leaves for psammophytes, including
Under drought conditions in the roots there revealed a decrease in the size of the parenchyma [20]; in the endoderm, cell walls thicken, and additional layers of cells were with strongly suberinized cell walls are formed around the stele [21]. In the periderm, cell walls were also impregnated with suberin, which reduces the penetration of water through the cells of the cortex. Special lacunae for water storage were formed in root [22]. Whereas in leaves the effect of drought is manifested in the reduction of sugars in the fraction of cell walls, which should certainly be reflected in the composition of polysaccharides in the walls. Studies of the effects of drought on crops have shown that the cell walls of aboveground photosynthetic organs are also sensitive to this factor. Studies of polysaccharides of cell wall matrix in reduced coleoptiles of wheat seedlings under drought from 6 to 15 weeks shown that during the first week of drought exposure, drought-sensitive varieties showed a decrease sugar in the fractions of wall matrix: rhamnose, mannose, galactose, arabinose, xylose, and glucose and uronic acids [23]. In addition, in the hemicellulose fraction of drought-resistant variety was shown decrease in arabinose, mannose, galactose and increase in rhamnose, xylose, glucose, uronic acids in comparison with drought-sensitive variety. These changes were accompanied by an increase in the activity of glucoside hydrolysing enzymes: α-galactosidase, α-L-arabinofuranosidase and 1.3–1.4-β-glucanase in drought-resistant varieties. The observed changes in the matrix of cell wall of coleoptiles of two varieties of wheat under the action of drought reflect changes in cell metabolism, which directly affected the growth rate [23]. Similar changes in the content of sugars (glucose, fructose and sucrose) and the activity of 1.3–1.4-β-glucanase have been previously noted by other researchers in studying the effects of water and salt stress on wheat stalks [24].
Wax and cutin are involved in the regulation of water and lipids transport through the cell wall [25]. Plant’ wax is a mixture of aliphatic and cyclic hydrocarbons and their derivatives. The composition of waxes varies depending on the species and organs’ plant. Cutin is involved in the regulation of the diffusion of gases and moisture in the main cells of the epidermis and the stomata. It is known that the cuticular membrane can be both hydrophobic and hydrophilic. If the cuticular membrane is hydrophobic, the functions of the cuticle are to reduce water loss by the organs; and if the cuticle is hydrophilic, then the function is to transport water, aqueous solutions, and lipids (waxes) [26]. It is known that the aboveground organs of plants that grow in dry climates synthesize a significant amount of wax and cuticle, which are a barrier to transpiration [27]. Wax and cuticle are the main barriers against “uncontrolled” water loss by leaves. Therefore, in the adaptive responses of above-ground bodies, to action of a drought, the strengthened synthesis of these two components of cellular components of epidermis plays a certain role.
Wax can be located the inside cutin layer, or be situated on top of the cuticle. A two-year study of the long-term effects of drought on pine needles (
For plants that grow in drought conditions is characterized by the participation of cell walls of the epidermis of the leaves in the water intake. It is known that the above ground organs of desert plants can absorb water from the leaf surface, intercept precipitation and absorb fog, using an atmosphere saturated with water [34, 35]. To do this, plants use trichomes [36], the specialized glands [37], and also form a hydrophilic surface in specialized epidermal cells that contain water pores [38]. It is shown that the leaves of
Another feature of leaf structure to optimize water balance is twisting and/or folding of leaves. Leaf twisting is designed to maintain the optimal water balance of plants growing in inadequate water supply conditions [40, 41]. The twisting of the leaves of many psammophyte grasses is due to the specialized structure of the epidermis of the leaf blades and the presence of bulliform (motor) cells, the cell walls of which function to enter and exit water, reducing leaf area affected by drought [41, 42]. The cell walls of the bulliform cells of the epidermis synthesize guajacyl monolignol and callose, which helps to quickly change the entry or exit of water from these cells [43]. Twisting preserves optimal heat transfer and optimal water-vapor density in leaf tissues [41].
The presence of trichomes and increased cuticle density in cell walls are typical features of the leaf blades of psammophyte plants growing on coastal dunes [44]. Psammophytes have two types of trichomes: glandular and non-glandular. Glandular trichomes were found in the leaves and stems of psammophyte
Lignin is a branched biopolymer that, together with hemicellulose and pectin, acts as an adhesive matrix for cellulose microfibrils. Lignin provides mechanical strength of tissues and organs, impermeability of water and aqueous solutions through the cell walls. Lignin is a complex of phenylpropanoids (monolignols) [46]. Early work (Barnett, 1976) on the effect of drought on wood lignification showed that the tracheid rings stuck together because the secondary walls of young trees did not contain lignin. The formation of false rings in drought-stricken trees is a well-known phenomenon [47]. According to Lloyd Donald [48], who studied the anatomy of wood and the characteristics of cell walls in
It has been shown that even a slight drought (up to 12 days) caused an increase in lignin precursors (coumaric and caffeic acids) in xylem maize juice, and this was due to a decrease in anionic peroxidase activity, indicating the effect of drought on lignin biosynthesis [49]. Different areas of the corn root respond differently to drought: in the basal part of the roots, growth is inhibited compared to the apical part of the roots, which is associated with the expression of two genes involved in lignin biosynthesis: shinamyl-CoA reductase-1 and -2. Such decrease in growth is due to an increase in lignin deposits, which increase the stiffness of the cell wall and reduce the growth rate, which may also be due to changes in factors such as water, minerals and sugars.
It was shown that after 28 days of drought,
It is established that the impact of drought depends on the duration of its action, the species of plants and the growth stage. It has been shown that even a slight drought (up to 12 days) caused an increase in lignin precursors (coumaric and caffeic acids) in xylem maize juice, and this was due to a decrease in anionic peroxidase activity, indicating the effect of drought on lignin biosynthesis [49]. Roig-Oliver et al. showed for the first time that during long-term water deficiency, changes in the content of lignin, cellulose and hemicellulose in the cell walls of
Abiotic stress, including drought, cause a change in the mechanical strength of the cell wall due to the synthesis of lignin and activation of several the types of reactive oxidative species (ROS). Cell walls become stiffer and the overall mechanical stability of tissues and cells increases provided of an increase of wall peroxidases activity, increase in H2O2 concentration and/or an excess of peroxidase substrates [54]. The resulting increase in mechanical strength of the cell wall is occurred the change of cell’s turgor that enable plant cells to endure the osmotic stress caused by drought [55].
Cell walls not only change their structure in response to drought, to reduce water evaporation by cells, but also act as structures that, accumulate water for the needs of the cell. In particular, plants increase the content of pectins as a wet absorbing structure. This has been shown in the laboratory in the study of roots and stems of wheat seedlings (
The study of the effect of water deficiency on the content of pectins in sunflower leaves showed that this polysaccharide is the most sensitive to water stress, it is the first to react to stress, reducing its content after a short exposure to stress (5 hours), while hemicellulose and lignin changed its contents only after 24 hours of stressful influence [56]. Early was established that pectins are crucial to determine wall characteristics. Changes in pectin physicochemical properties during stress induce the rearrangement of cell wall compounds, thus, modifying wall architecture and influencing on photosynthetic characterization of leaves of
The use of a model object, in particular
It is established that the resistance of plants to drought is due not only to changes in the structure of cell walls of epidermal tissue, but also the deposition of silica in cell walls in the form of amorphous or crystalline inclusions [60]. According to Wang [61] silicon inclusions in epidermal cells reduce the influence of thermal effect on the leaves by reflecting the heat flow in the far infrared region of the sun light flux. This provides a passive mechanism for cooling the leaves in high sunlight. Although the mechanism of this action is not yet known, these issues need further to study. Silicon can deposit in leaf epidermis trichomes giving these structures are hardness and rigidity, making the leaves inedible to animals [62]. As a rule, most silicon is contained in cell wall protopectin, a water-soluble pectin fraction [63].
It has been established that silicon decrease the cuticle transpiration of aboveground organs. This chemical element, which accumulates in the cells of the epidermis of leaves and stems, forms a thickened cuticle-silicon wall, which protects the plant from excessive moisture consumption by reducing the cuticle transpiration. In addition, the plant’s walls can form hydrophilic silicate-galactose complexes that bind free water, thereby increasing the water retention capacity as in specific cells, as and in different tissues and in the organs of plant [64, 65].
Because of the density of cell walls and their ability to retain moisture, silicon compounds can significantly increase plant resistance to drought and protect plants from being lodged (fallen) [66]. Silicon reduces of water evaporation on the leaf surface, as has been shown, for example, on rice seedlings [67], on other crops, in particular in drought-resistant wheat [68] and sorghum [69]. Silicon can also influence water transport by regulating the osmotic potential of cells by increasing synthesis and accumulation of osmotic active substances (e.g., proline, sugars and inorganic ions) [70, 71].
Over the years, significant progress has been made in discovering the cell wall-specific genes related to drought tolerance [72, 73]. These researches were carried out at rice in vegetative and reproductive stages [72]. In the reviews [72, 73] shown the major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated under drought tolerance or salinity stress of plants. On rice plant during of drought stress was identifying series genes, which take part in tolerance of this species to both drought or salinity stress: 1) drought inducible AP2/ERF family TF gene
Molecular methods have shown that during drought, increased wax and cutin synthesis is accompanied by activation of genes (
Transcription factor that regulates the biosynthesis of the cuticle (
Genes (
Genes involved in the reduction and decarboxylation pathways (
Gene involved in the biosynthesis of wax and cuticle (
An early response of the
The physical properties of the cell wall are also play an important role in water deficiency [80]. Analysis of the
The study of physical properties, stiffness in particular, cell wall from the root elongation zone using atomic force microscopy in
A study of the effects of drought on Arabidopsis mutant plants (with cellulose synthase genes—
Rui and Finneny [86] proposed a model for regulating the cell wall response to stress; according to this model, certain aspects of the wall itself can act as growth-regulating signals. The molecular components of the signaling pathways that determine and maintain cell wall integrity are shown, including sensors that detect changes on the cell surface and downstream signal transduction modules. There are several cell wall receptors that sense stress, including drought or salinity. Such receptors, according to the authors, may be the receptor-like kinase THESEUS1 (THE1) and FERONIA (FER) localized on the plasma membrane or Ca2+.ATPase. Kinase THE1 has been identified by suppressor screening in a cellulose-deficient mutant background; and FER is widely expressed and serves as a signaling node that functions in a wide range of processes, including plant growth, vacuole morphology, mechanosensing, hormonal signaling, and others. In contrast, the FER protein exhibits defects in growth recovery under salt stress as a result of failure to reverse salt-induced softening of the wall and increased frequency of cell rupture.
Summarizing the above material of numerous experimental works, we can propose the following scheme of response of cell walls of plants growing in drought or deserts: perception of drought signal (high air temperature and low soil moisture) leaves and roots → stopping or inhibiting growth of root and leaves → reduction of cell size → closure of stomata in leaves → reduction of stomatal conductivity for CO2 (or cessation of stomata and shedding of leaves) → in the roots of the formation of water lacunae; in stems of succulents (during leaf shedding) water storage in specialized lacunae of the parenchyma → thickening of cell walls, their lignification and suberinization, intensified synthesis of wax, expression of genes associated with the synthesis of extensins, dehydrins and cellulose, activation of enzymes for synthesis of lignin, suberin due to changes in the expression of the corresponding genes (Figure 1).
Schematic representation of the main functional changes of plant cell wall during adaptation to drought.
Flooding is a potentially detrimental stress for many terrestrial plants; flooding occur when water covers the area, caused by both natural (river floods, heavy rainfall, tides) and artificial causes (construction of reservoirs, ponds); it can be short-term, intermittent (during river floods) or long-term, in which many species may die. Peculiarity of flooding as a stress factor is a combination of significant changes in water availability of plant and oxygen respiration in the root system, and as a result there is inhibition of aerobic processes, impaired absorption of ions and nutrients, changes in metabolism and growth processes [87]. The next factors are affected on the flood plant: a decrease in illumination and change in the light spectrum, a lack of acidity and CO2. It is known that water absorb flow of light and disperse of light [88, 89]. In flood conditions, the diffusion of gases is much slower than in air, and this is what limits normal photosynthesis and aerobic respiration [87]. Some plants that are resistant to flooding use the acceleration of stem growth to get out of the water and such a stem rises above the flooded part of the plant. The part of the plant that emerges from the water begins to come into contact with the air environment, renovating aerobic metabolism and photosynthesis [90]. Hydrophytes and wetland plants, which have adapted to both the lack of oxygen in the soil and the constant aquatic environment, have for millennia developed certain mechanisms of adaptation at different levels of the organization. The main signs of rearrangement are a decrease in the thickness of the leaf blade, rearrangement of the mesophyll, the presence of chloroplasts in the epidermis and changes in the structure of cell walls [91]. Cell wall of the epidermis of flooding plants is the first to react to the water environment, changing their structural- functional characteristics to optimize the water balance of plants. Therefore, the analysis of comparative structural and functional studies of flooded and above-water leaves is important for understanding the role of cell wall in the adaptation of plants to the aquatic environment.
The greatest stress for under-water plants is the weakening of gas exchange, which causes a decrease in oxygen in the stem and root, and also [92, 93] can induce enhanced growth by elongation, which promotes the release of leaves from the water to the surface and accelerates their contact with air [94]. Modification of cell walls for underwater growth and elongation requires energy, but, as a rule, such plants are characterized by limited aerobic metabolism. It is studied the structural changes in
In cell walls of flooding leaves is occurred in protein synthesis. Under-water growth of rice is characterized by more elastic cell walls, which are usually characteristic of walls with increased synthesis of expansin [96, 97, 98]. In the cell wall noted protein modification, including expansins, which are activated at acidic pH [99, 100]. Rapid regulation of apoplastic pH provides a rapid way to regulate and modify apoplast expansin activity. The association between decreased cell wall elongations has been attributed to decreased tissue sensitivity to expansins [101]. Changes in the composition and nature of cross-links between cell wall polysaccharides may be limited by the mobility of expansins or their availability to the substrate polymer. The study showed a change in the ability of expansions to bind to cellulose depending on the properties of the hemicelluloses that cover the microfibrils [102].
In low-growing rice, flood resistance is explained by the activation of two genes:
The composition of the wall can also determine the effectiveness of expansins to elongation of a wall under conditions of flooding the plant. The decrease in the elongation of cell walls in the segments of underwater rice stalks at the exit from the water to the air correlates with the changes in the composition of walls: an increase in xylose and pectic acids, such as ferule acid [101], which has the ability to form cross-links between polysaccharides of a cell wall [105]. Deposits of xylose-enriched polysaccharides can change the composition of the cell wall by limiting the action of expansin. It was found that the composition of polysaccharides of flooded plants differs from that of surface organs, as shown by Little [106] in stems of
The outer cell walls of the epidermis of submerging and the above-water leaves are the first barrier, the first transport route of CO2 and water, as well as the point of contact of plant organs with the environment. Cell walls of flooding leaves became thinner and their structure is characterized by loosening. Regarding the loosening of the cell wall, there are many models of this process. The first hypothesis about the acid-induced loosening mechanism was proposed by Cleland [107, 108]. It was later shown that the hydrolysis of polysaccharides during loosening is a complex process in which the enzymatic hydrolysis of polysaccharides of the wall matrix occurs with the participation of endoglucanases and expansins. The latter shown that hydrolyse polysaccharides induce cell expansion and increase the plasticity of the wall depending on the pH of the apoplast [109, 110]. The mechanism of formation of thin cell walls in various plant tissues is explained by changes in cell turgor and a decrease in the activity of enzymes involved in the synthesis of wall polysaccharides [109].
In submerged plants in the epidermis is also synthesized and deposited cuticle in the periclinal walls, and cuticle structure change [111]. In the cuticle of leaves and stems, which grow rapidly by elongation under water, there is an accelerated hydrolysis of cutin polymers [112]. In aquatic plants (hydrophytes) the cuticle of the epidermis of leaves and stems causes the presence of super hydrophobicity; it is this property that prevents the formation of an aqueous film on the surface of the organs submerged in water, which greatly reduces the gas exchange between the surface of the leaf and the gases dissolved in water. Despite the fact that CO2 absorption for photosynthesis is reduced in flooded plants, the air layer or gas film on the surface of underwater leaves continues to exchange O2 and CO2 through the cuticle from the surrounding water layer, and therefore underwater photosynthesis and underwater respiration occur in epidermal cells [113].
Most underwater leaves of hydrophytes have no stomata. Transport functions mainly fall on the cell walls of the epidermis and pores in epidermis. Cuticular pores were revealed on the cross-sections of epidermal cells of underwater
Under-water leaves are characterized by the increase of amorphous cellulose and the decrease of its crystalline form. It is known that water is adsorbed by amorphous zones of cellulose, which are dominated by hydrogen bonds [119]. The crystalline component of cellulose micro fibrils is not involved in the transport or absorption of water molecules [120]. Given the above literature, we hypothesized that one of the adaptive features of the plant to flooding should be not only differences in cellulose content, but also advantages in the synthesis of its amorphous form. An optimal example of such adaptation to flooding can be the data of comparative structural and functional studies of cellulose in plants with underwater and above-water (surface) leaves, in particular in
Callose—a polysaccharide of the cell walls, formed by glucose residues, connected at the base of β-1-3-glucoside bonds and in the lateral branches—1-6 connections. It is known that β—1,3—glucan plays a key role in intercellular water transport, cell growth and differentiation, osmotic stretching of cells, plant protection under biotic and abiotic stresses [127] and increases the elasticity and flexibility of leaves and stems [128, 129, 130]. It was established the effects of natural flooding on callose content in
Lignin is a polymer of aromatic alcohols, which is synthesized in the cell walls, is completed the growth by tension, and it is involved in the adaptation of plants to flooding and in the change of the structure of the matrix of cell wall, providing obstruction of water and aqueous solutions through the cell walls and also form the barrier for pathogens. Lignin is a complex of monolignols formed from p-hydroxyphenyl, guajacyl, syringyl and H-phenylpropanoids components [133], which are involved in the polymerization of lignin, and they differ in the degree of methoxylation [46]. Flooding and siltation affect the lignification of cell walls. The study of mechanisms of adaptation of the root system of rice to flooding and siltation shown the main effect is the deficiency of oxygen, resulting in roots forming aerenchyma for storing of oxygen [134]. Lignin deposition, which counteracts the penetration of ions such as Fe2+, Cu2+ and NaCl [135] has been observed during of flooding roots. It is considered that lignin and suberin can form a barrier to the penetration of oxygen and ions.
The effect of flooding on the lignification of rice stems was found by comparing the stems of three varieties of rice. It was found that the lignin content in rice stems and the activity of two enzymes of the lignification (coniferol alcohol dehydrogenase (CAD) and phenylalanine ammonium lyase (PAL) were reduced after flooding in the flood-sensitive variety and in control. Lignin and the activities of the studied enzymes were interrelated. According to researchers [136, 137], underwater plant organs are stressed due to the tension of the water column and the mechanical action of waves, which should cause stress in flooded organs. Lignin of dicotyledonous plants consists of guajacyl (G), syringyl (S) and phenylpropanoids (H) components, Lignin of most monocotyledons have G and S units, the content of which is almost the same, they may also contain H units [138].
The question of the distribution of lignin in various tissues of submerged plant organs, the role of monolignols and their ratio in cell walls in the process of natural adaptation of plants to flooding has remained open until recently. Recently it was established that in floating leaf walls underwater leaves of
Similar to the increase in lignin in flooded stems
At flooding of terrestrial plants leads to the formation of aerenchyma in roots, nodules, stem or submerged leaves. Aerenchyma helps the plant to survive in conditions of hypoxia by reducing the number of oxygen-consuming cells in vegetative organs [143, 144]. It was established that at lysigenous type of formation of an aerenchyma occurred the lysis not only of cytoplasmic organelles in tissues, but also lysis of their cell walls. The increases in aerenchyma air volume may enable prolonged functioning of aerobic metabolic processes in tissues exposed to low-oxygen conditions. Cellulose, hemicellulose and pectin lysis are occurs during aerenchyma formation. Probably, that modification of the pectin homogalacturonan backbone structure through de-methyl-esterification appears to be one mechanism by which cell walls and middle lamella of tissues is degradate of pectin and enable cavity formation of aerenchyma in roots [143]. Additionally, presence of fully and partially de-methyl-esterified homogalacturonan residues in cell walls of forming tylose-like cells suggests these pectin structures are essential to development of the cells that occlude aerenchyma of
That is, the constant aquatic environment is one of the main exogenous factors of increased synthesis of lignin in the studied hydrophytes. In addition, we see that the presence of syringyl and guajacyl monolignols, as well as their relationship in the cell walls of the epidermis, mesophyll and leaf vessels of hydrophytes is similar to that described for dicotyledonous angiosperms [138, 145]. We do not rule out that the cell walls of the underwater leaves of the studied plants contain a third monolignol—phenylpropanoid (
Schematic representation of the main functional changes of plant cell wall during adaptation to
The results of researches concerning on the role of cell walls in plant response to natural unfavorable conditions influences show that cell wall is one of the compartments of a plant cell that responds to drought and flooding. In most wild species and in cultivated species, cell walls stand a marker of such influence. The inhibition of plant growth, the change of plant morphological and anatomical signs, change of cell wall ultrastructure, its composition is occurred under prolonged drought or flooding. Changes in the structural and functional characteristics of cell walls allow plants to survive. Plant adaptation to these factors is depended on species, stage of growth plant and influence duration. Numerous studies have shown that drought effects negatively on сell walls. The main mechanisms of plant adaptation to the effects of drought involve a decrease in the intensity of transpiration, an increase in the synthesis of wax, suberin, and lignin, as well as the compaction of the walls of the epidermis tissues for preservation of optimal water balance. Upon exposure to flooding, adaptation mechanisms are expressed in the next: decrease stomata density and wax in leaf epidermis; a loosening of cellulose micro fibrils in walls of epidermal tissue and a present of cuticle pores; the decrease of common cellulose content and crystalline form of cellulose; an increase of content of amorphous cellulose, hemicelluloses in a cell wall; an intensification of сallose synthesis; the change of a ratio of monolignols (syringyl and quajacyl) in walls; the activation of peroxidase and expansin, an intensification of ethylene synthesis and a change of calcium balance in apoplast. However, the sequence of these processes has not been fully disclosed. The question of the launch of adaptative processes also remains open. These issues require further research. The question of the relationship between the water balance of the cell, photosynthesis and the values of energy of light photons on the surface of the leaves, which launch an adaptive response in the plant under adverse natural changes or under stress, also remains open.
The author declares that there is no conflict interest.
Our business values are based on those any scientist applies to their research. The values of our business are based on the same ones that all good scientists apply to their research. We have created a culture of respect and collaboration within a relaxed, friendly, and progressive atmosphere, while maintaining academic rigour.
\n\nPlease check out our job board for open positions.
',metaTitle:"Careers at IntechOpen",metaDescription:"Employee quote to be added",metaKeywords:null,canonicalURL:"/page/careers-at-intechopen",contentRaw:'[{"type":"htmlEditorComponent","content":"Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\\n\\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\\n\\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\\n\\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\\n\\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:"
Integrity - We are consistent and dependable, always striving for precision and accuracy in the true spirit of science.
\n\nOpenness - We communicate honestly and transparently. We are open to constructive criticism and committed to learning from it.
\n\nDisruptiveness - We are eager for discovery, for new ideas and for progression. We approach our work with creativity and determination, with a clear vision that drives us forward. We look beyond today and strive for a better tomorrow.
\n\nIntechOpen is a dynamic, vibrant company, where exceptional people are achieving great things. We offer a creative, dedicated, committed, and passionate environment but never lose sight of the fact that science and discovery is exciting and rewarding. We constantly strive to ensure that members of our community can work, travel, meet world-renowned researchers and grow their own career and develop their own experiences.
\n\nIf this sounds like a place that you would like to work, whether you are at the beginning of your career or are an experienced professional, we invite you to drop us a line and tell us why you could be the right person for IntechOpen.
\n\n\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6654},{group:"region",caption:"Middle and South America",value:2,count:5945},{group:"region",caption:"Africa",value:3,count:2452},{group:"region",caption:"Asia",value:4,count:12681},{group:"region",caption:"Australia and Oceania",value:5,count:1014},{group:"region",caption:"Europe",value:6,count:17701}],offset:12,limit:12,total:133951},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish",topicId:"8,9,10,11,14,15,20,22,24"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11561",title:"Zeolite From Wastes - New Perspectives on Innovative Resources and Their Valorization Process",subtitle:null,isOpenForSubmission:!0,hash:"3ed0dfd842de9cd1143212415903e6ad",slug:null,bookSignature:"Dr. Claudia Belviso",coverURL:"https://cdn.intechopen.com/books/images_new/11561.jpg",editedByType:null,editors:[{id:"61457",title:"Dr.",name:"Claudia",surname:"Belviso",slug:"claudia-belviso",fullName:"Claudia Belviso"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11491",title:"Current Perspectives on Applied Geomorphology",subtitle:null,isOpenForSubmission:!0,hash:"f9f0fe8910dc02818cad71316650d297",slug:null,bookSignature:"Prof. António Vieira",coverURL:"https://cdn.intechopen.com/books/images_new/11491.jpg",editedByType:null,editors:[{id:"103627",title:"Prof.",name:"António",surname:"Vieira",slug:"antonio-vieira",fullName:"António Vieira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11466",title:"Titanium Alloys - Recent Progress in Design, Processing, Characterization, and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1c89c2e1b5d03b90db5b13d44479baa6",slug:null,bookSignature:"Dr. Ram Krishna",coverURL:"https://cdn.intechopen.com/books/images_new/11466.jpg",editedByType:null,editors:[{id:"296477",title:"Dr.",name:"Ram",surname:"Krishna",slug:"ram-krishna",fullName:"Ram Krishna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11524",title:"Fuzzy Control Systems",subtitle:null,isOpenForSubmission:!0,hash:"84908e027f884ec3fcbaea42eb69b698",slug:null,bookSignature:"Dr. Hayri Baytan Ozmen",coverURL:"https://cdn.intechopen.com/books/images_new/11524.jpg",editedByType:null,editors:[{id:"198122",title:"Dr.",name:"Hayri Baytan",surname:"Ozmen",slug:"hayri-baytan-ozmen",fullName:"Hayri Baytan Ozmen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11833",title:"Ozone Research - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"1e789b57319be85ed0a32e569967d822",slug:null,bookSignature:"Associate Prof. Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/11833.jpg",editedByType:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11910",title:"Frontiers in Voltammetry",subtitle:null,isOpenForSubmission:!0,hash:"fc53a7599a61ed04a0672a7bca81e9c2",slug:null,bookSignature:"Dr. Rajendrachari Shashanka, Dr. Kiran Kenchappa Somashekharappa, Dr. Sharath Peramenahalli Chikkegouda and Dr. Shamanth Vasanth",coverURL:"https://cdn.intechopen.com/books/images_new/11910.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11922",title:"Watermarking - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9843dc1d810407088ed9eef10768a64b",slug:null,bookSignature:"Prof. Joceli Mayer",coverURL:"https://cdn.intechopen.com/books/images_new/11922.jpg",editedByType:null,editors:[{id:"110638",title:"Prof.",name:"Joceli",surname:"Mayer",slug:"joceli-mayer",fullName:"Joceli Mayer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11451",title:"Molecular Docking - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8c918a1973786c7059752b28601f1329",slug:null,bookSignature:"Dr. Erman Salih Istifli",coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",editedByType:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11517",title:"Phase Change Materials - Technology and Applications",subtitle:null,isOpenForSubmission:!0,hash:"1b7a5f2631db5e49399539ade1edf264",slug:null,bookSignature:"Dr. Manish K Rathod",coverURL:"https://cdn.intechopen.com/books/images_new/11517.jpg",editedByType:null,editors:[{id:"236035",title:"Dr.",name:"Manish",surname:"Rathod",slug:"manish-rathod",fullName:"Manish Rathod"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11932",title:"New Materials and Enhanced Performance of Sodium-Ion Batteries",subtitle:null,isOpenForSubmission:!0,hash:"75c27a6f2739e8af817bace95b0e50d6",slug:null,bookSignature:"Ph.D. Fatma SARF",coverURL:"https://cdn.intechopen.com/books/images_new/11932.jpg",editedByType:null,editors:[{id:"245850",title:"Ph.D.",name:"Fatma",surname:"SARF",slug:"fatma-sarf",fullName:"Fatma SARF"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:39},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:17},{group:"topic",caption:"Engineering",value:11,count:66},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:26},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:7},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:178},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4422},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!1,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:"protein-detection",bookSignature:"Yusuf Tutar and Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Applications of Calorimetry",subtitle:null,isOpenForSubmission:!1,hash:"8c87f7e2199db33b5dd7181f56973a97",slug:"applications-of-calorimetry",bookSignature:"José Luis Rivera Armenta and Cynthia Graciela Flores Hernández",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:"Edited by",publishedDate:"June 23rd 2022",editors:[{id:"107855",title:"Dr.",name:"Jose Luis",middleName:null,surname:"Rivera Armenta",slug:"jose-luis-rivera-armenta",fullName:"Jose Luis Rivera Armenta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"24",title:"Technology",slug:"technology",parent:{id:"1",title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:128,numberOfSeries:0,numberOfAuthorsAndEditors:2388,numberOfWosCitations:3395,numberOfCrossrefCitations:2416,numberOfDimensionsCitations:5295,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"24",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10968",title:"Applied Aspects of Modern Metrology",subtitle:null,isOpenForSubmission:!1,hash:"688f4a581f96ea8041bc2dff50f6256e",slug:"applied-aspects-of-modern-metrology",bookSignature:"Oleh Velychko",coverURL:"https://cdn.intechopen.com/books/images_new/10968.jpg",editedByType:"Edited by",editors:[{id:"223340",title:"Prof.",name:"Oleh",middleName:null,surname:"Velychko",slug:"oleh-velychko",fullName:"Oleh Velychko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10805",title:"Technology, Science and Culture",subtitle:"A Global Vision, Volume III",isOpenForSubmission:!1,hash:"d023002df29a59c64622b5b5936e2b67",slug:"technology-science-and-culture-a-global-vision-volume-iii",bookSignature:"Luis Ricardo Hernández and Martín Alejandro Serrano Meneses",coverURL:"https://cdn.intechopen.com/books/images_new/10805.jpg",editedByType:"Edited by",editors:[{id:"293965",title:"Dr.",name:"Luis Ricardo",middleName:null,surname:"Hernández",slug:"luis-ricardo-hernandez",fullName:"Luis Ricardo Hernández"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"2",chapterContentType:"conference paper",authoredCaption:"Edited by"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editedByType:"Edited by",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10975",title:"Sewage",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"0933f9b6aa7b8c65e710e951e674997d",slug:"sewage-recent-advances-new-perspectives-and-applications",bookSignature:"Tao Zhang",coverURL:"https://cdn.intechopen.com/books/images_new/10975.jpg",editedByType:"Edited by",editors:[{id:"185487",title:"Associate Prof.",name:"Tao",middleName:null,surname:"Zhang",slug:"tao-zhang",fullName:"Tao Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10389",title:"Osmotically Driven Membrane Processes",subtitle:null,isOpenForSubmission:!1,hash:"d5bb1865e5a17251d299b5c1ada3f5c0",slug:"osmotically-driven-membrane-processes",bookSignature:"Muharrem Ince and Olcay Kaplan Ince",coverURL:"https://cdn.intechopen.com/books/images_new/10389.jpg",editedByType:"Edited by",editors:[{id:"258431",title:"Prof.",name:"Muharrem",middleName:null,surname:"Ince",slug:"muharrem-ince",fullName:"Muharrem Ince"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10410",title:"Textiles for Functional Applications",subtitle:null,isOpenForSubmission:!1,hash:"5be34ee24510dc6ac217b82f0ce41ab0",slug:"textiles-for-functional-applications",bookSignature:"Bipin Kumar",coverURL:"https://cdn.intechopen.com/books/images_new/10410.jpg",editedByType:"Edited by",editors:[{id:"177114",title:"Dr.",name:"Bipin",middleName:null,surname:"Kumar",slug:"bipin-kumar",fullName:"Bipin Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9921",title:"Promising Techniques for Wastewater Treatment and Water Quality Assessment",subtitle:null,isOpenForSubmission:!1,hash:"59ea12a5ea4a235dc8123537effc7cf1",slug:"promising-techniques-for-wastewater-treatment-and-water-quality-assessment",bookSignature:"Iqbal Ahmed Moujdin and J. Kevin Summers",coverURL:"https://cdn.intechopen.com/books/images_new/9921.jpg",editedByType:"Edited by",editors:[{id:"197244",title:"Associate Prof.",name:"Iqbal",middleName:null,surname:"Ahmed",slug:"iqbal-ahmed",fullName:"Iqbal Ahmed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10548",title:"Lean Manufacturing",subtitle:null,isOpenForSubmission:!1,hash:"7409b2acd5150a93004300800918b736",slug:"lean-manufacturing",bookSignature:"Karmen Pažek",coverURL:"https://cdn.intechopen.com/books/images_new/10548.jpg",editedByType:"Edited by",editors:[{id:"179642",title:"Prof.",name:"Karmen",middleName:null,surname:"Pažek",slug:"karmen-pazek",fullName:"Karmen Pažek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6940",title:"e-Services",subtitle:null,isOpenForSubmission:!1,hash:"0dd6e0f6c0a6d3be53af40ae99a1529d",slug:"e-services",bookSignature:"Sam Goundar",coverURL:"https://cdn.intechopen.com/books/images_new/6940.jpg",editedByType:"Edited by",editors:[{id:"280395",title:"Dr.",name:"Sam",middleName:null,surname:"Goundar",slug:"sam-goundar",fullName:"Sam Goundar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10203",title:"Dyes and Pigments",subtitle:"Novel Applications and Waste Treatment",isOpenForSubmission:!1,hash:"624f533946a159bc8a03f109c2e1dc91",slug:"dyes-and-pigments-novel-applications-and-waste-treatment",bookSignature:"Raffaello Papadakis",coverURL:"https://cdn.intechopen.com/books/images_new/10203.jpg",editedByType:"Edited by",editors:[{id:"251885",title:"Dr.",name:"Raffaello",middleName:null,surname:"Papadakis",slug:"raffaello-papadakis",fullName:"Raffaello Papadakis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10060",title:"Cement Industry",subtitle:"Optimization, Characterization and Sustainable Application",isOpenForSubmission:!1,hash:"9a1e79b25dad63378b81fdb16909cd09",slug:"cement-industry-optimization-characterization-and-sustainable-application",bookSignature:"Hosam El-Din Mostafa Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10060.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:128,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"41411",doi:"10.5772/53659",title:"Textile Dyes: Dyeing Process and Environmental Impact",slug:"textile-dyes-dyeing-process-and-environmental-impact",totalDownloads:20608,totalCrossrefCites:97,totalDimensionsCites:305,abstract:null,book:{id:"3137",slug:"eco-friendly-textile-dyeing-and-finishing",title:"Eco-Friendly Textile Dyeing and Finishing",fullTitle:"Eco-Friendly Textile Dyeing and Finishing"},signatures:"Farah Maria Drumond Chequer, Gisele Augusto Rodrigues de Oliveira, Elisa Raquel Anastácio Ferraz, Juliano Carvalho Cardoso, Maria Valnice Boldrin Zanoni and Danielle Palma de Oliveira",authors:[{id:"49040",title:"Prof.",name:"Danielle",middleName:null,surname:"Palma De Oliveira",slug:"danielle-palma-de-oliveira",fullName:"Danielle Palma De Oliveira"},{id:"149074",title:"Prof.",name:"Maria Valnice",middleName:null,surname:"Zanoni",slug:"maria-valnice-zanoni",fullName:"Maria Valnice Zanoni"},{id:"153502",title:"Ph.D.",name:"Farah",middleName:null,surname:"Chequer",slug:"farah-chequer",fullName:"Farah Chequer"},{id:"153504",title:"MSc.",name:"Gisele",middleName:null,surname:"Oliveira",slug:"gisele-oliveira",fullName:"Gisele Oliveira"},{id:"163377",title:"Dr.",name:"Juliano",middleName:null,surname:"Cardoso",slug:"juliano-cardoso",fullName:"Juliano Cardoso"},{id:"163393",title:"Dr.",name:"Elisa",middleName:null,surname:"Ferraz",slug:"elisa-ferraz",fullName:"Elisa Ferraz"}]},{id:"22395",doi:"10.5772/22670",title:"Textile Dyeing Wastewater Treatment",slug:"textile-dyeing-wastewater-treatment",totalDownloads:61283,totalCrossrefCites:61,totalDimensionsCites:142,abstract:null,book:{id:"528",slug:"advances-in-treating-textile-effluent",title:"Advances in Treating Textile Effluent",fullTitle:"Advances in Treating Textile Effluent"},signatures:"Zongping Wang, Miaomiao Xue, Kai Huang and Zizheng Liu",authors:[{id:"48655",title:"Dr.",name:"Zongping",middleName:null,surname:"Wang",slug:"zongping-wang",fullName:"Zongping Wang"},{id:"137783",title:"Prof.",name:"Miaomiao",middleName:null,surname:"Xue",slug:"miaomiao-xue",fullName:"Miaomiao Xue"},{id:"137784",title:"Prof.",name:"Kai",middleName:null,surname:"Huang",slug:"kai-huang",fullName:"Kai Huang"},{id:"137785",title:"Prof.",name:"Zizheng",middleName:null,surname:"Liu",slug:"zizheng-liu",fullName:"Zizheng Liu"}]},{id:"23051",doi:"10.5772/21341",title:"Dyeing of Textiles with Natural Dyes",slug:"dyeing-of-textiles-with-natural-dyes",totalDownloads:48129,totalCrossrefCites:16,totalDimensionsCites:91,abstract:null,book:{id:"1351",slug:"natural-dyes",title:"Natural Dyes",fullTitle:"Natural Dyes"},signatures:"Ashis Kumar Samanta and Adwaita Konar",authors:[{id:"42763",title:"Prof.",name:"Ashis Kumar",middleName:null,surname:"Samanta",slug:"ashis-kumar-samanta",fullName:"Ashis Kumar Samanta"},{id:"50085",title:"Mr.",name:"Adwaita",middleName:null,surname:"Konar",slug:"adwaita-konar",fullName:"Adwaita Konar"}]},{id:"31905",doi:"10.5772/38302",title:"Touch Screens for the Older User",slug:"touch-screens-for-the-older-user",totalDownloads:5131,totalCrossrefCites:52,totalDimensionsCites:80,abstract:null,book:{id:"577",slug:"assistive-technologies",title:"Assistive Technologies",fullTitle:"Assistive Technologies"},signatures:"Niamh Caprani, Noel E. O’Connor and Cathal Gurrin",authors:[{id:"1479",title:"Dr.",name:"Cathal",middleName:null,surname:"Gurrin",slug:"cathal-gurrin",fullName:"Cathal Gurrin"},{id:"116543",title:"Ms.",name:"Niamh",middleName:null,surname:"Caprani",slug:"niamh-caprani",fullName:"Niamh Caprani"},{id:"116548",title:"Prof.",name:"Noel",middleName:null,surname:"E. O'Connor",slug:"noel-e.-o'connor",fullName:"Noel E. O'Connor"}]},{id:"12253",doi:"10.5772/10465",title:"Composites Based on Natural Fibre Fabrics",slug:"composites-based-on-natural-fibre-fabrics",totalDownloads:27486,totalCrossrefCites:24,totalDimensionsCites:75,abstract:null,book:{id:"3682",slug:"woven-fabric-engineering",title:"Woven Fabric Engineering",fullTitle:"Woven Fabric Engineering"},signatures:"Gianluca Cicala, Giuseppe Cristaldi, Giuseppe Recca and Alberta Latteri",authors:null}],mostDownloadedChaptersLast30Days:[{id:"70605",title:"Designing a Tunnel",slug:"designing-a-tunnel",totalDownloads:2725,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Designing a tunnel is always a challenge. For shallow tunnels under cities due to the presence of buildings, bridges, important avenues, antiquities, etc. at the surface and other infrastructures in the vicinity of underground tunnels, parameters like vibrations and ground settlements must be tightly controlled. Urban tunnels are often made in soils with very low values of overburden. Risks of collapse and large deformations at the surface are high; thus negative impact on old buildings are likely to occur if appropriate measures are not taken in advance, when designing and constructing the tunnel. For deep tunnels with high overburden and low rock mass properties, squeezing conditions and excessive loads around the excavation can jeopardize the stability of the tunnel, leading to extensive collapse. The aim of the chapter is to give details on advance computational modelling and analytical methodologies, which can be used in order to design shallow and deep tunnels and to present real case studies from around the world, from very shallow tunnels in India with only 4.5 m overburden to a deep tunnel in Venezuela with extreme squeezing conditions under 1300 m overburden.",book:{id:"7690",slug:"tunnel-engineering-selected-topics",title:"Tunnel Engineering",fullTitle:"Tunnel Engineering - Selected Topics"},signatures:"Spiros Massinas",authors:[{id:"295762",title:"Dr.",name:"Spiros",middleName:null,surname:"Massinas",slug:"spiros-massinas",fullName:"Spiros Massinas"}]},{id:"68157",title:"Introductory Chapter: Textile Manufacturing Processes",slug:"introductory-chapter-textile-manufacturing-processes",totalDownloads:4414,totalCrossrefCites:13,totalDimensionsCites:24,abstract:null,book:{id:"8892",slug:"textile-manufacturing-processes",title:"Textile Manufacturing Processes",fullTitle:"Textile Manufacturing Processes"},signatures:"Faheem Uddin",authors:[{id:"228107",title:"Prof.",name:"Faheem",middleName:null,surname:"Uddin",slug:"faheem-uddin",fullName:"Faheem Uddin"}]},{id:"66828",title:"Breathing Monitoring and Pattern Recognition with Wearable Sensors",slug:"breathing-monitoring-and-pattern-recognition-with-wearable-sensors",totalDownloads:3062,totalCrossrefCites:10,totalDimensionsCites:13,abstract:"This chapter introduces the anatomy and physiology of the respiratory system, and the reasons for measuring breathing events, particularly, using wearable sensors. Respiratory monitoring is vital including detection of sleep apnea and measurement of respiratory rate. The automatic detection of breathing patterns is equally important in other respiratory rehabilitation therapies, for example, magnetic resonance exams for respiratory triggered imaging, and synchronized functional electrical stimulation. In this context, the goal of many research groups is to create wearable devices able to monitor breathing activity continuously, under natural physiological conditions in different environments. Therefore, wearable sensors that have been used recently as well as the main signal processing methods for breathing analysis are discussed. The following sensor technologies are presented: acoustic, resistive, inductive, humidity, acceleration, pressure, electromyography, impedance, and infrared. New technologies open the door to future methods of noninvasive breathing analysis using wearable sensors associated with machine learning techniques for pattern detection.",book:{id:"7654",slug:"wearable-devices-the-big-wave-of-innovation",title:"Wearable Devices",fullTitle:"Wearable Devices - the Big Wave of Innovation"},signatures:"Taisa Daiana da Costa, Maria de Fatima Fernandes Vara, Camila Santos Cristino, Tyene Zoraski Zanella, Guilherme Nunes Nogueira Neto and Percy Nohama",authors:[{id:"192464",title:"Ph.D.",name:"Percy",middleName:null,surname:"Nohama",slug:"percy-nohama",fullName:"Percy Nohama"},{id:"285706",title:"MSc.",name:"Taísa Daiana",middleName:null,surname:"Da Costa",slug:"taisa-daiana-da-costa",fullName:"Taísa Daiana Da Costa"},{id:"285707",title:"MSc.",name:"Maria de Fatima Fernandes",middleName:null,surname:"Vara",slug:"maria-de-fatima-fernandes-vara",fullName:"Maria de Fatima Fernandes Vara"},{id:"285708",title:"BSc.",name:"Camila Santos",middleName:null,surname:"Cristino",slug:"camila-santos-cristino",fullName:"Camila Santos Cristino"},{id:"285709",title:"Prof.",name:"Guilherme Nunes",middleName:null,surname:"Nogueira Neto",slug:"guilherme-nunes-nogueira-neto",fullName:"Guilherme Nunes Nogueira Neto"},{id:"293109",title:"BSc.",name:"Tyene",middleName:null,surname:"Zoraski Zanella",slug:"tyene-zoraski-zanella",fullName:"Tyene Zoraski Zanella"}]},{id:"41411",title:"Textile Dyes: Dyeing Process and Environmental Impact",slug:"textile-dyes-dyeing-process-and-environmental-impact",totalDownloads:20608,totalCrossrefCites:97,totalDimensionsCites:305,abstract:null,book:{id:"3137",slug:"eco-friendly-textile-dyeing-and-finishing",title:"Eco-Friendly Textile Dyeing and Finishing",fullTitle:"Eco-Friendly Textile Dyeing and Finishing"},signatures:"Farah Maria Drumond Chequer, Gisele Augusto Rodrigues de Oliveira, Elisa Raquel Anastácio Ferraz, Juliano Carvalho Cardoso, Maria Valnice Boldrin Zanoni and Danielle Palma de Oliveira",authors:[{id:"49040",title:"Prof.",name:"Danielle",middleName:null,surname:"Palma De Oliveira",slug:"danielle-palma-de-oliveira",fullName:"Danielle Palma De Oliveira"},{id:"149074",title:"Prof.",name:"Maria Valnice",middleName:null,surname:"Zanoni",slug:"maria-valnice-zanoni",fullName:"Maria Valnice Zanoni"},{id:"153502",title:"Ph.D.",name:"Farah",middleName:null,surname:"Chequer",slug:"farah-chequer",fullName:"Farah Chequer"},{id:"153504",title:"MSc.",name:"Gisele",middleName:null,surname:"Oliveira",slug:"gisele-oliveira",fullName:"Gisele Oliveira"},{id:"163377",title:"Dr.",name:"Juliano",middleName:null,surname:"Cardoso",slug:"juliano-cardoso",fullName:"Juliano Cardoso"},{id:"163393",title:"Dr.",name:"Elisa",middleName:null,surname:"Ferraz",slug:"elisa-ferraz",fullName:"Elisa Ferraz"}]},{id:"70242",title:"Advancements in the Fenton Process for Wastewater Treatment",slug:"advancements-in-the-fenton-process-for-wastewater-treatment",totalDownloads:1925,totalCrossrefCites:11,totalDimensionsCites:24,abstract:"Fenton is considered to be one of the most effective advanced treatment processes in the removal of many hazardous organic pollutants from refractory/toxic wastewater. It has many advantages, but drawbacks are significant such as a strong acid environment, the cost of reagents consumption, and the large production of ferric sludge, which limits Fenton’s further application. The development of Fenton applications is mainly achieved by improving oxidation efficiency and reducing sludge production. This chapter presents a review on fundamentals and applications of conventional Fenton, leading advanced technologies in the Fenton process, and reuse methods of iron containing sludge to synthetic and real wastewaters are discussed. Finally, future trends and some guidelines for Fenton processes are given.",book:{id:"9415",slug:"advanced-oxidation-processes-applications-trends-and-prospects",title:"Advanced Oxidation Processes",fullTitle:"Advanced Oxidation Processes - Applications, Trends, and Prospects"},signatures:"Min Xu, Changyong Wu and Yuexi Zhou",authors:[{id:"307479",title:"Dr.",name:"Changyong",middleName:null,surname:"Wu",slug:"changyong-wu",fullName:"Changyong Wu"},{id:"307546",title:"Prof.",name:"Yuexi",middleName:null,surname:"Zhou",slug:"yuexi-zhou",fullName:"Yuexi Zhou"},{id:"311139",title:"Dr.",name:"Min",middleName:null,surname:"Xu",slug:"min-xu",fullName:"Min Xu"}]}],onlineFirstChaptersFilter:{topicId:"24",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82089",title:"Perspective Chapter: Breaking the Barriers – Additive Technologies (AX) for Integrated Process Chains and Integrated Devices (IDs) for Hybrid Product Architectures",slug:"perspective-chapter-breaking-the-barriers-additive-technologies-ax-for-integrated-process-chains-and",totalDownloads:15,totalDimensionsCites:0,doi:"10.5772/intechopen.104891",abstract:"Additive technology has evolved from rapid prototyping to rapid tooling and manufacturing of load-bearing parts for productive use. Application potential is limited by constituent strengths and weaknesses. To enfold its full potential, research, development, and industrial application have to facilitate combinations of additive and conventional technology. The concept of additive parts manufacturing has to be expanded to a mature technology contributing and facilitating hybrid products and integrated process chains. From a two-dimensional reference model, approaches to integration are derived, and their status is briefly outlined: Efforts to facilitate postprocessing by design for additive manufacturing (DfAM) and hybrid manufacturing have been raised to awareness and are being worked on. Yet, integration of pre-fabricated structures is hardly accounted for, although it bears the potential for a paradigmatic shift in manufacturing: With a wider concept of layer-based processes, Additive Technology could form the core technology for integration of components and functions to Integrated Devices, following the model of the Integrated Circuits and packaging technology in microelectronics and Microelectromechanical Systems. First developments are outlined, but research and development effort has to be dedicated to novel additive processes for this application. Finally, workflows for product developers need to be modified and trained to plan hybrid product architectures already in conceptual phases.",book:{id:"10974",title:"Advanced Additive Manufacturing",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg"},signatures:"Matthias Dahlmeyer and Sebastian Noller"},{id:"81952",title:"Perspective Chapter: Multi-Material in 3D Printing for Engineering Applications",slug:"perspective-chapter-multi-material-in-3d-printing-for-engineering-applications",totalDownloads:22,totalDimensionsCites:0,doi:"10.5772/intechopen.102564",abstract:"3D Printing or Additive Manufacturing is one of a novel method in manufacturing of materials with increased accuracy of manufacturing in terms of complexity in parts, design of aerospace and defense parts, light-weighting, etc., This manufacturing method involves layer-by-layer printing or deposition of materials or metals into the perfectly aligned especially in corners, edges and in most complex designs. The design process mostly involved software so that production cost could be estimated in the design stage itself. Additive Manufacturing is one of the most promising approach for small and low-volume productions. The filament used for the process is prominent to the designer, along with the various printing processes. Recent modern printing techniques involve multiple nozzles, whereas designers can use multiple materials on single printing. The use of multi-material in a single part enables the manufacturer to rapidly produce products which have specific applications. This chapter discusses about various multi-material with different mechanical properties that can be used for structural applications through different printing technologies on various precious applications. This technology is quickly adopted by even small-scale industries in recent times.",book:{id:"10974",title:"Advanced Additive Manufacturing",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg"},signatures:"Rajkumar Velu, R. Sathishkumar and A. Saiyathibrahim"},{id:"80282",title:"Modeling of LPBF Scanning Strategy and its Correlation with the Metallic 316 L, 321, and Alnico Magnets Samples Structure",slug:"modeling-of-lpbf-scanning-strategy-and-its-correlation-with-the-metallic-316-l-321-and-alnico-magnet",totalDownloads:17,totalDimensionsCites:0,doi:"10.5772/intechopen.102073",abstract:"This chapter presents the influence of powder bed laser scanning strategy on the crystallographic structure of the fused specimens 316 L, 321 stainless steel, and Alnico magnets. The main parameters affecting structure are as follows—laser power, stripe width, number of repeated passes with different power, and type of scanning (circle, bidirectional or interlaced, etc.). Changes in the crystallographic structure are studied with regard to melt pool geometry, surface temperature, and surface heat transfer. The correlation is shown between stripe width and laser beam focal spot diameter. Depending on the ratio between stripe width and laser beam focal spot diameter one can see growth elongated and oriented grains or quasi-equiaxed non-oriented grains. The influence of the energy input on the melt pool size and the microstructure of the sample is studied. The influence of the scanning mode (bidirectional and circular) on the temperature distribution in the sample and the microstructure of the sample made of Alnico alloy is considered. All these experimental and model examples clearly demonstrate that it is possible to produce a controllable structure during LPBF process building for advanced additive manufacturing.",book:{id:"10974",title:"Advanced Additive Manufacturing",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg"},signatures:"Pavel Kuznetsov, Anna Mozhayko, Ivan Shakirov, Vitaliy Bobyr, Mikhail Staritsyn and Anton Zhukov"},{id:"81649",title:"Pure Copper: Advanced Additive Manufacturing",slug:"pure-copper-advanced-additive-manufacturing",totalDownloads:42,totalDimensionsCites:0,doi:"10.5772/intechopen.103673",abstract:"This book chapter elaborates on different additive manufacturing (AM) processes of copper and copper alloys. The scope is to give the reader a basic understanding of the state-of-the-art of copper additive manufacturing by different AM technologies, such as laser powder bed fusion (LPBF), laser metal deposition (LMD), binder jetting (BJ), and metal-fused filament fabrication (M-FFF). Furthermore, we want the reader to be able to use this knowledge to find and assess potential use cases. Recently, with the commercial availability of green laser sources, the difficulties for laser processing of pure copper were overcome, which gave AM technologies, such as LPBF and LMD new momentum and increased interest. AM technologies involving a subsequent sintering step. They are relatively new and gained interest due to fast build-up rates (BJ) or ease of operation (M-FFF). We will cover important material-related properties of copper and its implications for manufacturing and application (e.g. absorption, sinterability, conductivity, and its dependency on impurities). Further, we address applications for AM copper, present the state-of-the-art for above mentioned AM technologies and share our own recent research in this field.",book:{id:"10974",title:"Advanced Additive Manufacturing",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg"},signatures:"Lukas Stepien, Samira Gruber, Moritz Greifzu, Mirko Riede and Aljoscha Roch"},{id:"81624",title:"Functionally Modified Composites for FDM 3D Printing",slug:"functionally-modified-composites-for-fdm-3d-printing",totalDownloads:30,totalDimensionsCites:0,doi:"10.5772/intechopen.104637",abstract:"Fused Deposition Modeling (FDM) 3D printing is an additive manufacturing technique used to fabricate solid thermoplastic polymer objects directly from computer-modeled designs. The current uses for this technology are restricted due to a limited choice of materials, which offer minimal functionality to the printed 3D parts. To expand the application space for FDM-based 3D printing, this chapter is aimed to add functional attributes to printable polymers through the creation of thermoplastic composites. The work focuses on a simple fabrication method to create composite for FDM printing and analytical techniques to characterize dispersion, thermal, and mechanical properties of the nanocomposite. Lastly, the functional characteristics of the FDM printed nanocomposite including their conductivity, ferromagnetism, and radiation shielding properties were studied.",book:{id:"10974",title:"Advanced Additive Manufacturing",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg"},signatures:"Smith Woosley and Shyam Aravamudhan"},{id:"81187",title:"Quality Control of Metal Additive Manufacturing",slug:"quality-control-of-metal-additive-manufacturing",totalDownloads:59,totalDimensionsCites:0,doi:"10.5772/intechopen.103121",abstract:"Metal Additive Manufacturing (AM) is an emerging technology for rapid prototype manufacturing, and the structural integrity of printed structures is extremely important and should meet the specifications and high standards of the above industries. In several metal AM techniques, residual stresses and micro-cracks that occur during the manufacturing procedure can result in irreversible damage and structural failure of the object after its manufacturing. Thus effective quality control of AM is highly required. Most Non-Destructive Testing (NDT) techniques (X-Ray, Computed Tomography, Thermography) are ineffective in detecting residual stresses. Bulk, cost, and resolution are limitations of such technologies. These methods are time consuming both for data acquisition and data analysis and have not yet been successfully integrated into AM technology. However two sets of NDT techniques: Electromagnetic Acoustic Transducers (EMAT) and Eddy Current (EC) Testing, can be applied for residual stress detection for AM techniques. Therefore a crucial and novel extension system incorporation of big data collection from sensors of the both techniques and analysis through machine learning (ML) can estimate the likelihood of the AM techniques to introduce anomalies into the printed structures, which can be used as an on-line monitoring and detection system to control the quality of AM.",book:{id:"10974",title:"Advanced Additive Manufacturing",coverURL:"https://cdn.intechopen.com/books/images_new/10974.jpg"},signatures:"Bojie Sheng, Jamil Kanfoud and Tat-Hean Gan"}],onlineFirstChaptersTotal:13},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:31,numberOfPublishedChapters:314,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:18,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:14,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 24th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:31,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:31,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12215",title:"Cell Death and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",hash:"dfd456a29478fccf4ebd3294137eb1e3",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 24th 2022",isOpenForSubmission:!0,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:37,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Metabolism",value:17,count:12,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:14,group:"subseries"},{caption:"Chemical Biology",value:15,count:14,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10795",title:"Plant Stress Physiology",subtitle:"Perspectives in Agriculture",coverURL:"https://cdn.intechopen.com/books/images_new/10795.jpg",slug:"plant-stress-physiology-perspectives-in-agriculture",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Mirza Hasanuzzaman and Kamran Nahar",hash:"c5a7932b74fe612b256bf95d0709756e",volumeInSeries:11,fullTitle:"Plant Stress Physiology - Perspectives in Agriculture",editors:[{id:"76477",title:"Prof.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman",profilePictureURL:"https://mts.intechopen.com/storage/users/76477/images/system/76477.png",institutionString:"Sher-e-Bangla Agricultural University",institution:{name:"Sher-e-Bangla Agricultural University",institutionURL:null,country:{name:"Bangladesh"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7999",title:"Free Radical Medicine and Biology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7999.jpg",slug:"free-radical-medicine-and-biology",publishedDate:"July 15th 2020",editedByType:"Edited by",bookSignature:"Kusal Das, Swastika Das, Mallanagouda Shivanagouda Biradar, Varaprasad Bobbarala and S. Subba Tata",hash:"083e5d427097d368a3f8a02bd6c76bf8",volumeInSeries:10,fullTitle:"Free Radical Medicine and Biology",editors:[{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8762",title:"Melatonin",subtitle:"The Hormone of Darkness and its Therapeutic Potential and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/8762.jpg",slug:"melatonin-the-hormone-of-darkness-and-its-therapeutic-potential-and-perspectives",publishedDate:"June 24th 2020",editedByType:"Edited by",bookSignature:"Marilena Vlachou",hash:"bfbc5538173f11acb0f9549a85b70489",volumeInSeries:9,fullTitle:"Melatonin - The Hormone of Darkness and its Therapeutic Potential and Perspectives",editors:[{id:"246279",title:"Associate Prof.",name:"Marilena",middleName:null,surname:"Vlachou",slug:"marilena-vlachou",fullName:"Marilena Vlachou",profilePictureURL:"https://mts.intechopen.com/storage/users/246279/images/system/246279.jpg",institutionString:"National and Kapodistrian University of Athens",institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8002",title:"Tumor Progression and Metastasis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8002.jpg",slug:"tumor-progression-and-metastasis",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Ahmed Lasfar and Karine Cohen-Solal",hash:"db17b0fe0a9b6e80ff02b81a93bafa4e",volumeInSeries:8,fullTitle:"Tumor Progression and Metastasis",editors:[{id:"32546",title:"Dr.",name:"Ahmed",middleName:null,surname:"Lasfar",slug:"ahmed-lasfar",fullName:"Ahmed Lasfar",profilePictureURL:"https://mts.intechopen.com/storage/users/32546/images/system/32546.png",institutionString:"Rutgers, The State University of New Jersey",institution:{name:"Rutgers, The State University of New Jersey",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6897",title:"Biophysical Chemistry",subtitle:"Advance Applications",coverURL:"https://cdn.intechopen.com/books/images_new/6897.jpg",slug:"biophysical-chemistry-advance-applications",publishedDate:"February 19th 2020",editedByType:"Edited by",bookSignature:"Mohammed A. A. Khalid",hash:"0ad18ab382e2ffb9ff202d15282297eb",volumeInSeries:7,fullTitle:"Biophysical Chemistry - Advance Applications",editors:[{id:"137240",title:"Prof.",name:"Mohammed",middleName:null,surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid",profilePictureURL:"https://mts.intechopen.com/storage/users/137240/images/system/137240.png",institutionString:"Taif University",institution:{name:"Taif University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8430",title:"Neurodevelopment and Neurodevelopmental Disorder",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8430.jpg",slug:"neurodevelopment-and-neurodevelopmental-disorder",publishedDate:"November 27th 2019",editedByType:"Edited by",bookSignature:"Michael Fitzgerald",hash:"696c96d038de473216e48b199613c111",volumeInSeries:6,fullTitle:"Neurodevelopment and Neurodevelopmental Disorder",editors:[{id:"205005",title:"Dr.",name:"Michael",middleName:null,surname:"Fitzgerald",slug:"michael-fitzgerald",fullName:"Michael Fitzgerald",profilePictureURL:"https://mts.intechopen.com/storage/users/205005/images/system/205005.jpg",institutionString:"Independant Researcher",institution:{name:"Trinity College Dublin",institutionURL:null,country:{name:"Ireland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8008",title:"Antioxidants",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8008.jpg",slug:"antioxidants",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Emad Shalaby",hash:"76361b4061e830906267933c1c670027",volumeInSeries:5,fullTitle:"Antioxidants",editors:[{id:"63600",title:"Prof.",name:"Emad",middleName:null,surname:"Shalaby",slug:"emad-shalaby",fullName:"Emad Shalaby",profilePictureURL:"https://mts.intechopen.com/storage/users/63600/images/system/63600.png",institutionString:"Cairo University",institution:{name:"Cairo University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8797",title:"Adipose Tissue",subtitle:"An Update",coverURL:"https://cdn.intechopen.com/books/images_new/8797.jpg",slug:"adipose-tissue-an-update",publishedDate:"November 6th 2019",editedByType:"Edited by",bookSignature:"Leszek Szablewski",hash:"34880b7b450ef96fa5063c867c028b02",volumeInSeries:4,fullTitle:"Adipose Tissue - An Update",editors:[{id:"49739",title:"Dr.",name:"Leszek",middleName:null,surname:"Szablewski",slug:"leszek-szablewski",fullName:"Leszek Szablewski",profilePictureURL:"https://mts.intechopen.com/storage/users/49739/images/system/49739.jpg",institutionString:"Medical University of Warsaw",institution:{name:"Medical University of Warsaw",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6924",title:"Adenosine Triphosphate in Health and Disease",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6924.jpg",slug:"adenosine-triphosphate-in-health-and-disease",publishedDate:"April 24th 2019",editedByType:"Edited by",bookSignature:"Gyula Mozsik",hash:"04106c232a3c68fec07ba7cf00d2522d",volumeInSeries:3,fullTitle:"Adenosine Triphosphate in Health and Disease",editors:[{id:"58390",title:"Dr.",name:"Gyula",middleName:null,surname:"Mozsik",slug:"gyula-mozsik",fullName:"Gyula Mozsik",profilePictureURL:"https://mts.intechopen.com/storage/users/58390/images/system/58390.png",institutionString:"University of Pécs",institution:{name:"University of Pecs",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6925",title:"Endoplasmic Reticulum",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6925.jpg",slug:"endoplasmic-reticulum",publishedDate:"April 17th 2019",editedByType:"Edited by",bookSignature:"Angel Català",hash:"a9e90d2dbdbc46128dfe7dac9f87c6b4",volumeInSeries:2,fullTitle:"Endoplasmic Reticulum",editors:[{id:"196544",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/196544/images/system/196544.jpg",institutionString:"Universidad Nacional de La Plata",institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7264",title:"Calcium and Signal Transduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7264.jpg",slug:"calcium-and-signal-transduction",publishedDate:"October 24th 2018",editedByType:"Edited by",bookSignature:"John N. Buchholz and Erik J. Behringer",hash:"e373a3d1123dbd45fddf75d90e3e7c38",volumeInSeries:1,fullTitle:"Calcium and Signal Transduction",editors:[{id:"89438",title:"Dr.",name:"John N.",middleName:null,surname:"Buchholz",slug:"john-n.-buchholz",fullName:"John N. Buchholz",profilePictureURL:"https://mts.intechopen.com/storage/users/89438/images/6463_n.jpg",institutionString:null,institution:{name:"Loma Linda University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Plant Physiology",value:13,count:1},{group:"subseries",caption:"Human Physiology",value:12,count:2},{group:"subseries",caption:"Cell Physiology",value:11,count:8}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2020",value:2020,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"93",type:"subseries",title:"Inclusivity and Social Equity",keywords:"Social contract, SDG, Human rights, Inclusiveness, Equity, Democracy, Personal learning, Collaboration, Glocalization",scope:"
\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices"},{id:"38",title:"Pollution",scope:"\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",keywords:"Human activity, Pollutants, Reduced risks, Population growth, Waste disposal, Remediation, Clean environment"},{id:"41",title:"Water Science",scope:"