\r\n\t1. Emphasizing the unique power of the molecular docking method in new drug discovery; \r\n\t2. Demonstration of how the molecular docking technique has led to the discovery of new molecules in cancer therapy, proteasome, and STAT3 inhibition, and the treatment of Alzheimer's disease; \r\n\t3. Underlining the importance of molecular docking-based modeling methods in the various branches of biotechnology
\r\n
\r\n\tWe hope that this book will be a common point where researchers working in the fields of life sciences and drug development will eventually meet.
",isbn:"978-1-80356-468-5",printIsbn:"978-1-80356-467-8",pdfIsbn:"978-1-80356-469-2",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,isSalesforceBook:!1,isNomenclature:!1,hash:"8c918a1973786c7059752b28601f1329",bookSignature:"Dr. Erman Salih Istifli",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11451.jpg",keywords:"Protein-Ligand Interaction, Lead Discovery, Molecular Recognition, Enzyme-Ligand Interaction, Mutant Enzymes, Alanine Screening, Proteasome Inhibitors, Signal Transducers, Transcription Activators (STATs), DNA Recognition Motifs, Neoplastic Cells, Amyloid-Beta Proteins",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 3rd 2022",dateEndSecondStepPublish:"May 4th 2022",dateEndThirdStepPublish:"July 3rd 2022",dateEndFourthStepPublish:"September 21st 2022",dateEndFifthStepPublish:"November 20th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"A multidisciplinary researcher working in the fields of cytogenetics, molecular genetics, and bioinformatics-based molecular modeling (currently on the structural biology of COVID-19 and the treatment of Alzheimer’s disease). Dr. Istifli previously joined the molecular cytogenetics group at the Max Planck Institute for Molecular Genetics in Berlin, Germany where he contributed experimentally to the identification of four candidate genes (GRIA2, GLRB, NPY1R, and NPY5R).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"179007",title:"Dr.",name:"Erman Salih",middleName:null,surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli",profilePictureURL:"https://mts.intechopen.com/storage/users/179007/images/system/179007.JPG",biography:"Dr. Erman Salih İstifli received his Ph.D. from Biology Department of Cukurova University, Insitute of Science and Letter. In his doctoral study, Dr. İstifli focused on the elucidation of the genotoxic and cytotoxic effects of a commonly used anticancer agent (antifolate) on human lymphocytes. During his period of doctoral research, he joined the molecular cytogenetics group at the Max Planck Institute for Molecular Genetics in Berlin, Germany, and he focused there on investigating the molecular cytogenetic causes of some human rare diseases. During these studies, he contributed experimentally to the identification of four candidate genes (GRIA2, GLRB, NPY1R, and NPY5R) responsible for intelligence and obesity. He was assigned as an expert and rapporteur on eight candidate projects in the Marie-Sklodowska Curie-Actions Innovative Training Networks in 2016. In 2017, he completed the online theoretical and practical course 'Introduction to Biology - The Secret of Life', run by the Massachusetts Institute of Technology (MIT) on the edX platform. In April 2019, within the framework of Erasmus+ staff mobility program, he gave seminars on 'DNA microarrays and their use in genotoxicity' at Tirana University in Tirana, Albania. He is a published author of several articles in journals covered by the SCI and SCI-E, and has manuscripts in other refereed scientific journals. He currently serves as a referee in several journals covered by the SCI and SCI-E. His studies mainly fall into the field of genetic toxicology. He continues his current research on the structural biology of COVID-19 as well as identification of novel plant-based hit compounds in the treatment of Alzheimer’s disease.",institutionString:"Çukurova University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"Cukurova University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"8068",title:"Cytotoxicity",subtitle:"Definition, Identification, and Cytotoxic Compounds",isOpenForSubmission:!1,hash:"20a09223d92829b5478b5f241f6a03ce",slug:"cytotoxicity-definition-identification-and-cytotoxic-compounds",bookSignature:"Erman Salih Istifli and Hasan Basri Ila",coverURL:"https://cdn.intechopen.com/books/images_new/8068.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6969",title:"Lymphocytes",subtitle:null,isOpenForSubmission:!1,hash:"1aa8ac01c934ebdeedd5d7813036beef",slug:"lymphocytes",bookSignature:"Erman Salih Istifli and Hasan Basri İla",coverURL:"https://cdn.intechopen.com/books/images_new/6969.jpg",editedByType:"Edited by",editors:[{id:"179007",title:"Dr.",name:"Erman Salih",surname:"Istifli",slug:"erman-salih-istifli",fullName:"Erman Salih Istifli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10198",title:"Response Surface Methodology in Engineering Science",subtitle:null,isOpenForSubmission:!1,hash:"1942bec30d40572f519327ca7a6d7aae",slug:"response-surface-methodology-in-engineering-science",bookSignature:"Palanikumar Kayaroganam",coverURL:"https://cdn.intechopen.com/books/images_new/10198.jpg",editedByType:"Edited by",editors:[{id:"321730",title:"Prof.",name:"Palanikumar",surname:"Kayaroganam",slug:"palanikumar-kayaroganam",fullName:"Palanikumar Kayaroganam"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"18401",title:"Soil Bacteria Support and Protect Plants Against Abiotic Stresses",doi:"10.5772/23310",slug:"soil-bacteria-support-and-protect-plants-against-abiotic-stresses",body:'\n\t\t
\n\t\t\t
1. Introduction
\n\t\t\t
Numerous stresses caused by complex environmental conditions, e.g. bright light, UV, too high and low temperatures, freezing, drought, salinity, heavy metals and hypoxia, lead to substantial crop losses worldwide (Boyer, 1982, Mahajan & Tuteja, 2005, Mittler, 2006;). These abiotic stresses might increase in the near future even because of global climate change (http://www.ipcc.ch). Among the abiotic factors that are shaping plant evolution, water availability is the most important (Kijne, 2006). Water stress in its broadest sense encompasses both drought and salt stress. Soil salinity affects extensive areas of land in both developed and developing countries. The agricultural intensification, together with unfavourable natural conditions, has accelerated soil salinity in many part of the world. According to the FAO Land and Plant Nutrition Management Service, over 6% of the world’s land is salt-affected (Table 1).
\n\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Regions
\n\t\t\t\t\t\t
Total area (Mha)
\n\t\t\t\t\t\t
Saline soils \n\t\t\t\t\t\t
\n\t\t\t\t\t\t
Sodic soil
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Mha
\n\t\t\t\t\t\t
%
\n\t\t\t\t\t\t
Mha
\n\t\t\t\t\t\t
%
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Africa
\n\t\t\t\t\t\t
1,899
\n\t\t\t\t\t\t
39
\n\t\t\t\t\t\t
2.0
\n\t\t\t\t\t\t
34
\n\t\t\t\t\t\t
1.8
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Asia, the Pacific and Australia
\n\t\t\t\t\t\t
3,107
\n\t\t\t\t\t\t
195
\n\t\t\t\t\t\t
6.3
\n\t\t\t\t\t\t
249
\n\t\t\t\t\t\t
8.0
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Europe
\n\t\t\t\t\t\t
2,011
\n\t\t\t\t\t\t
7
\n\t\t\t\t\t\t
0.3
\n\t\t\t\t\t\t
73
\n\t\t\t\t\t\t
3.6
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Latin America
\n\t\t\t\t\t\t
2,039
\n\t\t\t\t\t\t
61
\n\t\t\t\t\t\t
3.0
\n\t\t\t\t\t\t
51
\n\t\t\t\t\t\t
2.5
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Near East
\n\t\t\t\t\t\t
1,802
\n\t\t\t\t\t\t
92
\n\t\t\t\t\t\t
5.1
\n\t\t\t\t\t\t
14
\n\t\t\t\t\t\t
0.8
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
North America
\n\t\t\t\t\t\t
1,924
\n\t\t\t\t\t\t
5
\n\t\t\t\t\t\t
0.2
\n\t\t\t\t\t\t
15
\n\t\t\t\t\t\t
0.8
\n\t\t\t\t\t
\n\t\t\t\t\t
\n\t\t\t\t\t\t
Total
\n\t\t\t\t\t\t
12,781
\n\t\t\t\t\t\t
397
\n\t\t\t\t\t\t
3.1
\n\t\t\t\t\t\t
434
\n\t\t\t\t\t\t
3.4
\n\t\t\t\t\t
\n\t\t\t\t
Table 1.
Source: FAO Land and Plant Nutrition Management Service.
\n\t\t\t\t\t\tTable 1Regional distribution of salt-affected soils, in million hectares
The term salt-affected refers to soil that are saline or sodic (Szabolcs, 1989). Saline soil has an excess of soluble salt in the soil solution, the liquid located between aggregates of soil. A sodic soil has too much sodium associated with the negatively charged clay particles. Salinity occur thought natural or human-induced processes that result in the accumulation of dissolved salts in the soil water to an extent that inhibits plant growth. Natural salinity results from the accumulation of salts over long period of time and is caused by two natural processes. The first is the weathering process that breaks down rock and release soluble salts of various type, mainly chloride of sodium, calcium and magnesium, and to a lesser extent, sulphates and carbonates. Sodium chloride is the most soluble salt. The second is the deposition of oceanic salt carried in wind and rain. Human-induced salinity results from human activity that change the hydrologic balance of the soil between water applied (irrigation or rainfall) and water used by crops (transpiration). The most common causes are (i) land clearing and the replacement of perennial vegetation with annual crops, and (ii) irrigation schemes using salt-rich irrigation water or having insufficient drainage (Munns & Tester, 2008).
\n\t\t\t
Compared to salt stress, the problem of drought is even more pervasive and economically damaging. Nevertheless, most studies on water stress signalling have focused on salt stress primarily because plant responses to salt and drought are closely related and the mechanisms overlap. Salt and drought stresses affect virtually every aspect of plant physiology and metabolism. Although some of the changes observed under these stresses are adaptive, many may be consequences of stress injury (Mahajan & Tuteja, 2005).
\n\t\t\t
Water deficit and salinity disrupt photosynthesis and increase photorespiration, altering the normal homeostasis of cells and cause an increased production of Reactive Oxygen Species (ROS) such as the super oxide radical, hydrogen peroxide and hydroxyl radical (Miller et al., 2010). Under optimal growth conditions, ROS are mainly produced at low level in organelles such as chloroplasts, mitochondria and peroxisomes (Apel & Hirt, 2004). The enhanced production of ROS during stress can pose a threat to cells but it is though that ROS also act as signals for the activation of stress-response and defence pathways (Pitzschke et al., 2006).
\n\t\t\t
The direct effects of salt on plant growth also involve nutrient imbalance caused by the loss of control on nutrient uptake and/or transport to the shoot leading to ion deficiencies (Munns, 2002).
\n\t\t\t
The main reason for these nutrient deficiencies can be related to the abundant presence of ions, like Na+ and Cl-, in the soil solution. Abundance of these soluble ions can decrease the activity of other essential elements in the soil and can lead to reduction in accessibility and uptake of some elements by the plants. Several studies show that plants exposed to environmental stresses require additional supplies of mineral nutrients to minimize the adverse effects of stress (Endris & Mohammed, 2007, Heidari & Jamshid, 2010, Kaya et al., 2002, Khayyat et al., 2007;). In particular, it is known that salt stress causes reduction in P accumulation in plants, which developed P-deficiency symptoms. The addition of soluble P to saline growth medium increased crop growth and yield (Awad et al., 1990, Grattan and Grieve, 1999, Mohammad et al., 1998, Naheed et al., 2008, Satti & Al-Yahyai, 1995).
\n\t\t\t
To deal with saline soil and minimize crop loss, scientists have searched for salt-tolerant cultivars, and have attempted to develop salt-tolerant crops through breeding (Araus et al., 2008, Dwivedi et al., 2010, Sreenivasulu et al., 2007, Witcombe et al., 2008). However, gaps in understanding the complex physiological, biochemical, developmental, and genetic mechanisms that underlie environmental stress tolerance, and the subsequent difficulty in combining favourable alleles to create improved high yielding genotypes, are the major constraint to improve crop yield under abiotic stress. Furthermore, it appears certain that domestication has narrowed the genetic diversity within crops for stress tolerance, and thus limited options in traditional crop breeding.
\n\t\t\t
To overcome salinity effects, scientists are also using transgenic approaches to obtain genetically modified plants (Ashraf & Akram, 2009, Mittler & Blumwald, 2010, Valliyodan & Nguyen, 2006, Vinocur & Altman, 2005, Zhang et al., 2000). These approaches are time consuming and costly due to the impressive charges required to validate the consumption or cultivation of genetically modified plants. Indeed, the development of transgenic plants with increased stress tolerance is primarily based on the performance of transgenic lines produced and tested under controlled conditions as greenhouse, and can be found only few reports where the performance of transgenic cultivars was tested under field conditions. Several factors limit the success of producing salt-tolerant cultivars through genetic engineering. 1) In most cases only a single gene has been transformed, although salt stress resistance is polygenic. If, for example, osmoprotectant-producing, transcription factor-expressing, ion homeostasis-maintaining, and antioxidant enzymatic activities are all incorporated into a single species, there is a strong possibility that all these activities could work in concert to overcome concurrently present abiotic stresses. Transforming recipient plants with many genes or crossing plants containing different stress tolerance genes is very time consuming. 2) Transformation of agronomic important crops and identification of uncovered tolerance determinants or stress inducible promoters that direct the expression at proper time and place must be further explored to maximize salt tolerance.
\n\t\t\t
Plants in their natural environment are colonized both by endocellular and intracellular microorganisms (Gray & Smith, 2005). Rhizosphere microorganisms, particularly beneficial bacteria and fungi, can improve plant performance under stress environments and, consequently, enhance yield both directly and indirectly (Dimkpa et al., 2009a). Some plant growth-promoting rhizobacteria (PGPR) may exert a direct stimulation on plant growth and development by providing plants with fixed nitrogen, phytohormones, iron that has been sequestered by bacterial siderophores, and soluble phosphate (Hayat et al., 2010, Rodriguez & Fraga, 1999). Others do this indirectly by protecting the plant against soil-borne diseases, most of which are caused by pathogenic fungi (Lugtenberg & Kamolova, 2009). Common adaptation mechanisms of plants exposed to environmental stresses, such as temperature extremes, high salinity, drought and nutrient deficiency, or heavy metal toxicity, include changes in root morphology (Potters et al., 2007), a process in which phytohormones are known to play a key role (Spaepen et al., 2007, Spaepen & Vanderleyden, 2010). The majority of root associated bacteria that display beneficial effects on plant growth produce indole-3-acetic acid (IAA) (Hayat et al., 2010). Inoculation of various plant species with such bacteria lead to increased root growth and/or enhanced formation of lateral roots and root hairs that can result in enhanced tolerance to abiotic stress. Bacterial IAA production also stimulates the activity of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase involved in the degradation of the ethylene precursor ACC (Glick, 2005). ACC deaminase activity could be helpful in sustain plant growth and development under stress conditions by reducing stress-induced ethylene production. Modulation of other major plant hormones could improve crop salt tolerance by reducing the toxic effects of salinity (Bianco & Defez, 2009). A number of nitrogen-containing compounds accumulate in plants exposed to saline stress (Mansour, 2000, Parida & Das, 2005). The accumulation of the amino acid proline is one of the most frequently reported modifications induced by water and salt stress as well as other stresses in plants (Hare & Gress, 1997, Kavi Kishor, 2005; Verbruggen & Hermans, 2008). It has been found that Medicago plants infected by IAA-overproducing PGPR strains are able to overcome different stressful environmental conditions and accumulate high levels of proline. The increased expression levels of two genes involved in the first two steps of proline biosynthesis from glutamic acid confirmed these results (Bianco & Defez, 2009).
\n\t\t\t
When plants are subjected to environmental stress conditions such as those listed above, the balance between the production of ROSs and the quenching activity of the antioxidants is upset, often resulting in oxidative damage (Jubany-Marì et al., 2010, Miller et al., 2010). Plants with high levels of antioxidants, either constitutive or induced, have been reported to have greater resistance to this oxidative damage (Ahmad et al., 2008, Kohler et al., 2008). The activities of the antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaicol peroxidase (POX), glutathione reductase (GR), and superoxide dismutase (SOD) increase under salt stress in plants, and a correlation between these enzyme levels and salt tolerance has been described (Apel & Hirt, 2004). It has been found that Medicago plants infected with IAA-overproducing PGPR strains showed high antioxidant enzymes activity which contributed to enhance plant protection against salt stress (Bianco & Defez, 2009).
\n\t\t\t
Considering the positive effects of PGPR strains on different plant cultivars and lines grown under salt stress conditions, we propose that such bacteria might be tested in field trial offering an economical and simple treatment to salt sensitive plants.
\n\t\t\t
A fruitful strategy to alleviate negative effects of salt stress in plants might be the co-inoculation of seeds with different PGPR species, such as Rhizobium and Azospirillum. Indeed, dual inoculation with Rhizobium and Azospirillum and other plant growth promoting rhizobacteria was shown to increase the total nodule number of several legumes, acetylene reduction activities, and the total N content of mineral macro- and micronutrients as compared to inoculation with Rhizobium alone (Burdman, 1996, Molla et al., 2001a, Remans et al., 2008b). The presence of Azospirillum in the rhizosphere was reported to elicit or activate the hydrolysis of conjugated phytohormones and flavonoids in the root tissue, thus bringing about the release of compounds in their active forms (Dardanelli et al., 2008, Saikia et al., 2010, Spaepen et al., 2007).
The objective of this synthesis paper is to review the pivotal role of plant growth-promoting bacteria in developing sustainable systems for crop production under abiotic stress conditions. In this review, much research information about salt-stress has been gathered because soil salinity, which limits crop yield and restricts use of land, is a major constrain to food production. We start by reviewing the root zone bacteria that have been found to possess plant growth-promoting properties. We then review how plant growth-promoting bacteria act as enhancers of the main biochemical and molecular mechanisms developed by plants to cope with salt stress. We then discuss the potential role that agronomic manipulations can play in ameliorating the impact of salinity stress on plants. The body of studies suggests that, under abiotic stress conditions, the use of improved PGPR inoculants might be advantageous for the development of sustainable agriculture in which yield losses are reduced and plant growth is improved.
\n\t\t
\n\t\t
\n\t\t\t
2. Beneficial rhizobacteria
\n\t\t\t
Populations of microorganisms live in close contact with the plants root zone called rhizosphere. Here the number of microorganisms is usually higher than in other soil area. Thus, the plant root is thought to be a major source of nutrients for microorganisms living in the rhizosphere. Indeed, plants supply organic carbon to their surroundings in the form of root exudates and rhizobacteria respond to this exudation by means of chemotaxis towards the exudate source modulating their metabolism to optimize nutrient acquisition (Hardoim et al., 2008).
\n\t\t\t
Soil bacteria beneficial to plant growth are usually referred to as plant growth promoting rhizobacteria (PGPR), capable of promoting plant growth by colonizing the plant root (Hayat et al., 2010). Bacteria of diverse genera such as Arthrobacter, Azotobacter, Azospirillum, Bacillus, Enterobacter, Pseudomonas and Serratia (Gray & Smith, 2005), as well as Streptomyces spp. (Dimkpa et al. 2008, 2009b, Tokala et al. 2002) were identified as PGPR.
\n\t\t\t
According to their residing sites, PGPR can be divided in iPGPR, which live inside the plant cells and are localized in specialized structures, the so-called nodules, and ePGPR which live outside the plant cells and do not produce organs like nodules, but still prompt plant growth (Gray & Smith, 2005).
\n\t\t\t
Although the exact mechanisms of plant growth stimulation remain largely speculative, possible explanation includes: (1) production of hormones like abscisic acid, gibberellic acid, cytokinins, and auxin, i.e IAA,; (2) production of essential enzymes, 1-aminocyclopropane-1-carboxylate (ACC) deaminase to reduce the level of ethylene in the root of developing plants; (3) nitrogen fixation; (4) production of siderophores; (5) solubilization and mineralization of nutrients, particularly mineral phosphate; (6) improvement of abiotic stresses resistance (Hayat et al., 2010).
\n\t\t
\n\t\t
\n\t\t\t
3. Abiotic stresses in plant: Improving mechanisms of stress response by rhizobacteria
\n\t\t\t
Dehydratation, salinity, low as well as high-temperature stresses and other abiotic stresses lead to metabolic toxicity, membrane disorganization, generation of ROS, inhibition of photosinthesis, reduced nutrient acquisition and altered hormones levels. Accumulation of osmoprotectants, production of superoxide radical scavenging mechanisms, exclusion or compartmentation of ions by efficient transporter and symporter systems, production of specific enzymes involved in the regulation of plant hormones are some of the mechanisms that plants have evolved for adaptation to abiotic stresses (Des Marais & Juenger, 2010, Mahajan & Tuteja, 2005, Parida & Das, 2005, Santner et al., 2009, Shao et al., 2009). Many studies have been published on beneficial effects of bacterial inoculation on plant physiology and growth under abiotic stress conditions and some examples are summarized in Table 2.
\n\t\t\t
\n\t\t\t\t
3.1. Phytohormones synthesis and modulation
\n\t\t\t\t
Plants are sessile organisms with a high level of physiological plasticity, enabling survival under a wide variety of environmental insults. This is due to the continuously active shoot and root meristems and their capability to generate new organs after embryogenesis (Wolter & Jurgens, 2009). They have developed an extensive array of defensive responses that includes changes in the root morphology. The root architecture of the plants, which is determined by the pattern of root branching (lateral root formation) and by the rate and direction of growth of individual roots (Malamy, 2005), constitutes an important model to study how developmental plasticity is translated into growth responses under several environmental stresses. Morphogenesis is tightly linked to hormonal homeostasis, with several hormones controlling cell elongation, cell division and re-orientation of growth. The
Bacterially mediated plant tolerance to abiotic stress. Some of the data reported in this Table were adapted from Dimkpa et al. (2009a), whereas recent publications have been included de novo.
\n\t\t\t\t
physiologically most active auxin in plants is indole-3-acetic acid (IAA), and the fact that no fully auxin-deficient mutant plants have been identified so far reflects the importance of auxin in plant development. There is a high capacity for auxin biosynthesis not only in young aerial tissues, but also in roots, particularly in the meristematic primary root tip (Teale et al., 2006). Auxin, and its fine concentration gradients have powerful effects on plant development and in particular on lateral root formation and branching, two key components of the response phenotype induced in plants under stress conditions (Potters et al., 2007, 2009). Alteration in the pattern of lateral root formation and emergence in response to P availability is mediated by changes in auxin sensitivity in Arabidopsis thaliana roots. These changes alter the expression of auxin-responsive genes and stimulate pericycle cells to proliferate (Pérez-Torres et al., 2008).
\n\t\t\t\t
Exogenous auxin application results in formation of branched root and, similarly, mutants that accumulate high levels of auxin, or mutants with an altered auxin distribution, produce excess of lateral roots. A broad range of abiotic stresses induce lateral root formation, therefore auxin may be an intermediate between the action of a stressor and the realization of response phenotype. Several mechanisms have been proposed to explain stress-induced changes in auxin metabolism and/or receptiveness; however, evidences for stress-induced changes in auxin transport and catabolism are predominantly found in literature. For example, water and osmotic stresses impact on auxin transport by altering the expression of PIN genes and/or by inhibition of polar auxin transport (Potters et al., 2009). Moreover, auxin conjugates and the respective hydrolases were shown to be involved in the reaction of plant to stress (Muller, 2011). Interestingly, overexpression of an auxin-amidohydrolase in Arabidopsis is associated with a reduced inhibition of root elongation and increased resistance to salt stress. This effect was probably due to the increase in the content of free auxin sufficiently to provide a protective effect against salt stress (Junghans et al., 2006).
\n\t\t\t\t
As more plant tissues are analyzed for the presence of bacteria, an increased number of IAA-producing PGPR strains are detected inside the plant tissue (Spaepen et al., 2007). Various plant species inoculated with such bacteria showed increased root growth and/or enhanced formation of lateral roots and roots hairs (Dimkpa et al., 2009a). For example, the stimulatory effect of Azospirillum strains on the development of roots is well documented. Morphological plant root changes have been observed repeatedly upon Azospirillum inoculation and have been attributed to the production of plant-growth promoting substances: auxins, cytokinins and gibberellins, with auxin production being quantitatively the most important (Spaepen et al., 2008). Specific evidences for the involvement of auxins produced by Azospirillum in roots proliferation were obtained in many cases. Addition of filter-sterilized culture supernatants of A. brasiliense to rice roots grown in hydroponic tanks increased root elongation, root surface area, root dry matter, and development of lateral roots and root hairs, compared with untreated roots (El-Khawas & Adachi, 1999). Similarly, a cell-free supernatant of A. brasiliense Cd applied to soybean plants induced many roots and increased root length (Molla et al., 2001a). Exogenous application of IAA to bean roots resembled responses of these plants to inoculation with Azospirillum (Remans et al., 2008a). More direct evidence for the importance of IAA was provided when several IAA-attenuate mutants were compared with their parental wild types for their effect on plant growth. A mutant of A. brasiliense with low production of phytohormones, but high N2-fixing activity, did not enhance root growth over uninoculated controls (Kundu et al., 1997).
\n\t\t\t\t
Considering the relationship between IAA and ethylene precursor ACC (Dimkpa et al., 2009a), the positive effects of IAA on root growth can be either direct or indirect through the reduction of ethylene levels (Lugtenberg & Kamilova, 2009).
\n\t\t\t\t
Indeed, under stress conditions, including drought and salinity, the plant hormone ethylene endogenously regulates plant homeostasis and results in reduced root and shoot growth.
\n\t\t\t\t
It has been shown that plants produce ethylene at two different phases in response to stressful stimuli. In the first phase, the small amount of ethylene produced promotes the activity of stress-related genes. In the second phase (1–3 days after stimulus application) the larger amount of ethylene produced lead to inhibition of growth and harmful effects on plants including senescence, chlorosis, and abscission (Glick et al., 2007).
\n\t\t\t\t
Degradation of the ethylene precursor ACC into 2-oxobutanoate and ammonia by bacterial ACC-deaminase lowers the ethylene concentration in plant roots, relieves the ethylene repression of auxin response factors synthesis, and indirectly increases plant growth (Glick et al., 2007, Kang et al., 2010). It has been proposed that ACC might be exuded from plant roots and that soil bacteria containing ACC-deaminase could convert this for their growth. As result, the hydrolyzed ACC products would enhance bacterial growth. Taken together, the ACC-deaminase function seems to be mutually beneficial between plants and PGPR, because ethylene in plants can be reduced by continuous ACC secretion and degradation by bacteria, and bacteria can use metabolized ACC (Glick et al., 1998).
\n\t\t\t\t
ACC deaminase-containing PGPR strains have found practical application in protecting different plant species against growth inhibition caused by various environmental stresses. Mayak et al. (2004) reported that Achromobacter piechaudii having ACC deaminase activity significantly increased the fresh and dry weights of tomato seedlings grown in the presence of NaCl salt (up to 172 mM). Pseudomonas fluorescens strain TDK1 containing ACC deaminase activity enhanced the saline resistance in groundnut plants and increased yield as compared to plants inoculated with Pseudomonas strains lacking ACC deaminase activity (Saravanakumar & Samiyappan). Pseudomonas putida UW4, which produces IAA and ACC deaminase, protected canola seedling from growth inhibition by high levels of salt. Siddikee et al. (2010) have also confirmed that inoculation with 14 halotolerant bacterial strains ameliorate salt stress in canola plants through the reduction of ethylene production via ACC deaminase activity. Inoculation of maize plants with Pseudomonas fluorescens containing ACC deaminase boosted root elongation and fresh weight significantly under saline conditions (Kausar & Shahzad, 2006). Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) (Arshad et al., 2008). Nadeem et al. (2010) reported that rhizobacteria capable of producing ACC deaminase mitigate salt stress in wheat.
\n\t\t\t\t
We also analysed the growth of Medicago truncatula plants nodulated by Sinorhizobium meliloti strains under severe salt stress conditions. Medicago plants nodulated by the IAA-overproducing RD64 strain (Mt-RD64) showed a phytohormones re-modulation, with a higher IAA content in nodules and roots and a reduced accumulation of IAA in the shoot strain as compared to plants nodulated by the wild-type strain 1021 (Mt-1021). Transcriptional analysis of the main ethylene signalling genes showed that, when compared to Mt-1021 plants, Mt-RD64 plants did not showed and induction of this pathway when 150 mM NaCl was applied, which means less plants stress damages (Bianco & Defez, 2009).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.2. Accumulation of protective compounds
\n\t\t\t\t
Several studies correlated accumulation of nitrogen-containing compounds (NCC) with drought and salt tolerance in plants (Parida & Das, 2005). The most frequently accumulating NCC includes amino acids, amides, imino acids, proteins, quaternary ammonium compounds and polyamines.
\n\t\t\t\t
Very high accumulation of cellular proline (up to 80% of the amino acids pool under stress and 5% under normal conditions) due to increased synthesis and decreased degradation under a variety of stress conditions such as salt and drought has been documented in many plant species (Szabados & Savourè, 2009). Several comprehensive studies using transgenic plants or mutants demonstrate that proline metabolism has a complex effect on development and stress responses. Proline has been proposed to act as a compatible osmolyte and to be a way to store carbon and nitrogen. Saline and drought are known to induce oxidative stress. Several studies showed that proline may have an antioxidant activity acting as a ROS scavenger. Proline may also function as molecular chaperones able to stabilize the structures of proteins and enhance the activity of different enzymes, and its accumulation play a role in maintenance of cytosolic pH and regulation of intracellular redox potential (Hare & Cress, 1997, Kavi Kishor et al., 2005, Verbruggen & Hermans, 2008).
\n\t\t\t\t
Under abiotic stress conditions, increased proline biosynthesis was observed for various plant species inoculated with different PGPR (Barka et al., 2006, Jha et al., 2010, Kohler et al., 2009, Sandhya et al., 2010, Vardharajula et al., 2011). The synthesis of proline as well as other compatible solutes require an energy cost (41 moles of ATP) and occur at the expense of plant growth, but may allow the plant to survive and recover from the presence of high external salt concentration (Munns & Tester, 2008).
\n\t\t\t\t
We found a significant correlation between reduced symptoms of senescence, such as chlorosis, necrosis and drying, and 2-fold increased proline content in the shoot of Mt-RD64 as compared to Mt-1021 plants, after exposure to 150 mM NaCl (Bianco & Defez, 2009).
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.3. Biosynthesis of antioxidative enzymes
\n\t\t\t\t
In plants ROS such as superoxide (•O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH), and singlet oxygen (1O2) are continuously produced as byproducts of various metabolic pathways localized in different cellular compartments (Apel & Hirt, 2004). A common feature of these species is their capacity to cause oxidative damage to proteins, DNA, and lipids. Since internal O2 concentrations are high during photosynthesis, chloroplasts are especially prone to generate activated oxygen species (Gill & Tuteja, 2010). Under physiological steady-state conditions, these molecules are scavenged by different anti-oxidative defence components that are often confined to particular compartments (Apel & Hirt, 2004). Under normal growth conditions, the production of ROS in cells is low, whereas, during stress their rate of production is enhanced. ROS accumulation during stress results from the imbalance between production and scavenging of ROS. Major ROS-scavenging mechanisms of plants include SOD, APX and CAT enzymes. Antioxidants such as ascorbic acid and glutathione, which are found in high concentration in chloroplasts and other cellular compartments, are also crucial for plant defence against oxidative stress (Miller et al., 2010). For the detoxification of excess ROS in plant, the overall balance between different antioxidants is crucial for determining the steady-state level of superoxide radicals and hydrogen peroxide, and has to be tightly controlled (Mittler, 2002).
\n\t\t\t\t
Induction of antioxidant enzymes (catalase and total peroxidase) is involved in the alleviation of salinity stress in lettuce plants inoculated with PGPR strains (Kohler et al., 2010). Under non-saline conditions, inoculation with Pseudomonas mendocina and fertilization led to similar increases in plant growth (about 30% greater than the control plants). Salinity decreased the dry weight of the shoots and roots for all lettuce plants. However, the plants inoculated with P. mendocina had significantly greater shoot biomass than the control plants at both medium and high salinity levels. We reported that salt-stressed Mt-RD64 plants showed much less oxidative damage (reduced chlorosis, necrosis, and drying) compared with salt-stressed Mt-1021 plants. These effects were connected to the enhanced activity of the antioxidant enzymes SOD, APX, GR and POX (Bianco & Defez, 2009).
\n\t\t\t\t
Recent study reports the potential of PGPR strains in alleviating drought stress effects in maize. Maize plants inoculated with five drought tolerant plant growth promoting Pseudomonas spp. strains namely P. entomophila, P. stutzeri, P. putida, P. syringae, and P. montelli were subjected to drought stress and the effects of inoculation on growth, osmoregulation and antioxidant status was investigated. Inoculated plants showed significantly lower activity of antioxidant enzymes plants as compared to uninoculated plants (Sandhya et al. 2010). Reduction in the activity of antioxidant enzymes was also observed in barley plants. Omar et al. (2009) reported that, without inoculation, salinity led to a significant increase of catalase and peroxidase activities in salt-stressed leaves of two barley cultivars differing in salinity tolerance. Inoculation of the two cultivars with Azospirillum brasilense lowered the magnitude of increase and significantly ameliorated the deleterious effects of salinity improving crop productivity.
\n\t\t\t\t
These results, which apparently seem to be in contradiction with the assumption that stress resistance in plants is related to more effective antioxidant systems, are an implication of the same positive effect and indicate that inoculated plants felt less stress as compared to uninoculated plants.
\n\t\t\t
\n\t\t\t
\n\t\t\t\t
3.4. Enhancement of nutrients up-take
\n\t\t\t\t
Survival and productivity of crop plants exposed to environmental stresses are dependent on their ability to develop adaptive mechanisms to avoid or tolerate stress (Munns & Tester, 2008). Accumulating evidence suggests that mineral nutritional status of plants greatly affects their ability to adapt to adverse environmental conditions and in particular to abiotic stress factors. Impairment of the mineral nutrition status of plants exacerbates the adverse effects of abiotic stresses and the exogenous addition of high levels of macronutrients can alleviate the adverse effects of stress on plant growth (Baligar et al., 2001, Endris & Mohammed, 2007, Grattan & Grieve, 1999, Heidari & Jamshid, 2010, Kaya et al., 2001, Kaya et al., 2002, Khoshgoftarmanesh et al., 2010).
\n\t\t\t\t
After nitrogen, phosphorous is the second major nutrient for plant growth as it is an integral part of different biochemicals like nucleic acids, nucleotides, phospholipids and phosphoproteins. In most cases salinity decreased P accumulation in plant, which developed P-deficiency symptoms (Martinez & Lauchli, 1994; Navarro et al., 2001; Parida & Das, 2004, Rogers et al., 2003). The reduction in P availability in saline soils was suggested to be a result of ionic strength effects that reduce the activity of phosphate and the tight control of P concentrations by sorption processes and by low solubility of Ca-P minerals. The concentration of soluble P in soil is usually very low (1 ppm or less) (Hinsinger, 2001). The cell might take up several P forms but the major part is adsorbed in the forms of HPO4\n\t\t\t\t\t-2 or H2PO4\n\t\t\t\t\t-1. Phosphorus exists in two forms in soil, as organic and inorganic phosphate, and like other nutrient elements such as potassium, iron, zinc and copper, possesses limited mobility in the soil (Hayat et al., 2010, Rodrìguez & Fraga, 1999). The conversion of insoluble phosphate compounds (both organic and inorganic) in a form accessible to the plant is an important trait of PGPR strains. PGPR strains belonging to various genera have the ability to solubilize insoluble inorganic phosphate compounds such as tricalcium phosphate, dicalcium phosphate, hydroxyapatite, and rock phosphate (Richardson et al., 2009, Khan et al., 2009, Rodrìguez & Fraga, 1999).
\n\t\t\t\t
It is generally accepted that the major mechanism of mineral phosphate solubilization is the action of organic acids synthesized by soil microorganisms (Rodrìguez & Fraga, 1999). Production of organic acids results in acidification of the microbial cell and its surroundings. Consequently, P may be released from a mineral phosphate by proton substitution for Ca2+. The production of organic acids has been well documented for different PGPR genera such as Pseudomonas, Erwinia, Rhizobium and Bacillus (Rogrìguez & Fraga, 1999).
\n\t\t\t\t
As discussed previously, soil contains a wide range of organic substrates, which can be a source of P for plant growth. To make this form of P available for plant nutrition, it must be hydrolyzed to inorganic P. Mineralization of most organic phosphorous compounds is carried out by means of phosphatase enzymes (phosphohydrolases). Considering that the pH of most soils ranger from acid to neutral values, acid phosphatases should play the major role in this process (Rogrìguez & Fraga, 1999).
\n\t\t\t\t
Under P-limiting conditions, the IAA-overproducing RD64 strain showed high P-mobilizing activity that is connected to the synthesis of high levels of acid phosphatase enzymes and the secretion into the growth medium of malic, succinic, and fumaric acids in large quantities. As compared to Mt-1021 plants, Mt-RD64 plants released large amount of another P-solubilizing organic acid, 2-hydroxyglutaric acid and showed significant increase in both shoot and root fresh weights, when grown under P-deficient conditions (Bianco & Defez, 2010a).
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
4. Agronomic approaches for crop improvement under abiotic stress conditions
\n\t\t\t
The increase in the frequency and severity of abiotic stresses is one of the main consequences of climate change. In particular, extreme weather events will result in more frequent drought and salinity.
\n\t\t\t
To mitigate the effects of these stresses, appropriate crop management techniques will be needed to ensure sufficient production of food from crop plants by increasing the productivity per unit of land area. Several low-technology management systems, such as biofertilization (single or mixed inoculation treatments), crop rotation, intercropping, skip rows (decreasing planting density by omitting rows), mulching (with natural or synthetic mulches), and protected cropping (enclosing the aerial environment of the crop under glass, plastic or netting) can be used to improve crop productivity (Davies et al., 2010). The impact of two of the techniques described above is considered in the current review.
\n\t\t\t
\n\t\t\t\t
4.1. Co-inoculation of plant growth-promoting bacteria
\n\t\t\t\t
Co-inoculation is based on mixed inoculants, combination of microorganisms that interact synergistically, or when microorganisms such as Azospirillum are functioning as “helper” bacteria to enhance the performance of other beneficial microorganisms. In the rhizosphere the synergism between various bacterial genera such as Bacillus, Pseudomonas and Rhizobium has been demonstrated to promote plant growth and development. Compared to single inoculation, co-inoculation improved the absorption of nitrogen, phosphorus and mineral nutrients by plants (Figueiredo et al., 2010, Yadegari et al., 2010). A significant increase in root and shoot biomass was observed in chickpea plants when co-inoculated with Mesorhizobium and Pseudomonas (Sindhu et al., 2002a, b). Increased nodule weight, root and shoot biomass and total nitrogen of chickpea plants was also reported due to co-inoculation of Rhizobium, Pseudomonas and Bacillus (Parmar & Dadarweal, 1999). Co-inoculation with Bradyrhizobium japonicum and Pseudomonas fluorescens increased colonization B japonicum on soybean roots, nodule number and acetylene reduction assay (Tchebotar et al., 1998). Combined inoculation of Rhizobium with Pseudomonas striata or Bacillus megaterium led to increased dry matter, grain yield and phosphorus uptake significantly over the uninoculated control in legumes (Elkoca et al., 2008). Verma et al. (2010) have reported the application of Rhizobium spp. and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea plants. In field studies, the grain and straw yield were significantly increased in co-inoculation of Rhizobium with P. fluorescens followed by B. megaterium and Azotobacter chroococcum over uninoculated control. Co-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Egamberdieva et al., 2010). The greenhouse experiment showed that co-inoculation of fodder galega with R. galegae and P. trivialis or with R. galegae and P. extremorientalis improved plant growth, nodulation and N content compared to plants inoculated with R. galegae alone in potting soil containing low levels of nitrogen. Co-inoculation of plants with P. trivialis and R. galegae showed the highest stimulatory effect.
\n\t\t\t\t
The mechanisms behind these effects are only partially understood. One of the mechanisms used by these PGPR strains is the production of phytohormones such as auxins, gibberellins and cytokinins, which steadily contribute to the plant auxin “pool” in a way that the effect of PGPR inoculation can be mimicked by exogenous auxin application.
\n\t\t\t\t
The endogenous IAA level in plant regulates growth of the shoots and roots, and in the case of legumes, nodules formation (Teale et al., 2006). It has been observed that low concentrations of exogenously given pure IAA stimulated shoot and root growth of wheat in non-saline and saline conditions, and similar effects were induced by IAA-producing PGPR strains (Egamberdieva, 2009).
\n\t\t\t\t
Bacteria of the genus Azospirillum are free-living, surface colonizing and, sometimes, endophytic diazotroph and plant growth promoting rhizobacteria. Azospirillum strains had no preference for crop plants or weeds, or for annual or perennial plants, and can be successfully applied to plants that have no previous history of Azospirillum in their roots. Although reports about isolating Azospirillum from graminaceous plants are common, other reports showed that the bacterium is a natural inhabitant of many non-graminaceous plants. It appears that Azospirillum is a general root colonizer and is not a plants-specific bacterium (Bashan & Holguin, 1997). Azospirillum strains are capable of increasing yield of important crops growing in various soils and climatic regions. It has been reported that root elongation rate, mineral N, P and K and microelements uptake are consequently improved after Azospirillum inoculation (Bashan et al., 2004), even under stressful environmental conditions (Askary et al., 2009). Dual inoculation of legumes with Rhizobium and Azospirillum significantly increase several plant-growth variables when compared with single inoculations (Hamaoui et al., 2001; Itzigsohn et al., 2000; Remans et al., 2007; Remans et al., 2008b; Tchebotar et al., 1998). Azospirillum is considered a Rhizobium helper by stimulating nodulation, nodule function, and possibly plant metabolism (Molla et al., 2001, Verma et al., 2010). Phytohormones produced by Azospirillum promote epidermal-cell differentiation in root hairs that increased the number of potential sites for rhizobial infection leading to the formation of more nodules. Morphological and physiological changes in root system are also stimulated (Bashan & Levanony, 1990, Pacovsky, 1990, Sarig et al., 1992, Volpin & Kapulnik, 1994). An increase in the number of lateral roots and root hairs cause addition of root surface available for nutrients and water uptake. Higher water and nutrient uptake by inoculated roots cause an improved water status of plant, which in turn could be the main factor enhancing plant growth (Boddey et al., 1986, Dalla Santa et al., 2004, Fallik & Okon, 1996, Mostajeran et al., 2002).
\n\t\t\t\t
Positive effects of co-inoculation were also observed on symbiotic performance of common bean, which is usually considered a poor nitrogen-fixing legume. Poor nodulation and variable response to inoculation is mainly attributed to intrinsic characteristics of the host plant, particularly the great sensitivity to nodulation-limiting factors, such as high rate of N fertilizer used in intensive agriculture, high temperature and soil dryness (Bais et al., 2006, Egamberdiyeva, 2007). Indeed, Yadegari & Rahmani (2010) showed that co-inoculation of three Phaseouls vulgaris cultivars with two Rhizobium strains, Pseudomonas fluorescens and A. lipoferum resulted in increased seed yield, number of pods per plant, weight of seeds, seeds protein yield and number of seeds per pod.
\n\t\t\t\t
Inoculation of common bean or afalfa (Medicago sativa) with Azospirillum brasilense in the absence of Rhizobium resulted in a more persistent exudation of flavonoids by legumes roots. Azospirillum- Rhizobium co-inoculation positively affected the expression of nod-genes and production of nodulation factor patterns in Rhizobium tropici and Rhizobium etli in the presence or absence of NaCl at 50 mM. A significant increase of total and upper nodule numbers was observed at different concentrations of Rhizobium inoculum (Dardanelli et al., 2008).
Due to climate changed, suitable land area for agricultural production remains fixed or is diminishing and farmers are faced with the task of increasing production demands (Zhang & Cai, 2011). Raising productivity is possible through the introduction of improved genotypes with enhanced resilience to abiotic stresses. In addition to this, agronomic manipulation may impact significantly on crop productivity. Because of restricted availability of water and fertilizer in many part of the world, productivity increase must be accompanied by increase in use efficiency. The cultivation of two or more species in the same field at the same time (intercropping) can boost productivity per unit land area (Davies et al., 2010). Crop mixtures may consist of legume/legume or legume/non-legume systems. Some of the intercropping advantages include: higher yield than sole crop yields, greater yield stability, more efficient use of environmental resources, better weed control and improved quality by variety (Malèzieux et al., 2009). Intercropping is a common practice where land is scarce: beans are mostly intercropped in sub-Saharan Africa, with the major exception of southern Africa where nearly half are monocropped (Kimani et al., 2005); groundnut is often grown as an intercrop in West Africa (Ndjeunga et al., 2008); pigeonpea has been traditionally grown as an intercrop in India; more than half of lentil grown in Bangladesh is planted under mixed cropping (Sarker et al., 2004).
\n\t\t\t\t
However, the increased awareness of environmental degradation arising from the use of non-renewable artificial fertilizers and pesticides is encouraging the use of mixed cropping even in developed countries (Fujita et al., 1992).
\n\t\t\t\t
The N2 fixed by Rhizobia in legumes can also benefit associated non-legume via direct transfer of biologically fixed N to cereals growing in intercrops when fertilizer N is limited, which has both economic and environmental benefits. Among the various combinations of cereals and legumes used by small-scale farmers maize-cowpea is one of the most widely used because cowpea fixes atmospheric nitrogen and produces proteins, while maize depletes the soil nitrogen and produce carbohydrates. Maize and cowpea mixtures improve the diets as well as the soil fertility and productivity (Dahmardeh et al., 2009, 2010). PGPR strains may contribute to the benefits of legumes in cropping systems in more way than just fixing atmospheric nitrogen. Indeed, as previously discussed, these bacteria have the ability to promote modifications of root architecture, enabling those plants to accumulate more mineral nutrients than control plants, increase disease resistance and improve plant response to environmental stresses. Therefore, the use of PGPR-inoculated legumes and non-legumes in mixed cropping systems would be a promising agricultural practice for rehabilitation of extreme wasted lands, after a careful selection of appropriate tolerant bacterial strains and legume genotypes to the prevailing stressful conditions.
\n\t\t\t
\n\t\t
\n\t\t
\n\t\t\t
5. Discussion and conclusions
\n\t\t\t
A large number of PGPR representing diverse genera have been described over the past 50 years. Despite their appeal as a “natural” means of plant protection few strains have been developed commercially. This is partly because uneconomically large doses often must be applied and performance can be inconsistent in the field. There are several advantages of developing genetically-modified PGPR over transgenic plants for improving plant performance under a variety of stresses: (1) it is far easier to modify a bacterium than complex higher organisms; (2) several plant growth-promoting traits can be combined in a single organism, and (3) instead of engineering crop by crop, a single, engineered inoculant can be used for several crops, especially when using a non-specific genus like Azospirillum.
\n\t\t\t
PGPR strains development is hampered mainly by the fact that these organisms not always survive harsh environmental conditions including high concentrations of environmental contaminants, salts, extremis of pH and temperature, and compete with other organisms. Genetically engineered strains offer a means to develop PGPR that are effective at low inoculum doses and under a variety of environmental conditions. Many rhizobacteria produce phytohormones that undoubtedly affect root growth leading to the formation of roots systems with increased exploratory capacity. This morphological modification plays an important role in the mechanisms of stress response (Potterset al., 2007, 2009). Efforts to engineer the rhizosphere through hormone manipulation have focused mainly on degradation of so-called “stress” ethylene, which is synthesized by plants upon exposure to stresses such as flooding, drought, salt, and the presence of metals, organic contaminants and pathogens. The production of ACC deaminase enzyme, which catalyzes the cleavage of ACC, the immediate precursor of ethylene, may be used to modulate ethylene levels. Available data are consistent with the proposed model of plant growth facilitation by ACC deaminase-producing PGPR strains (Glick et al. 2007). We have described an engineered PGPR strain, RD64 (Pii et al., 2007), a derivative of Sinorhizobium meliloti 1021, able to release into liquid growth medium up to 78-fold more IAA than wild-type 1021 (Camerini et al., 2008). For this strain, as well as for IAA-treated Escherichia coli cells (Bianco et al., 2006a, 2006b), a more resistance to salinity and other abiotic stresses and the induction of tricarboxylic acid cycle (TCA) enzymes was observed as compared to 1021 strain (Bianco & Defez, 2009; Imperlini et al., 2009). In addition, RD64 strain showed enhanced long-term cell survival (Defez, 2006), has improved nitrogen fixation ability (Bianco & Defez, 2010b, Imperlini et al., 2009) and is highly effective in mobilizing P from insoluble source such as Phosphate Rock (Bianco & Defez, 2009). Mt-RD64 plants showed an higher degree of protection against oxidative damage induced by salt stress (Bianco & Defez, 2009) and significant increases in both the shoot and root fresh weight under P-starved condition when compared to salt-stressed and P-starved Mt-1021 plants (Bianco & Defez, 2010a).
\n\t\t\t
For Mt-RD64 plants we also observed a re-modulation of phytohormones, with a higher IAA content in nodules and roots and a decreased IAA levels in shoots, as compared with Mt-1021 plants. The modulation of IAA levels in these plants lead to alterations of other important hormones that control plant growth. Indeed, the expression levels of Medicago genes encoding members of cytokinin signalling pathway were induced in the root of Mt-RD64 plants (Bianco et al., 2009). In addition, the analysis of the expression levels of the main ethylene signalling genes showed that severe salt stress triggered a high induction of ethylene signalling in Mt-1021 plants whereas this pathway was not significantly altered in Mt-RD64 plants (Bianco & Defez, 2009).
\n\t\t\t
We speculate that the growth promoting effects observed under stressful environmental conditions for the model legume Medicago might be extended to other plant species. Indeed, for legumes such as pea, alfalfa and bean plants, we previously reported an increase in the shoot or seed production for the plants nodulated by IAA-overproducing strains. In addition, for tropical legumes such as soybean and peanut plants, we also have preliminary data indicating the positive effects triggered by the specific IAA-overproducing rhizobia strains (Bianco et al., 2010c).
\n\t\t\t
A PGPR strain with the characteristics described above is a good candidate to promote plant yield under stressful environmental conditions either in mono-cropping or mixed cropping systems.
\n\t\t
\n\t\n',keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/18401.pdf",chapterXML:"https://mts.intechopen.com/source/xml/18401.xml",downloadPdfUrl:"/chapter/pdf-download/18401",previewPdfUrl:"/chapter/pdf-preview/18401",totalDownloads:9281,totalViews:740,totalCrossrefCites:22,totalDimensionsCites:46,totalAltmetricsMentions:0,impactScore:14,impactScorePercentile:99,impactScoreQuartile:4,hasAltmetrics:0,dateSubmitted:"November 25th 2010",dateReviewed:"April 25th 2011",datePrePublished:null,datePublished:"September 22nd 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/18401",risUrl:"/chapter/ris/18401",book:{id:"371",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations"},signatures:"Bianco Carmen and Defez Roberto",authors:[{id:"51522",title:"Dr.",name:"Roberto",middleName:null,surname:"Defez",fullName:"Roberto Defez",slug:"roberto-defez",email:"defez@igb.cnr.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Institute of Genetics and Biophysics",institutionURL:null,country:{name:"Italy"}}},{id:"51531",title:"Dr.",name:"Carmen",middleName:null,surname:"Bianco",fullName:"Carmen Bianco",slug:"carmen-bianco",email:"bianco@igb.cnr.it",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:{name:"Institute of Genetics and Biophysics",institutionURL:null,country:{name:"Italy"}}}],sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Beneficial rhizobacteria",level:"1"},{id:"sec_3",title:"3. Abiotic stresses in plant: Improving mechanisms of stress response by rhizobacteria",level:"1"},{id:"sec_3_2",title:"3.1. Phytohormones synthesis and modulation ",level:"2"},{id:"sec_4_2",title:"3.2. Accumulation of protective compounds",level:"2"},{id:"sec_5_2",title:"3.3. Biosynthesis of antioxidative enzymes",level:"2"},{id:"sec_6_2",title:"3.4. Enhancement of nutrients up-take",level:"2"},{id:"sec_8",title:"4. Agronomic approaches for crop improvement under abiotic stress conditions",level:"1"},{id:"sec_8_2",title:"4.1. Co-inoculation of plant growth-promoting bacteria",level:"2"},{id:"sec_9_2",title:"4.2. Intercropping systems",level:"2"},{id:"sec_11",title:"5. Discussion and conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAdesemoye\n\t\t\t\t\t\t\tA. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTorbert\n\t\t\t\t\t\t\tH. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKloepper\n\t\t\t\t\t\t\tJ. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tEnhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Canadian Journal of Microbiology, 54\n\t\t\t\t\t876\n\t\t\t\t\t886 .\n\t\t\t'},{id:"B2",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAhmad\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarwat\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSharma\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tReactive oxygen species, antioxidants and signalling in plants. Journal of Plant Biology, 51\n\t\t\t\t\t167\n\t\t\t\t\t173 .\n\t\t\t'},{id:"B3",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tApel\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHirt\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tReactive oxygen species: metabolism, oxidative stress, and signal transduction.\n\t\t\t\t\tAnnual Review of Plant Biology, 55\n\t\t\t\t\t373\n\t\t\t\t\t399 .\n\t\t\t'},{id:"B4",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAraus\n\t\t\t\t\t\t\tL. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSlafer\n\t\t\t\t\t\t\tG. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoyo\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSerret\n\t\t\t\t\t\t\tD. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tBreeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science, 27\n\t\t\t\t\t377\n\t\t\t\t\t412 .\n\t\t\t'},{id:"B5",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArkipova\n\t\t\t\t\t\t\tT. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPrinsen\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVeselov\n\t\t\t\t\t\t\tS. U.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartinenko\n\t\t\t\t\t\t\tE. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMelentiev\n\t\t\t\t\t\t\tA. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKudoyarova\n\t\t\t\t\t\t\tG. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Cytokinin producing bacteria enhance plant growth in drying soil. Planta and Soil, 292\n\t\t\t\t\t305\n\t\t\t\t\t315 .\n\t\t\t'},{id:"B6",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAsch\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPadham\n\t\t\t\t\t\t\tJ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 2005) Root associated bacteria suppress symptom of iron toxicity in lawland rice. In The Global Food & Product Chain- Dynamics, Innovations, Conflicts, Strategies (eds Tielkes, E., Hulsebusch, Hauser, I., Deininger, A. & Becker, K.), 276 MDD GmbH, Stuttgart, Germany.\n\t\t\t'},{id:"B7",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAshad\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShaharoona\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMahmood\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere, 18\n\t\t\t\t\t611\n\t\t\t\t\t620 .\n\t\t\t'},{id:"B8",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAshraf\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHasnain\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBerge\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMahmood\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Inoculating wheat seeds with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biology and Fertility of soils, 40\n\t\t\t\t\t157\n\t\t\t\t\t162 .\n\t\t\t'},{id:"B9",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAshraf\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkram\n\t\t\t\t\t\t\tN. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tImproving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances, 27\n\t\t\t\t\t744\n\t\t\t\t\t752 .\n\t\t\t'},{id:"B10",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAskary\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMostajeran\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmooaghaei\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMostajeran\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 influence of the Co-inoculation Azopspirillum brasiliense and Rhizobium meliloti plus 2\n\t\t\t\t\t4 -D on grain yield and N, P, K content of Triticum aestivum (Cv. Baccros and Mahdavi). American-Eurasian Journal of Agricultural & Environmental, 5, 296-307.\n\t\t\t'},{id:"B11",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAwad\n\t\t\t\t\t\t\tA. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEdwards\n\t\t\t\t\t\t\tD. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCampbell\n\t\t\t\t\t\t\tL. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1990 Phosphorus enhancement of salt tolerance of\n\t\t\t'},{id:"B12",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBais\n\t\t\t\t\t\t\tH. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPerry\n\t\t\t\t\t\t\tL. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSimon\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVivanco\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tThe role of root exudates in rhizosphere interactions with plants and other organisms. Plant Biology, 57, 233\n\t\t\t\t\t266 .\n\t\t\t'},{id:"B13",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBaligar\n\t\t\t\t\t\t\tV. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFageria\n\t\t\t\t\t\t\tN. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tZ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Nutrient use efficiency in plants. Communication in Soil Sciente and Plant Analysis, 32\n\t\t\t\t\t921\n\t\t\t\t\t950 .\n\t\t\t'},{id:"B14",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBanik\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMidya\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarkar\n\t\t\t\t\t\t\tB. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGhose\n\t\t\t\t\t\t\tS. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tWheat and chickpea intercropping systems in an additive series experiment: advantages and weed smothering. European Journal of Agronomy, 24\n\t\t\t\t\t325\n\t\t\t\t\t332 .\n\t\t\t'},{id:"B15",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarassi\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAyrault\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCreus\n\t\t\t\t\t\t\tC. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSueldo\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSobrero\n\t\t\t\t\t\t\tM. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\tSeed inoculation with Azospirillum mitigate NaCl effects on lettuce.\n\t\t\t\t\tScientia Horticulturae, 109\n\t\t\t\t\t109\n\t\t\t\t\t8\n\t\t\t\t\t14 .\n\t\t\t'},{id:"B16",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarka\n\t\t\t\t\t\t\tE. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNowak\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tClément\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Enhancement of chilling resistance of inoculated gravepive plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmas strain PsJN. Applied and Environmental Microbiology, 72\n\t\t\t\t\t7246\n\t\t\t\t\t7252 .\n\t\t\t'},{id:"B17",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBashan\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLevanony\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1990\n\t\t\t\t\tCurrent status of Azospirillum as a challenge for agriculture. Canadian Journal of Microbiology, 36\n\t\t\t\t\t\n\t\t\t\t\t591\n\t\t\t\t\t608 .\n\t\t\t'},{id:"B18",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBashan\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHolguin\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tAzospirillum-plant relationships: environmental and physiological advances (1990-1996). Canadian Journal of Microbiology, 43\n\t\t\t\t\t103\n\t\t\t\t\t121 .\n\t\t\t'},{id:"B19",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBashan\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHolguin\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tde -Bashan\n\t\t\t\t\t\t\tL. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tAzospirillum-plant relationships: physiological, molecular, agricultural, environmental and advances (1997-2003). Canadian Journal of Microbiology, 50\n\t\t\t\t\t521\n\t\t\t\t\t577 .\n\t\t\t'},{id:"B20",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBensalim\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNowak\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAsiedu\n\t\t\t\t\t\t\tS. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tA plant growth promoting rhizobacterium and temperatures effects on performance of 18 clones of potato.\n\t\t\t\t\tAmerican Journal of Potato Research, 75\n\t\t\t\t\t145\n\t\t\t\t\t152 .\n\t\t\t'},{id:"B21",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tImperlini\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCalogero\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSenatore\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmoresano\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarpentieri\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPucci\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006a Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185\n\t\t\t\t\t373\n\t\t\t\t\t382 .\n\t\t\t'},{id:"B22",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tImperlini\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCalogero\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSenatore\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPucci\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006b 2006b) Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology, 152\n\t\t\t\t\t2421\n\t\t\t\t\t2431 .\n\t\t\t'},{id:"B23",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Medicago truncatula improves salt tolerance when nodulated by an indole-3 -acetic acid-overproducind Sinorhizobium meliloti strain. Journal of Experimental Botany, doi:10.1093/jxb/erp140.\n\t\t\t\t\n\t\t\t'},{id:"B24",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tImperlini\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Legume like more IAA. Plant Signaling & Behavior, 4\n\t\t\t\t\t763\n\t\t\t\t\t765 .\n\t\t\t'},{id:"B25",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010a\n\t\t\t\t\tImprovement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology, 76\n\t\t\t\t\t4626\n\t\t\t\t\t4632 .\n\t\t\t'},{id:"B26",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010b\n\t\t\t\t\tAuxins upregulate nif and fix genes. Plant Signaling & Behavior, 50\n\t\t\t\t\t1290\n\t\t\t\t\t1294 .\n\t\t\t'},{id:"B27",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRotino\n\t\t\t\t\t\t\tG. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCampion\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAnas\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010c\n\t\t\t\t\tHow to improve legume production under severe environmental stresses. Special Abstract/Journal of Biotechnology, doi:10.1016/j.jbiotec.2010.08.309.\n\t\t\t\t\n\t\t\t'},{id:"B28",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoddey\n\t\t\t\t\t\t\tR. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBaldani\n\t\t\t\t\t\t\tV. L. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBaldani\n\t\t\t\t\t\t\tJ. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDobereiner\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1986\n\t\t\t\t\tEffect of inoculation of Azospirillum spp. on nitrogen accumulation by field grown wheat.\n\t\t\t\t\tPlant and Soil, 95\n\t\t\t\t\t109\n\t\t\t\t\t121 .\n\t\t\t'},{id:"B29",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoyer\n\t\t\t\t\t\t\tJ. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1982\n\t\t\t\t\tPlant productivity and environment. Science, 218\n\t\t\t\t\t443\n\t\t\t\t\t448 .\n\t\t\t'},{id:"B30",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurdman\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVolpin\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKigel\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKapulnik\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996 Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense Cd. Applied and Environmental Microbiology, 62\n\t\t\t\t\t3030\n\t\t\t\t\t3033 .\n\t\t\t'},{id:"B31",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCamerini\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSenatore\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLonardo\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tImperlini\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoschetti\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRotino\n\t\t\t\t\t\t\tG. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCampion\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Archives of Microbiology, 190\n\t\t\t\t\t67\n\t\t\t\t\t77 .\n\t\t\t'},{id:"B32",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCasanovas\n\t\t\t\t\t\t\tE. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarassi\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSueldo\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tAzospirillum inoculation mitigates water stress effects in maize seedlings. Cereal Research Communication, 30\n\t\t\t\t\t343\n\t\t\t\t\t350 .\n\t\t\t'},{id:"B33",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCassan\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMaiale\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMasciarelli\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVidal\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLuna\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRuiz\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Cadaverine production by Azospirillum brasiliense and its possible role in plant growth promotion and osmotic stress mitigation. European Journal of Soil Biology, 45\n\t\t\t\t\t12\n\t\t\t\t\t19 .\n\t\t\t'},{id:"B34",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCreus\n\t\t\t\t\t\t\tC. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSueldo\n\t\t\t\t\t\t\tR. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarassi\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tWater relations and yield in Azospirillum-inoculated wheat exposed to drought in the field. Canadian Journal of Botany, 82\n\t\t\t\t\t273\n\t\t\t\t\t281 .\n\t\t\t'},{id:"B35",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDahmardeh\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGhanbari\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSyasar\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRamrodi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Effect of intercropping maize with cowpea on green forage yield and quality evaluation. Asian Journal of Plant Science, 8\n\t\t\t\t\t235\n\t\t\t\t\t239 .\n\t\t\t'},{id:"B36",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDahmardeh\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGhanbari\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSyasar\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRamrodi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tThe role of intercropping maize (Zea mays L.) and Cowpea (Vigna unguiculata L.) on yield and soil chemical properties. African Journal of Agricultural Research, 5\n\t\t\t\t\t631\n\t\t\t\t\t636 .\n\t\t\t'},{id:"B37",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDalla Santa\n\t\t\t\t\t\t\tO. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHernandez\n\t\t\t\t\t\t\tR. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAlvarez\n\t\t\t\t\t\t\tG. L. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRonzelli\n\t\t\t\t\t\t\tPedro\n\t\t\t\t\t\t\tJunior\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSoccol\n\t\t\t\t\t\t\tC. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tAzospirillum sp. Inoculation in wheat, barley and oats seeds greenhouse experiments. Brazilian Archives of Biology and Technology, 47\n\t\t\t\t\t843\n\t\t\t\t\t850 .\n\t\t\t'},{id:"B38",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDardanelli\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFernandez de\n\t\t\t\t\t\t\tCordoba. F. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEspuny\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarvajal\n\t\t\t\t\t\t\tM. A. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDiaz\n\t\t\t\t\t\t\tM. E. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSerrano\n\t\t\t\t\t\t\tA. M. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMegìas\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tEffect of Azospirillum brasilense coinoculated with Rhizobium on Phaseolus vulgaris flavonoids and Nod factor production under salt stress. Soil Biology & Biochemistry, 40\n\t\t\t\t\t2713\n\t\t\t\t\t2721 .\n\t\t\t'},{id:"B39",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDavies\n\t\t\t\t\t\t\tW. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDodd\n\t\t\t\t\t\t\tI. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tNovel crop science to improve yield and resource use efficiency in water-limited agriculture. Journal of Agricultural Science, doi:10.1017/S0021859610001115.\n\t\t\t\t\n\t\t\t'},{id:"B40",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Patent Holder: CNR. Deposited on 14/06/2005, Italian Patent Office: n. RM2005A000308. PCT extension n. PCT/IT2006/000449. Method for increasing the survival of bacterial strains of the Rhizobium genus.\n\t\t\t'},{id:"B41",body:'\n\t\t\t\t\n\t\t\t\t\tDekker Press Inc., New York,\n\t\t\t\t\t203\n\t\t\t\t\t229\n\t\t\t\t\t203229\n\t\t\t\t\n\t\t\t'},{id:"B42",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDes\n\t\t\t\t\t\t\tMarais. D. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJuenger\n\t\t\t\t\t\t\tT. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tPleiotropy, plasticity, and the evolution of plant abiotic stress tolerance. Annals of the New York Academy of Sciences, 1206\n\t\t\t\t\t56\n\t\t\t\t\t79 .\n\t\t\t'},{id:"B43",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDhima\n\t\t\t\t\t\t\tK. V.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLithourgidis\n\t\t\t\t\t\t\tA. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVasilakoglou\n\t\t\t\t\t\t\tI. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDordas\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tCompetition indices of common vetch and cereal intercrops in two seeding ratio. Field Crop Research,\n\t\t\t\t\t100\n\t\t\t\t\t249\n\t\t\t\t\t256 .\n\t\t\t'},{id:"B44",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDimkpa\n\t\t\t\t\t\t\tC. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSvatos\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMerten\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBuchel\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKothe\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nichel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Canadian Journal of Microbiology, 54\n\t\t\t\t\t163\n\t\t\t\t\t172 .\n\t\t\t'},{id:"B45",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDimkpa\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWeinand\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAsh\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009a\n\t\t\t\t\tPlant-rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell and Environment , 32\n\t\t\t\t\t1682\n\t\t\t\t\t1694 .\n\t\t\t'},{id:"B46",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDimkpa\n\t\t\t\t\t\t\tC. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMerten\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSvatos\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBuchel\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKothe\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009b Metal induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology & Biochemistry, 41\n\t\t\t\t\t154\n\t\t\t\t\t162 .\n\t\t\t'},{id:"B47",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDwivedi\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tUpadhyaya\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSubudhi\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGehring\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBajic\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOrtiz\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 Enhancing Abiotic Stress Tolerance in Cereals Through Breeding and Transgenic Interventions, in Plant Breeding Reviews, 33 ed J. Janick), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470535486.ch2\n\t\t\t'},{id:"B48",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEgamberdiyeva\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHoflich\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003 Influence of grwth-promoting bacteria on the growth of wheat in different soils temperatures. Soil Biology & Biochemistry, 35, 973\n\t\t\t\t\t978 .\n\t\t\t'},{id:"B49",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEgamberdiyeva\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tThe effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 36\n\t\t\t\t\t184\n\t\t\t\t\t189 .\n\t\t\t'},{id:"B50",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEgamberdieva\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum, 31\n\t\t\t\t\t861\n\t\t\t\t\t864 .\n\t\t\t'},{id:"B51",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEgamberdieva\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBerg\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLindstrom\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRasanen\n\t\t\t\t\t\t\tL. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tCo-inoculation of Pseudomonas spp. with Rhizobium improves growth and symbiotic performance of fodder galega (Galega orientalis Lam.). European Journal of Soil Biology, 46\n\t\t\t\t\t269\n\t\t\t\t\t272 .\n\t\t\t'},{id:"B52",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Khawas\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAdachi\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tIdentification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biology and Fertility of Soils, 28\n\t\t\t\t\t377\n\t\t\t\t\t381 .\n\t\t\t'},{id:"B53",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tElkoca\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKantar\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSahin\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Influence of nitrogen fixing and phosphate solubilizing bacteria on nodulation, plant growth and yield of chickpea. Journal of Plant Nutrition, 33\n\t\t\t\t\t157\n\t\t\t\t\t171 .\n\t\t\t'},{id:"B54",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEndris\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMohammed\n\t\t\t\t\t\t\tM. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tNutrient acquisition and yield response of Barley exposed to salt stress under different levels of potassium nutrition. International Journal of Environmental Science and Technology,\n\t\t\t\t\t4\n\t\t\t\t\t323\n\t\t\t\t\t330 .\n\t\t\t'},{id:"B55",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFallik\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1996 Inoculants of Azospirillum brasiliense: biomass production, survival and growth promotion of Setaria italica and Zea mays. Soil Biology & Biochemistry, 28\n\t\t\t\t\t123\n\t\t\t\t\t126 .\n\t\t\t'},{id:"B56",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFigueiredo\n\t\t\t\t\t\t\tM. V. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurity\n\t\t\t\t\t\t\tH. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartìnez\n\t\t\t\t\t\t\tC. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChanway\n\t\t\t\t\t\t\tC. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tAlleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Applied Soil Ecology, 40\n\t\t\t\t\t182\n\t\t\t\t\t188 .\n\t\t\t'},{id:"B57",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFigueiredo\n\t\t\t\t\t\t\tM. V. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSeldin\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tde Araujo\n\t\t\t\t\t\t\tF. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMariano\n\t\t\t\t\t\t\tR. L. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tPlant growth promoting rhizobacteria: fundamentals and applications. Plant Growth and Health Promoting Bacteria, D.K. Maheshwari (ed.), DOI 10.1007/978-3-642-13612-2_2.\n\t\t\t'},{id:"B58",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFujita\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOfusu-Budu\n\t\t\t\t\t\t\tK. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOgata\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992\n\t\t\t\t\tBiological nitrogen fixation in mixed legume-cereal cropping system.\n\t\t\t\t\tPlant and Soil, 141\n\t\t\t\t\t155\n\t\t\t\t\t175 .\n\t\t\t'},{id:"B59",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalal\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Ghandour\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAl-Akel\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tStimulation of wheat growth and N fixation through Azospirillum and Rhizobium inoculation: a field trial with 15N techniques. Development in Plant and Soil Science,1, 92\n\t\t\t\t\tPlant Nutrition, Symposium 9, 666 EOF\n\t\t\t\t\t667 EOF .\n\t\t\t'},{id:"B60",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGerman\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurdman\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKigel\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Effects of Azospirillum brasiliense of root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils, 32\n\t\t\t\t\t294\n\t\t\t\t\t264 .\n\t\t\t'},{id:"B61",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGill\n\t\t\t\t\t\t\tS. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTuteja\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tReactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48\n\t\t\t\t\t909\n\t\t\t\t\t930 .\n\t\t\t'},{id:"B62",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGlick\n\t\t\t\t\t\t\tB. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPenrose\n\t\t\t\t\t\t\tD. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tA model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology, 190\n\t\t\t\t\t63\n\t\t\t\t\t68 .\n\t\t\t'},{id:"B63",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGlick\n\t\t\t\t\t\t\tB. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tModulation of plant ethylene levels by the bacterial enzyme ACC deaminase.\n\t\t\t\t\tFEMS Microbiology Letters, 251\n\t\t\t\t\t1\n\t\t\t\t\t7 .\n\t\t\t'},{id:"B64",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGlick\n\t\t\t\t\t\t\tB. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCheng\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCzarny\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDuan\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tPromotion of plant growth by ACC deaminase-producing soil bacteria. European Journal of Plant Pathology, 119\n\t\t\t\t\t329\n\t\t\t\t\t339 .\n\t\t\t'},{id:"B65",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrattan\n\t\t\t\t\t\t\tS. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreve\n\t\t\t\t\t\t\tC. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999 Mineral nutrient acquisition and response of plants grown in saline environments. In: M. Pessarakli (Eds.), Handbook of Plant and Crop Stress. MarcelDekker Press Inc., New York, 203\n\t\t\t\t\t229 .\n\t\t\t'},{id:"B66",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGray\n\t\t\t\t\t\t\tE. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSmith\n\t\t\t\t\t\t\tD. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tIntracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signalling processes. Soil Biology & Biochemistry, 37\n\t\t\t\t\t395\n\t\t\t\t\t412 .\n\t\t\t'},{id:"B67",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrichko\n\t\t\t\t\t\t\tE. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGlick\n\t\t\t\t\t\t\tB. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tAmelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiology and Biochemistry,39\n\t\t\t\t\t11\n\t\t\t\t\t17 .\n\t\t\t'},{id:"B68",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHaheed\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShahbaz\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkram\n\t\t\t\t\t\t\tN. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Interactive effect of rooting medium application of phosphorus and NaCl on plant biomass and mineral nutrients of rice (Oryza sativa L.). Pakistan Journal of Botany, 40\n\t\t\t\t\t1601\n\t\t\t\t\t1608 .\n\t\t\t'},{id:"B69",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHamaoui\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAbbadi\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurdman\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRashid\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarig\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Effects of inoculation with Azospirillum brasiliense on chickpeas (Cicer arietinum) anf faba bean (Vicia faba) under different growth conditions. Agronomie, 21\n\t\t\t\t\t553\n\t\t\t\t\t560 .\n\t\t\t'},{id:"B70",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHamdia\n\t\t\t\t\t\t\tA. B. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShaddad\n\t\t\t\t\t\t\tM. A. K. .\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDoaa\n\t\t\t\t\t\t\tM. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004 Mechanisms of salt tolerance and interactive effects of Azospirillum brasiliense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regulation, 44\n\t\t\t\t\t165\n\t\t\t\t\t174 .\n\t\t\t'},{id:"B71",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHardoim\n\t\t\t\t\t\t\tP. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVan Overbeek\n\t\t\t\t\t\t\tL. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVan Elsas\n\t\t\t\t\t\t\tJ. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tProperties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology, 16,463\n\t\t\t\t\t471 .\n\t\t\t'},{id:"B72",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHare\n\t\t\t\t\t\t\tP. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCress\n\t\t\t\t\t\t\tW. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tMetabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21\n\t\t\t\t\t79\n\t\t\t\t\t102 .\n\t\t\t'},{id:"B73",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHauggard-Nielson\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmbus\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJensen\n\t\t\t\t\t\t\tE. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Evaluating pea and barley cultivars for complementary in intercropping at different levels of soil N availability. Field Crop Research,\n\t\t\t\t\t72\n\t\t\t\t\t185\n\t\t\t\t\t196 .\n\t\t\t'},{id:"B74",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHayat\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAli\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmara\n\t\t\t\t\t\t\tU.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKhalid\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAhmed\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tSoil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60\n\t\t\t\t\t579\n\t\t\t\t\t598 .\n\t\t\t'},{id:"B75",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHeidari\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJamshid\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 Interaction between salinity and potassium on grain yield, carbohydrate content and nutrient uptake in pearl millet. Journal of Agricultural and Biological Science,\n\t\t\t\t\t5\n\t\t\t\t\t39\n\t\t\t\t\t46 .\n\t\t\t'},{id:"B76",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHisinger\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001 Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant and Soil, 237\n\t\t\t\t\t173\n\t\t\t\t\t195 .\n\t\t\t'},{id:"B77",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tImperlini\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBianco\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLonardo\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCamerini\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCermola\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoschetti\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDefez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Effects of indole-3-acetic acid on Sinorhizobium meliloti survival and symbiotic nitrogen fixation and stem dry weight production. Applied Microbiology and Biotechnology, 83\n\t\t\t\t\t727\n\t\t\t\t\t738 .\n\t\t\t'},{id:"B78",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tItzigsohn\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBurdman\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZaady\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYonatan\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPerevolotsky\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000 Plant-growth promotion in natural pastures by inoculation with Azospirillum brasiliense under suboptimal growth conditions. Arid Soil Research and Management, 14\n\t\t\t\t\t151\n\t\t\t\t\t158 .\n\t\t\t'},{id:"B79",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJavanmard\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMohammadi-Nasab\n\t\t\t\t\t\t\tA. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJavanshir\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMoghaddam\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJanmohammadi\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Forage yield and quality in intercropping of maize with different legumes as double-cropped. Journal of Food, Agriculture and Environment,\n\t\t\t\t\t7\n\t\t\t\t\t163\n\t\t\t\t\t166 .\n\t\t\t'},{id:"B80",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJha\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSubramanian\n\t\t\t\t\t\t\tR. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPatel\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant agaist saline stress. Acta Physiologiae Plantarum, DOI: 10.1007/s11738-010-0604-9.\n\t\t\t\t\n\t\t\t'},{id:"B81",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJubani-Marì\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMunné-Bosch\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAlegre\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tRedox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry, 48\n\t\t\t\t\t351\n\t\t\t\t\t358 .\n\t\t\t'},{id:"B82",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJunghans\n\t\t\t\t\t\t\tU.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPolee\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDuchting\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWeiler\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKuhlman\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrubber\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTeichmann\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tAdaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant, Cell and Environment, 29\n\t\t\t\t\t1519\n\t\t\t\t\t1531 .\n\t\t\t'},{id:"B83",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKang\n\t\t\t\t\t\t\tB. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim\n\t\t\t\t\t\t\tW. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYun\n\t\t\t\t\t\t\tH. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChang\n\t\t\t\t\t\t\tS. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tUse of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Reports, 4\n\t\t\t\t\t179\n\t\t\t\t\t183 .\n\t\t\t'},{id:"B84",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKausar\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShahzad\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006 Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. Journal of Agriculture & Social Sciences, 2\n\t\t\t\t\t216\n\t\t\t\t\t218 .\n\t\t\t'},{id:"B85",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKavi\n\t\t\t\t\t\t\tKishor. P. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSangam\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmrutha\n\t\t\t\t\t\t\tR. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSri\n\t\t\t\t\t\t\tLaxmi. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNaidu\n\t\t\t\t\t\t\tK. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRao\n\t\t\t\t\t\t\tK. R. S. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRao\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReddy\n\t\t\t\t\t\t\tK. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTheriappan\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSreenivasulu\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Current Science, 88\n\t\t\t\t\t424\n\t\t\t\t\t438 .\n\t\t\t'},{id:"B86",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKaya\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKirvak\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGiggs\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tEnhancement of growth and normal growth parameters by foliar application of potassium and phosphorus on tomato cultivars grown at high (NaCl) salinity. Journal of Plant Nutrition, 24\n\t\t\t\t\t357\n\t\t\t\t\t367 .\n\t\t\t'},{id:"B87",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKaya\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKirnak\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHiggs\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaltali\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tSupplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Scientia Horticulturae, 93\n\t\t\t\t\t65\n\t\t\t\t\t74 .\n\t\t\t'},{id:"B88",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKhan\n\t\t\t\t\t\t\tA. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJilani\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkhtar\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNaqvi\n\t\t\t\t\t\t\tS. M. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRasheed\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Research Journal of Agriculture and Biological Sciences, 1\n\t\t\t\t\t48\n\t\t\t\t\t58 .\n\t\t\t'},{id:"B89",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKhayyat\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTafazoli\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEshghi\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRahemi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRajaee\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Salinity, supplementary calcium and potassium effects on fruit yield and quality of strawberry (Fragaria ananassa Duch.). American-Eurasian Journal of Agricultural & Environmental, 2, 539\n\t\t\t\t\t544 .\n\t\t\t'},{id:"B90",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKhoshgoftarmanesh\n\t\t\t\t\t\t\tA. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchulin\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tClaney\n\t\t\t\t\t\t\tR. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDaneshbakhsh\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAfyuni\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tMicronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agronomy for Sustainable Development, 30\n\t\t\t\t\t83\n\t\t\t\t\t107 .\n\t\t\t'},{id:"B91",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKijne\n\t\t\t\t\t\t\tJ. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tAbiotic stress and water scarcity: identifying and resolving conflicts from plant level to global level. Field Crops Research, 97\n\t\t\t\t\t3\n\t\t\t\t\t18 .\n\t\t\t'},{id:"B92",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKimani\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBuruchara\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmpofo\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPyndji\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChirwa\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKirkby\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Breeding beans for smallholder farmers in Eastern, Central and Southern Africa: Constraints, achievements and potential, in R. Kirkby (ed.) PABRA Millennium Workshop, Arusha, May 2001, PABRA.\n\t\t\t'},{id:"B93",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKohler\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHernandez\n\t\t\t\t\t\t\tJ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCaravaca\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoldàn\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Plant-growth-promoting rhizobacteria and abuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Functional Plant Biology, 35\n\t\t\t\t\t141\n\t\t\t\t\t151 .\n\t\t\t'},{id:"B94",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKohler\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHernandez\n\t\t\t\t\t\t\tJ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCaravaca\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoldàn\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tInduction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany, 65\n\t\t\t\t\t245\n\t\t\t\t\t252 .\n\t\t\t'},{id:"B95",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKohler\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCaravaca\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRoldàn\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tAn AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biology & Biochemistry, 42\n\t\t\t\t\t429\n\t\t\t\t\t434 .\n\t\t\t'},{id:"B96",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKundu\n\t\t\t\t\t\t\tB. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSangwan\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSharma\n\t\t\t\t\t\t\tP. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNandwal\n\t\t\t\t\t\t\tA. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997 Response of pearlmillet to phytohormones produced by Azospirillum brasiliense. Indian Journal of Plant Physiology, 2\n\t\t\t\t\t101\n\t\t\t\t\t104 .\n\t\t\t'},{id:"B97",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tJ. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tF. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLi\n\t\t\t\t\t\t\tX. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYang\n\t\t\t\t\t\t\tS. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRengel\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tWheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspecific interactions on nutrients.\n\t\t\t\t\tField Crop Research,\n\t\t\t\t\t71\n\t\t\t\t\t123\n\t\t\t\t\t137 .\n\t\t\t'},{id:"B98",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLiddycoat\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGreenberg\n\t\t\t\t\t\t\tB. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWolyn\n\t\t\t\t\t\t\tD. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tThe effect of plant growth-promoting rhizobacteria an asparagus seedling and germinating seeds subjected to water stress under greenhouse conditions.\n\t\t\t\t\tCanadian Journal of Microbiology, 55\n\t\t\t\t\t388\n\t\t\t\t\t394 .\n\t\t\t'},{id:"B99",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLutgtenberg\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKamilova\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63\n\t\t\t\t\t541\n\t\t\t\t\t556 .\n\t\t\t'},{id:"B100",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMadhaiyan\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPoonguzhali\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSa\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tMetal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 69\n\t\t\t\t\t220\n\t\t\t\t\t228 .\n\t\t\t'},{id:"B101",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMahaian\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTuteja\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005 Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444\n\t\t\t\t\t139\n\t\t\t\t\t158 .\n\t\t\t'},{id:"B102",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMalamy\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tIntrinsic and environmental response pathways that regulate root system architecture. Plant, Cell and Environment, 28\n\t\t\t\t\t67\n\t\t\t\t\t77 .\n\t\t\t'},{id:"B103",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMalèzieux\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCrozat\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDupraz\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLaurans\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMakowski\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOzier-Lafontaine\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRapidel\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tde Tourdonnet\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tValantin-Morison\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Mixing plant species in cropping systems: concepts, tools and models: a review. E. Lichtfouse et al. (eds.), Sustainable Agriculture, DOI: 10.1007/978-90-481-2666-8_22.\n\t\t\t'},{id:"B104",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMansour\n\t\t\t\t\t\t\tM. M. F.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tNitrogen containing compounds and adaptation of plants to salinity stress. Plant Biology, 43\n\t\t\t\t\t491\n\t\t\t\t\t500 .\n\t\t\t'},{id:"B105",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartinez\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLauchli\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994 Salt-induced inhibition of phosphate-uptake in plants of cotton (Gossipium hirsutum L.). New Phytologist, 126\n\t\t\t\t\t609\n\t\t\t\t\t614 .\n\t\t\t'},{id:"B106",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMarulanda\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAzcon\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChaumont\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRuiz-Lozano\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAroca\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tRegulation of plasma membrane aquaporins by inoculation with Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions.\n\t\t\t\t\tPlanta, 232\n\t\t\t\t\t533\n\t\t\t\t\t543 .\n\t\t\t'},{id:"B107",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMastretta\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTaghavi\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tvan der Lelie\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMengoni\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalardi\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGonnelli\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarac\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoulet\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWeyens\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVangronsveld\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation, 11\n\t\t\t\t\t251\n\t\t\t\t\t267 .\n\t\t\t'},{id:"B108",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMayak\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTirosh\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGlick\n\t\t\t\t\t\t\tB. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tPlant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42\n\t\t\t\t\t565\n\t\t\t\t\t572 .\n\t\t\t'},{id:"B109",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMiller\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSusuki\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCiftci-Yilmaz\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMittler\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tReactive oxygen species homeostasis and signalling during drought and salinity stresses.\n\t\t\t\t\tPlant, Cell and Environment, 33\n\t\t\t\t\t453\n\t\t\t\t\t467 .\n\t\t\t'},{id:"B110",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMittler\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Oxidative stress, antioxidants and stress tolerance. Trends in plant Science, 7\n\t\t\t\t\t405\n\t\t\t\t\t410 .\n\t\t\t'},{id:"B111",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMittler\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tAbiotic stress, the field environment and stress combination. Trends in Plant Science\n\t\t\t\t\t11\n\t\t\t\t\t15\n\t\t\t\t\t18 .\n\t\t\t'},{id:"B112",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMittler\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlumwald\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tGenetic engineering for modern agriculture: challenges and perspectives.\n\t\t\t\t\tAnnual Review of Plant Biology, 61\n\t\t\t\t\t443\n\t\t\t\t\t462 .\n\t\t\t'},{id:"B113",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMnasri\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAouani\n\t\t\t\t\t\t\tM. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMhamdi\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tNodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biology & Biochemistry, 39,1744\n\t\t\t\t\t1750 .\n\t\t\t'},{id:"B114",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMohammad\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShibli\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAjlouni\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNimri\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998\n\t\t\t\t\tTomato root and shoot responses to salt stress under different levels of phosphorus nutrition.\n\t\t\t\t\tJournal of Plant Nutrition, 21\n\t\t\t\t\t1667\n\t\t\t\t\t1680 .\n\t\t\t'},{id:"B115",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMolla\n\t\t\t\t\t\t\tA. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShamsuddin\n\t\t\t\t\t\t\tZ. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHalimi\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMorziah\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPuteh\n\t\t\t\t\t\t\tA. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001a\n\t\t\t\t\tPotential for enhancement of root growth and nodulation of soybean co-inoculated with Azospirillum and Bradyrhizobium in laboratory systems. Soil Biology & Biochemistry, 33\n\t\t\t\t\t457\n\t\t\t\t\t463 .\n\t\t\t'},{id:"B116",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMolla\n\t\t\t\t\t\t\tA. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShamsuddin\n\t\t\t\t\t\t\tZ. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaud\n\t\t\t\t\t\t\tH. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001b Mechanism of root growth and promotion of nodulation in vegetable soybean by Azospirillum brasiliense. Communication in Soil Science and Plant Analysis,\n\t\t\t\t\t32\n\t\t\t\t\t2177\n\t\t\t\t\t2187 .\n\t\t\t'},{id:"B117",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMostajeran\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmooaghaie\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEmtiazi\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Root hair density and deformation of inoculated roots of wheat cultivars by Azospirillum brasiliense and role of IAA in this phenomenon. Iranian Journal of Biology, 13\n\t\t\t\t\t18\n\t\t\t\t\t28 .\n\t\t\t'},{id:"B118",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMuller\n\t\t\t\t\t\t\tJ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2011\n\t\t\t\t\tAuxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62\n\t\t\t\t\t1757\n\t\t\t\t\t1773 .\n\t\t\t'},{id:"B119",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMunns\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002\n\t\t\t\t\tComparative physiology of salt and water stress. Plant Cell and Environment,, 25\n\t\t\t\t\t239\n\t\t\t\t\t250 .\n\t\t\t'},{id:"B120",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMunns\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTester\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tMechanisms of salinity tolerance. Annual Review of Plant Biology, 59\n\t\t\t\t\t651\n\t\t\t\t\t681 .\n\t\t\t'},{id:"B121",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNadeem\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZahir\n\t\t\t\t\t\t\tZ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNaveed\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArshad\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tPreliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity.\n\t\t\t\t\tCanadian Journal of Microbiology, 53\n\t\t\t\t\t1141\n\t\t\t\t\t1149 .\n\t\t\t'},{id:"B122",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNadeem\n\t\t\t\t\t\t\tS. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZahir\n\t\t\t\t\t\t\tZ. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNaveed\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAsghar\n\t\t\t\t\t\t\tH. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tArshad\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tRhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Science of America Journal, 74\n\t\t\t\t\t533\n\t\t\t\t\t542 .\n\t\t\t'},{id:"B123",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNavarro\n\t\t\t\t\t\t\tJ. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBotella\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCerda\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMartinez\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2001\n\t\t\t\t\tPhosphorus uptake and translocation in salt-stressed melon plants. Journal of Plant Physiology, 158\n\t\t\t\t\t375\n\t\t\t\t\t381 .\n\t\t\t'},{id:"B124",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNdjeunga\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNtare\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWaliyar\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEchekwu\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKodio\n\t\t\t\t\t\t\tO.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKapran\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDiallo\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAmadou\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBissala\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDa\n\t\t\t\t\t\t\tSylva. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Early adoption of modern groundnut varieties in West Africa, Socioeconomics and Policy Program Working Paper 24, Patancheru: ICRISAT.\n\t\t\t'},{id:"B125",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOliveira\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAlves\n\t\t\t\t\t\t\tV. M. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMarriel\n\t\t\t\t\t\t\tI. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGomes\n\t\t\t\t\t\t\tE. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tScotti\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCarneiro\n\t\t\t\t\t\t\tN. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuimaraes\n\t\t\t\t\t\t\tC. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSchaffert\n\t\t\t\t\t\t\tR. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tScotti\n\t\t\t\t\t\t\tM. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tPhosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome.\n\t\t\t\t\tSoil Biology and Biochemistry, 41\n\t\t\t\t\t1782\n\t\t\t\t\t1787 .\n\t\t\t'},{id:"B126",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOmar\n\t\t\t\t\t\t\tM. N. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOsman\n\t\t\t\t\t\t\tM. E. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKasim\n\t\t\t\t\t\t\tW. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAbd-Daim El\n\t\t\t\t\t\t\tI. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasiliense. Tasks for Vegetation Science, 44\n\t\t\t\t\t133\n\t\t\t\t\t147 .\n\t\t\t'},{id:"B127",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPacovsky\n\t\t\t\t\t\t\tR. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1990\n\t\t\t\t\tDevelopment and growth effects in the Sorghum-Azospirillum association.\n\t\t\t\t\tJournal of Applied Bacteriology, 68\n\t\t\t\t\t555\n\t\t\t\t\t563 .\n\t\t\t'},{id:"B128",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParida\n\t\t\t\t\t\t\tA. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDas\n\t\t\t\t\t\t\tA. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tEffects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Journal of Plant Physiology, 161\n\t\t\t\t\t921\n\t\t\t\t\t928 .\n\t\t\t'},{id:"B129",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParida\n\t\t\t\t\t\t\tA. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDas\n\t\t\t\t\t\t\tA. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tSalt tolerance and salinity effects on plants: a review.\n\t\t\t\t\tEcotoxicology and Environmental Safety, 60\n\t\t\t\t\t324\n\t\t\t\t\t349 .\n\t\t\t'},{id:"B130",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParmar\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDadarwal\n\t\t\t\t\t\t\tK. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tStimulation of nitrogen fixation and induction of flavonoid like compounds by rhizobacteria. Journal of Applied Microbiology,86\n\t\t\t\t\t36\n\t\t\t\t\t44 .\n\t\t\t'},{id:"B131",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPereyra\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZlazar\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarassi\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tRoot phospholipids in in Azospirillum-inoculated wheat seedlings exposed to water stress. Plant Physiology and Biochemistry, 44\n\t\t\t\t\t873\n\t\t\t\t\t879 .\n\t\t\t'},{id:"B132",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPerez-Torres\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tLopez-Bucio\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCruz-Ramìrez\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tIbarra-Laclette\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDharmasiri\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEstelle\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHerrera-Estrella\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tThe Plant Cell,\n\t\t\t\t\t20\n\t\t\t\t\t3258\n\t\t\t\t\t3272 .\n\t\t\t'},{id:"B133",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPii\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCrimi\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCremonese\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSpena\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPandolfini\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tAuxin and nitric oxide control indeterminate nodule formation.\n\t\t\t\t\tBMC Plant Biology, doi:10.1186/1471-2229-7-21 EOF\n\t\t\t\t\t\t EOF .\n\t\t\t\t\n\t\t\t'},{id:"B134",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPishchik\n\t\t\t\t\t\t\tV. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tProvorov\n\t\t\t\t\t\t\tN. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVorobyov\n\t\t\t\t\t\t\tN. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChizevskaya\n\t\t\t\t\t\t\tE. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSafronova\n\t\t\t\t\t\t\tV. I.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTuev\n\t\t\t\t\t\t\tA. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKozhemyakov\n\t\t\t\t\t\t\tA. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tInteractions between plants and associated bacteria in soils contaminated with heavy metals. Microbiology, 78\n\t\t\t\t\t785\n\t\t\t\t\t793 .\n\t\t\t'},{id:"B135",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPitzschke\n\t\t\t\t\t\t\tA. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tForzani\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHirt\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tReactive oxygen species signalling in plants.\n\t\t\t\t\tAntioxidant & Redox Signaling, 8\n\t\t\t\t\t1757\n\t\t\t\t\t1764 .\n\t\t\t'},{id:"B136",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPotters\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPasternak\n\t\t\t\t\t\t\tT. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuisez\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPalme\n\t\t\t\t\t\t\tK. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJansen\n\t\t\t\t\t\t\tM. A. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tStress-induced morphogenic responses, growing out of trouble?\n\t\t\t\t\tTrends in Plant Science, 12\n\t\t\t\t\t98\n\t\t\t\t\t105 .\n\t\t\t'},{id:"B137",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPotters\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPasternak\n\t\t\t\t\t\t\tT. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGuisez\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJansen\n\t\t\t\t\t\t\tM. A. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tDifferent stresses, similar morphogenic responses: integrating a plethora of pathways. Plant Cell and Environment,, 32\n\t\t\t\t\t158\n\t\t\t\t\t169 .\n\t\t\t'},{id:"B138",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRemans\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCroonenborghs\n\t\t\t\t\t\t\tGutierrez. R. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMichiels\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVanderleyden\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Effect of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. European Journal of Plant Pathology, 119\n\t\t\t\t\t341\n\t\t\t\t\t351 .\n\t\t\t'},{id:"B139",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRemans\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBeebe\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlair\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tManrique\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTovar\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRao\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCroonenborghs\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTorres-Gutierrez\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEl -Howeity\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMichiels\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVanderleyden\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008a\n\t\t\t\t\tPhysiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vulgaris L.). Plant and Soil, 302\n\t\t\t\t\t149\n\t\t\t\t\t161 .\n\t\t\t'},{id:"B140",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRemans\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRamaekers\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShelkens\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHernandez\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGarcia\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReyes\n\t\t\t\t\t\t\tG. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMendez\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tToscano\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMullin\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGalvez\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVanderleyden\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008b Effect of Rhizobium- Azospirillum co-inoculation on nitrogen fixation and yield of two contrasting Phaseolus vulgaris L. genotypes cultivated across different environments in Cuba. Plant and Soil, 312\n\t\t\t\t\t25\n\t\t\t\t\t37 .\n\t\t\t'},{id:"B141",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRichardson\n\t\t\t\t\t\t\tA. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBarea\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\t\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMc Neill\n\t\t\t\t\t\t\tA. M. .\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPrigent-Cobaret\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tAcquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil, 321\n\t\t\t\t\t305\n\t\t\t\t\t339 .\n\t\t\t'},{id:"B142",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRodrìguez\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tFraga\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1999\n\t\t\t\t\tPhosphate solubilizing bacteria and their role in plant growth promotion.\n\t\t\t\t\tBiotechnologies Advances,\n\t\t\t\t\t17\n\t\t\t\t\t319\n\t\t\t\t\t339 .\n\t\t\t'},{id:"B143",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRogers\n\t\t\t\t\t\t\tM. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrieve\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShannon\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2003\n\t\t\t\t\tPlant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P.\n\t\t\t\t\tPlant and Soil, 253\n\t\t\t\t\t187\n\t\t\t\t\t194 .\n\t\t\t'},{id:"B144",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRokhzadi\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tToashih\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2011\n\t\t\t\t\tNutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth-promoting rhizobacteria. Australian Journal of Cop Sccience, 5\n\t\t\t\t\t44\n\t\t\t\t\t48 .\n\t\t\t'},{id:"B145",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaikia\n\t\t\t\t\t\t\tS. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDutta\n\t\t\t\t\t\t\tS. P.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGoswami\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBahau\n\t\t\t\t\t\t\tB. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKanjilal\n\t\t\t\t\t\t\tP. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 Role of Azospirillum in the improvement of legumes. Microbes for legume improvement, DOI: 10.1007/978-3-211-99753-6_16.\n\t\t\t'},{id:"B146",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSandhya\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAli\n\t\t\t\t\t\t\tSk. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrover\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReddy\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVenkateswarlu\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tEffect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation, 62\n\t\t\t\t\t21\n\t\t\t\t\t30 .\n\t\t\t'},{id:"B147",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSantner\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCalderon-Villalobos\n\t\t\t\t\t\t\tL. I. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEstelle\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tPlant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology, 5\n\t\t\t\t\t301\n\t\t\t\t\t307 .\n\t\t\t'},{id:"B148",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaravanakumar\n\t\t\t\t\t\t\tD.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSamiyappan\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology, 102\n\t\t\t\t\t1283\n\t\t\t\t\t1292 .\n\t\t\t'},{id:"B149",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarig\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKapulnik\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1986 Effect of Azospirillum inoculation on nitrogen fixation and growth of several winter legumes. Plant and Soil, 90\n\t\t\t\t\t335\n\t\t\t\t\t342 .\n\t\t\t'},{id:"B150",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarig\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBlum\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1992 Effect of Azospirillum brasiliense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. Journal of Plant Nutrition, 15\n\t\t\t\t\t805\n\t\t\t\t\t819 .\n\t\t\t'},{id:"B151",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSarker\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBakr\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAfzal\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tErskine\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRahman\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSaxena\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2004\n\t\t\t\t\tLentil Improvement in Bangladesh, Bangkok: APAARI.\n\t\t\t'},{id:"B152",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSatti\n\t\t\t\t\t\t\tS. M. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAl-Yahyai\n\t\t\t\t\t\t\tR. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1995\n\t\t\t\t\tSalinity tolerance in tomato: implication of potassium, calcium, and phosphorus.\n\t\t\t\t\tCommunications in Soil Science and Plant Analysis, 26\n\t\t\t\t\t2749\n\t\t\t\t\t2760 .\n\t\t\t'},{id:"B153",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShao\n\t\t\t\t\t\t\tH. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChu\n\t\t\t\t\t\t\tL. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJaleel\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tManivannan\n\t\t\t\t\t\t\tP.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPanneerselvam\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShao\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tUnderstanding water deficit stress-induced changes in the basic metabolism of higher plants- biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe.\n\t\t\t\t\tCritical Reviews in Biotechnology, 29\n\t\t\t\t\t131\n\t\t\t\t\t151 .\n\t\t\t'},{id:"B154",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSheng\n\t\t\t\t\t\t\tX.F.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXia\n\t\t\t\t\t\t\tJ. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJiang\n\t\t\t\t\t\t\tC. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHe\n\t\t\t\t\t\t\tL. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tQian\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental pollution, 15\n\t\t\t\t\t1164\n\t\t\t\t\t1170 .\n\t\t\t'},{id:"B155",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSiddikee\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tChauhan\n\t\t\t\t\t\t\tP. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAnandham\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHan\n\t\t\t\t\t\t\tG.H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSa\n\t\t\t\t\t\t\tT.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tIsolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. Journal of Microbiology and Biotechnology, 20\n\t\t\t\t\t1577\n\t\t\t\t\t1584 .\n\t\t\t'},{id:"B156",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSindhu\n\t\t\t\t\t\t\tS. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGupta\n\t\t\t\t\t\t\tS. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSuneja\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDadarwal\n\t\t\t\t\t\t\tK. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002a Enhancement of green gram nodulation and growthby Bacillus species. Biologia Plantarum, 45\n\t\t\t\t\t117\n\t\t\t\t\t120 .\n\t\t\t'},{id:"B157",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSindhu\n\t\t\t\t\t\t\tS. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSuneja\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGoel\n\t\t\t\t\t\t\tA. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPramar\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDadarwal\n\t\t\t\t\t\t\tK. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002b\n\t\t\t\t\tPlant growth promoting effects of Pseudomonas sp. on co-inoculation with Mesorhizobium sp. cicer strain under sterile and wilt sick soil conditions.\n\t\t\t\t\tApplied Soil Ecology, 19\n\t\t\t\t\t57\n\t\t\t\t\t64 .\n\t\t\t'},{id:"B158",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSpaepen\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVanderleyden\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRemans\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tIndole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbioloy Reviews, 31\n\t\t\t\t\t425\n\t\t\t\t\t448 .\n\t\t\t'},{id:"B159",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSpaepen\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBoddelaere\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCroonenborghs\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVanderleyden\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008 Effect of Azospirillum brasiliense indole-3-acetic acid production on inoculated wheat plants. Plant and Soil, 312\n\t\t\t\t\t15\n\t\t\t\t\t23 .\n\t\t\t'},{id:"B160",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSpaepen\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVanderleyden\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tAuxin and plant-microbe interactions.\n\t\t\t\t\tCold Spring Harbor Perspectives in Biology, doi: 10.1101/cshperspect.a001438.\n\t\t\t'},{id:"B161",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSreenivasulu\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSopory\n\t\t\t\t\t\t\tS. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKavi\n\t\t\t\t\t\t\tKishor. P. B.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tDeciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene,388\n\t\t\t\t\t1\n\t\t\t\t\t13 .\n\t\t\t'},{id:"B162",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSwaine\n\t\t\t\t\t\t\tE. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSwaine\n\t\t\t\t\t\t\tM. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKillham\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007\n\t\t\t\t\tEffects of drought on isolates of Bradyrhizobium elkanii cultured from Albizia adianthifolia seedlings on different provenances. Agroforestry Systems, 69\n\t\t\t\t\t135\n\t\t\t\t\t145 .\n\t\t\t'},{id:"B163",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSzabados\n\t\t\t\t\t\t\tL.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSavouré\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tProline: a multifunctional amino acid. Trends in Plant Science, 15\n\t\t\t\t\t89\n\t\t\t\t\t97 .\n\t\t\t'},{id:"B164",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSzabolcs\n\t\t\t\t\t\t\tI.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1989\n\t\t\t\t\tSalt-affected soils. CRC Press Roca Raton, Florida.\n\t\t\t'},{id:"B165",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSziderics\n\t\t\t\t\t\t\tA. H.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRasche\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTrognitz\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSessitsch\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWilhelm\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annum L.). Canadian Journal of Microbiology, 53\n\t\t\t\t\t1195\n\t\t\t\t\t1202 .\n\t\t\t'},{id:"B166",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTchebotar\n\t\t\t\t\t\t\tV. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKang\n\t\t\t\t\t\t\tU. G.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJr Asis\n\t\t\t\t\t\t\tC. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAkao\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1998 The use of GUS-reporter gene to study the effect of Azospirillum-rhizobium co-inoculation on nodulation of white clover. Biology and Fertility of Soils, 27\n\t\t\t\t\t349\n\t\t\t\t\t352 .\n\t\t\t'},{id:"B167",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTeale\n\t\t\t\t\t\t\tW. D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPaponov\n\t\t\t\t\t\t\tI. A. .\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPalme\n\t\t\t\t\t\t\tK.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tAuxin in action: signalling, transport and control of plant growth and development.\n\t\t\t\t\tNature Reviews Molecular Cell Biology, 7\n\t\t\t\t\t847\n\t\t\t\t\t859 .\n\t\t\t'},{id:"B168",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTerré\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAsch\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPadham\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSikora\n\t\t\t\t\t\t\tR. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBecker\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2007 Influence of root zone bacteria on root iron plaque formation in rice subjected to iron toxicity. In Utilisation Of Diversity in Land Use Systems: Sustainable and Organic Approaches to Meet Human Needs (ed. Tielkes, E.), 446 Tropentag, Witzenhausen, Germany.\n\t\t\t'},{id:"B169",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTokala\n\t\t\t\t\t\t\tR. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tStrap\n\t\t\t\t\t\t\tJ. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJung\n\t\t\t\t\t\t\tC. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCrawford\n\t\t\t\t\t\t\tD. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSalove\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDeobald\n\t\t\t\t\t\t\tL. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBailey\n\t\t\t\t\t\t\tF. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMorra\n\t\t\t\t\t\t\tM. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2002 Novel plant-microbe rhizosphere interaction involving S. lydicus WYEC108 and the pea plant (Pisum sativum). Applied and Environmental Microbiology, 68\n\t\t\t\t\t2161\n\t\t\t\t\t2171 .\n\t\t\t'},{id:"B170",body:'\n\t\t\t\ttomatoCrop.Science 30\n\t\t\t\t\t123\n\t\t\t\t\t128\n\t\t\t\t\t123128\n\t\t\t\t\n\t\t\t'},{id:"B171",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTsubo\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWalker\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOgindo\n\t\t\t\t\t\t\tH. O.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tA simulation model of cereal-legume intercropping systems for semi-arid regions: I. Model development. Field Crop Research, 93\n\t\t\t\t\t10\n\t\t\t\t\t22 .\n\t\t\t'},{id:"B172",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tValliyodan\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNguyen\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2006\n\t\t\t\t\tUnderstanding regulatory networks and engineering for enhanced drought tolerance in plants. Current Opinion in Biotechnology,\n\t\t\t\t\t9\n\t\t\t\t\t189\n\t\t\t\t\t195 .\n\t\t\t'},{id:"B173",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVardharajula\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAli\n\t\t\t\t\t\t\tS. Z.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tGrover\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReddy\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBandi\n\t\t\t\t\t\t\tV.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2011\n\t\t\t\t\tDrought-tolerant plant growth promoting Bacillus spp.: effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6\n\t\t\t\t\t1\n\t\t\t\t\t14 .\n\t\t\t'},{id:"B174",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVerbruggen\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHermans\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tProline accumulation in plants: a review. Amino Acids, 35\n\t\t\t\t\t753\n\t\t\t\t\t759 .\n\t\t\t'},{id:"B175",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVerma\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYadav\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tTiwari\n\t\t\t\t\t\t\tK. N.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tImpact of plant growth promoting rhizobacteria on crop production. International Journal of Agricultural Research, 11\n\t\t\t\t\t954\n\t\t\t\t\t983 .\n\t\t\t'},{id:"B176",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVinocur\n\t\t\t\t\t\t\tB.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAltman\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2005\n\t\t\t\t\tRecent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16\n\t\t\t\t\t123\n\t\t\t\t\t132 .\n\t\t\t'},{id:"B177",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tVolpin\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKapulnik\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1994 Interaction of Azospirillum with beneficial soil microorganisms, 111\n\t\t\t\t\t118 . In Y. Okon (ed.), Azospirillum/plant associations, CRC Press, Boca Raton, Fla.\n\t\t\t'},{id:"B178",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWitcombe\n\t\t\t\t\t\t\tJ. R.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHollington\n\t\t\t\t\t\t\tP. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHowarth\n\t\t\t\t\t\t\tC. J.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tReader\n\t\t\t\t\t\t\tS.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tBreeding for abiotic stresses for sustainable agriculture.\n\t\t\t\t\tPhilosophical Transactions of the Royal Society B, 363\n\t\t\t\t\t703\n\t\t\t\t\t716 .\n\t\t\t'},{id:"B179",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWolter\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJurgens\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009 Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics, 10\n\t\t\t\t\t305\n\t\t\t\t\t317 .\n\t\t\t'},{id:"B180",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYadegari\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRahmani\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNoormohammadi\n\t\t\t\t\t\t\tG.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tAyneband\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010 Plant growth promoting rhizobacteria increase growth, yield and nitrogen fixation in Phaseolus vulgaris. Journal of Plant nutrition, 33\n\t\t\t\t\t1733\n\t\t\t\t\t1743 .\n\t\t\t'},{id:"B181",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYadegari\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tRahmani\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tEvaluation of bean (Phaseolus vulgaris) seeds inoculation with Rhizobium phaseoli and plant growth promoting Rhizobacteria (PGPR) on yield and yield components.\n\t\t\t\t\tAfrican Journal of Agricultutal Research, 5\n\t\t\t\t\t792\n\t\t\t\t\t799 .\n\t\t\t'},{id:"B182",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYahalom\n\t\t\t\t\t\t\tE.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tOkon\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDovrat\n\t\t\t\t\t\t\tA.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1989 Possible mode of action of Azospirillum brasiliense strain Cd on the root morphology and nodule formation in burr medic (Medicago polymorpha). Canadian Journal of Microbiology, 36\n\t\t\t\t\t10\n\t\t\t\t\t14 .\n\t\t\t'},{id:"B183",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tYazdani\n\t\t\t\t\t\t\tM.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tBahmanyar\n\t\t\t\t\t\t\tM. A.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tPirdashti\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tEsmaili\n\t\t\t\t\t\t\tM.A.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2009\n\t\t\t\t\tEffect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays, L.). World Accademy of Science, Engineering and Technology, 49\n\t\t\t\t\t90\n\t\t\t\t\t92 .\n\t\t\t'},{id:"B184",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tF.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDashti\n\t\t\t\t\t\t\tN.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHynes\n\t\t\t\t\t\t\tR. K.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSmith\n\t\t\t\t\t\t\tD. L.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t1997\n\t\t\t\t\tPlant growth-promoting rhizobacteria and soybean [Glycine max (L.) Merr] growth and physiology at suboptimal root zones temperatures. Annals of Botany, 79\n\t\t\t\t\t243\n\t\t\t\t\t249 .\n\t\t\t'},{id:"B185",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim\n\t\t\t\t\t\t\tM. S.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDowd\n\t\t\t\t\t\t\tS. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tShi\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParè\n\t\t\t\t\t\t\tW.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2008\n\t\t\t\t\tSoil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Molecular Plant-Microbe Interactions, 21\n\t\t\t\t\t737\n\t\t\t\t\t744 .\n\t\t\t'},{id:"B186",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tH.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tMurzello\n\t\t\t\t\t\t\tC.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tSun\n\t\t\t\t\t\t\tY.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKim-Seong\n\t\t\t\t\t\t\tMi.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tXie\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tJeter\n\t\t\t\t\t\t\tR. M.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZak\n\t\t\t\t\t\t\tJ. C.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tDowd\n\t\t\t\t\t\t\tS. E.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tParé\n\t\t\t\t\t\t\tP. W.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2010\n\t\t\t\t\tCholine and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Molecular Plant-Microbe Interactions, 23,1097\n\t\t\t\t\t1104 .\n\t\t\t'},{id:"B187",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tJ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tKlueva\n\t\t\t\t\t\t\tN. Y.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWang\n\t\t\t\t\t\t\tZ.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tWu\n\t\t\t\t\t\t\tR.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tHo\n\t\t\t\t\t\t\tT.H.D.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tNguyen\n\t\t\t\t\t\t\tH. T.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2000\n\t\t\t\t\tGenetic engineering for abiotic stress resistance in crop plants. In Vitro Cellular & Developmental Biology- Plant,\n\t\t\t\t\t36\n\t\t\t\t\t108\n\t\t\t\t\t114 .\n\t\t\t'},{id:"B188",body:'\n\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tZhang\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\t\n\t\t\t\t\t\t\tCai\n\t\t\t\t\t\t\tX.\n\t\t\t\t\t\t\n\t\t\t\t\t\n\t\t\t\t\t2011\n\t\t\t\t\tClimate impacts on global agricultural land availability.\n\t\t\t\t\tEnvironmental Research Letters, Environmental Reseach Letters, stacks.iop.org/ERL/6/014014.\n\t\t\t'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Carmen Bianco",address:null,affiliation:'
Institute of Genetics and Biophysics "Adriano Buzzati Traverso", Italy
Institute of Genetics and Biophysics "Adriano Buzzati Traverso", Italy
'}],corrections:null},book:{id:"371",type:"book",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",fullTitle:"Abiotic Stress in Plants - Mechanisms and Adaptations",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",publishedDate:"September 22nd 2011",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-394-1",pdfIsbn:"978-953-51-4431-1",reviewType:"peer-reviewed",numberOfWosCitations:558,isAvailableForWebshopOrdering:!0,editors:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"153612",title:"Dr.",name:"Bandi",middleName:null,surname:"Venkateswarlu",slug:"bandi-venkateswarlu",fullName:"Bandi Venkateswarlu"},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"407"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"18395",type:"chapter",title:"Imaging of Chlorophyll a Fluorescence: A Tool to Study Abiotic Stress in Plants",slug:"imaging-of-chlorophyll-a-fluorescence-a-tool-to-study-abiotic-stress-in-plants",totalDownloads:5757,totalCrossrefCites:10,signatures:"Lucia Guidi and Elena Degl’Innocenti",reviewType:"peer-reviewed",authors:[{id:"47052",title:"Dr.",name:"Lucia",middleName:null,surname:"Guidi",fullName:"Lucia Guidi",slug:"lucia-guidi"},{id:"59510",title:"Dr.",name:"Elena",middleName:null,surname:"Degl'Innocenti",fullName:"Elena Degl'Innocenti",slug:"elena-degl'innocenti"}]},{id:"18396",type:"chapter",title:"Salinity Stress and Salt Tolerance",slug:"salinity-stress-and-salt-tolerance",totalDownloads:21955,totalCrossrefCites:55,signatures:"Petronia Carillo, Maria Grazia Annunziata, Giovanni Pontecorvo, Amodio Fuggi and Pasqualina Woodrow",reviewType:"peer-reviewed",authors:[{id:"47290",title:"Prof.",name:"Giovanni",middleName:null,surname:"Pontecorvo",fullName:"Giovanni Pontecorvo",slug:"giovanni-pontecorvo"},{id:"47803",title:"Dr.",name:"Pasqualina",middleName:null,surname:"Woodrow",fullName:"Pasqualina Woodrow",slug:"pasqualina-woodrow"},{id:"47804",title:"Prof.",name:"Petronia",middleName:null,surname:"Carillo",fullName:"Petronia Carillo",slug:"petronia-carillo"},{id:"47808",title:"Prof.",name:"Amodio",middleName:null,surname:"Fuggi",fullName:"Amodio Fuggi",slug:"amodio-fuggi"},{id:"47809",title:"Dr.",name:"Maria Grazia",middleName:null,surname:"Annunziata",fullName:"Maria Grazia Annunziata",slug:"maria-grazia-annunziata"}]},{id:"18397",type:"chapter",title:"Abiotic Stress in Harvested Fruits and Vegetables",slug:"abiotic-stress-in-harvested-fruits-and-vegetables",totalDownloads:7950,totalCrossrefCites:2,signatures:"Peter M.A. Toivonen and D. Mark Hodges",reviewType:"peer-reviewed",authors:[{id:"48052",title:"Dr.",name:"Mark",middleName:null,surname:"Hodges",fullName:"Mark Hodges",slug:"mark-hodges"},{id:"51845",title:"Dr.",name:"Peter",middleName:"M.A.",surname:"Toivonen",fullName:"Peter Toivonen",slug:"peter-toivonen"}]},{id:"18398",type:"chapter",title:"Towards Understanding Plant Response to Heavy Metal Stress",slug:"towards-understanding-plant-response-to-heavy-metal-stress",totalDownloads:7336,totalCrossrefCites:16,signatures:"Zhao Yang and Chengcai Chu",reviewType:"peer-reviewed",authors:[{id:"56133",title:"Prof.",name:"Chengcai",middleName:null,surname:"Chu",fullName:"Chengcai Chu",slug:"chengcai-chu"},{id:"56235",title:"Dr.",name:"Zhao",middleName:null,surname:"Yang",fullName:"Zhao Yang",slug:"zhao-yang"}]},{id:"18399",type:"chapter",title:"Plant N Fluxes and Modulation by Nitrogen, Heat and Water Stresses: A Review Based on Comparison of Legumes and Non Legume Plants",slug:"plant-n-fluxes-and-modulation-by-nitrogen-heat-and-water-stresses-a-review-based-on-comparison-of-le",totalDownloads:4051,totalCrossrefCites:14,signatures:"Salon Christophe, Avice Jean-Christophe, Larmure Annabelle, Ourry Alain, Prudent Marion and Voisin Anne-Sophie",reviewType:"peer-reviewed",authors:[{id:"52159",title:"Dr.",name:"Salon",middleName:null,surname:"Christophe",fullName:"Salon Christophe",slug:"salon-christophe"},{id:"60418",title:"Mr.",name:"Jean-Christophe",middleName:null,surname:"Avice",fullName:"Jean-Christophe Avice",slug:"jean-christophe-avice"},{id:"60419",title:"Mr.",name:"Annabelle",middleName:null,surname:"Larmure",fullName:"Annabelle Larmure",slug:"annabelle-larmure"},{id:"60420",title:"Mr.",name:"Alain",middleName:null,surname:"Ourry",fullName:"Alain Ourry",slug:"alain-ourry"},{id:"60421",title:"Dr.",name:"Marion",middleName:null,surname:"Prudent",fullName:"Marion Prudent",slug:"marion-prudent"},{id:"60422",title:"Mr.",name:"Anne-Sophie",middleName:null,surname:"Voisin",fullName:"Anne-Sophie Voisin",slug:"anne-sophie-voisin"}]},{id:"18400",type:"chapter",title:"Biotechnological Solutions for Enhancing the Aluminium Resistance of Crop Plants",slug:"biotechnological-solutions-for-enhancing-the-aluminium-resistance-of-crop-plants",totalDownloads:4121,totalCrossrefCites:11,signatures:"Gaofeng Zhou, Emmanuel Delhaize, Meixue Zhou and Peter R Ryan",reviewType:"peer-reviewed",authors:[{id:"62430",title:"Prof.",name:"Meixue",middleName:null,surname:"Zhou",fullName:"Meixue Zhou",slug:"meixue-zhou"},{id:"98133",title:"Mr.",name:"Gaofeng",middleName:null,surname:"Zhou",fullName:"Gaofeng Zhou",slug:"gaofeng-zhou"},{id:"98134",title:"Dr.",name:"Peter R",middleName:null,surname:"Ryan",fullName:"Peter R Ryan",slug:"peter-r-ryan"},{id:"98135",title:"Dr.",name:"Emmanuel",middleName:null,surname:"Delhaize",fullName:"Emmanuel Delhaize",slug:"emmanuel-delhaize"}]},{id:"18401",type:"chapter",title:"Soil Bacteria Support and Protect Plants Against Abiotic Stresses",slug:"soil-bacteria-support-and-protect-plants-against-abiotic-stresses",totalDownloads:9281,totalCrossrefCites:22,signatures:"Bianco Carmen and Defez Roberto",reviewType:"peer-reviewed",authors:[{id:"51522",title:"Dr.",name:"Roberto",middleName:null,surname:"Defez",fullName:"Roberto Defez",slug:"roberto-defez"},{id:"51531",title:"Dr.",name:"Carmen",middleName:null,surname:"Bianco",fullName:"Carmen Bianco",slug:"carmen-bianco"}]},{id:"18402",type:"chapter",title:"Soil Salinisation and Salt Stress in Crop Production",slug:"soil-salinisation-and-salt-stress-in-crop-production",totalDownloads:8990,totalCrossrefCites:30,signatures:"Gabrijel Ondrasek, Zed Rengel and Szilvia Veres",reviewType:"peer-reviewed",authors:[{id:"46939",title:"Prof.",name:"Gabrijel",middleName:null,surname:"Ondrasek",fullName:"Gabrijel Ondrasek",slug:"gabrijel-ondrasek"},{id:"108025",title:"Prof.",name:"Zed",middleName:null,surname:"Rengel",fullName:"Zed Rengel",slug:"zed-rengel"},{id:"108026",title:"Dr.",name:"Szilvia",middleName:null,surname:"Veres",fullName:"Szilvia Veres",slug:"szilvia-veres"}]},{id:"18403",type:"chapter",title:"Current Knowledge in Physiological and Genetic Mechanisms Underpinning Tolerances to Alkaline and Saline Subsoil Constraints of Broad Acre Cropping in Dryland Regions",slug:"current-knowledge-in-physiological-and-genetic-mechanisms-underpinning-tolerances-to-alkaline-and-sa",totalDownloads:3916,totalCrossrefCites:1,signatures:"Muhammad Javid, Marc Nicolas and Rebecca Ford",reviewType:"peer-reviewed",authors:[{id:"51256",title:"Dr.",name:"Rebecca",middleName:null,surname:"Ford",fullName:"Rebecca Ford",slug:"rebecca-ford"},{id:"58523",title:"Mr.",name:"Muhammad",middleName:null,surname:"Javid",fullName:"Muhammad Javid",slug:"muhammad-javid"},{id:"58524",title:"Dr.",name:"Marc",middleName:null,surname:"Nicolas",fullName:"Marc Nicolas",slug:"marc-nicolas"}]},{id:"18404",type:"chapter",title:"Trehalose and Abiotic Stress in Biological Systems",slug:"trehalose-and-abiotic-stress-in-biological-systems",totalDownloads:5794,totalCrossrefCites:7,signatures:"Mihaela Iordachescu and Ryozo Imai",reviewType:"peer-reviewed",authors:[{id:"46784",title:"Prof.",name:"Ryozo",middleName:null,surname:"Imai",fullName:"Ryozo Imai",slug:"ryozo-imai"},{id:"60152",title:"Dr",name:"Mihaela",middleName:null,surname:"Iordachescu",fullName:"Mihaela Iordachescu",slug:"mihaela-iordachescu"}]},{id:"18405",type:"chapter",title:"Glyoxalase System and Reactive Oxygen Species Detoxification System in Plant Abiotic Stress Response and Tolerance: An Intimate Relationship",slug:"glyoxalase-system-and-reactive-oxygen-species-detoxification-system-in-plant-abiotic-stress-response",totalDownloads:5879,totalCrossrefCites:0,signatures:"Mohammad Anwar Hossain, Jaime A. Teixeira da Silva and Masayuki Fujita",reviewType:"peer-reviewed",authors:[{id:"47687",title:"Prof.",name:"Masayuki",middleName:null,surname:"Fujita",fullName:"Masayuki Fujita",slug:"masayuki-fujita"},{id:"57620",title:"Dr.",name:"Mohammad",middleName:"Anwar",surname:"Hossain",fullName:"Mohammad Hossain",slug:"mohammad-hossain"},{id:"94545",title:"Dr.",name:"Jaime A.",middleName:null,surname:"Teixeira Da Silva",fullName:"Jaime A. Teixeira Da Silva",slug:"jaime-a.-teixeira-da-silva"}]},{id:"18406",type:"chapter",title:"Stomatal Responses to Drought Stress and Air Humidity",slug:"stomatal-responses-to-drought-stress-and-air-humidity",totalDownloads:11458,totalCrossrefCites:11,signatures:"Arve LE, Torre S, Olsen JE and Tanino KK",reviewType:"peer-reviewed",authors:[{id:"58772",title:"Ms.",name:"Louise",middleName:null,surname:"Arve",fullName:"Louise Arve",slug:"louise-arve"},{id:"59624",title:"Dr.",name:"Sissel",middleName:null,surname:"Torre",fullName:"Sissel Torre",slug:"sissel-torre"},{id:"59625",title:"Prof.",name:"Jorunn",middleName:"Elisabeth",surname:"Olsen",fullName:"Jorunn Olsen",slug:"jorunn-olsen"},{id:"59626",title:"Dr.",name:"Karen",middleName:null,surname:"Tanino",fullName:"Karen Tanino",slug:"karen-tanino"}]},{id:"18407",type:"chapter",title:"Plant Genes for Abiotic Stress",slug:"plant-genes-for-abiotic-stress",totalDownloads:9766,totalCrossrefCites:8,signatures:"Loredana F. Ciarmiello, Pasqualina Woodrow, Amodio Fuggi, Giovanni Pontecorvo and Petronia Carillo",reviewType:"peer-reviewed",authors:[{id:"47290",title:"Prof.",name:"Giovanni",middleName:null,surname:"Pontecorvo",fullName:"Giovanni Pontecorvo",slug:"giovanni-pontecorvo"},{id:"47803",title:"Dr.",name:"Pasqualina",middleName:null,surname:"Woodrow",fullName:"Pasqualina Woodrow",slug:"pasqualina-woodrow"},{id:"47804",title:"Prof.",name:"Petronia",middleName:null,surname:"Carillo",fullName:"Petronia Carillo",slug:"petronia-carillo"},{id:"47808",title:"Prof.",name:"Amodio",middleName:null,surname:"Fuggi",fullName:"Amodio Fuggi",slug:"amodio-fuggi"},{id:"47816",title:"Dr.",name:"Loredana F.",middleName:null,surname:"Ciarmiello",fullName:"Loredana F. Ciarmiello",slug:"loredana-f.-ciarmiello"}]},{id:"18408",type:"chapter",title:"Plant Metabolomics: A Characterisation of Plant Responses to Abiotic Stresses",slug:"plant-metabolomics-a-characterisation-of-plant-responses-to-abiotic-stresses",totalDownloads:7191,totalCrossrefCites:10,signatures:"Annamaria Genga, Monica Mattana, Immacolata Coraggio, Franca Locatelli, Pietro Piffanelli and Roberto Consonni",reviewType:"peer-reviewed",authors:[{id:"54024",title:"Dr.",name:"Roberto",middleName:null,surname:"Consonni",fullName:"Roberto Consonni",slug:"roberto-consonni"},{id:"59992",title:"Dr.",name:"Annamaria",middleName:null,surname:"Genga",fullName:"Annamaria Genga",slug:"annamaria-genga"},{id:"59994",title:"Dr.",name:"Franca",middleName:null,surname:"Locatelli",fullName:"Franca Locatelli",slug:"franca-locatelli"},{id:"59995",title:"Dr.",name:"Monica",middleName:null,surname:"Mattana",fullName:"Monica Mattana",slug:"monica-mattana"},{id:"59996",title:"Dr.",name:"Pietro",middleName:null,surname:"Piffanelli",fullName:"Pietro Piffanelli",slug:"pietro-piffanelli"},{id:"59997",title:"Prof.",name:"Immacolata",middleName:null,surname:"Coraggio",fullName:"Immacolata Coraggio",slug:"immacolata-coraggio"}]},{id:"18409",type:"chapter",title:"The Importance of Genetic Diversity to Manage Abiotic Stress",slug:"the-importance-of-genetic-diversity-to-manage-abiotic-stress",totalDownloads:4105,totalCrossrefCites:5,signatures:"Geraldo Magela de Almeida Cançado",reviewType:"peer-reviewed",authors:[{id:"47603",title:"Dr.",name:"Sandra",middleName:null,surname:"Camargo",fullName:"Sandra Camargo",slug:"sandra-camargo"},{id:"53576",title:"Dr.",name:"Geraldo",middleName:"Magela De Almeida",surname:"Cançado",fullName:"Geraldo Cançado",slug:"geraldo-cancado"}]},{id:"18410",type:"chapter",title:"Emission and Function of Volatile Organic Compounds in Response to Abiotic Stress",slug:"emission-and-function-of-volatile-organic-compounds-in-response-to-abiotic-stress",totalDownloads:8769,totalCrossrefCites:14,signatures:"Francesco Spinelli, Antonio Cellini, Livia Marchetti, Karthik Mudigere Nagesh and Chiara Piovene",reviewType:"peer-reviewed",authors:[{id:"55786",title:"Dr.",name:"Francesco",middleName:null,surname:"Spinelli",fullName:"Francesco Spinelli",slug:"francesco-spinelli"}]},{id:"18411",type:"chapter",title:"Epigenetic Chromatin Regulators as Mediators of Abiotic Stress Responses in Cereals",slug:"epigenetic-chromatin-regulators-as-mediators-of-abiotic-stress-responses-in-cereals",totalDownloads:4352,totalCrossrefCites:4,signatures:"Aliki Kapazoglou and Athanasios Tsaftaris",reviewType:"peer-reviewed",authors:[{id:"106803",title:"Dr.",name:"Athanasios",middleName:null,surname:"Tsaftaris",fullName:"Athanasios Tsaftaris",slug:"athanasios-tsaftaris"},{id:"106808",title:"Dr.",name:"Aliki",middleName:null,surname:"Kapazoglou",fullName:"Aliki Kapazoglou",slug:"aliki-kapazoglou"}]},{id:"18412",type:"chapter",title:"C4 Plants Adaptation to High Levels of CO2 and to Drought Environments",slug:"c4-plants-adaptation-to-high-levels-of-co2-and-to-drought-environments",totalDownloads:26526,totalCrossrefCites:6,signatures:"María Valeria Lara and Carlos Santiago Andreo",reviewType:"peer-reviewed",authors:[{id:"60504",title:"Dr.",name:null,middleName:null,surname:"Andreo",fullName:"Andreo",slug:"andreo"},{id:"62008",title:"Dr.",name:"María",middleName:"Valeria",surname:"Lara",fullName:"María Lara",slug:"maria-lara"}]}]},relatedBooks:[{type:"book",id:"5066",title:"Abiotic and Biotic Stress in Plants",subtitle:"Recent Advances and Future Perspectives",isOpenForSubmission:!1,hash:"d37213a7dbc2b6704c13b7ee519b563b",slug:"abiotic-and-biotic-stress-in-plants-recent-advances-and-future-perspectives",bookSignature:"Arun K. Shanker and Chitra Shanker",coverURL:"https://cdn.intechopen.com/books/images_new/5066.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"49918",title:"Transcriptional Network Involved in Drought Response and Adaptation in Cereals",slug:"transcriptional-network-involved-in-drought-response-and-adaptation-in-cereals",signatures:"Yunfei Yang, Pradeep Sornaraj, Nikolai Borisjuk, Nataliya Kovalchuk\nand Stephan M. Haefele",authors:[{id:"176288",title:"Dr.",name:"Stephan",middleName:null,surname:"Haefele",fullName:"Stephan Haefele",slug:"stephan-haefele"}]},{id:"49400",title:"Histone Methylation - A Cornerstone for Plant Responses to Environmental Stresses?",slug:"histone-methylation-a-cornerstone-for-plant-responses-to-environmental-stresses-",signatures:"Roberto Bobadilla and Alexandre Berr",authors:[{id:"176404",title:"Dr.",name:"Alexandre",middleName:null,surname:"Berr",fullName:"Alexandre Berr",slug:"alexandre-berr"}]},{id:"49605",title:"Small RNAs in Plant Response to Abiotic Stress",slug:"small-rnas-in-plant-response-to-abiotic-stress",signatures:"By Shirin Mirlohi and Yuke He",authors:[{id:"176413",title:"Prof.",name:"Yuke",middleName:null,surname:"He",fullName:"Yuke He",slug:"yuke-he"},{id:"177623",title:"Ms.",name:"Shirin",middleName:null,surname:"Mirlohi",fullName:"Shirin Mirlohi",slug:"shirin-mirlohi"}]},{id:"49279",title:"The Transcriptional Modulation of Inositols and Raffinose Family Oligosaccharides Pathways in Plants — An (A)Biotic Stress Perspective",slug:"the-transcriptional-modulation-of-inositols-and-raffinose-family-oligosaccharides-pathways-in-plants",signatures:"José Ribamar Costa Ferreira Neto, Amanda Cordeiro de Melo Souza,\nManassés Daniel da Silva, Ana Maria Benko-Iseppon, Valesca\nPandolfi, Antônio Félix da Costa and Ederson Akio Kido",authors:[{id:"60397",title:"Prof.",name:"José Ribamar Costa",middleName:null,surname:"Ferreira Neto",fullName:"José Ribamar Costa Ferreira Neto",slug:"jose-ribamar-costa-ferreira-neto"},{id:"60398",title:"Dr.",name:"Valesca",middleName:null,surname:"Pandolfi",fullName:"Valesca Pandolfi",slug:"valesca-pandolfi"},{id:"60400",title:"MSc.",name:"Manasses",middleName:"Daniel",surname:"Silva",fullName:"Manasses Silva",slug:"manasses-silva"},{id:"60597",title:"Prof.",name:"Ederson",middleName:"Akio",surname:"Kido",fullName:"Ederson Kido",slug:"ederson-kido"},{id:"120406",title:"Dr.",name:"Ana Maria",middleName:null,surname:"Benko-Iseppon",fullName:"Ana Maria Benko-Iseppon",slug:"ana-maria-benko-iseppon"},{id:"177384",title:"MSc.",name:"Amanda Cordeiro",middleName:null,surname:"De Melo Souza",fullName:"Amanda Cordeiro De Melo Souza",slug:"amanda-cordeiro-de-melo-souza"},{id:"177385",title:"Dr.",name:"Antônio Félix",middleName:null,surname:"Da Costa",fullName:"Antônio Félix Da Costa",slug:"antonio-felix-da-costa"}]},{id:"49696",title:"Effect of Salinity Stress on Gene Expression in Black Tiger Shrimp Penaeus monodon",slug:"effect-of-salinity-stress-on-gene-expression-in-black-tiger-shrimp-penaeus-monodon",signatures:"Shekhar S. Mudagandur, Gopikrishna Gopalapillay and Koyadan K.\nVijayan",authors:[{id:"176219",title:"Dr.",name:"KK",middleName:null,surname:"Vijayan",fullName:"KK Vijayan",slug:"kk-vijayan"},{id:"176261",title:"Dr.",name:"Shekhar",middleName:null,surname:"M.S.",fullName:"Shekhar M.S.",slug:"shekhar-m.s."},{id:"176262",title:"Dr.",name:"G.",middleName:null,surname:"Gopikrishna",fullName:"G. Gopikrishna",slug:"g.-gopikrishna"}]},{id:"49750",title:"Functional Genomics of Biotic and Abiotic Stresses in Phaseolus vulgaris",slug:"functional-genomics-of-biotic-and-abiotic-stresses-in-phaseolus-vulgaris",signatures:"Danielle Gregorio Gomes Caldas, Enéas Ricardo Konzen, Gustavo\nHenrique Recchia, Ana Carolina Vieira Zakir Pereira and Siu Mui Tsai",authors:[{id:"90489",title:"Prof.",name:"Siu Mui",middleName:null,surname:"Tsai",fullName:"Siu Mui Tsai",slug:"siu-mui-tsai"},{id:"176127",title:"Dr.",name:"Danielle",middleName:null,surname:"Caldas",fullName:"Danielle Caldas",slug:"danielle-caldas"},{id:"176318",title:"MSc.",name:"Gustavo",middleName:null,surname:"Recchia",fullName:"Gustavo Recchia",slug:"gustavo-recchia"},{id:"176319",title:"MSc.",name:"Eneas",middleName:null,surname:"Konzen",fullName:"Eneas Konzen",slug:"eneas-konzen"},{id:"176320",title:"MSc.",name:"Ana Carolina",middleName:null,surname:"Vieira",fullName:"Ana Carolina Vieira",slug:"ana-carolina-vieira"}]},{id:"49297",title:"Stress Responsive Non-protein Coding RNAs",slug:"stress-responsive-non-protein-coding-rnas",signatures:"Agata Tyczewska, Kamilla Bąkowska-Żywicka, Joanna Gracz and\nTomasz Twardowski",authors:[{id:"176078",title:"Prof.",name:"Tomasz",middleName:null,surname:"Twardowski",fullName:"Tomasz Twardowski",slug:"tomasz-twardowski"},{id:"177377",title:"Dr.",name:"Agata",middleName:null,surname:"Tyczewska",fullName:"Agata Tyczewska",slug:"agata-tyczewska"},{id:"177378",title:"Dr.",name:"Kamilla",middleName:null,surname:"Bąkowska-Żywicka",fullName:"Kamilla Bąkowska-Żywicka",slug:"kamilla-bakowska-zywicka"},{id:"177379",title:"Dr.",name:"Joanna",middleName:null,surname:"Gracz",fullName:"Joanna Gracz",slug:"joanna-gracz"}]},{id:"49558",title:"Secondary Metabolism in Amaranthus spp. — A Genomic Approach to Understand Its Diversity and Responsiveness to Stress in Marginally Studied Crops with High Agronomic Potential",slug:"secondary-metabolism-in-amaranthus-spp-a-genomic-approach-to-understand-its-diversity-and-responsive",signatures:"Paula Andrea Castrillón-Arbeláez and John Paul Délano Frier",authors:[{id:"65407",title:"Dr.",name:"John",middleName:"Paul",surname:"Délano-Frier",fullName:"John Délano-Frier",slug:"john-delano-frier"},{id:"177468",title:"Dr.",name:"Paula Andrea",middleName:null,surname:"Castrillón-Arbeláez",fullName:"Paula Andrea Castrillón-Arbeláez",slug:"paula-andrea-castrillon-arbelaez"}]},{id:"49751",title:"Tolerance of Plants to Toxicity Induced by Micronutrients",slug:"tolerance-of-plants-to-toxicity-induced-by-micronutrients",signatures:"Allan Klynger da Silva Lobato, Emily Juliane Alvino Lima, Elaine\nMaria Silva Guedes Lobato, Gabriel Mascarenhas Maciel and\nDouglas José Marques",authors:[{id:"79200",title:"Prof.",name:"Allan",middleName:null,surname:"Klynger da Silva Lobato",fullName:"Allan Klynger da Silva Lobato",slug:"allan-klynger-da-silva-lobato"},{id:"158046",title:"Dr.",name:"Elaine Maria Silva Guedes",middleName:"Guedes",surname:"Lobato",fullName:"Elaine Maria Silva Guedes Lobato",slug:"elaine-maria-silva-guedes-lobato"},{id:"176132",title:"Dr.",name:"Antonio",middleName:null,surname:"Fernandes",fullName:"Antonio Fernandes",slug:"antonio-fernandes"},{id:"176253",title:"MSc.",name:"Odyone",middleName:null,surname:"Silva",fullName:"Odyone Silva",slug:"odyone-silva"}]},{id:"49289",title:"Abiotic and Biotic Elicitors–Role in Secondary Metabolites Production through In Vitro Culture of Medicinal Plants",slug:"abiotic-and-biotic-elicitors-role-in-secondary-metabolites-production-through-in-vitro-culture-of-me",signatures:"Poornananda M. Naik and Jameel M. Al–Khayri",authors:[{id:"176282",title:"Prof.",name:"Jameel M.",middleName:null,surname:"Al-Khayri",fullName:"Jameel M. Al-Khayri",slug:"jameel-m.-al-khayri"},{id:"176284",title:"Dr.",name:"Poornananda M.",middleName:null,surname:"Naik",fullName:"Poornananda M. Naik",slug:"poornananda-m.-naik"}]},{id:"49883",title:"Consequences of Water Deficit on Metabolism of Legumes",slug:"consequences-of-water-deficit-on-metabolism-of-legumes",signatures:"Allan Klynger da Silva Lobato, Gélia Dinah Monteiro Viana,\nGleberson Guillen Piccinin, Milton Hélio Lima da Silva, Gabriel\nMascarenhas Maciel and Douglas José Marques",authors:[{id:"79200",title:"Prof.",name:"Allan",middleName:null,surname:"Klynger da Silva Lobato",fullName:"Allan Klynger da Silva Lobato",slug:"allan-klynger-da-silva-lobato"},{id:"111434",title:"MSc.",name:"Gleberson",middleName:null,surname:"Guillen Piccinin",fullName:"Gleberson Guillen Piccinin",slug:"gleberson-guillen-piccinin"},{id:"176133",title:"MSc.",name:"Maria",middleName:null,surname:"Barbosa",fullName:"Maria Barbosa",slug:"maria-barbosa"},{id:"176134",title:"MSc.",name:"Luan",middleName:null,surname:"Silva",fullName:"Luan Silva",slug:"luan-silva"},{id:"176941",title:"MSc.",name:"Gelia",middleName:null,surname:"Viana",fullName:"Gelia Viana",slug:"gelia-viana"}]},{id:"49634",title:"Glycation of Plant Proteins under Environmental Stress — Methodological Approaches, Potential Mechanisms and Biological Role",slug:"glycation-of-plant-proteins-under-environmental-stress-methodological-approaches-potential-mechanism",signatures:"Tatiana Bilova, Uta Greifenhagen, Gagan Paudel, Elena Lukasheva,\nDominic Brauch, Natalia Osmolovskaya, Elena Tarakhovskaya, Gerd\nUlrich Balcke, Alain Tissier, Thomas Vogt, Carsten Milkowski,\nClaudia Birkemeyer, Ludger Wessjohann and Andrej Frolov",authors:[{id:"90174",title:"Prof.",name:"Alain",middleName:null,surname:"Tissier",fullName:"Alain Tissier",slug:"alain-tissier"},{id:"177604",title:"Dr.",name:"Tatiana",middleName:null,surname:"Bilova",fullName:"Tatiana Bilova",slug:"tatiana-bilova"},{id:"177605",title:"MSc.",name:"Uta",middleName:null,surname:"Greifenhagen",fullName:"Uta Greifenhagen",slug:"uta-greifenhagen"},{id:"177606",title:"BSc.",name:"Gagan",middleName:null,surname:"Paudel",fullName:"Gagan Paudel",slug:"gagan-paudel"},{id:"177607",title:"BSc.",name:"Elena",middleName:null,surname:"Lukasheva",fullName:"Elena Lukasheva",slug:"elena-lukasheva"},{id:"177608",title:"MSc.",name:"Dominic",middleName:null,surname:"Brauch",fullName:"Dominic Brauch",slug:"dominic-brauch"},{id:"177609",title:"Dr.",name:"Natalia",middleName:null,surname:"Osmolovskaya",fullName:"Natalia Osmolovskaya",slug:"natalia-osmolovskaya"},{id:"177610",title:"Dr.",name:"Elena",middleName:null,surname:"Tarakhovskaya",fullName:"Elena Tarakhovskaya",slug:"elena-tarakhovskaya"},{id:"177611",title:"Dr.",name:"Gerd Ulrich",middleName:null,surname:"Balcke",fullName:"Gerd Ulrich Balcke",slug:"gerd-ulrich-balcke"},{id:"177612",title:"Dr.",name:"Thomas",middleName:null,surname:"Vogt",fullName:"Thomas Vogt",slug:"thomas-vogt"},{id:"177613",title:"Dr.",name:"Carsten",middleName:null,surname:"Milkowski",fullName:"Carsten Milkowski",slug:"carsten-milkowski"},{id:"177614",title:"Dr.",name:"Claudia",middleName:null,surname:"Birkemeyer",fullName:"Claudia Birkemeyer",slug:"claudia-birkemeyer"},{id:"177615",title:"Prof.",name:"Ludger",middleName:null,surname:"Aloisius Wessjohann",fullName:"Ludger Aloisius Wessjohann",slug:"ludger-aloisius-wessjohann"},{id:"177619",title:"Dr.",name:"Andrej",middleName:null,surname:"Frolov",fullName:"Andrej Frolov",slug:"andrej-frolov"}]},{id:"49699",title:"Stress-Induced Proteins in Recalcitrant Seeds During Deep Dormancy and Early Germination",slug:"stress-induced-proteins-in-recalcitrant-seeds-during-deep-dormancy-and-early-germination",signatures:"Marina I. Azarkovich",authors:[{id:"157230",title:"Dr.",name:"Marina",middleName:null,surname:"Azarkovich",fullName:"Marina Azarkovich",slug:"marina-azarkovich"}]},{id:"49737",title:"Molecules and Methods for the Control of Biotic Stress Especially the Insect Pests — Present Scenario and Future Perspective",slug:"molecules-and-methods-for-the-control-of-biotic-stress-especially-the-insect-pests-present-scenario-",signatures:"Santosh Kumar Upadhyay and Sudhir P. Singh",authors:[{id:"176090",title:"Dr.",name:"Sudhir",middleName:null,surname:"Singh",fullName:"Sudhir Singh",slug:"sudhir-singh"},{id:"176153",title:"Dr.",name:"Santosh",middleName:null,surname:"Upadhyay",fullName:"Santosh Upadhyay",slug:"santosh-upadhyay"}]},{id:"49586",title:"Evaluation of TMV Lesion Formation and Timing of Signal Transduction during Induction of Systemic Acquired Resistance (SAR) in Tobacco with a Computer-Assisted Method",slug:"evaluation-of-tmv-lesion-formation-and-timing-of-signal-transduction-during-induction-of-systemic-ac",signatures:"Zoltán Á. Nagy, György Kátay, Gábor Gullner and Attila L. Ádám",authors:[{id:"176268",title:"Dr.",name:"Attila",middleName:null,surname:"Adam",fullName:"Attila Adam",slug:"attila-adam"},{id:"176300",title:"Dr.",name:"Zoltán",middleName:null,surname:"Nagy",fullName:"Zoltán Nagy",slug:"zoltan-nagy"},{id:"176301",title:"Dr.",name:"György",middleName:null,surname:"Kátay",fullName:"György Kátay",slug:"gyorgy-katay"},{id:"176308",title:"Dr.",name:"Gábor",middleName:null,surname:"Gullner",fullName:"Gábor Gullner",slug:"gabor-gullner"}]},{id:"49206",title:"Abiotic Stress Alleviation with Brassinosteroids in Plant Roots",slug:"abiotic-stress-alleviation-with-brassinosteroids-in-plant-roots",signatures:"Sevgi Marakli and Nermin Gozukirmizi",authors:[{id:"176077",title:"Dr.",name:"Sevgi",middleName:null,surname:"Marakli",fullName:"Sevgi Marakli",slug:"sevgi-marakli"},{id:"185345",title:"Dr.",name:"Nermin",middleName:null,surname:"Gozukirmizi",fullName:"Nermin Gozukirmizi",slug:"nermin-gozukirmizi"}]},{id:"49796",title:"Role of Phytochelatins in Redox Caused Stress in Plants and Animals",slug:"role-of-phytochelatins-in-redox-caused-stress-in-plants-and-animals",signatures:"Miguel Angel Merlos Rodrigo, Naser A. Anjum, Zbynek Heger,\nOndrej Zitka, Adam Vojtech, Eduarda Pereira and Rene Kizek",authors:[{id:"16205",title:"Dr.",name:"Rene",middleName:null,surname:"Kizek",fullName:"Rene Kizek",slug:"rene-kizek"},{id:"142677",title:"Dr.",name:"Vojtech",middleName:null,surname:"Adam",fullName:"Vojtech Adam",slug:"vojtech-adam"},{id:"155784",title:"Prof.",name:"Eduarda",middleName:null,surname:"Pereira",fullName:"Eduarda Pereira",slug:"eduarda-pereira"},{id:"177390",title:"Dr.",name:"Marketa",middleName:null,surname:"Vaculovicova",fullName:"Marketa Vaculovicova",slug:"marketa-vaculovicova"},{id:"177407",title:"MSc.",name:"Miguel",middleName:null,surname:"Merlos Rodrigo",fullName:"Miguel Merlos Rodrigo",slug:"miguel-merlos-rodrigo"},{id:"177408",title:"Prof.",name:"Naser",middleName:null,surname:"Anjum",fullName:"Naser Anjum",slug:"naser-anjum"},{id:"177409",title:"MSc.",name:"Zbynek",middleName:null,surname:"Heger",fullName:"Zbynek Heger",slug:"zbynek-heger"},{id:"177410",title:"Dr.",name:"Ondrej",middleName:null,surname:"Zitka",fullName:"Ondrej Zitka",slug:"ondrej-zitka"}]},{id:"49686",title:"Signalling Crosstalk of Plant Defence Responses to Xylem-invading Pathogens",slug:"signalling-crosstalk-of-plant-defence-responses-to-xyleminvading-pathogens",signatures:"Sabina Berne and Branka Javornik",authors:[{id:"154940",title:"Prof.",name:"Branka",middleName:null,surname:"Javornik",fullName:"Branka Javornik",slug:"branka-javornik"},{id:"177633",title:"Dr.",name:"Sabina",middleName:null,surname:"Berne",fullName:"Sabina Berne",slug:"sabina-berne"}]},{id:"49162",title:"Abscisic Acid Signalling as a Target for Enhancing Drought Tolerance",slug:"abscisic-acid-signalling-as-a-target-for-enhancing-drought-tolerance",signatures:"Ley Moy Ng",authors:[{id:"175961",title:"Dr.",name:"Ley Moy",middleName:null,surname:"Ng",fullName:"Ley Moy Ng",slug:"ley-moy-ng"}]},{id:"49274",title:"Reactive Oxygen Species and Antioxidant Enzymes Involved in Plant Tolerance to Stress",slug:"reactive-oxygen-species-and-antioxidant-enzymes-involved-in-plant-tolerance-to-stress",signatures:"Andréia Caverzan, Alice Casassola and Sandra Patussi Brammer",authors:[{id:"176303",title:"Dr.",name:"Alice",middleName:null,surname:"Casassola",fullName:"Alice Casassola",slug:"alice-casassola"},{id:"176409",title:"Dr.",name:"Andréia",middleName:null,surname:"Caverzan",fullName:"Andréia Caverzan",slug:"andreia-caverzan"},{id:"176410",title:"Dr.",name:"Sandra",middleName:null,surname:"Patussi Brammer",fullName:"Sandra Patussi Brammer",slug:"sandra-patussi-brammer"}]},{id:"49852",title:"Antioxidant Enzyme Activities and Abiotic Stress Tolerance Relationship in Vegetable Crops",slug:"antioxidant-enzyme-activities-and-abiotic-stress-tolerance-relationship-in-vegetable-crops",signatures:"Sebnem Kusvuran, Sevinç Kiran and S. Sebnem Ellialtioglu",authors:[{id:"139032",title:"Associate Prof.",name:"Sebnem",middleName:null,surname:"Kusvuran",fullName:"Sebnem Kusvuran",slug:"sebnem-kusvuran"},{id:"142251",title:"Prof.",name:"Sebnem",middleName:"Seküre",surname:"Ellialtioglu",fullName:"Sebnem Ellialtioglu",slug:"sebnem-ellialtioglu"},{id:"176220",title:"Dr.",name:"Sevinc",middleName:null,surname:"Uslu Kıran",fullName:"Sevinc Uslu Kıran",slug:"sevinc-uslu-kiran"}]},{id:"49690",title:"Role of ABA in Arabidopsis Salt, Drought, and Desiccation Tolerance",slug:"role-of-aba-in-arabidopsis-salt-drought-and-desiccation-tolerance",signatures:"V. C. Dilukshi Fernando and Dana F. Schroeder",authors:[{id:"46453",title:"Dr.",name:"Dana",middleName:null,surname:"Schroeder",fullName:"Dana Schroeder",slug:"dana-schroeder"},{id:"176279",title:"Dr.",name:"V.C. Dilukshi",middleName:null,surname:"Fernando",fullName:"V.C. Dilukshi Fernando",slug:"v.c.-dilukshi-fernando"}]},{id:"49717",title:"Rootstock Breeding for Abiotic Stress Tolerance in Citrus",slug:"rootstock-breeding-for-abiotic-stress-tolerance-in-citrus",signatures:"Berken Cimen and Turgut Yesiloglu",authors:[{id:"103938",title:"Prof.",name:"Turgut",middleName:null,surname:"Yesiloglu",fullName:"Turgut Yesiloglu",slug:"turgut-yesiloglu"},{id:"175905",title:"MSc.",name:"Berken",middleName:null,surname:"Cimen",fullName:"Berken Cimen",slug:"berken-cimen"}]},{id:"49752",title:"Cowpea Breeding for Drought Tolerance — From Brazil to World",slug:"cowpea-breeding-for-drought-tolerance-from-brazil-to-world",signatures:"Maria Antonia Machado Barbosa, Allan Klynger da Silva Lobato,\nMilton Hélio Lima da Silva, Gabriel Mascarenhas Maciel and\nDouglas José Marques",authors:[{id:"79200",title:"Prof.",name:"Allan",middleName:null,surname:"Klynger da Silva Lobato",fullName:"Allan Klynger da Silva Lobato",slug:"allan-klynger-da-silva-lobato"},{id:"176258",title:"MSc.",name:"Maria",middleName:null,surname:"Barbosa",fullName:"Maria Barbosa",slug:"maria-barbosa"},{id:"176259",title:"Dr.",name:"Milton",middleName:null,surname:"Silva",fullName:"Milton Silva",slug:"milton-silva"}]},{id:"49800",title:"Sunflower Breeding for Resistance to Abiotic and Biotic Stresses",slug:"sunflower-breeding-for-resistance-to-abiotic-and-biotic-stresses",signatures:"Dragan Škorić",authors:[{id:"176099",title:"Dr.",name:"Dragan",middleName:null,surname:"Skoric",fullName:"Dragan Skoric",slug:"dragan-skoric"}]},{id:"49669",title:"Drought Adaptation in Millets",slug:"drought-adaptation-in-millets",signatures:"Zerihun Tadele",authors:[{id:"176084",title:"Dr.",name:"Zerihun",middleName:null,surname:"Tadele",fullName:"Zerihun Tadele",slug:"zerihun-tadele"}]},{id:"49864",title:"Plant Integrity – The Important Factor of Adaptability to Stress Conditions",slug:"plant-integrity-the-important-factor-of-adaptability-to-stress-conditions",signatures:"Ladislav Bláha and Tomáš Středa",authors:[{id:"156680",title:"Dr.",name:"Ladislav",middleName:null,surname:"Bláha",fullName:"Ladislav Bláha",slug:"ladislav-blaha"},{id:"177241",title:"Dr.",name:"Tomás",middleName:null,surname:"Středa",fullName:"Tomás Středa",slug:"tomas-streda"}]},{id:"49646",title:"Plant Evolution in Response to Abiotic and Biotic Stressors at “Rear-edge” Range Boundaries",slug:"plant-evolution-in-response-to-abiotic-and-biotic-stressors-at-rear-edge-range-boundaries",signatures:"Gunbharpur S. Gill, Riston Haugen, Jesse Larson, Jason Olsen and\nDavid H. Siemens",authors:[{id:"176260",title:"M.Sc.",name:"Gunbharpur",middleName:null,surname:"Gill",fullName:"Gunbharpur Gill",slug:"gunbharpur-gill"},{id:"181689",title:"Dr.",name:"David",middleName:null,surname:"Siemens",fullName:"David Siemens",slug:"david-siemens"},{id:"181737",title:"MSc.",name:"Riston",middleName:null,surname:"Haugen",fullName:"Riston Haugen",slug:"riston-haugen"},{id:"181738",title:"BSc.",name:"Jesse",middleName:null,surname:"Larson",fullName:"Jesse Larson",slug:"jesse-larson"},{id:"181739",title:"MSc.",name:"Jason",middleName:null,surname:"Olsen",fullName:"Jason Olsen",slug:"jason-olsen"}]},{id:"49604",title:"The Trials and Tribulations of the Plant Male Gametophyte — Understanding Reproductive Stage Stress Tolerance",slug:"the-trials-and-tribulations-of-the-plant-male-gametophyte-understanding-reproductive-stage-stress-to",signatures:"Ettore Pacini and Rudy Dolferus",authors:[{id:"176305",title:"Dr.",name:"Rudy",middleName:null,surname:"Dolferus",fullName:"Rudy Dolferus",slug:"rudy-dolferus"}]}]}],publishedBooks:[{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6329",title:"Fusarium",subtitle:"Plant Diseases, Pathogen Diversity, Genetic Diversity, Resistance and Molecular Markers",isOpenForSubmission:!1,hash:"549fa517876fb9e6cbbdfdc820b2109c",slug:"fusarium-plant-diseases-pathogen-diversity-genetic-diversity-resistance-and-molecular-markers",bookSignature:"Tulin Askun",coverURL:"https://cdn.intechopen.com/books/images_new/6329.jpg",editedByType:"Edited by",editors:[{id:"89795",title:"Dr.",name:"Tulin",surname:"Askun",slug:"tulin-askun",fullName:"Tulin Askun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6670",title:"Secondary Metabolites",subtitle:"Sources and Applications",isOpenForSubmission:!1,hash:"05d354e4a05e7df7d08ea65f76e0b268",slug:"secondary-metabolites-sources-and-applications",bookSignature:"Ramasamy Vijayakumar and Suresh S.S. Raja",coverURL:"https://cdn.intechopen.com/books/images_new/6670.jpg",editedByType:"Edited by",editors:[{id:"176044",title:"Dr.",name:"Ramasamy",surname:"Vijayakumar",slug:"ramasamy-vijayakumar",fullName:"Ramasamy Vijayakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"82145",title:"Slope Casting Process: A Review",doi:"10.5772/intechopen.102742",slug:"slope-casting-process-a-review",body:'
1. Introduction
Semi-solid processing as the name suggests is the processing of non-dendritic material between its liquidus and solidus temperatures. In recent years, much work has been conducted in exploring this field with respect to understanding the mechanisms involved. The inherent properties of semi-solid materials at the semi-solid processing temperature such as lower heat content, relatively higher viscosity comparable to liquids and low flow stresses, enables the semi-solid process to show distinct advantages over fully liquid and/or fully solid-state processes. Some of the important benefits of this technique are low mold erosion, low energy consumption, improved die filling, less gas entrapment, lower solidification shrinkage, reduced macro-segregation and fine microstructure. Therefore, this process is rapidly gaining commercial importance [1, 2, 3]; A non-dendritic microstructure can be obtained by stirring, either mechanically or electro-magnetically; grain refining; low superheat melt processing; solid state mechanical treatment and reheating [4, 5, 6, 7]; The manufacturing industries widely focused on the semi solid routes to produce components with superior mechanical and metallurgical properties. Slope casting process is one of the simplest techniques to produce semi solid slurry [8]. Slope cating process is pouring of molten metal through a slope channel into a mold. This slope channel help as a site for nucleation and fragmentation of dendrites due to shearing force between different layers of flowing stream [9]. Slope casting process depends on different process parameters like slope length, slope angle, pouring temperature etc. [10, 11, 12, 13, 14]. In recent years Aluminum alloys are using mostly in the automotive industries. Among the Aluminum alloys, the Al-Si alloys have good casting characteristics like high fluidity and good cast-ability which makes them advantageous for both small and complicated castings. Every year lakhs of Aluminum alloy components are produced through semi solid processing route. The present study mainly focuses on review of various explorations made by researchers with different process parameters of the Slope casting process and explain the mechanisms that lead to microstructural changes which leads to good mechanical properties.
2. Semi-solid casting
The processing of alloy between liquidus and solidus (mushy zone) range is known as the semi solid process, it was first discovered in 1970s, by spancer at Massachusetts Institute of Technology (MIT); found that at semi solid range of alloy behaves thixotropically (Decreases in viscosity if it is sheared but it will thicken again if it is allowed to stand)and by applying continuous stirring on the semi solid state produced no dendritic and spheroidal microstructure [15, 16, 17, 18, 19]. The semi solid casting route gives enormous advantages like dendritic free structure leads to globular structure as seen in Figure 1, less defects such as porosity, shrinkage, gas entrapment and macro-segregation. Better advantages than conventional casting that superior quality, low forming temperature, superior mechanical properties with microstructural refinement. The semi-solid process results in a non-dendritic microstructure due to forming at a temperature between solidus and liquidus temperature as shown in phase diagram, Figure 2. In semi solid process, temperature has a pivotal role on the resultant microstructure like orientation of grain, morphology of grain during solidification of alloys [22, 23, 24]. Semi-solid processing is used for all the shape forming processes which take advantage of the semi-solid range of the alloys for processing. Rheology and Thixotropy, two basic phenomena play a major role, In semi-solid processing. The apparent viscosity of a material in the liquid state varies with change in shear rate In Rheology. This gives the liquid like slurry to be processed even at sufficiently high solid fraction [25]. Thixotropy, is the ability of a material to Decreases in viscosity if it is sheared but it will thicken again if it is allowed to stand [26]; A material with a non-dendritic structure is the best suitable material for semi-solid processing. it is believed that, in the semi-solid state, the non-dendritic equiaxed grains easily slide/glide on each other on the application of a shear force [27].
Figure 1.
Using semi solid process technique dendritic structure changes to globular [20].
Figure 2.
Phase diagram of Al-Si alloy [21].
Thixotropy behavior can be define as when the material state is partially solid with 40–50% solid fraction and is sheared applied by external force, then its viscosity will decrease due to the break/detachment of the coalescence material, and it will flow like a liquid, for a certain time if it is allowed to stand, equiaxed coalescence will increase the viscosity of the material, by that it being able to support its own weight in the same way as if it was solid [28].
2.1 The mechanism of non-dendritic structure
To describe mechanism for non-dendritic structure in semi solid process many theories have been proposed. These mechanisms include dendrite arm fragmentation, dendrite arm root re-melting, and growth control mechanism. Hv Atikson et al. [20], Vogel et al. [29]; proposed that under shearing forces dendrite arms bends due to its plasticity, which introduce large misorientations inside the dendrite arms and dislocations introduced; rearrangements of dislocations occur to form grain boundaries at the melting temperature. The energy of the grain boundaries becomes more than twice the liquid/solid interfacial energy when the misorientations between grain boundaries are more than 20°, then separation of the dendritic arms observes due to wetting of the grain boundaries by liquid metal. Schematically illustrated in Figure 3.
Figure 3.
Schematic illustration of the steps of the mechanism of dendrite fragmentation: (a) undeformed dendrite; (b) after bending; (c) formation of high-angle boundary; and (d) fragmentation through wetting of grain boundary by liquid metal [22].
Hellawell et al. [30]; proposed grain multiplication theory, Thermal convention and shearing force have a direct effect at the roots of secondary dendrite arms, melting off rather than breaking off secondary arms observed, and grain multiplication, schematically illustrated in Figure 4. Evolution of structure during solidification with shear force depends on the cooling rate and shear rate, with increase in shear and cooling rate gives non dendritic/globular structure that that the particle shape and size vary irreversibly with shear and colling rate. Illustrate in in Figure 5.
Figure 4.
Schematic diagram of dendrite multiplication theory [22].
Figure 5.
Evolution of structure during solidification with shear force: (a) initial dendritic fragment; (b) dendritic growth; (c) rosette; (d) ripened rosette; and (e) spheroid [20].
2.2 Classification of semi solid process
The semi solid casting process mainly classified into the thixo casting and rheo casting and these processes are farther divided into many process techniques show in below (Figure 6).
Figure 6.
Classification of semi solid processes [31].
2.2.1 Thixo casting
Thixo casting mainly consists of three separate stages the production of a pre-cast billet having the special equiaxed microstructure, the re heating of these billets to the semi-solid temperature and the casting of the components 3. Illustrated in Figure 7.
feedstock preparation;
Reheating of the billet; and
The casting process.
Figure 7.
Thixo casting and thixo forging [2].
2.2.2 Rheo-casting
Rheo-casting is single step process to produce semi solid alloy start with liquid alloy, introduced directly into a mold without any intermediate solidification step. The semisolid slurry produced by means of different process like slope casting, new rheo casting etc. and directly introduced into a die. While thixo-forming is a route consists of reheating and forming process (Figure 8).
Figure 8.
Rheo casting process [2].
3. Slope casting process
Slope casting process is a rheo casting process used for the produce semi solid slurry, it consists with simple equipment and operation technique, the process carried out by pouring molten metal through channel with certain angle into a die where subsequent solidification takes place [32]. The solidification of molten alloy along a slope channel involves heat transfer, fluid flow, adhesion behavior. When the molten metal flowing through the slope channel with an angle and length [33, 34, 35, 36, 37], heat transfer takes between the slope channel wall and melt in contact, where generation of nuclei takes places, due to the effect of gravitation force and flow of stream the nuclei produced on slope wall are detached from the slope plate and subsequently flow through the melt stream, solid fraction of metal(semi solid slurry) observed at end of slope channel [38, 39, 40, 41, 42]. shear stress acting on the slurry layers and melt flow inertia restricted dendritic growth usually observed in conventional casting alloys. Illustrated in Figure 9. Slope casting process is a simple technique, but it can be prone to gas pick up and oxide formation which will impact negatively on mechanical properties [44, 45].
Figure 9.
Line illustration of slope casting process [43].
3.1 Mechanisms involved in slope casting process
Two mechanisms have been suggested to explain the formation of non-dendritic microstructure during flow along slope casting process. According to Haga and Kapranos et al. [46, 47], dendritic fragmentation mechanism plays an important role in slope casting process during microstructural evolution. The fragmentation of weak dendritic arms observed when the partially solidified melt collides under gravitational forces on the inclined/slope channel. Motegi et al. [48] proposed, crystal separation theory, where granular crystals nucleate and grow on the slope wall and are washed away from the wall by fluid motion illustrated in Figure 10.
Figure 10.
Crystal separation theory (a). The generation of nuclei at slope plate wall (b). Segregation of granular crystal (c) flow through the melt [30].
The shear force is main factor for dendritic arm fragmentation but its effect is related to the velocity boundary layer [21] as shown in Figure 11.
Figure 11.
Schematic diagram of the shear stress variation and velocity distribution inside the boundary layer during the flow of melt in cooling slope casting process [38].
3.2 Parameters effect the slope casting process
The process parameters in the slope casting of semisolid slurry preparation are [21, 31, 43, 44, 45, 46, 47, 48, 49]:
Pouring temperature,
Slope angle,
Slope length,
Slope plate temperature,
Vibration of slope,
Mold vibration etc.
3.2.1 Effect of pouring temperature
It is the most influencing parameter in slope casting process, T hogo et al. [36] investigated the effect of melt temperature and mold material found that pouring temperature have the great effect on the microstructure and it accounts nearly 35% of the total effect. Y Birol et al. [37] investigated the effect of pouring temperature and slope length, reported that the melt superheat required longer cooling lengths for higher pouring temperatures. Pouring with lower temperature causes formation of solid shell (formation of a thin layer of metal due to the primary nuclei that stick to the slope channel that reduces the effectiveness of the slope channel in generating nuclei) and pouring with the super-heated temperature may not get sufficient time to cool to range to produce solid nuclei on the slope plate, the main reason is that each parameter corelate each. Similar observation reported by Wen Liu et al. [39], if pouring temperature is too high a small number of primary α-aluminum phase will precipitate and some coarse primary α-aluminum phase. If the pouring temperature is too low the melt will cool rapidly and solidify. P. das et al., the temperature of the cooling plate has no prominent effect on microstructure, nevertheless a slurry with approximately 10% fraction solid can easily be obtained at the end of the plate.
3.2.2 Effect of slope length
Most of studies, slope length ranges from 200 to 800 mm, H. bidhiman et al. [41]. reported that increase in slope length that means melt flow time through channel increases it may cause the temperature drop and formation of the oxidation and solid shell as we above discussed it causes decrease in rate of heat transfer which leads to the decrease of the nucleation rate of primary solid phase, too short length does not give the proper nuclei formation and the time for the dendritic fragmentation. Slope length and slope angle are interrelated. If slope angle high need slope length should be more otherwise melt does not get sufficient time for shearing. The slope length effect on final microstructure accounts nearly 30% from studies. P. das et al. [40].
3.2.3 Effect of the slope angle
Most studies the angle ranges from 15 to 60°, the small angle is unable to give the melt to flow and shear effect on the slope plate will be less and the higher angle may cause the high velocity which does not give time to melt formation semi solid slurry and dendritic fragmentation. Farshid Taghavi and Ghassemi [42] reported the angle of slope channel had remarkable effects on the size and morphology of α-Al phase. By increasing the angle of the slope channel, the effect of shear stress and the rate of heat transfer increase. As a result, more solid particles are detached from the layer of slope channel. On the other part, duration time of shear stress and heat transfer between the melt and surface of inclined plate decrease by increase in the angle. As we above discussed in 3.2.2. the slope length and slope angle corelated to each other.
3.2.4 Effect of the slope vibration
Very few studies on effect of vibration slope on microstructural changes. Slope vibration frequency ranges from 10 to 60 Hz. Studies by Shaya Safari et al. [44], Wen Liu et al. [39] conclude that There was no solid shell formation on the surface of slope channel by using slope vibration. The combine effect of vibration and slope channel causes increase in the amount of nucleation and nuclei due to uniform cooling rate. The mechanism in vibration slope channel is proposed that vibrating force and gravity result in Bending stress introduced in between the growing dendritic and liquid. Because of the viscous resistance of liquid, with respect to the dendritic particles and liquid phase there is a difference of the transport velocity, which causes crash among the grains and the scrub of the liquid on dendritic particles. The weak dendrite arms breakoff and form fine grains. Vibration helps the heat transfer mechanism in possible direction. The stirring caused by vibration gives rise to local temperature fluctuation of liquid phase around the primary α-al phase and Re melting of dendritic arms at the necks occurs. Which favorable to form short and homogenous small primary dendrites, equiaxed and rosette non dendritic grains.
3.2.5 Heat treatment by reheating
Researchers extended work on Slope casting process by subsequent heat treatment of casts after slope casting for better mechanical properties through spheroidization of grains and removal of defects like internal stress and porosity. Yucel Birol et al. [37] worked on the cooling slope casting and thixo forming of hypereutectic A390 alloy. Reported that The thixoformed part after slope casting process was metallurgically sound, free from porosity and revealed a uniform dispersion of fine Si particles in a homogeneous matrix. Increase mechanical properties observed. Nursen Saklakoglu et al. [33]: investigated on the microstructural evolution of ETIAL 160 aluminum feed stock produced by the cooling slope casting process experiments done with pouring temperatures of 605 and 615°C respectively subsequent isotheral heating at 565°C at 5 and 10 mins respectively, slope casting process results the primary α-aluminum dendrites has changed into α-aluminum rosette. Subsequent heat treatment helps to modify the rosette to globular structure. P das et al. [40]; too long a heating time will cause structural coarsening, while too short a heating time will lead to incomplete spheroidization of solid particles. Thus, there is a need to get optimum reheating parameters of the semi-solid alloys processed via slope casting.
3.3 Composites by slope casting
Composite materials produced using slope casting technique were reported by researchers. P. Das, [40] has studied about the semi solid microstructure of Mg2 Si/Al composite by cooling slope casting process, reported that, the morphology of primary Mg2Si obtained non-dendritic and size of α Al was changed to 10 from 200 μm, Toshio Haga et al. [36]. Reported that slope casting has a significant influence on the shape and grain morphology of the Metal matrix composites (MMCs). The properties of the MMCs produced by slope casting were found to be higher than those of the MMCs produced by using conventional stirring.
Distinguished the literature into table according to the optimum process parameters used in Slope Casting Process of Semi-Solid Alloys and Composites shown inTable 1 and post parameters in Table 2.
Author & year
Alloy
Process parameters
Length of slope in (mm)
Slope angle in (degrees)
Pouring temperature in (centi grade)
Slope material, coating material and cooling medium
Stir casting and cooling slope casting (SC/CSC) exhibited higher Porosity and water-cooling using SC/CSC technique effect the average size of the α-Al grains.
The hardness and wear resistance of the MMC s produced by cooling slope casting were found to be higher those of MMCs produced by using conventional stirring.
925 K pouring temperature, 60 slope angle, 500 mm cooling length and wall temperature of 333 K has been identified as the ideal processing condition, which is in good correlation with the numerical findings
Cooling slope does not given substantial changes in friction characteristics compared to gravity casting, isothermal treatment reduced after cooling slope casting decreased the friction.
Optimum globular microstructure with uniform distribution of A356 alloy is obtained with slope angle 45, plate length 500 mm and pouring temperature 650
The cooling distance affects the cooling of the melt and adhesion of solidified metal. The melt temperature becomes lower as distance becomes longer. The adhesion of the solidified metal occurs when the cooling distance becomes longer than the suitable distance.
with increase in the isothermal holding time from 30 to 600 min the mean size of alpha-aluminum grains increases and its morphology becomes more globular
Most of the nucleation has occurred in the upper part of the slope, the area of the impact zone plays an important role in determine the resulting microstructure and that this dominate over the cooling length
The dissipation of the melt superheat required longer cooling lengths for higher pouring temperatures.
Table 2.
Post process parameters.
4. Conclusions
A considerable review of the literature on slope casting of semisolid Aluminum alloys suggest the following:
The slope casting process is a simple and cost-effective way of producing feed stock material (non-dendritic or globular) microstructure.
slope casting process mainly depends on the process parameters like slope length, slope angle which mainly controls the shear force on metal flow subsequently the better morphology structure obtained.
Reheating and isothermal holding temperature after slope casting observed better mechanical properties from different studies.
Using slope casting process feed stock material produced with globular microstructure is not only in cast aluminum alloys but also in aluminum metal matrix composites.
slope casting is best and simple process to produce the semi solid material and by using subsequent process after slope casting technique can play a prominent role in foundry industries.
Due to vibration on slope plate, multiple nucleations and dendritic fragmentation occur which leads to spheroidization.
\n',keywords:"semi-solid process, thixo casting, Rheo casting, slope casting, aluminum alloys, non dendritic structure, slope length, slope angle, slope plate temperature, slope vibration",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/82145.pdf",chapterXML:"https://mts.intechopen.com/source/xml/82145.xml",downloadPdfUrl:"/chapter/pdf-download/82145",previewPdfUrl:"/chapter/pdf-preview/82145",totalDownloads:6,totalViews:0,totalCrossrefCites:0,dateSubmitted:"January 5th 2022",dateReviewed:"January 18th 2022",datePrePublished:"June 30th 2022",datePublished:null,dateFinished:"June 8th 2022",readingETA:"0",abstract:"Semi solid processing is a near net shape casting process and one of the promising techniques to obtain dendritic free structure of metals. Semi solid casting gives numerous advantages than solid processing and liquid processing. Semi solid casting process gives, Laminar flow filling of die without turbulence, Lower metal temperature, Less shrinkage, Less porosity, Higher mechanical properties. Semi solid casting process is industrially successful, producing a variety of products with good quality. Slope Casting process is a simple technique to produce semi solid feed-stoke with globular microstructure and dendrite free structure castings. Slope casting process depends on different process parameters like slope length, slope angle, pouring temperature etc. The present study mainly focuses on review of various explorations made by researchers with different process parameters of the Slope casting process and explain the mechanisms that lead to microstructural changes which leads to good mechanical properties.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/82145",risUrl:"/chapter/ris/82145",signatures:"Mukkollu Sambasiva Rao and Amitesh Kumar",book:{id:"11119",type:"book",title:"Casting Processes",subtitle:null,fullTitle:"Casting Processes",slug:null,publishedDate:null,bookSignature:"Prof. Thoguluva Raghavan Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/11119.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-496-9",printIsbn:"978-1-80355-495-2",pdfIsbn:"978-1-80355-497-6",isAvailableForWebshopOrdering:!0,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",middleName:"Raghavan",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Semi-solid casting",level:"1"},{id:"sec_2_2",title:"2.1 The mechanism of non-dendritic structure",level:"2"},{id:"sec_3_2",title:"2.2 Classification of semi solid process",level:"2"},{id:"sec_3_3",title:"2.2.1 Thixo casting",level:"3"},{id:"sec_4_3",title:"2.2.2 Rheo-casting",level:"3"},{id:"sec_7",title:"3. Slope casting process",level:"1"},{id:"sec_7_2",title:"3.1 Mechanisms involved in slope casting process",level:"2"},{id:"sec_8_2",title:"3.2 Parameters effect the slope casting process",level:"2"},{id:"sec_8_3",title:"3.2.1 Effect of pouring temperature",level:"3"},{id:"sec_9_3",title:"3.2.2 Effect of slope length",level:"3"},{id:"sec_10_3",title:"3.2.3 Effect of the slope angle",level:"3"},{id:"sec_11_3",title:"3.2.4 Effect of the slope vibration",level:"3"},{id:"sec_12_3",title:"3.2.5 Heat treatment by reheating",level:"3"},{id:"sec_14_2",title:"3.3 Composites by slope casting",level:"2"},{id:"sec_16",title:"4. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Flemings MC. Behavior of metal alloys in the semisolid state. Metallurgical Transactions A. 1991;22:957-981'},{id:"B2",body:'Fan Z. Semisolid metal processing. International Materials Reviews. 2002;47(2):49-85'},{id:"B3",body:'Atkinson HV. Modelling the semisolid processing of metallic alloys. Progress in Materials Science. 2005;50:341-412'},{id:"B4",body:'Spencer DB. Ph.D. Thesis, USA: Massachusetts Institute of Technology; 1971'},{id:"B5",body:'Aguilar J, Fehlbier M, Grimmig T, Bramann H, Afrath C, Bührig-Polaczek A. Semi‐Solid Processing of Metal Alloys. Steel Research International. 2004;75(8/9):492-505'},{id:"B6",body:'Vogel A, Doherty RD, Cantor B. Proceedings of International Conference The Solidification and Casting of Metals. Sheffield: University of Sheffield, Metals Society; 1979. pp. 518-525'},{id:"B7",body:'Kirkwood DH. Semi-solid metal processing. International Materials Reviews. 1994;39(5):173-189'},{id:"B8",body:'Hellawell A. Proceedings of 4th International Conference Semi-solid Processing of Alloys and Composites. Sheffield, UK: University of Sheffield; 1996. pp. 60-65'},{id:"B9",body:'Yang X, Mao W. Preparation of semisolid A356 alloy feedstock cast via a pipe consisting of partial inclined and partial vertical sections. Journal of Materials Science and Technology. 2009;25(2):273-276'},{id:"B10",body:'Paes M, Zoqui EJ. Semi-solid behavior of new Al-Si-Mg alloys for thixoforming. Materials Science & Engineering A. 2005;406:63-73'},{id:"B11",body:'Chalmers B. The structure of ingots. Journal of the Australian Institute of Metals. 1963;8:255-263'},{id:"B12",body:'Biloni H, Chalmers B. Origin of the equiaxed zone in small ingots. Journal of Materials Science. 1968;3:139-149'},{id:"B13",body:'Ohno A. Solidification: The Separation Theory and its Practical Applications. Berlin, Germany: Springer-Verlag; 1987'},{id:"B14",body:'Campbell J. Castings. Oxford: Butterworth-Heinemann; 2003'},{id:"B15",body:'Stefanescu DM. Science and Engineering of Casting Solidification. NY, USA: Kluwer Academic/Plenum Publishers; 2002'},{id:"B16",body:'Flemings MC. Solidification processing. New York: McGraw-Hill; 1974'},{id:"B17",body:'Birol Y. Cooling slope casting and thixoforming of hypereutectic A390 alloy. Journal of Materials Processing Technology. 2008;207:200-203'},{id:"B18",body:'Chen JY, Fan Z. Modelling of rheological behaviour of semisolid metal slurries—Part 3: Transient state behaviour. Materials Science and Technology. 2002;18(3):250-257'},{id:"B19",body:'Modigell M, Koke J. Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes. Journal of Materials Processing Technology. 2001;111(1-3):53-58'},{id:"B20",body:'Atkinson HV. Rheology of Semisolid Metallic Alloys Comprehensive Materials Processing. 2014;5:149-161'},{id:"B21",body:'Kund NK. Cooling Slope Practice for SSF Technology. International Journal of Engineering and Advanced Technology (IJEAT). 2019;8(3):410-413'},{id:"B22",body:'Doherty RD, Lee H-I, Feest EA. Microstructure of stircast metals. Materials Science and Engineering. 1984;65(1):181-189'},{id:"B23",body:'Flemings MC, Yurko JA, Martinez RA. Solidification processes and microstructures. In: Proceedings of the TMS Annual Meeting. Charlotte, NC, USA: IIT madras; 2004. pp. 3-14'},{id:"B24",body:'Mullis AM. Growth induced dendritic bending and rosette formation during solidification in a shearing flow. Acta Materialia. 1999;47(6):1783-1789'},{id:"B25",body:'Zoqui JE, Robert MH. Contribution to the study of mechanisms involved in the formation of rheocast structure. Journal of Materials Processing Technology. 2001;109:215-219'},{id:"B26",body:'Chen Z. In situ TiB2 Reinforced Al-Si alloy composites by semi solid processing. Material Science Forum. 2011;675-677:763-766'},{id:"B27",body:'Qin QD, Zhao YG. Semisolid microstructure of Mg2 Si/Al composite by cooling slope cast and its evolution during partial remelting process. Materials Science and Engineering A. 2007;444:99-103'},{id:"B28",body:'Alhawari KS. Wear Properties of A356/Al2O3 Metal Matrix Composites Produced by Semisolid Processing. In: The Malaysian International Tribology Conference 2013, MITC2013 Proceeding Engineering. Vol. 68. 2013. pp. 186-192'},{id:"B29",body:'Vogel A. Ph.D. Thesis. UK: University of Sussex; 1979'},{id:"B30",body:'Hellawell A. Metall. Mater. Trans. 1996;27A(1):229-232'},{id:"B31",body:'Mohammed MN, Omar MZ, Salleh MS, Alhawari KS, Kapranos P. Semisolid metal processing techniques for nondendritic feedstock production. The Scientific World Journal. 2013;2013:1-16'},{id:"B32",body:'Deepak Kumar S, Mandal A, Chakraborty M. Cooling Slope Casting Process of Semi-solid Aluminum Alloys: A Review. International Journal of Engineering Research & Technology (IJERT). 2014;3(7):269-282'},{id:"B33",body:'Saklakoglu N, Birol Y, Kasman S. Microstructural Evolution of ETIAL 160 Aluminium Alloy FeedstockProduced by Cooling Slope Casting. Solid State Phenomena. 2008;141-143:575-580'},{id:"B34",body:'Saklakoglu N, Gencalp S, Kasman S. The effects of cooling slope casting and isothermal treatment on wear behavior of A380 Alloy. Advanced Materials Research. 2011;264-265:42-47'},{id:"B35",body:'Keerem Altig G, Alptekin K, Ozer G, Karaaslan A. Cooling slope casting ofAA7075 alloy combined with reheating and thixo forging. Trans Non ferrous Met. soc. China. 2019;29:2237-2244'},{id:"B36",body:'Haga T, Suzuki S. Casting of aluminium alloy ingots for thixoforming using a cooling slope. Journal of Materials Processing Technology. 2001;118:169-172'},{id:"B37",body:'Birol Y. A357 thixoforming feedstock produced by cooling slope casting. Journal of Materials Processing Technology. 2007;186:94-101'},{id:"B38",body:'Satya SJ, Kumar V, Barekar NS, Biswas K, Dhindaw BK. Microstructural evolution under low shear rates during Rheo processing of LM25 alloy. Journal of Materials Engineering and Performance. 2012;21:22'},{id:"B39",body:'Liu W, Tan J, Li J, Ding X. Influence of process papameters by vibrational cooling-shearing slope on microstructures of semi-solid ZAlSi9Mg alloy. Advanced Materials Research. 2011;211-212:142-146'},{id:"B40",body:'Das P, Samanta S, Venkatpathi BRK, Chattopadhyay H, Dutta P. Microstructural evolution of A356 Al alloy during flow along a cooling slope. Transactions of the Indian Institute of Metals. 2012;65(6):669-672'},{id:"B41",body:'Budiman H, Omar MZ, Jalar A, Syarif J, Ghazali MJ, Abdullah S. Production of feedstock material for semi-solid material processing by cooling slope casting process. International Journal of Mechanical and Materials Engineering (IJMME). 2009;4(2):176-180'},{id:"B42",body:'Taghavi F, Ghassemi A. Study on the effects of the length and angle of inclined plate on the thixotropic microstructure of A356 aluminum alloy. Materials and Design. 2009;30:1762-1767'},{id:"B43",body:'Mukkollu SR, Kumar A. Comparative study of slope casting technique in integration with ultrasonic mould vibration and conventional casting of aluminum alloy. Materials Today: Proceedings. 2020;26(2):1078-1081'},{id:"B44",body:'Saffari S, Akhilaghi F. Microstructure and mechanical properties of Al-Mg2Si composite fabricated in-situ by vibrating cooling slope. Transactions of Nonferrous Metals Society of China. 2018;28:604-612'},{id:"B45",body:'Xu J, Wang T, Chen Z, Zhu J, Cao Z, Li T. Preparation pf semi solid A356 alloy by a cooling slope processing. Materials Science Forum. 2011;675-677:767-770'},{id:"B46",body:'Haga T, Kapranos P. Simple rheocasting processes. Journal of Materials Processing Technology. 2002;130-131:594-598'},{id:"B47",body:'Haga T, Kapranos P. Billetless simple thixoforming process. Journal of Materials Processing Technology. 2002;130-131:581-586'},{id:"B48",body:'Motegi T, Tanabe F, Sugiura E. Continuous casting of Semisolid Aluminum alloys. Materials Science Forum. 2002;396-402:203-208'},{id:"B49",body:'Motegi T, Ogawa N, Kondo K, Liu C, Aoyama S. Continuous casting of semisolid Al-Si-Mg alloy. In: Sato T, editor. Proceedings of the ICAA-6. Toyohashi; 1998. pp. 297-326'},{id:"B50",body:'Mehmood A, Shah M, Sheikh NA, Qayyum JA, Khushnood S. Grain refinement of ASTM A356 aluminum alloy using sloping plate process through gravity die casting. Alexandria Engineering Journal. 2016;55(3):2431-2438'},{id:"B51",body:'Deepak Kumar S, Acharya M, Mandal A, et al. Coarsening kinetics of semi-solid A356-5wt%TiB2 in situ composite. Transactions of the Indian Institute of Metals. 2015;68:1075-1080'},{id:"B52",body:'Acharya M, Deepak Kumar S, Mandal A. Effect of cooling slope angle on microstructure of Al-7Si alloy. Transactions of the Indian Institute of Metals. 2015;68:1095-1099'},{id:"B53",body:'Abdelsalam A, Mahmoud T, El-Betar A, El-Assal A. A study of microstructures characteristics of A356-Al2O3 composites produced by cooling slope and conventional stir cast. International Journal of Current Engineering and Technology. 2015;15:3560-3571'},{id:"B54",body:'Saffari S, Akhlaghi F. New semisolid casting of an Al-25Wt. % Mg2Si composite using vibrating cooling slope. Diffusion and Defect Data Pt.B: Solid State Phenomena. 2015;217-218:389-396'},{id:"B55",body:'Deepak Kumar S, Mandal A, Chakraborty M. Effect of thixoforming on the microstructure and tensile properties of A356 alloy and A356-5TiB2 in-situ composite. Transactions of the Indian Institute of Metals. 2015;68:123-130'},{id:"B56",body:'Kumar A. emi solid processing of high chromium cast iron. International Journal of Engineering Research & Technology (IJERT). 2014;3(5)'},{id:"B57",body:'Das P, Samanta SK, Das R, Dutta P. Optimization of degree of sphericity of primary phase during cooling slope casting of A356 Al alloy: Taguchi method and regression analysis. Measurement. Volume. 2014;55:605-615'},{id:"B58",body:'Khosravi H, Eslami-Farsani R, Askari-Paykani M. Modeling and optimization of cooling slope process parameters for semi-solid casting of A356 Al alloy. Transactions of Nonferrous Metals Society of China. 2014;24(4):961-968'},{id:"B59",body:'Das P, Samanta S, Chattopadhyay H, Sharma B, Dutta P. Eulerian two-phase flow simulation and experimental validation of semisolid slurry generation process using cooling slope. Materials Science and Technology. 2013;29(1):83-92'},{id:"B60",body:'Ritwik R, Prasada Rao AK, Dhindaw BK. Low-convection-cooling slope cast AlSi7Mg alloy: A rheological perspective. Journal of Materials Engineering and Performance. 2013;22:2487-2492'},{id:"B61",body:'Budiman H, Omar MZ, Jalar A, Junaidi S. Investigation on cooling slope and conventional stir cast A356/Al2O3 metal matrix composites. Advanced Materials Research. 2010;154-155:1284-1287'},{id:"B62",body:'Haga T, Nakamura R, Tago R, Watari H. Effects of casting factors of cooling slope on semisolid condition. Transactions of Nonferrous Metals Society of China. 2010;20'},{id:"B63",body:'Gencalp S, Saklakoglu N. Semisolid microstructure evolution during cooling slope casting under vibration of A380 aluminum alloy. Materials and Manufacturing Processes. 2010;25(9):943-947'},{id:"B64",body:'Wierzchowski W. Semi-solid processing method for cast iron. Archives of Foundry Engineering. 2010;10(3):149-154'},{id:"B65",body:'Legoretta EC, Atkinson HV, Jones H. Cooling slope casting to obtain thixotropic feedstock II: observations with A356 alloy. Journal of Materials Science. 2008;43:5456-5469'},{id:"B66",body:'Muumbo A, Takita M, Nomura H. Processing of semi solid gray cast iron using the cooling plate technique. Materials Transactions. 2003;44:893-900. DOI: 10.2320/matertrans.44.893'},{id:"B67",body:'Haga T. Semisolid strip casting using a twin roll caster equipped with a cooling slope. Journal of Materials Processing Technology. 2002;130-131:558-556'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Mukkollu Sambasiva Rao",address:"samba.siva129@gmail.com",affiliation:'
National Institute of Advanced Manufacturing Technology, Ranchi, India
National Institute of Advanced Manufacturing Technology, Ranchi, India
'}],corrections:null},book:{id:"11119",type:"book",title:"Casting Processes",subtitle:null,fullTitle:"Casting Processes",slug:null,publishedDate:null,bookSignature:"Prof. Thoguluva Raghavan Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/11119.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-496-9",printIsbn:"978-1-80355-495-2",pdfIsbn:"978-1-80355-497-6",isAvailableForWebshopOrdering:!0,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",middleName:"Raghavan",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"329023",title:"Prof.",name:"Desmond",middleName:null,surname:"Yip",email:"Desmond.Yip@act.gov.au",fullName:"Desmond Yip",slug:"desmond-yip",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:{name:"Canberra Hospital",institutionURL:null,country:{name:"Australia"}}},booksEdited:[],chaptersAuthored:[{id:"73294",title:"Adjuvant Therapies in Colon Cancer",slug:"adjuvant-therapies-in-colon-cancer",abstract:"Most of the patients with localized colon cancer undergo curative resection. However, significant number of patients will recur with metastatic disease, especially those with node positive cancer. Adjuvant chemotherapy has shown to improve cure rate and survival by eradicating micrometastases. The benefit of adjuvant therapy is well established in node-positive cancers, while their role in stage II cancer is not well defined. A number of molecular markers have been identified that are prognostic and/or predictive in colon cancer. Such molecular markers, and other clinicopathological features play an important role in selection of appropriate therapy and duration of treatment. Emerging evidence for the utility of genomic profiling or detection of circulating tumor DNA (ctDNA) are promising which may further facilitate decision making in the future. This chapter reviews the evolution of adjuvant therapy for resected colon cancer, the current evidence and the factors influence the choice of therapy.",signatures:"Thiru Prasanna and Desmond Yip",authors:[{id:"323787",title:"Dr.",name:"Thiru",surname:"Prasanna",fullName:"Thiru Prasanna",slug:"thiru-prasanna",email:"thiru.prasanna@act.gov.au"},{id:"329023",title:"Prof.",name:"Desmond",surname:"Yip",fullName:"Desmond Yip",slug:"desmond-yip",email:"Desmond.Yip@act.gov.au"}],book:{id:"9788",title:"Colorectal Cancer",slug:"colorectal-cancer",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"63000",title:"Dr.",name:"Giulio A.",surname:"Santoro",slug:"giulio-a.-santoro",fullName:"Giulio A. Santoro",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/63000/images/1944_n.jpg",biography:"Dr. Giulio A. Santoro, MD, Ph.D., was educated at the University of Naples and at the University of Siena, Italy. He is Chief of the Pelvic Floor Unit and Consultant General Surgeon and Colorectal Surgeon, I°Department of Surgery at Treviso Regional Hospital, Italy. He also holds academic appointments as Professor of Gastrointestinal Surgery at University of Padua, Italy and Honorary Professor at Shandong University, China. Dr.Santoro is Director of the Italian School of Pelvic Floor Ultrasonography. He is board member of the Italian Society of Colorectal Surgery and member of the editorial board of World Journal of Gastrointestinal Surgery, Female Pelvic Medicine Reconstructive Surgery and Pelviperineology. He is also author of more then 200 chapters and articles published on peer-review journals as well as the author of three books. He was in the faculty of more than 300 international congresses, workshops and courses on imaging and management of Rectal Cancer, Benign Anorectal Diseases and Pelvic Floor Disorders.",institutionString:null,institution:null},{id:"220870",title:"Dr.",name:"Ferdinand",surname:"Bauer",slug:"ferdinand-bauer",fullName:"Ferdinand Bauer",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"248103",title:"Dr.",name:"Andrea",surname:"Kazemi Nava",slug:"andrea-kazemi-nava",fullName:"Andrea Kazemi Nava",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"323033",title:"M.D.",name:"Ricardo",surname:"Caponero",slug:"ricardo-caponero",fullName:"Ricardo Caponero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"323787",title:"Dr.",name:"Thiru",surname:"Prasanna",slug:"thiru-prasanna",fullName:"Thiru Prasanna",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"324577",title:"Dr.",name:"Bruce M.",surname:"Boman",slug:"bruce-m.-boman",fullName:"Bruce M. Boman",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Delaware",institutionURL:null,country:{name:"United States of America"}}},{id:"328779",title:"Dr.",name:"Simone",surname:"Novello",slug:"simone-novello",fullName:"Simone Novello",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"329209",title:"Dr.",name:"Caroline O.B.",surname:"Facey",slug:"caroline-o.b.-facey",fullName:"Caroline O.B. Facey",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"329775",title:"Dr.",name:"Ugo",surname:"Grossi",slug:"ugo-grossi",fullName:"Ugo Grossi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:"Regional Hospital Treviso, Treviso, Italy",institution:null},{id:"329776",title:"Dr.",name:"Martino",surname:"Zucchella",slug:"martino-zucchella",fullName:"Martino Zucchella",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"horizon-2020-compliance",title:"Horizon 2020 Compliance",intro:'
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\n
Metadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\n
In other words, publishing with IntechOpen guarantees compliance.
When choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\n
IntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\n
Authors requiring additional information are welcome to send their inquiries to funders@intechopen.com
Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\n
Metadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\n
In other words, publishing with IntechOpen guarantees compliance.
When choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\n
IntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\n
Authors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr.",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Rheinmetall (Germany)",country:{name:"Germany"}}},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:8616},{group:"region",caption:"Middle and South America",value:2,count:7693},{group:"region",caption:"Africa",value:3,count:3005},{group:"region",caption:"Asia",value:4,count:15646},{group:"region",caption:"Australia and Oceania",value:5,count:1284},{group:"region",caption:"Europe",value:6,count:22554}],offset:12,limit:12,total:134465},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"-dateEndThirdStepPublish"},books:[{type:"book",id:"9985",title:"Geostatistics",subtitle:null,isOpenForSubmission:!0,hash:"423cb3896195a618c4acb493ce4fd23d",slug:null,bookSignature:"Prof. Jeffrey M. Yarus, Dr. Marko Maucec, Dr. Timothy C. Coburn and Associate Prof. Michael Pyrcz",coverURL:"https://cdn.intechopen.com/books/images_new/9985.jpg",editedByType:null,editors:[{id:"78011",title:"Prof.",name:"Jeffrey M.",surname:"Yarus",slug:"jeffrey-m.-yarus",fullName:"Jeffrey M. Yarus"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12058",title:"Future Housing",subtitle:null,isOpenForSubmission:!0,hash:"e7f4a1e57fab392b61156956c1247b9e",slug:null,bookSignature:"Dr. Ivan Oropeza-Perez and Dr. Astrid Helena Petzold-Rodríguez",coverURL:"https://cdn.intechopen.com/books/images_new/12058.jpg",editedByType:null,editors:[{id:"282172",title:"Dr.",name:"Ivan",surname:"Oropeza-Perez",slug:"ivan-oropeza-perez",fullName:"Ivan Oropeza-Perez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12079",title:"Strategies Towards the Synthesis of Heterocycles and Their Applications",subtitle:null,isOpenForSubmission:!0,hash:"bc4022af925c0883636e0819008971ee",slug:null,bookSignature:"Dr. Premlata Kumari and Dr. Amit B Patel",coverURL:"https://cdn.intechopen.com/books/images_new/12079.jpg",editedByType:null,editors:[{id:"177041",title:"Dr.",name:"Premlata",surname:"Kumari",slug:"premlata-kumari",fullName:"Premlata Kumari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11998",title:"Biocomposites - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"8bc7ffd7544fff1901301c787e64fada",slug:null,bookSignature:"Prof. Magdy Elnashar",coverURL:"https://cdn.intechopen.com/books/images_new/11998.jpg",editedByType:null,editors:[{id:"12075",title:"Prof.",name:"Magdy",surname:"Elnashar",slug:"magdy-elnashar",fullName:"Magdy Elnashar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11999",title:"Earthquakes - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"b2af07109b13b76e5af9583532ab5bee",slug:null,bookSignature:"Dr. Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/11999.jpg",editedByType:null,editors:[{id:"236461",title:"Dr.",name:"Walter",surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12215",title:"Cell Death and Disease",subtitle:null,isOpenForSubmission:!0,hash:"dfd456a29478fccf4ebd3294137eb1e3",slug:null,bookSignature:"Dr. Ke Xu",coverURL:"https://cdn.intechopen.com/books/images_new/12215.jpg",editedByType:null,editors:[{id:"59529",title:"Dr.",name:"Ke",surname:"Xu",slug:"ke-xu",fullName:"Ke Xu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12112",title:"The Colorectal Surgery",subtitle:null,isOpenForSubmission:!0,hash:"21c65e742d31d5b69fb681ef78cfa0be",slug:null,bookSignature:"Dr. Muhammad Shamim",coverURL:"https://cdn.intechopen.com/books/images_new/12112.jpg",editedByType:null,editors:[{id:"235128",title:"Dr.",name:"Muhammad",surname:"Shamim",slug:"muhammad-shamim",fullName:"Muhammad Shamim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12113",title:"Tendons - Trauma, Inflammation, Degeneration, and Treatment",subtitle:null,isOpenForSubmission:!0,hash:"2387a4e0d2a76883b16dcccd452281ab",slug:null,bookSignature:"Dr. Nahum Rosenberg",coverURL:"https://cdn.intechopen.com/books/images_new/12113.jpg",editedByType:null,editors:[{id:"68911",title:"Dr.",name:"Nahum",surname:"Rosenberg",slug:"nahum-rosenberg",fullName:"Nahum Rosenberg"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12172",title:"Health Risks of Food Additives - Recent Developments and Trends in Food Sector",subtitle:null,isOpenForSubmission:!0,hash:"f6aa23b1045d266d0928fcef04fa3417",slug:null,bookSignature:"Dr. Muhammad Sajid Arshad and Mr. Waseem Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/12172.jpg",editedByType:null,editors:[{id:"192998",title:"Dr.",name:"Muhammad Sajid",surname:"Arshad",slug:"muhammad-sajid-arshad",fullName:"Muhammad Sajid Arshad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12102",title:"Current Trends in Ambulatory Care",subtitle:null,isOpenForSubmission:!0,hash:"fa37d79f81893fd0a9ab346ae1c3e4a9",slug:null,bookSignature:"Dr. Xin-Nong Li",coverURL:"https://cdn.intechopen.com/books/images_new/12102.jpg",editedByType:null,editors:[{id:"345917",title:"Dr.",name:"Xin-Nong",surname:"Li",slug:"xin-nong-li",fullName:"Xin-Nong Li"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12208",title:"Metformin - A Prospective Alternative for the Treatment of Chronic Diseases",subtitle:null,isOpenForSubmission:!0,hash:"aa4b8aac3f44ba3ab334530c5d5646ea",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/12208.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"12196",title:"Sepsis - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"3590e6f6047122bd96d1d57da29c4054",slug:null,bookSignature:"Dr. Lixing Huang, Dr. Youyu Zhang and Dr. Lingbin Sun",coverURL:"https://cdn.intechopen.com/books/images_new/12196.jpg",editedByType:null,editors:[{id:"333148",title:"Dr.",name:"Lixing",surname:"Huang",slug:"lixing-huang",fullName:"Lixing Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:10},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:22},{group:"topic",caption:"Computer and Information Science",value:9,count:23},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:9},{group:"topic",caption:"Immunology and Microbiology",value:13,count:14},{group:"topic",caption:"Materials Science",value:14,count:23},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:105},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:9},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3}],offset:12,limit:12,total:661},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4553},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11042",title:"Complementary Therapies",subtitle:null,isOpenForSubmission:!1,hash:"9eb32ccbef95289a133a76e5808a525b",slug:"complementary-therapies",bookSignature:"Mario Bernardo-Filho, Redha Taiar, Danúbia da Cunha de Sá-Caputo and Adérito Seixas",coverURL:"https://cdn.intechopen.com/books/images_new/11042.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"157376",title:"Prof.",name:"Mario",middleName:null,surname:"Bernardo-Filho",slug:"mario-bernardo-filho",fullName:"Mario Bernardo-Filho"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10037",title:"Thermoelectricity",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"ad1d3f637564a29cf1636759f5401994",slug:"thermoelectricity-recent-advances-new-perspectives-and-applications",bookSignature:"Guangzhao Qin",coverURL:"https://cdn.intechopen.com/books/images_new/10037.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"188870",title:"Mr.",name:"Guangzhao",middleName:null,surname:"Qin",slug:"guangzhao-qin",fullName:"Guangzhao Qin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11357",title:"Sustainable Crop Production",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"ee41e09e4ad6a336ca9f0e5462da3904",slug:"sustainable-crop-production-recent-advances",bookSignature:"Vijay Singh Meena, Mahipal Choudhary, Ram Prakash Yadav and Sunita Kumari Meena",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"420235",title:"Dr.",name:"Vijay",middleName:null,surname:"Meena",slug:"vijay-meena",fullName:"Vijay Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10863",title:"Cardiac Rhythm Management",subtitle:"Pacing, Ablation, Devices",isOpenForSubmission:!1,hash:"a064ec49b85ebfc60585c9c3690af53a",slug:"cardiac-rhythm-management-pacing-ablation-devices",bookSignature:"Mart Min and Gabriel Cismaru",coverURL:"https://cdn.intechopen.com/books/images_new/10863.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"62780",title:"Prof.",name:"Mart",middleName:null,surname:"Min",slug:"mart-min",fullName:"Mart Min"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10874",title:"Insights on Antimicrobial Peptides",subtitle:null,isOpenForSubmission:!1,hash:"23ca26025e87356a7c2ffac365f73a22",slug:"insights-on-antimicrobial-peptides",bookSignature:"Shymaa Enany, Jorge Masso-Silva and Anna Savitskaya",coverURL:"https://cdn.intechopen.com/books/images_new/10874.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"81926",title:"Dr.",name:"Shymaa",middleName:null,surname:"Enany",slug:"shymaa-enany",fullName:"Shymaa Enany"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10882",title:"Smart Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"70c3ce4256324b3c58db970d446ddac4",slug:"smart-drug-delivery",bookSignature:"Usama Ahmad, Md. Faheem Haider and Juber Akhtar",coverURL:"https://cdn.intechopen.com/books/images_new/10882.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"255360",title:"Dr.",name:"Usama",middleName:null,surname:"Ahmad",slug:"usama-ahmad",fullName:"Usama Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10885",title:"Snake Venom and Ecology",subtitle:null,isOpenForSubmission:!1,hash:"cc4503ed9e56a7bcd9f2ca82b0c880a8",slug:"snake-venom-and-ecology",bookSignature:"Mohammad Manjur Shah, Umar Sharif, Tijjani Rufai Buhari and Tijjani Sabiu Imam",coverURL:"https://cdn.intechopen.com/books/images_new/10885.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"94128",title:"Dr.",name:"Mohammad Manjur",middleName:null,surname:"Shah",slug:"mohammad-manjur-shah",fullName:"Mohammad Manjur Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10381",title:"Electrocatalysis and Electrocatalysts for a Cleaner Environment",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"9dbafb0b297cf5cbdb220707e022a228",slug:"electrocatalysis-and-electrocatalysts-for-a-cleaner-environment-fundamentals-and-applications",bookSignature:"Lindiwe Eudora Khotseng",coverURL:"https://cdn.intechopen.com/books/images_new/10381.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"236596",title:"Dr.",name:"Lindiwe Eudora",middleName:null,surname:"Khotseng",slug:"lindiwe-eudora-khotseng",fullName:"Lindiwe Eudora Khotseng"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10900",title:"Prunus",subtitle:"Recent Advances",isOpenForSubmission:!1,hash:"9261926500acb26c4ae5a29eee78f0db",slug:"prunus-recent-advances",bookSignature:"Ayzin B. Küden and Ali Küden",coverURL:"https://cdn.intechopen.com/books/images_new/10900.jpg",editedByType:"Edited by",publishedDate:"July 6th 2022",editors:[{id:"200365",title:"Prof.",name:"Ayzin B.",middleName:"B.",surname:"Küden",slug:"ayzin-b.-kuden",fullName:"Ayzin B. Küden"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"104",title:"Geology and Geophysics",slug:"geology-and-geophysics",parent:{id:"10",title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:70,numberOfSeries:0,numberOfAuthorsAndEditors:1521,numberOfWosCitations:2116,numberOfCrossrefCitations:1239,numberOfDimensionsCitations:2683,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"104",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"11137",title:"Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"e0e4727c9f1f9b34d788f0dc70278f2b",slug:"mineralogy",bookSignature:"Miloš René",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg",editedByType:"Edited by",editors:[{id:"142108",title:"Dr.",name:"Miloš",middleName:null,surname:"René",slug:"milos-rene",fullName:"Miloš René"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Progress in Volcanology",subtitle:null,isOpenForSubmission:!1,hash:"6cfc09f959efecf9ba95654b1bb4b987",slug:"progress-in-volcanology",bookSignature:"Angelo Paone and Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:"Edited by",editors:[{id:"182871",title:"Prof.",name:"Angelo",middleName:null,surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10013",title:"Geothermal Energy",subtitle:null,isOpenForSubmission:!1,hash:"a5f5277a1c0616ce6b35f4b44a4cac7a",slug:"geothermal-energy",bookSignature:"Basel I. Ismail",coverURL:"https://cdn.intechopen.com/books/images_new/10013.jpg",editedByType:"Edited by",editors:[{id:"62122",title:"Dr.",name:"Basel I.",middleName:"I.",surname:"Ismail",slug:"basel-i.-ismail",fullName:"Basel I. Ismail"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10556",title:"Sedimentary Petrology",subtitle:"Implications in Petroleum Industry",isOpenForSubmission:!1,hash:"be71a270b1196a96cdc1162f64f9a966",slug:"sedimentary-petrology-implications-in-petroleum-industry",bookSignature:"Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/10556.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9870",title:"Geodetic Sciences",subtitle:"Theory, Applications and Recent Developments",isOpenForSubmission:!1,hash:"505f1eb75eb5cdddda4ae1b5a779c654",slug:"geodetic-sciences-theory-applications-and-recent-developments",bookSignature:"Bihter Erol and Serdar Erol",coverURL:"https://cdn.intechopen.com/books/images_new/9870.jpg",editedByType:"Edited by",editors:[{id:"75478",title:"Dr.",name:"Bihter",middleName:null,surname:"Erol",slug:"bihter-erol",fullName:"Bihter Erol"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9992",title:"Updates in Volcanology",subtitle:"Transdisciplinary Nature of Volcano Science",isOpenForSubmission:!1,hash:"c9f71037866aa5450cf23c0fb74711d1",slug:"updates-in-volcanology-transdisciplinary-nature-of-volcano-science",bookSignature:"Károly Németh",coverURL:"https://cdn.intechopen.com/books/images_new/9992.jpg",editedByType:"Edited by",editors:[{id:"51162",title:"Dr.",name:"Károly",middleName:null,surname:"Németh",slug:"karoly-nemeth",fullName:"Károly Németh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9993",title:"Earthquakes",subtitle:"From Tectonics to Buildings",isOpenForSubmission:!1,hash:"1f9859a0a16af53d80bf3952fba7a272",slug:"earthquakes-from-tectonics-to-buildings",bookSignature:"Walter Salazar",coverURL:"https://cdn.intechopen.com/books/images_new/9993.jpg",editedByType:"Edited by",editors:[{id:"236461",title:"Dr.",name:"Walter",middleName:null,surname:"Salazar",slug:"walter-salazar",fullName:"Walter Salazar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8157",title:"Engineering Geology",subtitle:null,isOpenForSubmission:!1,hash:"2f650c6c80cd6fb768152350964432e8",slug:"engineering-geology",bookSignature:"Essa Lwisa and Hasan Arman",coverURL:"https://cdn.intechopen.com/books/images_new/8157.jpg",editedByType:"Edited by",editors:[{id:"272012",title:"Dr.",name:"Essa",middleName:"Georges",surname:"Lwisa",slug:"essa-lwisa",fullName:"Essa Lwisa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8620",title:"Mining Techniques",subtitle:"Past, Present and Future",isOpenForSubmission:!1,hash:"b65658f81d14e9e57e49377869d3a575",slug:"mining-techniques-past-present-and-future",bookSignature:"Abhay Soni",coverURL:"https://cdn.intechopen.com/books/images_new/8620.jpg",editedByType:"Edited by",editors:[{id:"271093",title:"Dr.",name:"Abhay",middleName:null,surname:"Soni",slug:"abhay-soni",fullName:"Abhay Soni"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7747",title:"Isotopes Applications in Earth Sciences",subtitle:null,isOpenForSubmission:!1,hash:"a529383ebff555e89d4e3d39c7cf20f2",slug:"isotopes-applications-in-earth-sciences",bookSignature:"Rehab O. Abdel Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7747.jpg",editedByType:"Edited by",editors:[{id:"92718",title:"Prof.",name:"Rehab O.",middleName:null,surname:"Abdel Rahman",slug:"rehab-o.-abdel-rahman",fullName:"Rehab O. Abdel Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9247",title:"Mineralogy",subtitle:"Significance and Applications",isOpenForSubmission:!1,hash:"5149699e666cbb61c220646173769f18",slug:"mineralogy-significance-and-applications",bookSignature:"Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/9247.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7677",title:"Forecasting Volcanic Eruptions",subtitle:null,isOpenForSubmission:!1,hash:"5afd431dd1f4f5081355b017fd17f237",slug:"forecasting-volcanic-eruptions",bookSignature:"Angelo Paone and Sung-Hyo Yun",coverURL:"https://cdn.intechopen.com/books/images_new/7677.jpg",editedByType:"Edited by",editors:[{id:"182871",title:"Prof.",name:"Angelo",middleName:null,surname:"Paone",slug:"angelo-paone",fullName:"Angelo Paone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:70,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"17663",doi:"10.5772/24120",title:"Relationships between Lithospheric Flexure, Thrust Tectonics and Stratigraphic Sequences in Foreland Setting: the Southern Apennines Foreland Basin System, Italy",slug:"relationships-between-lithospheric-flexure-thrust-tectonics-and-stratigraphic-sequences-in-foreland-",totalDownloads:3853,totalCrossrefCites:12,totalDimensionsCites:48,abstract:null,book:{id:"1297",slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",title:"New Frontiers in Tectonic Research",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence"},signatures:"Salvatore Critelli, Francesco Muto,\nVincenzo Tripodi and Francesco Perri",authors:[{id:"55590",title:"Prof.",name:"Salvatore",middleName:null,surname:"Critelli",slug:"salvatore-critelli",fullName:"Salvatore Critelli"},{id:"55592",title:"Prof.",name:"Francesco",middleName:null,surname:"Muto",slug:"francesco-muto",fullName:"Francesco Muto"},{id:"55593",title:"Prof.",name:"Vincenzo",middleName:null,surname:"Tripodi",slug:"vincenzo-tripodi",fullName:"Vincenzo Tripodi"},{id:"85117",title:"Dr.",name:"Francesco",middleName:null,surname:"Perri",slug:"francesco-perri",fullName:"Francesco Perri"}]},{id:"37859",doi:"10.5772/50009",title:"Plate Tectonic Evolution of the Southern Margin of Laurussia in the Paleozoic",slug:"plate-tectonic-evolution-of-the-southern-margin-of-laurussia-in-the-paleozoic",totalDownloads:5295,totalCrossrefCites:15,totalDimensionsCites:45,abstract:null,book:{id:"2227",slug:"tectonics-recent-advances",title:"Tectonics",fullTitle:"Tectonics - Recent Advances"},signatures:"Jan Golonka and Aleksandra Gawęda",authors:[{id:"16567",title:"Dr.",name:"Jan",middleName:null,surname:"Golonka",slug:"jan-golonka",fullName:"Jan Golonka"}]},{id:"57384",doi:"10.5772/intechopen.71049",title:"A Review: Remote Sensing Sensors",slug:"a-review-remote-sensing-sensors",totalDownloads:3674,totalCrossrefCites:24,totalDimensionsCites:42,abstract:"The cost of launching satellites is getting lower and lower due to the reusability of rockets (NASA, 2015) and using single missions to launch multiple satellites (up to 37, Russia, 2014). In addition, low-orbit satellite constellations have been employed in recent years. These trends indicate that satellite remote sensing has a promising future in acquiring high-resolution data with a low cost and in integrating high-resolution satellite imagery with ground-based sensor data for new applications. These facts have motivated us to develop a comprehensive survey of remote sensing sensor development, including the characteristics of sensors with respect to electromagnetic spectrums (EMSs), imaging and non-imaging sensors, potential research areas, current practices, and the future development of remote sensors.",book:{id:"6334",slug:"multi-purposeful-application-of-geospatial-data",title:"Multi-purposeful Application of Geospatial Data",fullTitle:"Multi-purposeful Application of Geospatial Data"},signatures:"Lingli Zhu, Juha Suomalainen, Jingbin Liu, Juha Hyyppä, Harri\nKaartinen and Henrik Haggren",authors:[{id:"213512",title:"Dr.",name:"Lingli",middleName:null,surname:"Zhu",slug:"lingli-zhu",fullName:"Lingli Zhu"},{id:"213522",title:"Dr.",name:"Suomalainen",middleName:null,surname:"Juha",slug:"suomalainen-juha",fullName:"Suomalainen Juha"},{id:"213523",title:"Prof.",name:"Jingbin",middleName:null,surname:"Liu",slug:"jingbin-liu",fullName:"Jingbin Liu"},{id:"220941",title:"Prof.",name:"Juha",middleName:null,surname:"Hyyppä",slug:"juha-hyyppa",fullName:"Juha Hyyppä"},{id:"220942",title:"Prof.",name:"Harri",middleName:null,surname:"Kaartinen",slug:"harri-kaartinen",fullName:"Harri Kaartinen"},{id:"220943",title:"Prof.",name:"Henrik",middleName:null,surname:"Haggren",slug:"henrik-haggren",fullName:"Henrik Haggren"}]},{id:"17670",doi:"10.5772/20299",title:"The Qatar–South Fars Arch Development (Arabian Platform, Persian Gulf): Insights from Seismic Interpretation and Analogue Modelling",slug:"the-qatar-south-fars-arch-development-arabian-platform-persian-gulf-insights-from-seismic-interpreta",totalDownloads:8982,totalCrossrefCites:17,totalDimensionsCites:41,abstract:null,book:{id:"1297",slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",title:"New Frontiers in Tectonic Research",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence"},signatures:"C.R. Perotti, S. Carruba, M. Rinaldi, G. Bertozzi, L. Feltre and M. Rahimi",authors:[{id:"38310",title:"Dr.",name:"Stefano",middleName:null,surname:"Carruba",slug:"stefano-carruba",fullName:"Stefano Carruba"},{id:"42459",title:"Prof.",name:"Cesare",middleName:null,surname:"Perotti",slug:"cesare-perotti",fullName:"Cesare Perotti"},{id:"42460",title:"Dr.",name:"Marco",middleName:null,surname:"Rinaldi",slug:"marco-rinaldi",fullName:"Marco Rinaldi"},{id:"42465",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Bertozzi",slug:"giuseppe-bertozzi",fullName:"Giuseppe Bertozzi"},{id:"42466",title:"Dr.",name:"Luca",middleName:null,surname:"Feltre",slug:"luca-feltre",fullName:"Luca Feltre"},{id:"42467",title:"Dr.",name:"Mashallah",middleName:null,surname:"Rahimi",slug:"mashallah-rahimi",fullName:"Mashallah Rahimi"}]},{id:"9498",doi:"10.5772/8283",title:"Remote Sensing of Forest Health",slug:"remote-sensing-of-forest-health",totalDownloads:5355,totalCrossrefCites:14,totalDimensionsCites:30,abstract:null,book:{id:"3345",slug:"geoscience-and-remote-sensing",title:"Geoscience and Remote Sensing",fullTitle:"Geoscience and Remote Sensing"},signatures:"Jyrki Tuominen, Tarmo Lipping, Viljo Kuosmanen and Reija Haapanen",authors:null}],mostDownloadedChaptersLast30Days:[{id:"71931",title:"Open Pit Mining",slug:"open-pit-mining",totalDownloads:1625,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Open pit mining method is one of the surface mining methods that has a traditional cone-shaped excavation and is usually employed to exploit a near-surface, nonselective and low-grade zones deposits. It often results in high productivity and requires large capital investments, low operating costs, and good safety conditions. The main topics that will be discussed in this chapter will include an introduction into the general features of open pit mining, ore body characteristics and configurations, stripping ratios and stripping overburden methods, mine elements and parameters, open pit operation cycle, pit slope angle, stability of mine slopes, types of highwall failures, mine closure and reclamation, and different variants of surface mining methods including opencast mining, mountainous mining, and artisan mining.",book:{id:"8620",slug:"mining-techniques-past-present-and-future",title:"Mining Techniques",fullTitle:"Mining Techniques - Past, Present and Future"},signatures:"Awwad H. Altiti, Rami O. Alrawashdeh and Hani M. Alnawafleh",authors:[{id:"313182",title:"Prof.",name:"Rami",middleName:null,surname:"Alrawashdeh",slug:"rami-alrawashdeh",fullName:"Rami Alrawashdeh"},{id:"313522",title:"Dr.",name:"Awwad",middleName:null,surname:"Altiti",slug:"awwad-altiti",fullName:"Awwad Altiti"},{id:"313523",title:"Prof.",name:"Hani",middleName:null,surname:"Alnawafleh",slug:"hani-alnawafleh",fullName:"Hani Alnawafleh"}]},{id:"64027",title:"Stages of a Integrated Geothermal Project",slug:"stages-of-a-integrated-geothermal-project",totalDownloads:4341,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"A geothermal project constitutes two big stages: the exploration and the exploitation. Each one has a single task whose results allow defining the feasibility of a geothermal project, until achieving the construction and operation stage of the power generation plant. The first stage contains the area recognition, its limitation to the target, and elimination of external factors until defining a geothermal zone with characteristics to be commercially exploited. The main studies and analysis that can be applied during the exploration stage are listed, and the major indicator to continue with the project or suspend is the prefeasibility report. The major risks in the exploration stage are due to studies that are carried out on the surface; at this stage, the costs can be considered low. The main results of the exploration are the selection of sites to drill three or four initial wells. Each well provides a direct overview of the reservoir: depth, production thicknesses, thermodynamic parameters, and production characteristics. The drilling of three to four exploratory wells is recommended, as far as there is certainty of the feasibility of the project, and the development of the field begins with drilling of sufficient wells to feed the plant. In this stage, the cost increases, but the risks decrease.",book:{id:"7504",slug:"renewable-geothermal-energy-explorations",title:"Renewable Geothermal Energy Explorations",fullTitle:"Renewable Geothermal Energy Explorations"},signatures:"Alfonso Aragón-Aguilar, Georgina Izquierdo-Montalvo,\nDaniel Octavio Aragón-Gaspar and Denise N. Barreto-Rivera",authors:[{id:"258358",title:"Dr.",name:"Alfonso",middleName:null,surname:"Aragón-Aguilar",slug:"alfonso-aragon-aguilar",fullName:"Alfonso Aragón-Aguilar"}]},{id:"63059",title:"Generation, Evolution, and Characterization of Turbulence Coherent Structures",slug:"generation-evolution-and-characterization-of-turbulence-coherent-structures",totalDownloads:3618,totalCrossrefCites:3,totalDimensionsCites:4,abstract:"Turbulence stands as one of the most complicated and attractive physical phenomena. The accumulated knowledge has shown turbulent flow to be composed of islands of vortices and uniform-momentum regions, which are coherent in both time and space. Research has been concentrated on these structures, their generation, evolution, and interaction with the mean flow. Different theories and conceptual models were proposed with the aim of controlling the boundary layer flow and improving numerical simulations. Here, we review the different classes of turbulence coherent structures and the presumable generation mechanisms for each. The conceptual models describing the generation of turbulence coherent structures are generally classified under two categories, namely, the bottom-up mechanisms and the top-down mechanisms. The first assumes turbulence to be generated near the surface by some sort of instabilities, whereas the second assigns an active role to the large outer layer structures, perhaps the turbulent bulges. Both categories of models coexist in the flow with the first dominating turbulence generation at low Reynolds number and the second at high Reynolds number, such as the case in the atmospheric boundary layer.",book:{id:"7214",slug:"turbulence-and-related-phenomena",title:"Turbulence and Related Phenomena",fullTitle:"Turbulence and Related Phenomena"},signatures:"Zambri Harun and Eslam Reda Lotfy",authors:[{id:"243152",title:"Dr.",name:"Zambri",middleName:null,surname:"Harun",slug:"zambri-harun",fullName:"Zambri Harun"},{id:"252195",title:"Dr.",name:"Eslam",middleName:null,surname:"Reda",slug:"eslam-reda",fullName:"Eslam Reda"}]},{id:"64562",title:"Electrical Resistivity Tomography: A Subsurface-Imaging Technique",slug:"electrical-resistivity-tomography-a-subsurface-imaging-technique",totalDownloads:3182,totalCrossrefCites:7,totalDimensionsCites:10,abstract:"Electrical resistivity tomography (ERT) is a popular geophysical subsurface-imaging technique and widely applied to mineral prospecting, hydrological exploration, environmental investigation and civil engineering, as well as archaeological mapping. This chapter offers an overall review of technical aspects of ERT, which includes the fundamental theory of direct-current (DC) resistivity exploration, electrode arrays for data acquisition, numerical modelling methods and tomographic inversion algorithms. The section of fundamental theory shows basic formulae and principle of DC resistivity exploration. The section of electrode arrays summarises the previous study on all traditional-electrode arrays and recommends 4 electrode arrays for data acquisition of surface ERT and 3 electrode arrays for cross-hole ERT. The section of numerical modelling demonstrates an advanced version of finite-element method, called Gaussian quadrature grid approach, which is advantageous to a numerical simulation of ERT for complex geological models. The section of tomographic inversion presents the generalised standard conjugate gradient algorithms for both the l1- and l2-normed inversions. After that, some synthetic and real imaging examples are given to show the near-surface imaging capabilities of ERT.",book:{id:"8361",slug:"applied-geophysics-with-case-studies-on-environmental-exploration-and-engineering-geophysics",title:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics",fullTitle:"Applied Geophysics with Case Studies on Environmental, Exploration and Engineering Geophysics"},signatures:"Bing Zhou",authors:null},{id:"17670",title:"The Qatar–South Fars Arch Development (Arabian Platform, Persian Gulf): Insights from Seismic Interpretation and Analogue Modelling",slug:"the-qatar-south-fars-arch-development-arabian-platform-persian-gulf-insights-from-seismic-interpreta",totalDownloads:8964,totalCrossrefCites:16,totalDimensionsCites:40,abstract:null,book:{id:"1297",slug:"new-frontiers-in-tectonic-research-at-the-midst-of-plate-convergence",title:"New Frontiers in Tectonic Research",fullTitle:"New Frontiers in Tectonic Research - At the Midst of Plate Convergence"},signatures:"C.R. Perotti, S. Carruba, M. Rinaldi, G. Bertozzi, L. Feltre and M. Rahimi",authors:[{id:"38310",title:"Dr.",name:"Stefano",middleName:null,surname:"Carruba",slug:"stefano-carruba",fullName:"Stefano Carruba"},{id:"42459",title:"Prof.",name:"Cesare",middleName:null,surname:"Perotti",slug:"cesare-perotti",fullName:"Cesare Perotti"},{id:"42460",title:"Dr.",name:"Marco",middleName:null,surname:"Rinaldi",slug:"marco-rinaldi",fullName:"Marco Rinaldi"},{id:"42465",title:"Dr.",name:"Giuseppe",middleName:null,surname:"Bertozzi",slug:"giuseppe-bertozzi",fullName:"Giuseppe Bertozzi"},{id:"42466",title:"Dr.",name:"Luca",middleName:null,surname:"Feltre",slug:"luca-feltre",fullName:"Luca Feltre"},{id:"42467",title:"Dr.",name:"Mashallah",middleName:null,surname:"Rahimi",slug:"mashallah-rahimi",fullName:"Mashallah Rahimi"}]}],onlineFirstChaptersFilter:{topicId:"104",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"82515",title:"A Review on Elemental and Isotopic Geochemistry",slug:"a-review-on-elemental-and-isotopic-geochemistry",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.105496",abstract:"Geochemistry is the study of the development, and distribution of chemical elements on Earth, which are found in rock-forming minerals and their byproducts, as well as in living beings, water, and the environment. The elemental geochemical variation of sediments is used to recognize the mechanisms controlling the estuarine environment and serves as a baseline for assessing the environmental effect in the future. Geochemistry is a unique field that deals with the study of mineral deposits. It also addresses the interconnections between the structures of rock, soil, water, and air, which vary according to different places. Furthermore, groundwater is the solely accessible water supply in many desert basins, particularly in developing nations. Geochemical indicators are proper instruments for addressing a diversity of hydrological issues, particularly in arid and semi-arid settings. Thermodynamically, the fugacity of oxygen (fO2) in solid earth varies by many orders of magnitude. Enstatite chondrites can have high levels of hydrogen abundance, hydrogen, and nitrogen isotope compositions like those of the earth’s mantle. The chapter deals with the basic concept of geochemistry and its types, as well as the development of geochemistry. It also explains elemental and isotopes geochemistry, human health, and medical geochemistry.",book:{id:"11139",title:"Geochemistry and Mineral Resources",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg"},signatures:"Riyam N. Khalef, Amal I. Hassan and Hosam M. Saleh"},{id:"81757",title:"Petroleum Geochemistry",slug:"petroleum-geochemistry",totalDownloads:18,totalDimensionsCites:0,doi:"10.5772/intechopen.104709",abstract:"Petroleum geochemistry has entered its second period of growth. The first period, largely associated with conventional oil and gas, occurred in the 70s and 80s when the classic works on source rock characterization, biomarkers, depositional systems, and petroleum generation, including kinetics and basin modeling were the focus. The second period began slightly after the turn of the century as a consequence of the “unconventional resource” revolution and the interest in distressed resources developed, the focus turned to non-hydrocarbon contaminants, new interest in hydrocarbon expulsion and retention, identification of tight rock pay zones, and the development of organic porosity. This chapter will discuss source rock characterization and formation, petroleum generation, expulsion, and retention, correlation among hydrocarbon accumulations and to their source rock(s), and organic porosity.",book:{id:"11139",title:"Geochemistry and Mineral Resources",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg"},signatures:"Mei Mei and Barry Katz"},{id:"81773",title:"Proterozoic Newer Dolerite Dyke Swarm Magmatism in the Singhbhum Craton, Eastern India",slug:"proterozoic-newer-dolerite-dyke-swarm-magmatism-in-the-singhbhum-craton-eastern-india",totalDownloads:20,totalDimensionsCites:0,doi:"10.5772/intechopen.104833",abstract:"Precambrian mafic magmatism and its role in the evolution of Earth’s crust has been paid serious attention by researchers for the last four decades. The emplacement of mafic dyke swarms acts as an important time marker in geological terrains. Number of shield terrains throughout the world has been intruded by the Precambrian dyke swarms, hence the presence of these dykes are useful to understand the Proterozoic tectonics, magmatism, crustal growth and continental reconstruction. Likewise, the Protocontinents of Indian Shield e.g. Aravalli-Bundelkhand, Dharwar, Bastar, and Singhbhum Protocontinent had experienced the dyke swarm intrusions having different characteristics and orientations. In Singhbhum craton, an impressive set of mafic dyke swarm, called as Newer dolerite dyke swarm, had intruded the Precambrian Singhbhum granitoid complex through a wide geological period from 2800 to 1100 Ma. Present chapter focuses on the published results or conclusions of these dykes in terms of their mantle source characteristics, metasomatism of the mantle source, degree of crustal contamination and partial melting processes. Geochemical characteristics of these dykes particularly Ti/Y, Zr/Y, Th/Nb, Ba/Nb, La/Nb, (La/Sm)PM are similar to either MORB or subduction zone basalts that occur along the plate margin. The enriched LREE-LILE and depletion of HFSE especially Nb, P and Ti probably indicate generation of these dykes in a subduction zone setting.",book:{id:"11139",title:"Geochemistry and Mineral Resources",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg"},signatures:"Akhtar R. Mir"},{id:"81610",title:"Prospectivity Mapping Using Stream Sediment Geochemistry Along the Orange River Catchment for Base Metal, Prieska, Northern Cape, South Africa",slug:"prospectivity-mapping-using-stream-sediment-geochemistry-along-the-orange-river-catchment-for-base-m",totalDownloads:41,totalDimensionsCites:0,doi:"10.5772/intechopen.101785",abstract:"The Areachap Terrane, which is part of the Namaqua Sector of the Namaqua-Natal Belt in the Northern Cape Province, host volcanic-hosted Zn-Cu deposits at volcanic centres. The primary objective was to map Volcanogenic Massive Sulphide (VMS) mineralisation, determine the heavy metal contents of sediments, locate the source of anomalies and delineate targets for follow-up studies. Nine thousand three hundred and fourteen stream sediments samples collected were analysed using XRF. The element associated with their respective lithostratigraphy was calculated using spatial joint analysis tool. ArcGIS was used to display uni-elements maps and relevant multi-element maps. The delineated potential VMS mineralisation target is considered for further follow-up study. The M23 and M24 anomalies are delineated for Cu_Ni mineralisation. M23 and M24 anomalies are sourced from ultramafic debris transported from the Ghaap Group; however, this potential target will require follow-up studies for verification. The correlation between the Cu-Pb-Zn anomaly with alkali elements (Nb, Zr, Th, and U) and REEs (in Table 9) suggests there is a possibility that the M26–M29 anomaly is alkali-granitic genetic origin. The As, Ba, Ce, Cr, Cu, Hf, Nd, Ni, Rb, Sr., S, V, Zr and Zn contents showed a heterogeneous spatial distribution, reflected by high coefficient of variation and large standard deviation.",book:{id:"11139",title:"Geochemistry and Mineral Resources",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg"},signatures:"Nthabiseng Mashale"},{id:"81376",title:"Geochemistry Applied to the Exploration of Mineral Deposits",slug:"geochemistry-applied-to-the-exploration-of-mineral-deposits",totalDownloads:26,totalDimensionsCites:0,doi:"10.5772/intechopen.103941",abstract:"Geochemistry can be applied to the exploration of mineral deposits, for which it is necessary to understand the fundamentals of geochemical prospecting, the geochemical dispersion of elements based on their chemical properties. This chapter presents the basics of geochemical prospecting including: element mobility depending on ionic potential, pH, and Eh, with examples of Cu mobility during supergenic alteration of a primary sulfide deposit, a brief overview of sampling/geochemical prospecting methods, as well as a case study of the geochemical prospecting study carried out in the vanadium (V), uranium (U), and zinc (Zn) sedimentary mineral deposit of Puyango, Ecuador, in which anomalous and subanomalous values were detected in rock samples of various pathfinder elements of V and U.",book:{id:"11139",title:"Geochemistry and Mineral Resources",coverURL:"https://cdn.intechopen.com/books/images_new/11139.jpg"},signatures:"John Luis Manrique Carreño"}],onlineFirstChaptersTotal:5},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:13,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:114,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:7,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"
\r\n\tTransforming our World: the 2030 Agenda for Sustainable Development endorsed by United Nations and 193 Member States, came into effect on Jan 1, 2016, to guide decision making and actions to the year 2030 and beyond. Central to this Agenda are 17 Goals, 169 associated targets and over 230 indicators that are reviewed annually. The vision envisaged in the implementation of the SDGs is centered on the five Ps: People, Planet, Prosperity, Peace and Partnership. This call for renewed focused efforts ensure we have a safe and healthy planet for current and future generations.
\r\n
\r\n\t
\r\n
\r\n\tThis Series focuses on covering research and applied research involving the five Ps through the following topics:
\r\n
\r\n\t
\r\n
\r\n\t1. Sustainable Economy and Fair Society that relates to SDG 1 on No Poverty, SDG 2 on Zero Hunger, SDG 8 on Decent Work and Economic Growth, SDG 10 on Reduced Inequalities, SDG 12 on Responsible Consumption and Production, and SDG 17 Partnership for the Goals
\r\n
\r\n\t
\r\n
\r\n\t2. Health and Wellbeing focusing on SDG 3 on Good Health and Wellbeing and SDG 6 on Clean Water and Sanitation
\r\n
\r\n\t
\r\n
\r\n\t3. Inclusivity and Social Equality involving SDG 4 on Quality Education, SDG 5 on Gender Equality, and SDG 16 on Peace, Justice and Strong Institutions
\r\n
\r\n\t
\r\n
\r\n\t4. Climate Change and Environmental Sustainability comprising SDG 13 on Climate Action, SDG 14 on Life Below Water, and SDG 15 on Life on Land
\r\n
\r\n\t
\r\n
\r\n\t5. Urban Planning and Environmental Management embracing SDG 7 on Affordable Clean Energy, SDG 9 on Industry, Innovation and Infrastructure, and SDG 11 on Sustainable Cities and Communities.
\r\n
\r\n\t
\r\n
\r\n\tThe series also seeks to support the use of cross cutting SDGs, as many of the goals listed above, targets and indicators are all interconnected to impact our lives and the decisions we make on a daily basis, making them impossible to tie to a single topic.
",coverUrl:"https://cdn.intechopen.com/series/covers/24.jpg",latestPublicationDate:"July 6th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:0,editor:{id:"262440",title:"Prof.",name:"Usha",middleName:null,surname:"Iyer-Raniga",slug:"usha-iyer-raniga",fullName:"Usha Iyer-Raniga",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRYSXQA4/Profile_Picture_2022-02-28T13:55:36.jpeg",biography:"Usha Iyer-Raniga is a professor in the School of Property and Construction Management at RMIT University. Usha co-leads the One Planet Network’s Sustainable Buildings and Construction Programme (SBC), a United Nations 10 Year Framework of Programmes on Sustainable Consumption and Production (UN 10FYP SCP) aligned with Sustainable Development Goal 12. The work also directly impacts SDG 11 on Sustainable Cities and Communities. She completed her undergraduate degree as an architect before obtaining her Masters degree from Canada and her Doctorate in Australia. Usha has been a keynote speaker as well as an invited speaker at national and international conferences, seminars and workshops. Her teaching experience includes teaching in Asian countries. She has advised Austrade, APEC, national, state and local governments. She serves as a reviewer and a member of the scientific committee for national and international refereed journals and refereed conferences. She is on the editorial board for refereed journals and has worked on Special Issues. Usha has served and continues to serve on the Boards of several not-for-profit organisations and she has also served as panel judge for a number of awards including the Premiers Sustainability Award in Victoria and the International Green Gown Awards. Usha has published over 100 publications, including research and consulting reports. Her publications cover a wide range of scientific and technical research publications that include edited books, book chapters, refereed journals, refereed conference papers and reports for local, state and federal government clients. She has also produced podcasts for various organisations and participated in media interviews. She has received state, national and international funding worth over USD $25 million. Usha has been awarded the Quarterly Franklin Membership by London Journals Press (UK). Her biography has been included in the Marquis Who's Who in the World® 2018, 2016 (33rd Edition), along with approximately 55,000 of the most accomplished men and women from around the world, including luminaries as U.N. Secretary-General Ban Ki-moon. In 2017, Usha was awarded the Marquis Who’s Who Lifetime Achiever Award.",institutionString:null,institution:{name:"RMIT University",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:5,paginationItems:[{id:"91",title:"Sustainable Economy and Fair Society",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",isOpenForSubmission:!0,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null},{id:"92",title:"Health and Wellbeing",coverUrl:"https://cdn.intechopen.com/series_topics/covers/92.jpg",isOpenForSubmission:!0,editor:{id:"348225",title:"Prof.",name:"Ann",middleName:null,surname:"Hemingway",slug:"ann-hemingway",fullName:"Ann Hemingway",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035LZFoQAO/Profile_Picture_2022-04-11T14:55:40.jpg",biography:"Professor Hemingway is a public health researcher, Bournemouth University, undertaking international and UK research focused on reducing inequalities in health outcomes for marginalised and excluded populations and more recently focused on equine assisted interventions.",institutionString:null,institution:{name:"Bournemouth University",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null},{id:"93",title:"Inclusivity and Social Equity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/93.jpg",isOpenForSubmission:!0,editor:{id:"210060",title:"Prof. Dr.",name:"Ebba",middleName:null,surname:"Ossiannilsson",slug:"ebba-ossiannilsson",fullName:"Ebba Ossiannilsson",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6LkBQAU/Profile_Picture_2022-02-28T13:31:48.png",biography:"Professor Dr. Ebba Ossiannilsson is an independent researcher, expert, consultant, quality auditor and influencer in the fields of open, flexible online and distance learning (OFDL) and the 'new normal'. Her focus is on quality, innovation, leadership, and personalised learning. She works primarily at the strategic and policy levels, both nationally and internationally, and with key international organisations. She is committed to promoting and improving OFDL in the context of SDG4 and the future of education. Ossiannilsson has more than 20 years of experience in her current field, but more than 40 years in the education sector. She works as a reviewer and expert for the European Commission and collaborates with the Joint Research Centre for Quality in Open Education. Ossiannilsson also collaborates with ITCILO and ICoBC (International Council on Badges and Credentials). She is a member of the ICDE Board of Directors and has previously served on the boards of EDEN and EUCEN. Ossiannilsson is a quality expert and reviewer for ICDE, EDEN and the EADTU. She chairs the ICDE OER Advocacy Committee and is a member of the ICDE Quality Network. She is regularly invited as a keynote speaker at conferences. She is a guest editor for several special issues and a member of the editorial board of several scientific journals. She has published more than 200 articles and is currently working on book projects in the field of OFDL. Ossiannilsson is a visiting professor at several international universities and was recently appointed Professor and Research Fellow at Victoria University of Wellington, NZ. Ossiannilsson has been awarded the following fellowships: EDEN Fellows, EDEN Council of Fellows, and Open Education Europe. She is a ICDE OER Ambassador, Open Education Europe Ambassador, GIZ Ambassador for Quality in Digital Learning, and part of the Globe-Community of Digital Learning and Champion of SPARC Europe. On a national level, she is a quality developer at the Swedish Institute for Standards (SIS) and for ISO. She is a member of the Digital Skills and Jobs Coalition Sweden and Vice President of the Swedish Association for Distance Education. She is currently working on a government initiative on quality in distance education at the National Council for Higher Education. She holds a Ph.D. from the University of Oulu, Finland.",institutionString:"Swedish Association for Distance Education, Sweden",institution:null},editorTwo:null,editorThree:null},{id:"94",title:"Climate Change and Environmental Sustainability",coverUrl:"https://cdn.intechopen.com/series_topics/covers/94.jpg",isOpenForSubmission:!0,editor:{id:"61855",title:"Dr.",name:"Yixin",middleName:null,surname:"Zhang",slug:"yixin-zhang",fullName:"Yixin Zhang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYWJgQAO/Profile_Picture_2022-06-09T11:36:35.jpg",biography:"Professor Yixin Zhang is an aquatic ecologist with over 30 years of research and teaching experience in three continents (Asia, Europe, and North America) in Stream Ecology, Riparian Ecology, Urban Ecology, and Ecosystem Restoration and Aquatic Conservation, Human-Nature Interactions and Sustainability, Urbanization Impact on Aquatic Ecosystems. He got his Ph.D. in Animal Ecology at Umeå University in Sweden in 1998. He conducted postdoc research in stream ecology at the University of California at Santa Barbara in the USA. After that, he was a postdoc research fellow at the University of British Columbia in Canada to do research on large-scale stream experimental manipulation and watershed ecological survey in temperate rainforests of BC. He was a faculty member at the University of Hong Kong to run ecological research projects on aquatic insects, fishes, and newts in Tropical Asian streams. He also conducted research in streams, rivers, and caves in Texas, USA, to study the ecology of macroinvertebrates, big-claw river shrimp, fish, turtles, and bats. Current research interests include trophic flows across ecosystems; watershed impacts of land-use change on biodiversity and ecosystem functioning; ecological civilization and water resource management; urban ecology and urban/rural sustainable development.",institutionString:null,institution:{name:"Soochow University",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null},{id:"95",title:"Urban Planning and Environmental Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/95.jpg",isOpenForSubmission:!0,editor:{id:"181079",title:"Dr.",name:"Christoph",middleName:null,surname:"Lüthi",slug:"christoph-luthi",fullName:"Christoph Lüthi",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRHSqQAO/Profile_Picture_2022-04-12T15:51:33.png",biography:"Dr. Christoph Lüthi is an urban infrastructure planner with over 25 years of experience in planning and design of urban infrastructure in middle and low-income countries. He holds a Master’s Degree in Urban Development Planning from the University College of London (UCL), and a Ph.D. in Urban Planning & Engineering from TU Berlin. He has conducted applied research on urban planning and infrastructure issues in over 20 countries in Africa and Asia. In 2005 he joined Eawag-Sandec as Leader of the Strategic Environmental Sanitation Planning Group. Since 2015 he heads the research department Sanitation, Water and Solid Waste for Development (Sandec) at the Swiss Federal Institute of Aquatic Research and Technology (Eawag).",institutionString:"Swiss Federal Institute of Aquatic Science and Technology, Switzerland",institution:{name:"Swiss Federal Institute of Aquatic Science and Technology",institutionURL:null,country:{name:"Switzerland"}}},editorTwo:{id:"290571",title:"Dr.",name:"Rui Alexandre",middleName:null,surname:"Castanho",slug:"rui-alexandre-castanho",fullName:"Rui Alexandre Castanho",profilePictureURL:"https://mts.intechopen.com/storage/users/290571/images/system/290571.jpg",biography:"Rui Alexandre Castanho has a master\\'s degree in Planning, Audit, and Control in Urban Green Spaces and an international Ph.D. in Sustainable Planning in Borderlands. Currently, he is a professor at WSB University, Poland, and a visiting professor at the University of Johannesburg, South Africa. Dr. Castanho is a post-doc researcher on the GREAT Project, University of Azores, Ponta Delgada, Portugal. He collaborates with the Environmental Resources Analysis Research Group (ARAM), University of Extremadura (UEx), Spain; VALORIZA - Research Center for the Enhancement of Endogenous Resources, Polytechnic Institute of Portalegre (IPP), Portugal; Centre for Tourism Research, Development and Innovation (CITUR), Madeira, Portugal; and AQUAGEO Research Group, University of Campinas (UNICAMP), Brazil.",institutionString:"University of Johannesburg, South Africa and WSB University, Poland",institution:{name:"University of Johannesburg",institutionURL:null,country:{name:"South Africa"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:17,paginationItems:[{id:"82387",title:"Kept Promises? The Evolution of the EU Financial Contribution to Climate Change",doi:"10.5772/intechopen.105541",signatures:"Cecilia Camporeale, Roberto Del Ciello and Mario Jorizzo",slug:"kept-promises-the-evolution-of-the-eu-financial-contribution-to-climate-change",totalDownloads:2,totalCrossrefCites:null,totalDimensionsCites:0,authors:[{name:"Mario",surname:"Jorizzo"},{name:"Cecilia",surname:"Camporeale"},{name:"ROBERTO",surname:"DEL CIELLO"}],book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82524",title:"Italy’s Small Exporting Companies: Globalization and Sustainability Issues",doi:"10.5772/intechopen.105542",signatures:"Roberta Pace and Francesca Mandanici",slug:"italy-s-small-exporting-companies-globalization-and-sustainability-issues",totalDownloads:0,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82427",title:"Our Globalization Era among Success, Obstacles and Doubts",doi:"10.5772/intechopen.105545",signatures:"Arnaldo Canziani, Annalisa Baldissera and Ahmad Kahwaji",slug:"our-globalization-era-among-success-obstacles-and-doubts",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}},{id:"82248",title:"Sustainability and Excellence: Pillars for Business Survival",doi:"10.5772/intechopen.105420",signatures:"Irina Severin, Maria Cristina Dijmarescu and Mihai Caramihai",slug:"sustainability-and-excellence-pillars-for-business-survival",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Globalization and Sustainability - Recent Advances, New Perspectives and Emerging Issues",coverURL:"https://cdn.intechopen.com/books/images_new/11476.jpg",subseries:{id:"91",title:"Sustainable Economy and Fair Society"}}}]},overviewPagePublishedBooks:{paginationCount:0,paginationItems:[]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:8,paginationItems:[{id:"82289",title:"Consumer Culture and Abundance of Choices: Having More, Feeling Blue",doi:"10.5772/intechopen.105607",signatures:"Ondřej Roubal",slug:"consumer-culture-and-abundance-of-choices-having-more-feeling-blue",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"A New Era of Consumer Behavior - Beyond the Pandemic",coverURL:"https://cdn.intechopen.com/books/images_new/11581.jpg",subseries:{id:"88",title:"Marketing"}}},{id:"82405",title:"Does Board Structure Matter in CSR Spending of Commercial Banks? Empirical Evidence from an Emerging Economy",doi:"10.5772/intechopen.105589",signatures:"Bishnu Kumar Adhikary and Ranjan Kumar Mitra",slug:"does-board-structure-matter-in-csr-spending-of-commercial-banks-empirical-evidence-from-an-emerging-",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82395",title:"Toward a Better Understanding of Green Human Resource Management’s Impact on Green Competitive Advantage: A Conceptual Model",doi:"10.5772/intechopen.105528",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"toward-a-better-understanding-of-green-human-resource-management-s-impact-on-green-competitive-advan",totalDownloads:13,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82269",title:"CSR Reporting and Blockchain Technology",doi:"10.5772/intechopen.105512",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Piyachart Phiromswad",slug:"csr-reporting-and-blockchain-technology",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82270",title:"From Corporate Social Opportunity to Corporate Social Responsibility",doi:"10.5772/intechopen.105445",signatures:"Brian Bolton",slug:"from-corporate-social-opportunity-to-corporate-social-responsibility",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82339",title:"Green Human Resource Management: An Exploratory Study from Moroccan ISO 14001 Certified Companies",doi:"10.5772/intechopen.105565",signatures:"Hosna Hossari and Kaoutar Elfahli",slug:"green-human-resource-management-an-exploratory-study-from-moroccan-iso-14001-certified-companies",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"82194",title:"CSR and Female Directors: A Review and Future Research Agenda",doi:"10.5772/intechopen.105112",signatures:"Pattarake Sarajoti, Pattanaporn Chatjuthamard, Suwongrat Papangkorn and Sirimon Treepongkaruna",slug:"csr-and-female-directors-a-review-and-future-research-agenda",totalDownloads:11,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Corporate Social Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11602.jpg",subseries:{id:"86",title:"Business and Management"}}},{id:"81831",title:"Deep Network Model and Regression Analysis using OLS Method for Predicting Lung Vital Capacity",doi:"10.5772/intechopen.104737",signatures:"Harun Sümbül",slug:"deep-network-model-and-regression-analysis-using-ols-method-for-predicting-lung-vital-capacity",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Decision Science - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11604.jpg",subseries:{id:"86",title:"Business and Management"}}}]},subseriesFiltersForOFChapters:[{caption:"Marketing",value:88,count:1,group:"subseries"},{caption:"Business and Management",value:86,count:7,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:245,paginationItems:[{id:"196707",title:"Prof.",name:"Mustafa Numan",middleName:null,surname:"Bucak",slug:"mustafa-numan-bucak",fullName:"Mustafa Numan Bucak",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/196707/images/system/196707.png",biography:"Mustafa Numan Bucak received a bachelor’s degree from the Veterinary Faculty, Ankara University, Turkey, where he also obtained a Ph.D. in Sperm Cryobiology. He is an academic staff member of the Department of Reproduction and Artificial Insemination, Selçuk University, Turkey. He manages several studies on sperms and embryos and is an editorial board member for several international journals. His studies include sperm cryobiology, in vitro fertilization, and embryo production in animals.",institutionString:"Selçuk University, Faculty of Veterinary Medicine",institution:null},{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",biography:"Yusuf Bozkurt has a BSc, MSc, and Ph.D. from Ankara University, Turkey. He is currently a Professor of Biotechnology of Reproduction in the field of Aquaculture, İskenderun Technical University, Turkey. His research interests include reproductive biology and biotechnology with an emphasis on cryo-conservation. He is on the editorial board of several international peer-reviewed journals and has published many papers. Additionally, he has participated in many international and national congresses, seminars, and workshops with oral and poster presentations. He is an active member of many local and international organizations.",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",country:{name:"Turkey"}}},{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",biography:"Dr. Sergey Tkachev is a senior research scientist at the Institute of Fundamental Medicine and Biology, Kazan Federal University, Russia, and at the Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia. He received his Ph.D. in Molecular Biology with his thesis “Genetic variability of the tick-borne encephalitis virus in natural foci of Novosibirsk city and its suburbs.” His primary field is molecular virology with research emphasis on vector-borne viruses, especially tick-borne encephalitis virus, Kemerovo virus and Omsk hemorrhagic fever virus, rabies virus, molecular genetics, biology, and epidemiology of virus pathogens.",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",country:{name:"Russia"}}},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",biography:"Amlan K. Patra, FRSB, obtained a Ph.D. in Animal Nutrition from Indian Veterinary Research Institute, India, in 2002. He is currently an associate professor at West Bengal University of Animal and Fishery Sciences. He has more than twenty years of research and teaching experience. He held previous positions at the American Institute for Goat Research, The Ohio State University, Columbus, USA, and Free University of Berlin, Germany. His research focuses on animal nutrition, particularly ruminants and poultry nutrition, gastrointestinal electrophysiology, meta-analysis and modeling in nutrition, and livestock–environment interaction. He has authored around 175 articles in journals, book chapters, and proceedings. Dr. Patra serves on the editorial boards of several reputed journals.",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",country:{name:"India"}}},{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",biography:"László Babinszky is Professor Emeritus, Department of Animal Nutrition Physiology, University of Debrecen, Hungary. He has also worked in the Department of Animal Nutrition, University of Wageningen, Netherlands; the Institute for Livestock Feeding and Nutrition (IVVO), Lelystad, Netherlands; the Agricultural University of Vienna (BOKU); the Institute for Animal Breeding and Nutrition, Austria; and the Oscar Kellner Research Institute for Animal Nutrition, Rostock, Germany. In 1992, Dr. Babinszky obtained a Ph.D. in Animal Nutrition from the University of Wageningen. His main research areas are swine and poultry nutrition. He has authored more than 300 publications (papers, book chapters) and edited four books and fourteen international conference proceedings.",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",country:{name:"Hungary"}}},{id:"201830",title:"Dr.",name:"Fernando",middleName:"Sanchez",surname:"Davila",slug:"fernando-davila",fullName:"Fernando Davila",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201830/images/5017_n.jpg",biography:"I am a professor at UANL since 1988. My research lines are the development of reproductive techniques in small ruminants. We also conducted research on sexual and social behavior in males.\nI am Mexican and study my professional career as an engineer in agriculture and animal science at UANL. Then take a masters degree in science in Germany (Animal breeding). Take a doctorate in animal science at the UANL.",institutionString:null,institution:{name:"Universidad Autónoma de Nuevo León",country:{name:"Mexico"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",slug:"miguel-quaresma",fullName:"Miguel Quaresma",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309250/images/9059_n.jpg",biography:"Miguel Nuno Pinheiro Quaresma was born on May 26, 1974 in Dili, Timor Island. He is married with two children: a boy and a girl, and he is a resident in Vila Real, Portugal. He graduated in Veterinary Medicine in August 1998 and obtained his Ph.D. degree in Veterinary Sciences -Clinical Area in February 2015, both from the University of Trás-os-Montes e Alto Douro. He is currently enrolled in the Alternative Residency of the European College of Animal Reproduction. He works as a Senior Clinician at the Veterinary Teaching Hospital of UTAD (HVUTAD) with a role in clinical activity in the area of livestock and equine species as well as to support teaching and research in related areas. He teaches as an Invited Professor in Reproduction Medicine I and II of the Master\\'s in Veterinary Medicine degree at UTAD. Currently, he holds the position of Chairman of the Portuguese Buiatrics Association. He is a member of the Consultive Group on Production Animals of the OMV. He has 19 publications in indexed international journals (ISIS), as well as over 60 publications and oral presentations in both Portuguese and international journals and congresses.",institutionString:"University of Trás-os-Montes and Alto Douro",institution:{name:"University of Trás-os-Montes and Alto Douro",country:{name:"Portugal"}}},{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",country:{name:"Portugal"}}},{id:"283019",title:"Dr.",name:"Oudessa",middleName:null,surname:"Kerro Dego",slug:"oudessa-kerro-dego",fullName:"Oudessa Kerro Dego",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/283019/images/system/283019.png",biography:"Dr. Kerro Dego is a veterinary microbiologist with training in veterinary medicine, microbiology, and anatomic pathology. Dr. Kerro Dego is an assistant professor of dairy health in the department of animal science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. He received his D.V.M. (1997), M.S. (2002), and Ph.D. (2008) degrees in Veterinary Medicine, Animal Pathology and Veterinary Microbiology from College of Veterinary Medicine, Addis Ababa University, Ethiopia; College of Veterinary Medicine, Utrecht University, the Netherlands and Western College of Veterinary Medicine, University of Saskatchewan, Canada respectively. He did his Postdoctoral training in microbial pathogenesis (2009 - 2015) in the Department of Animal Science, the University of Tennessee, Institute of Agriculture, Knoxville, Tennessee. Dr. Kerro Dego’s research focuses on the prevention and control of infectious diseases of farm animals, particularly mastitis, improving dairy food safety, and mitigation of antimicrobial resistance. Dr. Kerro Dego has extensive experience in studying the pathogenesis of bacterial infections, identification of virulence factors, and vaccine development and efficacy testing against major bacterial mastitis pathogens. Dr. Kerro Dego conducted numerous controlled experimental and field vaccine efficacy studies, vaccination, and evaluation of immunological responses in several species of animals, including rodents (mice) and large animals (bovine and ovine).",institutionString:"University of Tennessee at Knoxville",institution:{name:"University of Tennessee at Knoxville",country:{name:"United States of America"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:{name:"Valencia Catholic University Saint Vincent Martyr",country:{name:"Spain"}}},{id:"125292",title:"Dr.",name:"Katy",middleName:null,surname:"Satué Ambrojo",slug:"katy-satue-ambrojo",fullName:"Katy Satué Ambrojo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/125292/images/system/125292.jpeg",biography:"Katy Satué Ambrojo received her Veterinary Medicine degree, Master degree in Equine Technology and doctorate in Veterinary Medicine from the Faculty of Veterinary, CEU-Cardenal Herrera University in Valencia, Spain. She is a Full Professor at the Department of Medicine and Animal Surgery at the same University. She developed her research activity in the field of Endocrinology, Hematology, Biochemistry and Immunology of horses. She is a scientific reviewer of several international journals : American Journal of Obstetrics and Gynecology, Comparative Clinical Pathology, Veterinary Clinical Pathology, Journal of Equine Veterinary Science, Reproduction in Domestic Animals, Research Veterinary Science, Brazilian Journal of Medical and Biological Research, Livestock Production Science and Theriogenology. Since 2014, she has been the Head of the Clinical Analysis Laboratory of the Hospital Clínico Veterinario from the Faculty of Veterinary, CEU-Cardenal Herrera University.",institutionString:"CEU-Cardenal Herrera University",institution:{name:"CEU Cardinal Herrera University",country:{name:"Spain"}}},{id:"309529",title:"Dr.",name:"Albert",middleName:null,surname:"Rizvanov",slug:"albert-rizvanov",fullName:"Albert Rizvanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/309529/images/9189_n.jpg",biography:'Albert A. Rizvanov is a Professor and Director of the Center for Precision and Regenerative Medicine at the Institute of Fundamental Medicine and Biology, Kazan Federal University (KFU), Russia. He is the Head of the Center of Excellence “Regenerative Medicine” and Vice-Director of Strategic Academic Unit \\"Translational 7P Medicine\\". Albert completed his Ph.D. at the University of Nevada, Reno, USA and Dr.Sci. at KFU. He is a corresponding member of the Tatarstan Academy of Sciences, Russian Federation. Albert is an author of more than 300 peer-reviewed journal articles and 22 patents. He has supervised 11 Ph.D. and 2 Dr.Sci. dissertations. Albert is the Head of the Dissertation Committee on Biochemistry, Microbiology, and Genetics at KFU.\nORCID https://orcid.org/0000-0002-9427-5739\nWebsite https://kpfu.ru/Albert.Rizvanov?p_lang=2',institutionString:"Kazan Federal University",institution:{name:"Kazan Federal University",country:{name:"Russia"}}},{id:"210551",title:"Dr.",name:"Arbab",middleName:null,surname:"Sikandar",slug:"arbab-sikandar",fullName:"Arbab Sikandar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/210551/images/system/210551.jpg",biography:"Dr. Arbab Sikandar, PhD, M. Phil, DVM was born on April 05, 1981. He is currently working at the College of Veterinary & Animal Sciences as an Assistant Professor. He previously worked as a lecturer at the same University. \nHe is a Member/Secretory of Ethics committee (No. CVAS-9377 dated 18-04-18), Member of the QEC committee CVAS, Jhang (Regr/Gen/69/873, dated 26-10-2017), Member, Board of studies of Department of Basic Sciences (No. CVAS. 2851 Dated. 12-04-13, and No. CVAS, 9024 dated 20/11/17), Member of Academic Committee, CVAS, Jhang (No. CVAS/2004, Dated, 25-08-12), Member of the technical committee (No. CVAS/ 4085, dated 20,03, 2010 till 2016).\n\nDr. Arbab Sikandar contributed in five days hands-on-training on Histopathology at the Department of Pathology, UVAS from 12-16 June 2017. He received a Certificate of appreciation for contributions for Popularization of Science and Technology in the Society on 17-11-15. He was the resource person in the lecture series- ‘scientific writing’ at the Department of Anatomy and Histology, UVAS, Lahore on 29th October 2015. He won a full fellowship as a principal candidate for the year 2015 in the field of Agriculture, EICA, Egypt with ref. to the Notification No. 12(11) ACS/Egypt/2014 from 10 July 2015 to 25th September 2015.; he received a grant of Rs. 55000/- as research incentives from Director, Advanced Studies and Research, UVAS, Lahore upon publications of research papers in IF Journals (DR/215, dated 19-5-2014.. He obtained his PhD by winning a HEC Pakistan indigenous Scholarship, ‘Ph.D. fellowship for 5000 scholars – Phase II’ (2av1-147), 17-6/HEC/HRD/IS-II/12, November 15, 2012. \n\nDr. Sikandar is a member of numerous societies: Registered Veterinary Medical Practitioner (life member) and Registered Veterinary Medical Faculty of Pakistan Veterinary Medical Council. The Registration code of PVMC is RVMP/4298 and RVMF/ 0102.; Life member of the University of Veterinary and Animal Sciences, Lahore, Alumni Association with S# 664, dated: 6-4-12. ; Member 'Vets Care Organization Pakistan” with Reference No. VCO-605-149, dated 05-04-06. :Member 'Vet Crescent” (Society of Animal Health and Production), UVAS, Lahore.",institutionString:"University of Veterinary & Animal Science",institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}},{id:"311663",title:"Dr.",name:"Prasanna",middleName:null,surname:"Pal",slug:"prasanna-pal",fullName:"Prasanna Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/311663/images/13261_n.jpg",biography:null,institutionString:null,institution:{name:"National Dairy Research Institute",country:{name:"India"}}},{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",country:{name:"United Kingdom"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",biography:"Samir El-Gendy is a Professor of anatomy and embryology at the faculty of veterinary medicine, Alexandria University, Egypt. Samir obtained his PhD in veterinary science in 2007 from the faculty of veterinary medicine, Alexandria University and has been a professor since 2017. Samir is an author on 24 articles at Scopus and 12 articles within local journals and 2 books/book chapters. His research focuses on applied anatomy, imaging techniques and computed tomography. Samir worked as a member of different local projects on E-learning and he is a board member of the African Association of Veterinary Anatomists and of anatomy societies and as an associated author at local and international journals. Orcid: https://orcid.org/0000-0002-6180-389X",institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"246149",title:"Dr.",name:"Valentina",middleName:null,surname:"Kubale",slug:"valentina-kubale",fullName:"Valentina Kubale",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246149/images/system/246149.jpg",biography:"Valentina Kubale is Associate Professor of Veterinary Medicine at the Veterinary Faculty, University of Ljubljana, Slovenia. Since graduating from the Veterinary faculty she obtained her PhD in 2007, performed collaboration with the Department of Pharmacology, University of Copenhagen, Denmark. She continued as a post-doctoral fellow at the University of Copenhagen with a Lundbeck foundation fellowship. She is the editor of three books and author/coauthor of 23 articles in peer-reviewed scientific journals, 16 book chapters, and 68 communications at scientific congresses. Since 2008 she has been the Editor Assistant for the Slovenian Veterinary Research journal. She is a member of Slovenian Biochemical Society, The Endocrine Society, European Association of Veterinary Anatomists and Society for Laboratory Animals, where she is board member.",institutionString:"University of Ljubljana",institution:{name:"University of Ljubljana",country:{name:"Slovenia"}}},{id:"258334",title:"Dr.",name:"Carlos Eduardo",middleName:null,surname:"Fonseca-Alves",slug:"carlos-eduardo-fonseca-alves",fullName:"Carlos Eduardo Fonseca-Alves",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/258334/images/system/258334.jpg",biography:"Dr. Fonseca-Alves earned his DVM from Federal University of Goias – UFG in 2008. He completed an internship in small animal internal medicine at UPIS university in 2011, earned his MSc in 2013 and PhD in 2015 both in Veterinary Medicine at Sao Paulo State University – UNESP. Dr. Fonseca-Alves currently serves as an Assistant Professor at Paulista University – UNIP teaching small animal internal medicine.",institutionString:null,institution:{name:"Universidade Paulista",country:{name:"Brazil"}}},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",biography:"María de la Luz García Pardo is an agricultural engineer from Universitat Politècnica de València, Spain. She has a Ph.D. in Animal Genetics. Currently, she is a lecturer at the Agrofood Technology Department of Miguel Hernández University, Spain. Her research is focused on genetics and reproduction in rabbits. The major goal of her research is the genetics of litter size through novel methods such as selection by the environmental sensibility of litter size, with forays into the field of animal welfare by analysing the impact on the susceptibility to diseases and stress of the does. Details of her publications can be found at https://orcid.org/0000-0001-9504-8290.",institutionString:null,institution:{name:"Miguel Hernandez University",country:{name:"Spain"}}},{id:"350704",title:"M.Sc.",name:"Camila",middleName:"Silva Costa",surname:"Ferreira",slug:"camila-ferreira",fullName:"Camila Ferreira",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/350704/images/17280_n.jpg",biography:"Graduated in Veterinary Medicine at the Fluminense Federal University, specialist in Equine Reproduction at the Brazilian Veterinary Institute (IBVET) and Master in Clinical Veterinary Medicine and Animal Reproduction at the Fluminense Federal University. She has experience in analyzing zootechnical indices in dairy cattle and organizing events related to Veterinary Medicine through extension grants. I have experience in the field of diagnostic imaging and animal reproduction in veterinary medicine through monitoring and scientific initiation scholarships. I worked at the Equus Central Reproduction Equine located in Santo Antônio de Jesus – BA in the 2016/2017 breeding season. I am currently a doctoral student with a scholarship from CAPES of the Postgraduate Program in Veterinary Medicine (Pathology and Clinical Sciences) at the Federal Rural University of Rio de Janeiro (UFRRJ) with a research project with an emphasis on equine endometritis.",institutionString:null,institution:null},{id:"41319",title:"Prof.",name:"Lung-Kwang",middleName:null,surname:"Pan",slug:"lung-kwang-pan",fullName:"Lung-Kwang Pan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/41319/images/84_n.jpg",biography:null,institutionString:null,institution:null},{id:"201721",title:"Dr.",name:"Beatrice",middleName:null,surname:"Funiciello",slug:"beatrice-funiciello",fullName:"Beatrice Funiciello",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/201721/images/11089_n.jpg",biography:"Graduated from the University of Milan in 2011, my post-graduate education included CertAVP modules mainly on equines (dermatology and internal medicine) and a few on small animal (dermatology and anaesthesia) at the University of Liverpool. After a general CertAVP (2015) I gained the designated Certificate in Veterinary Dermatology (2017) after taking the synoptic examination and then applied for the RCVS ADvanced Practitioner status. After that, I completed the Postgraduate Diploma in Veterinary Professional Studies at the University of Liverpool (2018). My main area of work is cross-species veterinary dermatology.",institutionString:null,institution:null},{id:"291226",title:"Dr.",name:"Monica",middleName:null,surname:"Cassel",slug:"monica-cassel",fullName:"Monica Cassel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/291226/images/8232_n.jpg",biography:'Degree in Biological Sciences at the Federal University of Mato Grosso with scholarship for Scientific Initiation by FAPEMAT (2008/1) and CNPq (2008/2-2009/2): Project \\"Histological evidence of reproductive activity in lizards of the Manso region, Chapada dos Guimarães, Mato Grosso, Brazil\\". Master\\\'s degree in Ecology and Biodiversity Conservation at Federal University of Mato Grosso with a scholarship by CAPES/REUNI program: Project \\"Reproductive biology of Melanorivulus punctatus\\". PhD\\\'s degree in Science (Cell and Tissue Biology Area) \n at University of Sao Paulo with scholarship granted by FAPESP; Project \\"Development of morphofunctional changes in ovary of Astyanax altiparanae Garutti & Britski, 2000 (Teleostei, Characidae)\\". She has experience in Reproduction of vertebrates and Morphology, with emphasis in Cellular Biology and Histology. She is currently a teacher in the medium / technical level courses at IFMT-Alta Floresta, as well as in the Bachelor\\\'s degree in Animal Science and in the Bachelor\\\'s degree in Business.',institutionString:null,institution:null},{id:"442807",title:"Dr.",name:"Busani",middleName:null,surname:"Moyo",slug:"busani-moyo",fullName:"Busani Moyo",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Gwanda State University",country:{name:"Zimbabwe"}}},{id:"439435",title:"Dr.",name:"Feda S.",middleName:null,surname:"Aljaser",slug:"feda-s.-aljaser",fullName:"Feda S. Aljaser",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"King Saud University",country:{name:"Saudi Arabia"}}},{id:"423023",title:"Dr.",name:"Yosra",middleName:null,surname:"Soltan",slug:"yosra-soltan",fullName:"Yosra Soltan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Alexandria University",country:{name:"Egypt"}}},{id:"349788",title:"Dr.",name:"Florencia Nery",middleName:null,surname:"Sompie",slug:"florencia-nery-sompie",fullName:"Florencia Nery Sompie",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Sam Ratulangi University",country:{name:"Indonesia"}}},{id:"428600",title:"MSc.",name:"Adriana",middleName:null,surname:"García-Alarcón",slug:"adriana-garcia-alarcon",fullName:"Adriana García-Alarcón",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428599",title:"MSc.",name:"Gabino",middleName:null,surname:"De La Rosa-Cruz",slug:"gabino-de-la-rosa-cruz",fullName:"Gabino De La Rosa-Cruz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}},{id:"428601",title:"MSc.",name:"Juan Carlos",middleName:null,surname:"Campuzano-Caballero",slug:"juan-carlos-campuzano-caballero",fullName:"Juan Carlos Campuzano-Caballero",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Autonomous University of Mexico",country:{name:"Mexico"}}}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"81321",title:"Velocity Planning via Model-Based Reinforcement Learning: Demonstrating Results on PILCO for One-Dimensional Linear Motion with Bounded Acceleration",doi:"10.5772/intechopen.103690",signatures:"Hsuan-Cheng Liao, Han-Jung Chou and Jing-Sin Liu",slug:"velocity-planning-via-model-based-reinforcement-learning-demonstrating-results-on-pilco-for-one-dime",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Applied Intelligence - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11418.jpg",subseries:{id:"22",title:"Applied Intelligence"}}}]},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9869",title:"Self-Driving Vehicles and Enabling Technologies",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9869.jpg",slug:"self-driving-vehicles-and-enabling-technologies",publishedDate:"September 22nd 2021",editedByType:"Edited by",bookSignature:"Marian Găiceanu",hash:"fd451ca2e4785ef098e04b7d695a18d9",volumeInSeries:6,fullTitle:"Self-Driving Vehicles and Enabling Technologies",editors:[{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9958",title:"Artificial Intelligence",subtitle:"Latest Advances, New Paradigms and Novel Applications",coverURL:"https://cdn.intechopen.com/books/images_new/9958.jpg",slug:"artificial-intelligence-latest-advances-new-paradigms-and-novel-applications",publishedDate:"September 1st 2021",editedByType:"Edited by",bookSignature:"Eneko Osaba, Esther Villar, Jesús L. Lobo and Ibai Laña",hash:"39648fbfdaa11385097d62b1f13aad54",volumeInSeries:5,fullTitle:"Artificial Intelligence - Latest Advances, New Paradigms and Novel Applications",editors:[{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7656",title:"Fuzzy Logic",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7656.jpg",slug:"fuzzy-logic",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Constantin Volosencu",hash:"54f092d4ffe0abf5e4172a80025019bc",volumeInSeries:3,fullTitle:"Fuzzy Logic",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7723",title:"Artificial Intelligence",subtitle:"Applications in Medicine and Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7723.jpg",slug:"artificial-intelligence-applications-in-medicine-and-biology",publishedDate:"July 31st 2019",editedByType:"Edited by",bookSignature:"Marco Antonio Aceves-Fernandez",hash:"a3852659e727f95c98c740ed98146011",volumeInSeries:1,fullTitle:"Artificial Intelligence - Applications in Medicine and Biology",editors:[{id:"24555",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Aceves Fernandez",slug:"marco-antonio-aceves-fernandez",fullName:"Marco Antonio Aceves Fernandez",profilePictureURL:"https://mts.intechopen.com/storage/users/24555/images/system/24555.jpg",institutionString:"Universidad Autonoma de Queretaro",institution:{name:"Autonomous University of Queretaro",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:90,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:320,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:133,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:107,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:6,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:17,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/329023",hash:"",query:{},params:{id:"329023"},fullPath:"/profiles/329023",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()