\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:{caption:"Highly Cited",originalUrl:"/media/original/117"}},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"1842",leadTitle:null,fullTitle:"Effects of Antidepressants",title:"Effects of Antidepressants",subtitle:null,reviewType:"peer-reviewed",abstract:"Over the last fifty years, many studies of psychiatric medication have been carried out on the basis of psychopharmacology. At the beginning, researchers and clinicians found the unexpected effectiveness of some medications with therapeutic effects in anti-mood without knowing the reason. Next, researchers and clinicians started to explore the mechanism of neurotransmitters and started to gain an understanding of how mental illness can be. Antidepressants are one of the most investigated medications. Having greater knowledge of psychopharmacology could help us to gain more understanding of treatments. In total ten chapters on various aspects of antidepressants were integrated into this book to help beginners interested in this field to understand depression.",isbn:null,printIsbn:"978-953-51-0663-0",pdfIsbn:"978-953-51-7013-6",doi:"10.5772/2268",price:119,priceEur:129,priceUsd:155,slug:"effects-of-antidepressants",numberOfPages:208,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"8500bdfd95b07f6502fbf75e0205a58b",bookSignature:"Ru-Band Lu",publishedDate:"June 29th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1842.jpg",numberOfDownloads:39919,numberOfWosCitations:9,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:13,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:24,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 25th 2011",dateEndSecondStepPublish:"June 22nd 2011",dateEndThirdStepPublish:"October 27th 2011",dateEndFourthStepPublish:"November 26th 2011",dateEndFifthStepPublish:"March 25th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"120261",title:"Dr.",name:"Ru-Band",middleName:null,surname:"Lu",slug:"ru-band-lu",fullName:"Ru-Band Lu",profilePictureURL:"https://mts.intechopen.com/storage/users/120261/images/system/120261.jpg",biography:"Professor Ru-Band Lu graduated from National Defense Medical Center (NDMC) in 1972, following that he completed his resident training, as well as being a lecturer of NDMC in 1980. He gained a clinical fellowship of psyphamachology in Baylor Medical College, Huston, Texas, USA between 1981 and 1982, and he became a clinical psychopharmacologist in the USA. He became a professor of Psychiatry at NDMC in 1989. From 1992 to 1993, he was a visiting research scientist in Human Genetics at Yale University, New Haven, CT, USA. From 2003 to 2009, he was the director of the Institute of Behavioral Medicine and chairman of the Department of Psychiatry, National Cheng Kung University, Tainan, Taiwan. Now he is a distinguished professor in university. Dr. Lu was the President of the Taiwanese Psychiatry Association from 2003 to 2005. He received an Academic Achievement Award, Taiwanese Society of Psychiatry in 2007 and K.T. Lee Science and Humane Award – Gold Medal in 2011. \nHe works in re-classification of major mental illness, finds the new mechanism of drugs and develops new models to treat several major mental disorders. He has published more than one 150 research articles in the last ten years.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1063",title:"Psychopharmacology",slug:"psychopharmacology"}],chapters:[{id:"37602",title:"Evaluation of the Humoral Immune Response of Wistar Rats Submitted to Forced Swimming and Treated with Fluoxetine",doi:"10.5772/38465",slug:"behavioral-and-humoral-immune-response-of-rats-chronically-treated-with-fluoxetine-and-submitted",totalDownloads:2285,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Eduardo Vignoto Fernandes, Emerson José Venancio and Célio Estanislau",downloadPdfUrl:"/chapter/pdf-download/37602",previewPdfUrl:"/chapter/pdf-preview/37602",authors:[{id:"117425",title:"Dr.",name:"Celio",surname:"Estanislau",slug:"celio-estanislau",fullName:"Celio Estanislau"},{id:"138419",title:"Mr.",name:"Eduardo",surname:"Fernandes",slug:"eduardo-fernandes",fullName:"Eduardo Fernandes"},{id:"138420",title:"Dr.",name:"Emerson Jose",surname:"Venancio",slug:"emerson-jose-venancio",fullName:"Emerson Jose Venancio"}],corrections:null},{id:"37603",title:"Effects of Antidepressants on Inhibitory Avoidance in Mice: A Review",doi:"10.5772/38540",slug:"effects-of-antidepressants-on-inhibitory-avoidance-in-mice-a-review",totalDownloads:1335,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Concepción Vinader-Caerols, Andrés Parra and Santiago Monleón",downloadPdfUrl:"/chapter/pdf-download/37603",previewPdfUrl:"/chapter/pdf-preview/37603",authors:[{id:"110598",title:"Prof.",name:"Andres",surname:"Parra",slug:"andres-parra",fullName:"Andres Parra"},{id:"117841",title:"Dr.",name:"Santiago",surname:"Monleon",slug:"santiago-monleon",fullName:"Santiago Monleon"},{id:"117857",title:"Dr.",name:"Concepción",surname:"Vinader-Caerols",slug:"concepcion-vinader-caerols",fullName:"Concepción Vinader-Caerols"}],corrections:null},{id:"37604",title:"Participation of the Monoaminergic System in the Antidepressant-Like Actions of Estrogens: A Review in Preclinical Studies",doi:"10.5772/37895",slug:"participation-of-the-monoaminergic-system-in-the-antidepressant-like-actions-of-estrogens-a-revi",totalDownloads:1720,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:null,signatures:"Carolina López-Rubalcava, Nelly Maritza Vega-Rivera, Nayeli Páez-Martínez and Erika Estrada-Camarena",downloadPdfUrl:"/chapter/pdf-download/37604",previewPdfUrl:"/chapter/pdf-preview/37604",authors:[{id:"114703",title:"Dr.",name:"Carolina",surname:"Lopez-Rubalcava",slug:"carolina-lopez-rubalcava",fullName:"Carolina Lopez-Rubalcava"},{id:"114710",title:"Dr.",name:"Erika",surname:"Estrada-Camarena",slug:"erika-estrada-camarena",fullName:"Erika Estrada-Camarena"},{id:"138136",title:"Dr.",name:"Nayeli",surname:"Paez-Martinez",slug:"nayeli-paez-martinez",fullName:"Nayeli Paez-Martinez"},{id:"138137",title:"MSc.",name:"Nelly Maritza",surname:"Vega-Rivera",slug:"nelly-maritza-vega-rivera",fullName:"Nelly Maritza Vega-Rivera"}],corrections:null},{id:"37605",title:"Antidepressants and Morphological Plasticity of Monoamine Neurons",doi:"10.5772/37593",slug:"antidepressants-and-morphological-plasticity-of-monoamine-neurons",totalDownloads:2491,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Shoji Nakamura",downloadPdfUrl:"/chapter/pdf-download/37605",previewPdfUrl:"/chapter/pdf-preview/37605",authors:[{id:"113432",title:"Prof.",name:"Shoji",surname:"Nakamura",slug:"shoji-nakamura",fullName:"Shoji Nakamura"}],corrections:null},{id:"37606",title:"Serotonin Noradrenaline Reuptake Inhibitors (SNRIs)",doi:"10.5772/37999",slug:"serotonin-norepinephrine-reuptake-inhibitors",totalDownloads:9264,totalCrossrefCites:1,totalDimensionsCites:4,hasAltmetrics:0,abstract:null,signatures:"Ipek Komsuoglu Celikyurt, Oguz Mutlu and Guner Ulak",downloadPdfUrl:"/chapter/pdf-download/37606",previewPdfUrl:"/chapter/pdf-preview/37606",authors:[{id:"115131",title:"Ph.D.",name:"Ipek",surname:"Komsuoglu Celikyurt",slug:"ipek-komsuoglu-celikyurt",fullName:"Ipek Komsuoglu Celikyurt"}],corrections:null},{id:"37607",title:"Antidepressants Self-Poisoning in Suicide and Suicide Attempt: Acute Toxicity and Treatment",doi:"10.5772/36682",slug:"antidepressants-self-poisoning-in-suicide-and-suicide-attempt-acute-toxicity-and-treatment",totalDownloads:4825,totalCrossrefCites:0,totalDimensionsCites:2,hasAltmetrics:0,abstract:null,signatures:"Sara Santos Bernardes, Danielle Ruiz Miyazawa, Rodrigo Felipe Gongora e Silva, Danielle Camelo Cardoso, Estefânia Gastaldello Moreira2 and Conceição Aparecida Turini",downloadPdfUrl:"/chapter/pdf-download/37607",previewPdfUrl:"/chapter/pdf-preview/37607",authors:[{id:"109361",title:"MSc",name:"Sara",surname:"Santos Bernardes",slug:"sara-santos-bernardes",fullName:"Sara Santos Bernardes"},{id:"115729",title:"Ms.",name:"Danielle",surname:"Camelo Cardoso",slug:"danielle-camelo-cardoso",fullName:"Danielle Camelo Cardoso"},{id:"115731",title:"Dr.",name:"Estefânia",surname:"Gastaldello Moreira",slug:"estefania-gastaldello-moreira",fullName:"Estefânia Gastaldello Moreira"},{id:"115732",title:"MSc.",name:"Conceição Aparecida",surname:"Turini",slug:"conceicao-aparecida-turini",fullName:"Conceição Aparecida Turini"},{id:"138424",title:"Ms.",name:"Danielle",surname:"Ruiz Miyazawa",slug:"danielle-ruiz-miyazawa",fullName:"Danielle Ruiz Miyazawa"},{id:"138486",title:"Mr.",name:"Rodrigo Felipe",surname:"Gongora E Silva",slug:"rodrigo-felipe-gongora-e-silva",fullName:"Rodrigo Felipe Gongora E Silva"}],corrections:null},{id:"37608",title:"Rational Polypharmacy in the Acute Therapy of Major Depression",doi:"10.5772/48046",slug:"rational-polypharmacy-in-the-acute-therapy-of-major-depression",totalDownloads:2578,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:null,signatures:"Per Bech and Claudio Csillag",downloadPdfUrl:"/chapter/pdf-download/37608",previewPdfUrl:"/chapter/pdf-preview/37608",authors:[{id:"42422",title:"Prof.",name:"Per",surname:"Bech",slug:"per-bech",fullName:"Per Bech"},{id:"138291",title:"Dr.",name:"Claudio",surname:"Csillag",slug:"claudio-csillag",fullName:"Claudio Csillag"}],corrections:null},{id:"37609",title:"Antidepressant Drugs and Pain",doi:"10.5772/48022",slug:"antidepressants-drugs-and-pain-mechanisms",totalDownloads:2549,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Blanca Lorena Cobo-Realpe, Cristina Alba-Delgado, Lidia Bravo, Juan Antonio Mico and Esther Berrocoso",downloadPdfUrl:"/chapter/pdf-download/37609",previewPdfUrl:"/chapter/pdf-preview/37609",authors:[{id:"112203",title:"Dr.",name:"Esther",surname:"Berrocoso",slug:"esther-berrocoso",fullName:"Esther Berrocoso"},{id:"118132",title:"Dr.",name:"Blanca-Lorena",surname:"Cobo-Realpe",slug:"blanca-lorena-cobo-realpe",fullName:"Blanca-Lorena Cobo-Realpe"},{id:"118133",title:"BSc.",name:"Cristina",surname:"Alba-Delgado",slug:"cristina-alba-delgado",fullName:"Cristina Alba-Delgado"},{id:"118135",title:"BSc.",name:"Lidia",surname:"Bravo",slug:"lidia-bravo",fullName:"Lidia Bravo"},{id:"118136",title:"Prof.",name:"Juan-Antonio",surname:"Mico",slug:"juan-antonio-mico",fullName:"Juan-Antonio Mico"}],corrections:null},{id:"37610",title:"Antidepressant Drug Use in Patients with Diabetes Mellitus Type 1 - The Effect of Medication on Mental Problems and Glycemic Control",doi:"10.5772/37674",slug:"antidepressant-drug-use-in-patients-with-diabetes-mellitus-type-1-the-effect-of-medication-on-me",totalDownloads:9360,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Jana Komorousová and Zdeněk Jankovec",downloadPdfUrl:"/chapter/pdf-download/37610",previewPdfUrl:"/chapter/pdf-preview/37610",authors:[{id:"113809",title:"Dr",name:null,surname:"Komorousova",slug:"komorousova",fullName:"Komorousova"}],corrections:null},{id:"37611",title:"Effects of Fluoxetine and Venlafaxine on the Salivary Gland - Experimental Study",doi:"10.5772/48050",slug:"effects-of-antidepressants-on-parotid-glands",totalDownloads:3512,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Silvana da Silva, Luciana Reis de Azevedo, Antônio Adilson Soares de Lima, Beatriz Helena Sottile França, Maria Ângela Naval Machado, Aline Cristina Batista Rodrigues Johann and Ana Maria Trindade Grégio",downloadPdfUrl:"/chapter/pdf-download/37611",previewPdfUrl:"/chapter/pdf-preview/37611",authors:[{id:"48532",title:"Dr.",name:"Luciana Reis",surname:"Azevedo-Alanis",slug:"luciana-reis-azevedo-alanis",fullName:"Luciana Reis Azevedo-Alanis"},{id:"113923",title:"Dr.",name:"Ana",surname:"Gregio",slug:"ana-gregio",fullName:"Ana Gregio"},{id:"117757",title:"Dr.",name:"Aline Cristina Batista Rodrigues",surname:"Johann",slug:"aline-cristina-batista-rodrigues-johann",fullName:"Aline Cristina Batista Rodrigues Johann"},{id:"117766",title:"Dr.",name:"Maria Ângela Naval",surname:"Machado",slug:"maria-angela-naval-machado",fullName:"Maria Ângela Naval Machado"},{id:"138409",title:"MSc.",name:"Silvana",surname:"Da Silva",slug:"silvana-da-silva",fullName:"Silvana Da Silva"},{id:"138410",title:"Prof.",name:"Antônio Adílson Soares",surname:"De Lima",slug:"antonio-adilson-soares-de-lima",fullName:"Antônio Adílson Soares De Lima"},{id:"138411",title:"Prof.",name:"Beatriz Sottile",surname:"França",slug:"beatriz-sottile-franca",fullName:"Beatriz Sottile França"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1849",title:"Essential Notes in Psychiatry",subtitle:null,isOpenForSubmission:!1,hash:"d3a81d79581d86fb33aa7df4a3053c16",slug:"essential-notes-in-psychiatry",bookSignature:"Victor Olisah",coverURL:"https://cdn.intechopen.com/books/images_new/1849.jpg",editedByType:"Edited by",editors:[{id:"46511",title:"Dr.",name:"Victor",surname:"Olisah",slug:"victor-olisah",fullName:"Victor Olisah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7882",title:"Behavioral Pharmacology",subtitle:"From Basic to Clinical Research",isOpenForSubmission:!1,hash:"39b4b6a6a15f5131f34bfcb11b050523",slug:"behavioral-pharmacology-from-basic-to-clinical-research",bookSignature:"Juan Francisco Rodríguez-Landa and Jonathan Cueto-Escobedo",coverURL:"https://cdn.intechopen.com/books/images_new/7882.jpg",editedByType:"Edited by",editors:[{id:"45702",title:"Dr.",name:"Juan Francisco",surname:"Rodríguez-Landa",slug:"juan-francisco-rodriguez-landa",fullName:"Juan Francisco Rodríguez-Landa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{},chapter:{},book:{}},ofsBook:{item:{type:"book",id:"11474",leadTitle:null,title:"Quality of Life Interventions - Magnitude of Effect and Transferability",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThe Quality of Life for an individual and society at large is determined by both personal and state-level decisions. The magnitude of the effect of interventions that modify one Quality Adjusted Life Years (QALYs) will be compared, and the transferability of these interventions globally will be investigated by comparison between different socio-economic countries with different government structures (from socialist to autocratic). The reproducibility and cost of the lifestyle interventions (e.g., exercise, sleep, nutritious diet, national child care, pollution limitations) on QALYs will also be documented. The ratio of (QALY/Cost) weighted by reproducibility and transferability should give a rank-ordered list of actions humans can take to increase the quality years of human consciousness. Differences in the optimized list of rank-ordered interventions to maximize the quality of life between nation-states with varying GDP and government types (i.e., the lack of transferability) will be discussed. These local maximums for QALY optimization will be discussed in light of possible avenues that allow countries to overcome national hurdles that allow them to reach greater QALY global maximums.
\r\n\r\n\tThis book welcomes topics related to the quality of life measurements (QALYs) both within a community and between disparate societies, as well as the transferability/durability of these QALY gains.
",isbn:"978-1-80356-609-2",printIsbn:"978-1-80356-608-5",pdfIsbn:"978-1-80356-610-8",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",bookSignature:"Ph.D. Sage Arbor",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",keywords:"Health, Lifespan, Obesity, Pollution, Culture, Government, Demographics, Race, GDP, Age, Rate of Change, Automation",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 5th 2022",dateEndSecondStepPublish:"July 7th 2022",dateEndThirdStepPublish:"September 5th 2022",dateEndFourthStepPublish:"November 24th 2022",dateEndFifthStepPublish:"January 23rd 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"7 days",secondStepPassed:!1,areRegistrationsClosed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,biosketch:"A computational biologist that has worked across a broad biomedical spectrum to optimize human health, Dr. Arbor combines research from academia (Duke, Washington University) and companies (Pfizer, Dupont) to deliver datasets to the wider scientific community. His recent focus includes quality of life modifiers and bioethical versus religious standards.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"245319",title:"Ph.D.",name:"Sage",middleName:null,surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor",profilePictureURL:"https://mts.intechopen.com/storage/users/245319/images/system/245319.png",biography:"Sage Arbor is a computational biologist whose research includes fields ranging from drug design, systems biology, and epigenetic database creation to fitness app development. His work spans a broad biomedical spectrum from drug design to clinical trial analysis, including being a medical school professor and researcher, project management of developers/analysts of globally distributed labs, electronic medical record data mining (SQL and NoSQL), Python/pandas coding, data segmentation, 6σ improvement, pathway mapping, and computational drug design and synthesis. Having worked at multiple academic institutions (Duke, Marian University) and companies (e.g., Pfizer and Dupont), his research has been on both proprietary and open-access datasets for publication to the wider scientific community. His recent publication topics include quality of life modifiers, therapeutic interventions for Alzheimer\\'s disease, bioethical versus religious standards, and scientific training in those deciding public policy.",institutionString:"Duke University School of Medicine",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Duke University School of Medicine",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"429339",firstName:"Jelena",lastName:"Vrdoljak",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/429339/images/20012_n.jpg",email:"jelena.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6926",title:"Biological Anthropology",subtitle:"Applications and Case Studies",isOpenForSubmission:!1,hash:"5bbb192dffd37a257febf4acfde73bb8",slug:"biological-anthropology-applications-and-case-studies",bookSignature:"Alessio Vovlas",coverURL:"https://cdn.intechopen.com/books/images_new/6926.jpg",editedByType:"Edited by",editors:[{id:"313084",title:"Dr.",name:"Alessio",surname:"Vovlas",slug:"alessio-vovlas",fullName:"Alessio Vovlas"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"69728",title:"Stress, Hypertension and Yoga",doi:"10.5772/intechopen.88147",slug:"stress-hypertension-and-yoga",body:'\nFast pace of life, growing aspirations of people, peer pressure and collapsing social support institutions like family, are affecting peoples’ health in modern society. Stress and stress-related disorders are emerging as a major health challenge across the globe. Stress is perceived as an event or experience that invoke a range of unpleasant emotions like uneasiness, nervousness, anxiety, and fear. More scientifically speaking stress is a state of disharmony or threatened homeostasis provoked by psychological, environmental, and/or physiological factors called ‘stressors’. Stress is often implicated in the pathogenesis of non-communicable diseases like hypertension, coronary heart disease, depression, and obesity. Evidence suggests that dysregulation of stress system is causally linked to the pathogenesis of essential hypertension, with over activity of Hypothalamic-pituitary-adrenal axis (HPA) and Sympathoadrenal System (SAS) and resetting of baroreceptors as the underlying pathophysiological mechanisms.
\nNon-pharmacological interventions such as relaxation techniques in the form of yoga and meditation are slowly gaining recognition as an adjunctive therapy in case of stress-related health disorders like hypertension, anxiety, and depression. Yoga promises to be one of the best and relatively safest methods to counter stress. The most popularly used yoga intervention techniques include yogasanas (yoga postures) and pranayama (controlled breathing techniques) and meditation. Asanas and pranayamas reduce stress, relax and revitalise body. Relaxation helps to control anxiety, calms mind and brings down heart rate and blood pressure.
\nAll living organisms strive towards a dynamic equilibrium, which is called homeostasis. Homeostasis is maintenance of relative stability of the core parameters required for cell survival [1]. In the classical stress concept, stress can be broadly defined as an actual or anticipated disruption of homeostasis by certain physical and/or psychological events that are known as ‘stressors’ [2].
\nModern concept of stress defines it as a consciously or unconsciously perceived threat to homeostasis [3], which involves specific response of the body that in turn depends on the factors like the nature of the challenge to homeostasis, the perception of the stressor and the ability to cope with it [4]. A new concept called ‘allostasis’ was introduced to define and explain stress. Accordingly, the term allostasis refers to the process whereby an organism maintains physiological stability by changing parameters of its internal milieu by matching them appropriately to environmental demands [5, 6]. Thus, homeostasis is a process that keeps us alive whilst allostasis is a process that helps us to adapt to the environmental challenges.
\nAllostatic load (AL) refers to the cumulative effects of chronic and acute stress on the body. It represents the ‘wear and tear’ the body experiences when repeated allostatic responses are activated during stressful situations [7]. Allostatic overload is the final stage of the progression of allostatic load, whereby the culmination of physiological dysregulations both at the cellular and organ levels leads to disordered, diseased, and deceased endpoints [8].
\nThe concepts of allostasis, allostatic load and overload are to be understood in the context that the physiological systems involved in allostatic responses help us to adapt to challenges imposed by stressors and the dysregulation or overuse of the same systems due to prolonged exposure to stressors can lead to pathological disorders [7]. Thus, allostasis involves health protective adaptive responses to stressors, whereas, allostatic load is the result of the overuse or dysregulation of the systems involved in allostatic responses that leads to pathological disorders, a state referred to as allostatic overload [6].
\nThe stress response involves multiple organ systems of the body like central nervous system (CNS), autonomic nervous system (ANS), endocrine system, cardiovascular system and immune system [9]. However, individual’s response to stressors is conditioned by the genetic, environmental and developmental factors. The collective stress responses are mediated by largely overlapping circuits in the hypothalamus, the limbic cortex, and many neural elements in the brainstem [10]. The brain triggers stress responses that are commensurate with the nature of the stressor. Accordingly, stress regulatory neuro-circuits activated by a particular stressor are crucially dependent on stressor attributes [2].
\nDepending on their nature, the stressors can be broadly divided into two categories: Physical or Physiological stressors and Psychogenic or Psychological stressors. Stressors that produce actual disturbances of homeostasis are considered as physical stressors, e.g. haemorrhage or infection. Whereas, stressors that threaten the current state and are predicted or anticipated based on prior experiences are considered as psychogenic stressors, e.g. aversive environmental stimuli [11]. Thus, physical stressors represent ‘Systemic stressors’ which are of immediate survival value and are mainly processed by brainstem and hypothalamic regions [2, 11]. By contrast, ‘Psychogenic stressors’ represent ‘Processive’ stressors. They require sequential stimulus assembly and processing of signals from multiple sensory modalities in the forebrain and can occur in anticipation of or in reaction to stressful events prior to initiation of a stress response. They involve the ‘Limbic stress pathways’ for processing information [12]. The vast majority of decisions regarding the initiation of stress responses seem to be made at the level of limbic structures, which communicate information to subcortical sites positioned to interface with ongoing homeostatic feedback [13]. It is also believed that limbic forebrain regions may also contribute to processing of physical stressors, influencing the autonomic responses to stress and the activation of the HPA-axis [2].
\nThe autonomic nervous system (ANS) provides the immediate response to stressors mainly mediated via brainstem circuitry. The brainstem region receives neuronal inputs carrying signals of homeostatic disturbances involving cardiovascular system (CVS), respiratory system (RS) and visceral organs [14], which cause reflex stimulation of sympathetic response [15]. Reflex sympathetic activation represents the classic ‘fight or flight’ response to stress [2].
\nBesides this, signals from medulla and spinal cord are sent to other autonomic regulative sites in the hindbrain, midbrain and forebrain. The complex interplay between these neural structures and the descending signals from the hypothalamus and limbic cortex ultimately modulate the autonomic response to stressors [15].
\nHomeostatic imbalance also triggers signals to the brainstem leading to activation of the HPA axis. Ascending brainstem pathways project to the paraventricular nucleus of the hypothalamus (PVN). Catecholaminergic projections to the PVN originate in the nucleus of the solitary tract (NTS) and C1-C3 regions and represent a major HPA excitatory pathway, promoting corticotropin releasing hormone (CRH) and thereby, adrenocorticotropic hormone (ACTH) release [16]. NTS projections to PVN also release neuropeptide Y, glucagon-like peptide 1, inhibin β, somatostatin and enkephalin, that can regulate HPA activation [17].
\nAscending catecholaminergic pathways mainly mediate systemic-stress responses [14]. However, some non-catecholaminergic NTS cell groups (e.g. glucagon-like peptide 1 neurons) are involved in the generation of HPA responses to both psychogenic and systemic stressors [18]. Thus, NTS appears to be a common site for integration of reactive HPA responses. Neurons throughout NTS are activated by a variety of acute and chronic stressors [19]. In addition to sending projections that target subcortical limbic regions critical for regulating behavioural responses to stress, NTS also receives direct input from the amygdala, the bed nucleus of stria terminalis (BST), and the prefrontal cortex [20]. Thus, NTS is a critical hub for integrating interoceptive and viscero-sensory input with descending affective and cognitive information from the limbic forebrain.
\nParaventricular nucleus of the hypothalamus (PVN) acts as a principal integrator of stress signals and is directly involved in regulating HPA axis and autonomic responses to stressors [2]. As mentioned earlier, the PVN receives its major adrenergic inputs from the A2/C2 regions of NTS, which represents a major HPA excitatory pathway promoting CRH release [16]. The PVN neurons project to the autonomic targets in the brainstem and spinal cord such as the intermediolateral cell column, the parabrachial nucleus, the dorsal motor nucleus of the vagus nerve and the NTS [13]. PVN also receives serotonergic innervation from the median raphe nuclei in the midbrain. Serotonin activates the HPA axis and stimulates ACTH release and secretion of glucocorticoids (GCs) [21].
\nMany of the hypothalamic regions interact with the limbic inputs and are involved in homeostatic integration. Hypothalamic communications with limbic cortex and their combined downward effect on the HPA and ANS activity modulate responses to stressors with respect to ongoing physiological state.
\nPVN is heavily innervated by inhibitory GABAergic inputs from limbic regions [22]. Most of these limbic–PVN connections are indirect and are made through the bed nucleus of stria terminalis (BST) and peri-PVN regions of the hypothalamus, enabling it to translate limbic information into modulation of the HPA axis or autonomic activation [23]. While PVN projecting GABAergic neurons from posterior BST nuclei inhibit HPA response to stress, CRH neurons from anteroventral BST nuclei to PVN are responsible for excitation of HPA activity [24].
\nPVN also receives inhibitory GABAergic innervation from the medial preoptic hypothalamus (mPoA), which receives projections from the hippocampus and the medial nucleus of amygdala (MeA) and is an important site for interaction between limbic inputs and physiological regulatory processes [2].
\nLateral hypothalamic neurons are positioned to modulate autonomic and/or HPA tone [2, 25]. The Dorsomedial hypothalamus (DMH) regulates autonomic and perhaps also HPA axis responses to psychogenic stimuli [2]. Suprachiasmatic nucleus (SCN) has effect on the diurnal variations and basal HPA activity and autonomic responses to psychogenic stressors [26]. SCN innervates peri PVN regions, where it interacts with the signals from limbic cortex.
\nThe interface between the incoming sensory information about the stressors and the appraisal process is formed by limbic brain structures. Both psychogenic and physical stimuli are processed in multiple limbic forebrain structures, including the amygdala, the hippocampus and the prefrontal cortex [2]. These regions receive associational information from subcortical and cortical areas involved in higher-order sensory processing and memory and also ascending inputs from sites involved in attention and arousal. Limbic structures do not communicate directly with the primary stress effector systems. Instead, they send signals to the subcortical relay sites, which in turn interface with the primary stress effector neurons in the PVN, caudal medulla and spinal cord [14]. Usually, there is interaction between the outputs from the stress-excitatory structures (central (CeA) and medial (MeA) nuclei of amygdala and infralimbic cortex) and stress-inhibitory regions (hippocampus, prelimbic cortex), so that local integration of limbic information occurs before relaying it to the primary stress effector sites [14]. Downward signals from these limbic regions modulate the activity of the HPA axis and probably also autonomic responses to stress [2].
\nStudies suggest that the Central nucleus of amygdala (CeA) and the BST coordinate to orchestrate both acute and chronic responses to various kinds of threatening stimuli and are involved in the control of fear and anxiety [27]. CeA is primarily involved in behavioural, autonomic and endocrine responses to stress [10]. The medial nucleus of amygdala (MeA) and basolateral nucleus of amygdala (BLA) are preferentially activated by psychological stressors [11, 25]. There is a two-way neural communication between amygdala and the dorsal raphe nucleus and catecholaminergic nuclei in the brainstem. CeA sends inputs to CRH neurons in the PVN both directly and through the bed nucleus of the stria terminalis and mediates the adrenocortical response to somatosensory stimuli [2, 10].
\nThe hippocampus inhibits the HPA axis activity. It also influences autonomic tone. Hippocampus has no major direct projections to the brainstem, but its action on autonomic function might be routed through NTS-projecting regions of the medial prefrontal cortex (mPFC) [2].
\nPrefrontal cortex (PFC) is critical to develop appropriate responses to environment changes, enabling behavioural plasticity [28]. The prelimbic medial PFC (mPFC) preferentially inhibits HPA axis response to psychogenic stressors and, like the hippocampus it is involved in response termination [2]. The infralimbic PFC is involved in initiating autonomic and HPA responses to psychogenic stimuli. The infralimbic cortex is selectively involved in stress induced cardiovascular regulation, perhaps through modification of the baroreflex activity. As a result of its interconnections with the hippocampus and the amygdala, the prefrontal cortex is positioned at the top of the response initiation hierarchy and might be a principal limbic coordinator of physiological reactivity [2].
\nPVN projections from subfornical organ (SFO) are angiotensinergic and also promotes CRH secretion and biosynthesis [29]. This pathway may be involved in fluid/electrolyte balance stress induced stimulation of HPA-axis activity via activation of the angiotensin II type-1 receptor [30]. There are projections from organum vasculosum of the lamina terminalis (OVLT) to the anteroventral preoptic nucleus, DMH and preautonomic PVN. These pathways are believed to be responsible for initiating cardiovascular response to stress [31].
\nThe body’s responses to stressors are mediated by an intricate stress system, which includes the hypothalamic–pituitary–adrenal (HPA) axis and the sympathoadrenal system (SAS), which consists of sympathetic nervous system (SNS) and adrenomedullary system (AS) [32]. The hormones of HPA axis and catecholamines released by SAS are the primary mediators of the stress response [33].
\nAs mentioned earlier the paraventricular nucleus of hypothalamus (PVN) plays a major role in stress response. Stress induced activation of the parvocellular neurons of the PVN causes the release of CRH and Arginine vasopressin (AVP) and initiates the endocrine response to stressors. CRH controls ACTH release from the anterior pituitary gland [10]. AVP is co-localised with CRH in parvocellular neurons of PVN. In the anterior pituitary, AVP potentiates the effect of CRH on ACTH release [34]. Reciprocal connections exist between CRH neurons in PVN and noradrenergic neurons in the locus ceruleus (LC); hence, they stimulate each other in a positive feedback fashion [33]. CRH serves as a neurotransmitter that mediates sympathetic arousal, providing a link between the adrenocortical and autonomic branches of the stress response. The locus ceruleus-norepinephrine system (LNE) controls the stress-induced stimulation of the sympathoadrenal system (SAS) [10]. ACTH is the key regulator of glucocorticoid secretion from the adrenal cortex. Glucocorticoid hormones, mainly cortisol in humans, and cortisone in animals, are the final effectors of the hypothalamic-pituitary-adrenal axis (HPA) axis, which mediate the response of the organism to stressors [10].
\nThe first phase of the acute stress response involves activation of sympathoadrenal system (SAS), which results in a typical ‘fight-or-flight’ responses. These are rapid but short-term physiological adaptations, so as to meet the challenge imposed by a stressful event. It is mediated by the release of catecholamines like norepinephrine (NE). Whereas, the secondary phase involves the hormonal mechanism (hypothalamic-pituitary-adrenal axis) considered sluggish compared to the synaptic mechanisms that activate the SAS, but resulting in an amplified and protracted secretory response involving stress hormones like CRH, ACTH and glucocorticoids (GCs), mainly cortisol in human beings (long-lasting response). Cortisol in turn has effects all over the body including brain [13].
\nIn acute stress response, the action of SAS and HPA axis mediators is protective in nature and is geared to enable the individual to adapt to stressors. However, chronic exposure to stressors results in over-activation and or dysregulation of SAS and HPA-axis to induce a chain reaction of deleterious effects on the biological systems involved in stress response, which eventually leads to stress-related disorders [35]. Stress induced brain changes further diminish the body’s ability to cognitively process and physiologically respond to stressors [36]. In chronic stress, prolonged and synergistic effects of the stress hormones and pro-inflammatory cytokines adversely affect multiple interconnected organ systems (autonomic, neuroendocrine, immune and cardiovascular systems) involved in stress response, which finally results in various pathological conditions [8].
\nEssential hypertension is a multifactorial disorder with a strong genetic predisposition. Multiple studies have suggested involvement of many factors in the genesis of essential hypertension. The principal factors among them are: increased activity of SNS including renal SNS; over activity of renin-angiotensin-aldosterone system (RAAS); positive sodium imbalance; low levels of vasodilators, like nitric oxide (NO), prostacyclin (PGI2), and the natriuretic peptides; high levels of vasoconstrictors like endothelin 1 (ET 1); structural and functional vascular defects; increased activity of vascular growth factors; and obesity [37]. In recent studies, oxidative stress, endothelial dysfunction, vascular remodelling and decreased vascular compliance are implicated as the primary antecedents, which may be involved in the development of essential hypertension [38].
\nDue to the complexity of the mechanisms controlling blood pressure regulation and involvement of many interconnected regulatory organ systems, with various endogenous and exogenous factors interacting with these regulatory systems, the exact cause of essential hypertension is still not known [39].
\nAlthough stress is clearly implicated in the aetiology of essential hypertension, the relationship between a psycho-physiological construct like stress and the physical manifestation of essential hypertension is not simple or direct. It is quite likely that multiple etiologic pathways as well as the variety of intervening variables exist that lead to the onset of essential hypertension. However, psychological stress has been considered to be one of the major risk factors for essential hypertension [40, 41, 42].
\nThere have been many studies which suggest that, the exaggerated cardiovascular response (CVR) to life stressors appear to play a key role in the stress–hypertension relation [43, 44]. It has been suggested that, heightened cardiovascular reactivity could reflect sympathetic hyper responsivity or enhanced vagal withdrawal during stress, whereas poorer cardiovascular recovery could be due to prolonged sympathetic activation, diminished vagal tone, or attenuated or delayed vagal rebound following the termination of stress [45]. It is believed that increased cardiovascular reactivity and poor cardiovascular recovery could indicate autonomic dysregulation of cardiovascular system, which may be contributing in the pathogenesis of essential hypertension [46].
\nEvidence suggests that chronic exposure to psychosocial stress leads to the onset of essential hypertension via stress response, which includes the affective, cognitive, behavioural, and physiological alterations. Stress induced increased sympathetic activity, decreased vagal activity, reduced baroreflex gain, over activity of the hypothalamic-pituitary-adrenal (HPA) axis and endothelial dysfunction as a long-term consequence, cause increase in blood pressure and heart rate by affecting central and peripheral regulation of the CVS [47].
\nThere is a mount of evidence linking chronic stress with essential hypertension. Clinical and epidemiological studies indicate that chronic psychological stress can lead to essential hypertension [48, 49]. Many workers in their studies have found that individuals exposed to chronic stress show persistent hypertension [40, 50, 51]. Various population studies have demonstrated that psychosocial stress is associated with an increased risk of hypertension [52, 53]. Studies have also found that stress induced alterations in blood pressure persist even after the end of exposure to stressors [54, 55].
\nChronic exposure to stressors leads to dysregulation of autonomic nervous system and increase in the activity of HPA axis. Dysregulation of ANS causes increase in the activity of sympathetic nervous system (SNS), which further augments the activity of HPA axis [56]. Activation of SNS leads to enhanced release of NE, Nitric oxide (NO) and Neuropeptide Y (NPY) from sympathetic nerve terminals [57].
\nStimulation of sympathetic nervous system is a pathophysiological hallmark of essential hypertension, and especially, hypertension attributable to chronic mental stress [40, 58, 59]. Increased SNS activity leads to the development of hypertension by several mechanisms like peripheral vasoconstriction, increased cardiac contraction, renal sodium and water retention, baroreflex dysfunction, and vascular damage [60, 61]. Chronic sympathetic stimulation causes left ventricular hypertrophy and dysfunction, and arterial remodelling [62]. Repeated stress-induced vasoconstriction may also result in vascular hypertrophy, leading to progressive increases in peripheral resistance and blood pressure [63].
\nNE and NPY modulate the release of pro-inflammatory cytokines, such as Interleukin-6 (IL-6), C-reactive protein (CRP), and tumour necrosis factor (TNF) [52]. These cytokines in turn cause inflammation and endothelial dysfunction and lead to development of hypertension [64].
\nThe mechanisms underlying dysregulation of sympathetic nervous system activity involve impairment in sympathetic restraint due to alterations in arterial and cardio-pulmonary baroreflexes and central/peripheral chemoreflexes or error in the processing of reflex signals in brainstem cardio vascular centre [65]. Resetting of the baroreflex to a higher pressure and reduced baroreflex sensitivity are important mechanisms underlying essential hypertension [66, 67]. Resetting of baroreflex can be at afferent, central or efferent level [68]. Afferent component can be altered by defective mechanosensitive transduction in case of decreased vascular compliance and loss of coupling of vessel wall stretch to baroreceptors [67]. Prolonged stimulation of CNS via baroreceptor afferents may result in remodelling of the neural networks involved in the processing of baroreceptor signals. CNS ‘rewiring’ may be contributing to the resetting, adaptation, and post excitatory depression of the baroreceptors. This resetting in CNS could be due to decreased responsiveness of the medullary autonomic regulatory centres to baroreceptor signalling. Central resetting of baroreceptors causes sympathetic activity to ‘escape’ the inhibitory effect of baroreflex [69]. Evidence also shows that angiotensin II, aldosterone and reactive oxygen species (ROS) may be involved in the centrally mediated changes in baroreflex efferent activity, which contribute to sympathetic over activity in hypertension [69].
\nSympathetic outflow also affects renal regulation of blood pressure. Stimulation of the renal sympathetic outflow is thought to be a common final pathway in the pathogenesis of essential hypertension in chronic stress [51, 52]. The activation of renal sympathetic nerves underlines the concurrent ‘neural’, ‘renal’, and ‘sodium’ mechanisms leading to the development of hypertension. Stimulation of renal sympathetic nerves is believed to have direct and indirect effects (through RAAS) on renal ‘pressure-natriuresis’ mechanism inducing sodium and water retention, causing volume expansion and increased blood pressure [70].
\nDysregulation of HPA activity due to stress especially psychogenic stress, causes marked enhancement in basal HPA tone causing enhanced CRH and AVP synthesis [71], increase in the baseline glucocorticoid secretion, adrenal hypertrophy [72], down regulation of glucocorticoid receptors (GR) in feedback regions, such as hippocampus and prefrontal cortex [71], enhancement of cortisol response to stressors [73], blunting of glucocorticoid negative feedback effect [74], and increased anxiety and depression [75].
\nActivation of HPA axis involves increased secretion of CRH and AVP in the hypothalamus. AVP in turn potentiates CRH activity [76]. CRH stimulates production of ACTH by the anterior pituitary gland. ACTH then acts on the adrenal glands to cause release of glucocorticoids (GCs), mainly cortisol and mineralocorticoids (MRs). In addition to being a principal regulator of the HPA axis, CRH also causes stimulation of SNS activity [77]. Glucocorticoids stimulate biosynthesis, secretion and release of catecholamines (CA) by sympathetic nerves and adrenal medullary cells [78], and enhance vasoconstrictor effects of angiotensin-II and catecholamines and it has also been implicated in endothelial dysfunction [79]. Thus, synergistic and prolonged actions of CRH, glucocorticoids and catecholamines cause central and autonomic dysregulation of cardiovascular system, which eventually leads to hypertension.
\nRenin–angiotensin-aldosterone system (RAAS) plays an important role in the development of stress induced hypertension [80, 81]. Angiotensin II is the main effector of RAAS, which increases blood pressure by various mechanisms including, increase in the sympathetic outflow from the brain, constriction of resistance vessels, stimulation of aldosterone secretion, increase in renal tubular sodium reabsorption directly and indirectly, stimulation of thirst, and release of AVP hormone [38]. Angiotensin II modulates ‘pressure natriuresis’ mechanism in the kidneys and contribute to the development of RAAS-dependent blood pressure dysregulation in hypertension [82].
\nEvidence suggests that activation of angiotensinergic pathways in the central nervous system (CNS) plays a critical role in the development of hypertension by circulating angiotensin II or aldosterone [10]. Most of the actions of angiotensin II are mediated by angiotensin II type 1 receptors (AT1), which are expressed in a number of brain regions like, circumventricular organs (CVOs), hypothalamus, brainstem and parts of limbic cortex associated with the emotional stress response like, the amygdala, bed nucleus of stria terminalis (BST) and other limbic regions [83]. Projections from limbic regions extend to the areas involved in autonomic control of blood pressure, namely, circumventricular organs (CVOs) including Subfornical organ (SFO) and organum vasculosum of the lamina terminalis (OVLT) [84]. Angiotensinergic sympatho-excitatory neurons in CVO project to the paraventricular nucleus (PVN), and the PVN neurons in turn project to the rostral ventrolateral medulla (RVLM) in the brainstem or directly to the intermediolateral cell column in the spinal cord [85]. Circulating angiotensin II or angiotensin II released from nerve terminals bind to AT1 receptors and cause activation of presympathetic neurons thereby increasing SNS activity and blood pressure [86]. Thus, circulating angiotensin II acts as a major signal to the CNS that contributes to the development of hypertension. Angiotensin II not only exerts the central effects mentioned above to increase sympathetic outflow, but also has direct effects on postganglionic fibres to enhance the release of catecholamines [87].
\nAngiotensin II also promotes vasoconstriction [88], and is a potent stimulus for pro-inflammatory and pro-oxidative events leading to endothelial dysfunction, vascular remodelling and eventual development of hypertension [89, 90]. Angiotensin II exerts vascular damage by generation of reactive oxygen species (ROS) and stimulation of redox-dependent signalling pathways [91].
\nPsychological stress can affect immune function by activating sympathoadrenal system (SAS) as well as the HPA axis to release catecholamines (adrenaline and noradrenaline), ACTH, and glucocorticoids (cortisol). These stress hormones in turn induce immune modulation leading to production of pro-inflammatory cytokines, including C-reactive protein (CRP), tumour-necrosis factor (TNFα), Interleukin-6 (IL-6), Interleukin-1 (IL-1β), Interleukin-2 (IL-2), and the transcription factor of nuclear factor kappa B (NF-κB) [92]. Immune modulation can also occur directly through the binding of the stress hormones to their receptors on the surface of the immune cells as almost all immune cells express receptors for one or more of the stress hormones [93].
\nVarious studies suggest that hypertension is a state of chronic low grade inflammation, that is characterised by the infiltration of immune cells into the interstitium of affected organs, (mainly kidneys, blood vessels, brain and heart), where they release pro-inflammatory cytokines and promote oxidative stress, which then leads to dysfunction of these organs, causing hypertension and eventual end-organ damage [94, 95]. Thus, inflammation in the kidneys, vessels, and CNS plays a major role in the pathogenesis of hypertension [96].
\nEvidence shows that hypertensive patients have increased levels of circulating monocytes, lymphocytes and pro-inflammatory cytokines, such as tumour necrosis factor α (TNF-α), interleukin (IL) 6 and C-reactive protein [97]. Vascular inflammation is characterised by an accumulation of macrophages, monocytes, dendritic cells, B and T lymphocytes; moreover, increased expression of pro-inflammatory cytokines and cell adhesion molecules in different layers of the vascular wall induce extracellular matrix deposition, smooth muscle hypertrophy, and endothelial dysfunction, contributing to the development and maintenance of arterial hypertension [98]. Immune cells and cytokines stimulate formation of reactive oxygen species (ROS) by vascular smooth muscle cells and endothelial cells, which in turn causes endothelial dysfunction and hypertension [95].
\nSeveral studies show that hypertension is associated with accumulation T cells, monocyte/macrophages and dendritic cells in the kidneys. Cytokines secreted by innate and adaptive immune cells, as well as renal epithelial cells, modulate the expression and activity of sodium transporters along the nephron, leading to defective pressure natriuresis, sodium and water retention, and hypertension [95, 99]. Cytokines produced by T cells, especially IL −17 A, play an important role in pathogenesis of hypertension due to renal inflammation. Renal inflammation, immune cell infiltration, and augmented angiotensin II activity blunt pressure dependent natriuresis and cause hypertension [100].
\nThe central nervous system (CNS), the sympathetic nervous system (SNS), and the immune system are interconnected in the physiological modulation of hemodynamic and immune activity [101]. Inflammatory cells and cytokines can impair central autonomic control of blood pressure regulation [102]. CNS can serve as both a target for inflammatory cells in hypertension and as a mediator of inflammation through its communication with the immune system. Angiotensin II is a key contributor to these processes in the setting of hypertension. Angiotensin II causes T cell activation and vascular inflammation especially in CVO region of the brain and leads to hypertension [103].
\nThere is increasing evidence that oxidative stress is strongly associated with essential hypertension [104]. Many studies have shown that chronic psychological stress promotes oxidative stress throughout the body [105, 106]. Oxidative stress occurs when there is over production of oxidant agents, reactive oxygen species (ROS) that overwhelm the cellular antioxidant defence system. Oxidative stress causes endothelial dysfunction and thus contributes to the development of hypertension [107].
\nEndothelial dysfunction involves alteration of the endovascular lining of blood vessels that is characterised by a pro-thrombotic, pro-inflammatory, and pro-constrictive phenotype [107]. An imbalance in the homeostasis of the endothelial derived relaxing factors like NO and prostacyclin (PGI2) and endothelial derived constricting factors like endothelin 1 (ET 1) and angiotensin II, is a major feature in endothelial dysfunction, that leads to functional changes in the microvasculature with a predominant and deleterious constrictive tone, which causes increased peripheral resistance and hypertension [108].
\nReactive oxygen species (ROS) and reactive nitrogen species (RNS) have an important role in the homeostasis of the vascular wall, hence they are implicated in the pathogenesis of hypertension [109]. The most important ROS within the vasculature include the superoxide anion, hydrogen peroxide, hydroxyl radical and RNS being peroxynitrite. Physiologically, ROS generation is tightly regulated by endogenous cellular antioxidants, which include superoxide dismutase (SOD), catalase, thioredoxin, glutathione, and antioxidant vitamins [110]. In hypertension, there is a mismatch between ROS production and protective antioxidant mechanisms in the cells, leading to a state of oxidative stress [111].
\nOxidative stress may contribute to the development and/or maintenance of hypertension via numerous mechanisms. ROS such as superoxide combines with nitric oxide (NO), to form peroxynitrite. This reduces bioavailability of NO causing impaired endothelial derived vasodilation [112]. Free radical induced generation of lipid peroxidation products, such as F2-isoprostanes have vasoconstrictor effect and thus can modulate the vascular tone [113]. Superoxide leads to oxidation of tetrahydrobiopterin (BH4), which promotes endothelial nitric oxide synthase (eNOS) uncoupling and causes further production of ROS [114]. ROS also adversely affects blood vessels leading to structural remodelling and vascular dysfunction [115]. When produced in excess, ROS has many deleterious effects that results in endothelial dysfunction, increased vascular contractility, vascular remodelling, vascular inflammation, growth of vascular smooth muscle cells and apoptosis, lipid peroxidation and deposition of extracellular matrix proteins, all the major processes involved in pathogenesis of hypertension [116, 117].
\nEvidence also suggests an interrelationship between immune response and oxidative stress. Oxidative stress induced immune activation mechanism have been proposed in the pathogenesis of hypertension [95, 118]. It has been proposed that oxidative stress-induced ROS causes production of ‘isoketals’ by fatty acid oxidation, which serve as autoantigens [119]. Autoantigens then cause T cell proliferation and increased production of pro-inflammatory cytokines such as chemokine (C-C motif) ligand 2 (CCL2), IL-1, IL-6, IL-17A, and TNF-α in the kidneys, blood vessels and other tissues [89, 120]. These inflammatory mediators along with catecholamines and other blood pressure elevating hormones mutually exert their actions to cause vascular and renal dysfunction, which ultimately results in development of hypertension [119].
\nChronic inflammation and endothelial dysfunction play a crucial role in the development and progression of essential hypertension [121, 122, 123]. Prolonged exposure to stress generates, on the one hand, a state of chronic inflammation, which adversely affects the health and integrity of the endothelium [124]; and, on the other hand, activation of the HPA axis and the SNS, which produce mediators that directly affect the organ systems involved in blood pressure regulation [125]. Some of the mediators which may be central to the inflammatory mechanisms contributing to the pathogenesis of hypertension are listed below.
\nAs mentioned earlier infiltration of immune cells into the interstitium of kidneys, brain, heart, and blood vessels and release of cytokines cause inflammation and leads to the development of hypertension. It has been found that the number of circulating ‘immunosenescent’ pro-inflammatory CD8+ T cells is increased in hypertensive patients. These cells produce pro-inflammatory cytokines like IFN-γ and TNF-α, and the cytotoxic molecules, granzyme B and perforin [126]. These cells also express mineralocorticoid receptors, which play a major role in development of systemic hypertension by promoting production of IFN-γ [127]. It has been shown that IL-17A, produced by CD4+ T cells and γ/δ T cells, plays a critical role in hypertension [128, 129]. Clinical and experimental hypertension is associated with raised serum IgG, IgA or IgM antibodies produced by B cells [130]. Autoantibodies that are agonistic to angiotensin type 1 receptor (AT1 R) are found to be present in hypertensive patients [131, 132]. Monocytes and macrophages have been implicated in various models of experimental hypertension [133, 134]. They accumulate in the perivascular tissue, adventitia and kidneys [135] and promote the release of pro-inflammatory mediators and free radicals via NADPH oxidase 2 (NOX 2) to cause inflammation [136] Studies indicate that Dendritic cells (DCs) play a role in the development of hypertension. DCs in hypertensive animals produce an increased amount of superoxide and cytokines (IL-1ß, IL-6, IL-23), which affects T cell polarisation into the inflammatory phenotype [137].
\nCytokines produced by immune cells have deleterious inflammatory effects on the kidneys, blood vessels, heart and brain. IL-17A contributes to angiotensin II (Ang II)-induced renal injury and modulates the expression of renal sodium transporters affecting pressure natriuresis [138, 139]. Interferon Gamma (IFN-γ) produced by TH1 cells, CD8+ T cells (TC1 cells) and natural killer T cells, affect local renin-angiotensin system and along with IL-17A, it is found to alter the expression of renal sodium transporters in proximal and distal tubules to directly affect pressure-natriuresis mechanism [139]. Tumour Necrosis Factor-α (TNF-α), produced by T cells, macrophages, and endothelial cells, decrease the renal tubular expression of eNOS affecting NO production, which leads to sodium retention [140, 141]. Interleukin 6 (IL 6) produced by dendritic cells, macrophages, monocytes, and TH1 cells is considered to be a major signal to promote polarisation of CD4+ T cells to produce IL-17A [138]. IL-17A is implicated in the angiotensin induced hypertension [142].
\nStudies also show that IL-17A causes vascular dysfunction by increasing superoxide production and reduced NO production by impairing eNOS activity [94, 128, 138]. TNF-α affects endothelial eNOS expression, affecting production of NO by endothelial cells [143]. TNF-α also activates NF-κB and NADPH oxidase [143], which causes induction of oxidative stress and overexpression of both chemokines and adhesion molecules [144]. IFN-γ causes superoxide production via upregulation of the expression and activity of NADPH oxidases in human aortic smooth muscle cells [145]. It acts directly on vascular smooth muscle cells to induce their proliferation and apoptosis [146]. IL-6 mediates elevation of superoxide production and endothelial impairment by affecting NO-cGMP pathway [147]. IL-6 has also been reported to play a role in vascular smooth muscle cells migration and proliferation causing vascular medial hypertrophy [148].
\nBesides being produced in nervous system, CRH is also an autocrine and paracrine mediator in tissues like endothelium. In vitro studies show that CRH dose-dependently induces the release of endothelin-1 (ET-1) [149], causes increase in reactive oxygen species (ROS) content, increased catalase activity, and peroxynitrite levels as well as a decrease in the activity of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO) production [150]. It also cause increased vascular permeability, and cytokine release further affecting vascular health [151].
\nCirculating high level of GCs in hypertensive patients are believed to cause overproduction of ROS and reduced availability NO in the vascular endothelium. The GC-induced decrease in NO availability may elicit vascular endothelial dysfunction, leading to hypertension. GCs are also believed to stimulate release of vasoconstrictor endothelin 1 (ET 1) and increase vascular tone [56].
\nET-1 are powerful vasoconstrictor peptides produced by variety of tissues including vascular endothelium, heart, and kidney epithelial cells. The synthesis of ET-1 is stimulated by angiotensin II, AVP, norepinephrine, glucocorticoids, hypoxia, shear stress, lipoproteins, oxidative stress [152] and of particular interest, by acute mental or physical stress [153]. Studies have shown that ET-1 at the central level plays an essential role in the cardiovascular sympathetic response to stress [154]. Besides its vasoconstrictive action, ET-1 causes fibrosis of the vascular wall, mitotic stimulation of vascular smooth muscle, increased production of ROS (superoxide) and is pro-inflammatory [155]. ET 1 contributes to the development of inflammatory mechanisms by activating transcription factor-κB, and by increasing production of pro-inflammatory cytokines like, TNFα, IL-1, and IL-6. ET 1 also induces cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE 2) release by mitogen-activated protein kinase (MAPKs) and NF-κB. Cyclooxygenase-2 is involved in the development of vascular inflammation [156].
\nAngiotensin II induces an inflammatory response in the kidneys, heart and vasculature by increasing the expression of pro-inflammatory chemokines, and also causes T cell mediated inflammation [157]. Angiotensin II is one of the major vasoactive peptides involved in the regulation and activation of NAD(P)H oxidase, a major source of ROS in the vascular wall, and thus, it contributes to the production of ROS in vascular smooth muscle cells and endothelial cells [110]. Through ROS generation, angiotensin II exerts several deleterious vascular effects, including functional and structural changes, which results in hypertension [158]. Angiotensin II also promotes endothelial dysfunction through cyclooxygenase-2 (COX-2) activation, which generates vasoactive thromboxane A2 and ROS [159].
\nAldosterone has been reported to exert mineralocorticoid receptor mediated pro-inflammatory effects in vessels, heart and kidneys [64]. It induces inflammation by stimulating the formation of reactive oxygen species such as superoxide and hydrogen peroxide [160]. In the heart, aldosterone can increase vascular expression of intracellular adhesion molecule-1 (ICAM-1), monocyte chemotactic protein-1 (MCP-1), osteopontin, and COX-2, to cause inflammation [161]. In the kidneys, aldosterone has been shown to cause inflammation by leukocyte infiltration and elevation of osteopontin, IL-6, IL-1𝛽, and MCP-1 levels [162].
\nROS/RNS are strongly implicated in the pathogenesis of hypertension by causing oxidative stress, endothelial dysfunction and inflammation. ROS are derived from oxygen reduction which produces, through several steps, important intermediate products: superoxide anion, hydrogen peroxide, and hydroxyl radical [104] Some of the enzymes involved in ROS generation are: nitric oxide synthase, peroxidases, NADPH oxidase, NADPH oxidase isoforms (NOX), xanthine oxidase (XO), lipoxygenases (LOXs), glucose oxidase, and cyclooxygenases (COXs) [163]. RNS derives from nitric oxide (NO) that is generated by the NADPH-dependent enzyme nitric oxide synthase [164]. NO is a free radical but is relatively stable. NO is able to form other nitrogen reactive intermediates (nitrate, peroxynitrite, and 3-nitrotyrosine), which affect cell functions [165].
\nROS are potent modulators of vascular contraction, dilatation, and structural remodelling by processes such as reducing bioavailability of NO by superoxide anion (O2−), generation of vasoconstrictor lipid peroxidation products (F2-isoprostanes), depletion of tetrahydrobiopterin (a key cofactor for NO synthase), activation of pro-inflammatory transcription factors, stimulation of growth factor production, and induction of fibrosis through activation of matrix metalloproteinase [166]. These processes induce increased intracellular calcium, activation of growth and inflammatory signalling pathways, and increased extracellular matrix deposition, leading to endothelial dysfunction, increased vascular smooth muscle reactivity, and vascular remodelling [167]. All of these factors contribute to the development of hypertension.
\nThe answer to this question is not simple or straight forward. However, it is evident from the above discourse that stress, especially chronic psychological stress directly affects neuro-endocrinal control of blood pressure regulatory systems and contribute to the development and progression of essential hypertension. Central to the pathogenesis of hypertension is the over activity of SNS and HPA axis. Increased sympathetic outflow and HPA system hyperactivity act synergistically to potentiate the actions of each other and results in a cascade of deleterious effects on the various inter-connected organ systems involved in blood pressure regulation. Principle among these organs are kidneys, brain, heart and blood vessels, which may suffer eventual structural and functional deterioration. The consequences of these effects are baroreflex dysfunction, stimulation of RAAS activity, activation of immune cells, oxidative stress and endothelial dysfunction. The end result of these effector mechanisms is manifested in several different ways affecting the target organs; in kidneys, altered pressure dependent natriuresis leading to sodium retention and fluid volume expansion, in blood vessels, vascular inflammation, increased vascular contractility, vascular remodelling and arterial stiffness all causing increased peripheral resistance, and in heart, cardiac injury, fibrosis of heart and cardiac hypertrophy. Combination of all these factors eventually lead to the development of essential hypertension.
\nYoga is an ancient Indian discipline designed to bring balance and health to the physical, mental, emotional, and spiritual dimensions of the individual [168]. Numerous studies have shown yoga to have beneficial effects on cardio-vascular indices in hypertensive patients. The exact underlying mechanisms of the beneficial effects of yoga in hypertension still remain elusive. However, there is a reason to believe that yoga may be having multiple and simultaneous effects on diverse neuro-endocrine regulatory structures to cause neurohumoral modulation resulting in alleviation of stress and improvement in cardiovascular behaviour. Thus, yoga seems to have beneficial effects in essential hypertension by two-way action of simultaneously influencing blood pressure regulatory mechanisms as well as stress regulatory mechanisms.
\nVarious neurophysiological mechanisms have been proposed in previous studies to explain the beneficial effects of yoga therapy in hypertension. Following sections describe some of the possible neuro-endocrine mechanisms underlying the beneficial effects of yoga in essential hypertension.
\nThere is increasing evidence that yoga appears to have widespread beneficial effects on the cardiovascular response to stress in healthy and hypertensive individuals through down-regulation of the HPA axis and the sympathetic nervous system (SNS) [168, 169].
\nIn various studies, it has been found that regular practitioners of yoga asanas showed a significant reduction in the blood levels of adrenaline, noradrenaline and plasma rennin activity [170, 171]. The attendant reduction in catecholamines and cortisol, decline in cardiovascular reactivity, enhancement of mood and well-being, and alleviation of perceived stress may result in positive downstream effects on metabolic and hemodynamic profiles [168, 171, 172]. Yoga thus significantly decreases heart rate and systolic and diastolic blood pressure probably by its quietening effect on HPA axis and SNS activity [168, 171, 173].
\nDown regulation of HPA axis and SAS by yoga may be brought by the actions of yoga on different neural structures involved in stress response and cardiovascular regulation. It has been proposed that yoga may be acting at the level of the paraventricular nuclei (PVN) of the hypothalamus, which is a principal integrator of stress signals involved in regulating HPA axis and autonomic responses to stressors. Evidence suggests that the yogic practices probably inhibit the activity of PVN with the resultant decrease in ACTH release from anterior pituitary which in turn decreases the synthesis of cortisol from the adrenal glands [174]. Cortisol also tends to activate phenyl ethanolamine-
Yoga may also be causing inhibition of the posterior hypothalamus to decrease sympathetic activity and thus, may restore autonomic balance between sympathetic and parasympathetic limbs to alleviate stress [174, 175, 176].
\nYoga may also be acting at the level of limbic cortex and/or higher cortical centres to modulate autonomic response to stress. It has been proposed that regular practice of yoga results in modulation of autonomic response such that there is a predominant parasympathetic effect and reduced sympathetic tone, which causes reduction in heart rate and blood pressure. Furthermore, it is suggested that this modulation of autonomic balance may be mediated through the limbic system and higher cortical areas resulting in the inhibition of posterior nuclei of hypothalamus leading to decreased discharge through descending autonomic fibres [176, 177, 178].
\nStudies have also shown that regular practice of yoga is associated with the reduction in the basal cortisol and catecholamine secretion, decrease in sympathetic activity with the corresponding increase in parasympathetic activity [179]. It is believed to be due to the alleviation of stress by yoga. Stress relieving effect of yoga may be due to modulation of limbic signals, which may alter sympathetic activity and hormonal response during stress via hypothalamus [180, 181]. Yoga might also be involved in upregulation of hippocampal 5HT1A receptors leading to decrease in cortisol levels and thus helping to relieve stress [179].
\nIn a study, which assessed the effect of yoga based guided relaxation on autonomic variables, it was found that there was a decrease in heart rate and skin conductance levels along with the decrease in power of the low frequency component of heart-rate variability and increase in the power of high frequency component, which could be attributed to decreased sympathetic tone after guided relaxation [182]. In other studies involving yoga intervention in depressed patients, significant reductions in low-frequency heart rate variability (HRV); a sign of sympathetic nervous system activation, was noted following yoga intervention [168, 183].
\nRegular practice of slow pranayamic breathing is also known to reduce sympathetic nerve traffic and increase parasympathetic activity [184, 185]. One of the long-term effects of pranayamic breathing is the improvement in autonomic function. Specifically, with slow breathing pranayama there is a noted increase in parasympathetic activity and a decrease in sympathetic dominance [177, 184]. Short-term effects of slow pranayamic breathing include increased galvanic skin resistance, decreased heart rate, decreased blood pressure and increased amplitude of theta waves indicating increased parasympathetic activity. Both the short term and long-term effects of pranayamic breathing indicate a dynamic alteration of the autonomic system tilting the balance in favour of parasympathetic dominance [184, 186]. It is proposed that slow deep pranayamic breathing shifts the autonomic balance to parasympathetic dominance by two mechanisms: (1) Inflation of lungs above tidal volume during pranayama stimulates stretch receptors in the lungs. Stimulation of stretch receptors increases the frequency and duration of inhibitory neural signals that are known to elicit synchronisation of neural activity in the cardio-respiratory centre in the brainstem [187] and CNS especially hypothalamus [188]. Synchronisation within the hypothalamus and the brainstem [189] may be responsible for inducing the parasympathetic response [190] during breathing exercises. (2) Pranayama also causes stretching of connective tissue (fibroblasts) localised around the lungs. Hyperpolarisation is generated in the stretched lung fibroblasts, which induces generation of slower brain wave activity and parasympathetic shift of ANS [184]. Hyperpolarisation affects the autonomic nervous system by modulating neuronal excitability [191], resting membrane potential [187], and generating rhythmic brain activity [188].
\nIt is proposed that by stimulating the vagus nerve activity, yoga may enhance parasympathetic output and thereby shift the autonomic balance from primarily sympathetic to parasympathetic that may buffer the effects of stress leading to positive changes in the cardiovascular, neuroendocrine, and metabolic responses to stress with the resultant decrease in heart rate and blood pressure [172].
\nIt has been proposed that the positive effects of yoga may be mediated by increased vagal activity and consequent reduction in cortisol. This may likely happen via stimulation of dermal and/or sub dermal pressure receptors that are innervated by vagal afferent fibres, which ultimately project to the limbic system and also hypothalamic structures involved in regulating cortisol secretion. These pathways are supported by anatomical studies indicating that baroreceptors and mechanoreceptors within the dermis (i.e. Pacinian corpuscles) are innervated by vagal afferent fibres. Yoga may thus increase vagal activity via stimulation of pressure receptors and cause decrease in cortisol levels [192]. Vagal stimulation promotes down regulation of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) [168, 172]. As a result there is a decrease in the release of cortisol and catecholamines leading to reduction in the heart rate and systolic and diastolic blood pressure [193].
\nIn addition, tactile sensory stimulation is conducted through the vagal afferents directly to medulla oblongata in the nucleus of the solitary tract (NTS). Axons from NTS then project to the dorsal motor nucleus of the vagal nerve and the PVN neurons containing oxytocin that mainly influence the NTS regulation of the heart rate and indirectly the blood pressure [194]. Initial studies indicate stress-reducing effects of oxytocin in humans, as increased levels of oxytocin serve to suppress both sympathetic arousal and HPA) axis responses to stress [195]. Many studies in humans found support for a negative relationship between basal plasma oxytocin levels and norepinephrine, blood pressure, and heart rate [196].
\nIn studies employing ‘Sudarshan Kriya Yoga’, a yogic breathing technique, it was found that physiological responses to stress improved through mechanisms involving both afferent vagal activity (altering CNS behaviours) and efferent vagal activity, as well as through decreased chemoreflex sensitivity and improved baroreflex response [197, 198]. In another study it was found that long term practice of yogic breathing enabled body to tolerate exercise induced higher levels of carbon dioxide by decreasing chemoreflex sensitivity mediated via vagus nerve [199]. It has been proposed that adaptation of peripheral/central chemoreceptors to chronic carbon dioxide retention or adaptation of pulmonary stretch receptors to a habit of slow respiration may increase vagal afferent discharge to the brainstem centre NTS. Vagal nerve afferents synapse in the medulla on the nucleus tractus solitarius (NTS), which in turn communicates to the thalamic nuclei via parabrachial nucleus (leading to modulatory effects on cerebral cortex) and the limbic system. Through the limbic system directly or indirectly through subcortical areas, the neuroendocrine outputs are then modulated, resulting in the reduction of cortisol and increase in oxytocin, and prolactin secretion. These vagal effects are physically and emotionally calming and help in alleviation of stress [200, 201].
\nThe arterial baroreflex acts to buffer acute changes in blood pressure by reciprocal modulation of sympathetic and parasympathetic activity that controls the heart and vasculature [202]. Baroreflex sensitivity indicates cardiovagal adaptability allowing greater responsiveness and sensitivity to changing environmental demands [172]. Vagal stimulation increases heart rate variability (HRV) and baroreflex sensitivity [203]. HRV is a cyclic variation in the beat-to-beat interval that results from the tonic firing of cardiac-vagal efferents originating in the medulla. High HRV and baroreflex sensitivity are generally considered to indicate cardiovagal adaptability and sympathovagal balance [203].
\nYoga breathing exercises and postures are known to have immediate beneficial effects on heart rate variability and baroreflex sensitivity with reductions in heart rate and blood pressure [171, 172, 182, 204]. These effects are thought to reflect direct stimulation of the vagal nerve [171, 172].
\nPractice of yogic postures has been shown to restore baroreflex sensitivity leading to blood pressure reduction [171]. It is suggested that strong mechanical pressure at the neck by some yogasanas like ‘halasana’ and ‘sarvangasan’ can increase arterial pressure (locally) so as to stimulate carotid baroreceptors to activate baroreceptor reflex mechanism leading to reduction in the heart rate and fall in the blood pressure via parasympathetic stimulation as in relaxation technique [205].
\nIn a study conducted in the patients of essential hypertension (EH), it was found that at the end of 3 weeks of yoga course, the head-up and head-down tilt yogasanas restored baroreflex sensitivity to normal and reduced blood pressure significantly. It was suggested that once the sensitivity of baroreceptor mechanism was restored, it corrected all other neurohormonal malfunctioning, which was evident from the reduction in sympathetic activity, blood catecholamines, plasma rennin activity [171].
\nIn another study exploring the effects of aerobic exercise training and yoga, on the baroreflex sensitivity in sedentary, healthy, normotensive elderly persons, it was found that, after 6 weeks of yoga training, the heart rate decreased in yoga group [204]. There was increased alpha-index at High Frequency (HF) reflecting parasympathetic activity but alpha-index at mid frequency (MF) (reflecting sympathetic activity as well) was not increased. However, short-duration aerobic training did not modify the alpha-index at MF or at HF in aerobic group [204].
\nBesides yogasanas, yogic breathing is also known to increase baroreflex sensitivity. In a study investigating the effect of a single session of slow breathing (6 breaths/minute) in healthy subjects, there was increased baroreflex sensitivity and reduction in chemoreflex sensitivity [206]. This seemed to occur through a relative increase in vagal activity and a corresponding decrease in sympathetic activity. The increase in tidal volume could be responsible for these autonomic changes through a reduction in sympathetic activity or via the Hering-Breuer reflex. Reduced sympathetic activity may be linked to a reduction of chemoreflex overactivity due to the reciprocal influences of the baroreflex and chemoreflex [207].
\nIn yet another study on the patients of essential hypertension, slow breathing increased baroreflex sensitivity and reduced sympathetic activity and reduced chemoreflex activity, suggesting a potentially beneficial effect of yogic breathing technique in hypertension [208]. It has been proposed that slow breathing may enhance baroreflex sensitivity through increased vagal activity and decrease in sympathetic activity. Besides this, slow breathing may also cause increase in tidal volume and activate Hering–Breuer reflex, an inhibitory reflex triggered by lung stretch receptors and mediated by vagal afferents, which may increase baroreflex sensitivity. It has been also suggested that slow breathing may increase oxygen absorption that follows increased tidal volume, this may cause reduction in chemoreflex sensitivity, which in turn may result in increased baroreflex sensitivity via their reciprocal relationship [206, 207, 208]. It has also been proposed that, the nucleus tractus solitarius (NTS) acts as an integrating centre for baroreflex, chemoreflex and Hering-Breuer reflex and plays an important role in the effect of breathing on cardiovascular modulation and blood pressure reduction. However, the exact mechanism of such integration is not clear [209].
\nGABA is essential as a negative regulator of neuronal excitability in the PVN, thus mediating the amplitude and the duration of the stress response [210]. One of the major mechanisms responsible for inhibition of HPA axis is the direct neural inhibition of PVN neurons by the neurotransmitter GABA [210, 211]. The neuro-circuitry data suggest that GABA-containing pathways might comprise a key component of the abnormalities in the HPA axis seen in human stress pathology [12]. It is suggested that impaired GABAergic control of PVN neurons may contribute to the elevated sympathetic drive in hypertension [212].
\nYoga may be modulating HPA axis and SNS response at the level of PVN by its effect on GABA system. It has been shown that practice of yoga asanas results in significant increase in brain GABA levels especially in thalamus [213]. It is suggested that increase in brain GABA levels following yogic intervention may be due to the ability of yoga practices to increase the activity of parasympathetic nervous system (PNS) by stimulating vagal afferents [213, 214]. Inhibitory influences from thalamus over the stress axis probably may be acting by way of BST-GABAergic inputs to PVN [215].
\nThus, the beneficial effects of yoga appear to be mediated through several mechanisms including down regulation of HPA axis and sympathoadrenal system, stimulation of vagus to shift the autonomic balance towards parasympathetic dominance, enhancement of baroreflex sensitivity, and increase in brain GABA levels so as to inhibit PVN, the integrator area of stress signals.
\nStress disturbs homeostasis of the body, which results in a series of neuroendocrine and behavioural responses aiming to cope with the challenges evoked by the stressors. However, chronic exposure to stressors can turn the protective adaptive responses into self-perpetuating vicious cycle of deleterious effects on various systems of the body, including cardiovascular, renal, immune, and nervous system, which finally culminates into pathological conditions like essential hypertension. Yogic intervention exerts its beneficial effects by acting through several different mechanisms and modulates neuro-endocrine control of stress response and cardiovascular behaviour. Thus, yoga has two-way action, at one level it tones down neuro-humoral response to stress and at another level, it brings about improvement in the cardiovascular indices in essential hypertension.
\nThe author declares that he does not have any conflict of interest.
Congenital diaphragmatic hernia (CDH) is a congenital malformation of diaphragm, which leads to a defect in separation between the thoracic and abdominal cavities [1, 2]. It appears to be due to an error in the development of the pleuro-peritoneal canals and therefore develops around 6 weeks of gestation [1]. Its incidence is 1:3000 live births. Progress in the management of these patients has significantly increased survival rates (up to 90% [3]), but disease-related morbidity remains very high: the main problem is the compression exerted by the herniated viscera on the developing lungs, development, which causes pulmonary hypoplasia and hypertension [4].
CDH can be classified, depending on the location of the defect, into postero-lateral, or Bochdalek’s hernia (70–75%), anterior or Morgagni’s hernia (23–28%) and central or hiatal hernia (2–7%) [4]. Morgagni’s hernia is often discovered incidentally in older children, as it rarely causes such a mass effect on the thoracic level as to compromise the development of the lungs. Bochdalek’s hernia is the form that is classically referred to when talking about this pathology and to which we will refer accordingly in the next paragraphs (26). Most often it is located on the left side (85%), but it can also be right (13%) or bilateral (2%) [4].
The pathogenesis of CDH is complex and currently still little known. Some studies have shown that pulmonary hypoplasia in these patients arises before the development of the diaphragm itself. This discovery opened the door to the so-called “double hit theory” which sees pulmonary hypoplasia as the result of two insults: the first, affecting both lungs, would be due to genetic and environmental factors (for example alcohol, smoking, obesity, low intake of retinoids during pregnancy); the second, which would affect only the lung ipsilateral to the defect, would consist of the compressive effect of the herniated viscera and their interference with normal fetal respiratory movements. Multiple studies have demonstrated the importance of the genetic component in the pathogenesis of ECD: they often fall within syndromic pictures, and about 40% of cases are associated with other congenital anomalies, especially cardiovascular (11–15% of ECD) [4].
Given the potential severity of the disease, prenatal counseling represents a fundamental phase of the diagnostic-therapeutic process of CDH: parents must be adequately informed about all the steps to be taken and the risks in terms of mortality and morbidity.
Ultrasound currently represents the gold standard in CDH diagnosis, although it has been calculated that less than two-thirds of CDHs are detected on prenatal screening ultrasound scans. The mean gestational age at diagnosis is 24–25 weeks, more advanced in cases of isolated defects than in CDHs associated with other anomalies. The typical ultrasound sign is the presence of abdominal organs (intestinal loops, stomach, liver) in the chest. Indirect signs of CDH can be changes in the heart axis, polyhydramnios, mediastinal shift. The differential diagnosis includes all congenital pulmonary malformations, bronchial atresia, intestinal duplications and mediastinal masses [5, 6]. The execution of genetic tests and second-level imaging tests is essential for defining the prenatal management strategy, whether it is inclined towards termination of pregnancy, or whether it is oriented towards fetal therapies. One of the main prognostic factors is represented by the lung to head ratio (LHR), which by measuring the length of the lung contralateral to the hernia normalized for the head circumference, provides an indirect estimate of pulmonary hypoplasia. More specifically, since the LHR changes with advancing gestational age, we prefer to use the ratio between observed LHR and expected LHR (observed/expected LHR or o/and LHR).
One or/and LHR <25% is indicative of severe hypoplasia, while one/and LHR of 25–35% or an LHR of 35–45% with herniated liver are indicative of moderate hypoplasia. In fact, another prognostic factor is represented by the position of the liver: since the liver and the fetal lung are poorly distinguishable ultrasonographically, there may be an indication to perform a fetal magnetic resonance [3, 4, 5, 6]. It allows to evaluate not only the presence or absence of liver in the thoracic cavity, but also to quantify the observed/expected total fetal lung volume (or/and TFLV), which was a better predictor in terms of postnatal survival. As an alternative to magnetic resonance evaluation of the or/and TFLV, some authors have demonstrated a close relationship between the liver herniation, the position of the stomach (which being anechoic is much more easily identifiable) and the postnatal outcome. Finally, given the high frequency with which EDC is associated with cardiovascular anomalies, there is an indication to perform fetal echocardiography [7, 8].
The prenatal management of fetuses affected by CDH essentially provides for an ultrasound monitoring of the ultrasound parameters described above, associated in doubtful cases with second level examinations such as resonance. In recent years, however, fetal therapy has become increasingly popular on the international scene, indicated in cases where negative prognostic factors are detected in screening investigations (liver herniation, LHR <1.0). The purpose of these interventions is essentially to stop the mechanisms that induce the onset of complications such as pulmonary hypoplasia and pulmonary hypertension as early as possible. The technique currently most used is fetal tracheal occlusion (FETO): it is based on the principle that the occlusion of the trachea prevents the leakage of fluids, increasing the pressure in the airways and promoting lung growth. However, animal models have shown that tracheal occlusion reduces the maturation of type II pneumocytes, inducing a surfactant deficiency: for this reason the so-called “plug-unplug” sequence was devised, in which the patency of the trachea is first interrupted by the introduction of a balloon (or plug) and then re-established before delivery to allow lung maturation. This procedure can be performed percutaneously under ultrasound guidance or fetoscopy, typically between 27 and 32 weeks of gestational age, with the plug removed at 34 weeks. This procedure appears to be associated with increased survival in children with moderate and severe CDH, although further risk-benefit studies are certainly needed.
In children with CDH, the only medical treatment for which there is evidence of efficacy is corticosteroid therapy: maternal administration of one or two doses of corticosteroids at 34–36 weeks of gestation appears to be correlated with a reduction in respiratory morbidity at birth. Promising studies are also underway on the prenatal use of retinoids and phosphodiesterase inhibitors (Sildenafil) and on the use of stem cells from amniotic fluid in combination with FETO [4].
The optimal timing and modality of delivery for children with CDH are still under discussion today. There seem to be no indications for induced delivery before 38 weeks of gestation, as well as there do not seem to be any advantages in performing a cesarean section. On the other hand, a unanimous consensus was found on the importance of planning the birth in a third-level center, where a multidisciplinary group (gynecologists, neonatologists, surgeons and pediatric anesthetists) is available, capable of managing the disease [4].
At birth, the main objective must be to ensure adequate ventilatory support (without triggering a vasospasm or further lung damage) and induce not too deep sedation (which would further compromise respiratory function). In case of respiratory distress, endotracheal intubation is carried out directly: in fact, ventilation with a facial mask must be avoided, as it would lead to distension of the stomach and intestinal loops, worsening the respiratory dynamics.
For the same principle, the positioning of a nasogastric tube is indicated at the same time, in order to decompress the stomach as much as possible. It is considered acceptable to maintain reduced saturation levels and a certain degree of hypercapnia, as long as the pH is kept above 7.2: in the presence of acidosis, in fact, vascular resistance would increase and consequently the risk of pulmonary hypertension. Another major problem in these patients is hemodynamic instability: to assess the need for inotropic support, these patients must be continuously monitored from a pressure point of view and postnatal echocardiography (within 48 h of life) must be performed if necessary repeated at 2–3 weeks. The indication for the ECMO, as a bridge to surgery in the most compromised patients, is still much debated. One of the biggest challenges remains the management of pulmonary hypertension: currently the most widely used treatment is inhaled nitric oxide, although encouraging new studies are underway on the use of Sildenafil [2, 4, 5].
Surgical treatment of CDH should be planned in election, after the achievement of hemodynamic stability. The only case in which it is acceptable to perform an emergency operation is when there are signs of ischemia of the herniated intestinal loops. As for the surgical technique, this can be performed openly (in thoracotomy or laparotomy) or by minimally invasive techniques. The intervention consists in the repositioning of the herniated organs within the abdomen and consequently in the closure of the defect, which can be primary or with a patch depending on the size of the defect. Minimally invasive techniques and the use of a patch were associated with a higher relapse rate [3, 4].
In light of the increased survival of newborns with CDH, long-term outcomes, especially in terms of quality of life, have assumed increasing importance over time. The most compromised organs are certainly the lungs: in addition to the well-known pulmonary hypertension, these children experience alterations both in a restrictive sense (due to pulmonary hypoplasia) and in an obstructive sense (similar to bronchodysplasia of the premature infant) [8]. Pulmonary function seems to gradually restore during childhood, but recent studies have shown a slight deterioration of the same from childhood to adulthood. The respiratory system is not the only one affected by this disease. Gastroesophageal reflux is present in 45–89% of children with CDH and appears to be correlated with the size of the defect. Stunted growth is also a frequent finding, affecting 69% of these children at 1 year of age. Neurological alterations (in terms of delay in neurodevelopment but also sensorineural deafness) represent one of the most feared and also most frequent complications of CDH, with incidence rates ranging from 12 to 77%, especially in children undergoing ECMO. Finally, musculoskeletal deformities (chest anomalies, hemithorax asymmetries, scoliosis) were reported in 21–48% of patients treated for CDH [3].
All this, together with the fact that a good percentage of CDHs fall into syndromic pictures or are associated with other congenital anomalies, justifies the importance of a long-term follow-up program.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\\n\\n9. Types of advertisments:
\\n\\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\\n\\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\\n\\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\\n\\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\\n\\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\\n\\nPolicy last updated: 2021-04-28
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or topic search.
\n\n9. Types of advertisments:
\n\n- Advertisements in the Physical Sciences, Engineering and Technology, and Social Sciences and Humanities sections of the IntechOpen website are programmatic (based on user behaviour such as web pages visited, content viewed, etc.)
\n\n- Advertisements in the Life Sciences and Health Sciences sections of the IntechOpen website are programmatic as well as contextual based on the content of the respective books and chapters. IntechOpen's third party partner eHealthcare Solutions (EHS) is a unique marketing platform that specializes in connecting niche audiences with healthcare brands.
\n\nYou may view their privacy policy here: https://ehealthcaresolutions.com/privacy-policy/
\n\n10. IntechOpen Advertising Sales department makes the decisions about the types of advertisements to include or exclude. Placement of advertising is at the discretion of IntechOpen. IntechOpen retains the right to reject and/or request modifications to the advertisement. An advertisement that is visible online, will be withdrawn from the site at any time if the Editor(s) or Author(s) request its removal.
\n\n11. Users can make decisions about accepting advertisements. Users can block all the advertisements by using ad blockers. Users can send all the complaints about advertising to: info@intechopen.com.
\n\nPolicy last updated: 2021-04-28
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[],filtersByRegion:[],offset:0,limit:12,total:null},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"13"},books:[{type:"book",id:"11369",title:"RNA Viruses",subtitle:null,isOpenForSubmission:!0,hash:"52f8a3a1486912beae40b34ac557fed3",slug:null,bookSignature:"Ph.D. Yogendra Shah",coverURL:"https://cdn.intechopen.com/books/images_new/11369.jpg",editedByType:null,editors:[{id:"278914",title:"Ph.D.",name:"Yogendra",surname:"Shah",slug:"yogendra-shah",fullName:"Yogendra Shah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11630",title:"Life in Extreme Environments - Diversity, Adaptability and Valuable Resources of Bioactive Molecules",subtitle:null,isOpenForSubmission:!0,hash:"9c39aa5fd22296ba53d87df6d761a5fc",slug:null,bookSignature:"Dr. Afef Najjari",coverURL:"https://cdn.intechopen.com/books/images_new/11630.jpg",editedByType:null,editors:[{id:"196823",title:"Dr.",name:"Afef",surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11633",title:"Pseudomonas aeruginosa - New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"a7cd19791397a27a80526be0dc54bd8a",slug:null,bookSignature:"Associate Prof. Osama Darwesh and Dr. Ibrahim Matter",coverURL:"https://cdn.intechopen.com/books/images_new/11633.jpg",editedByType:null,editors:[{id:"298076",title:"Associate Prof.",name:"Osama",surname:"Darwesh",slug:"osama-darwesh",fullName:"Osama Darwesh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11634",title:"Mycobacterium - Epidemiology, Prevention, Diagnostic, and Management",subtitle:null,isOpenForSubmission:!0,hash:"aa972af90c14eb4ef39b6dc71911f623",slug:null,bookSignature:"Dr. Awelani Mutshembele",coverURL:"https://cdn.intechopen.com/books/images_new/11634.jpg",editedByType:null,editors:[{id:"468847",title:"Dr.",name:"Awelani",surname:"Mutshembele",slug:"awelani-mutshembele",fullName:"Awelani Mutshembele"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11635",title:"Towards New Perspectives on Toxoplasma gondii",subtitle:null,isOpenForSubmission:!0,hash:"2d409a285bea682efb34a817b0651aba",slug:null,bookSignature:"Dr. Saeed El-Ashram, Dr. Guillermo Téllez and Dr. Firas Alali",coverURL:"https://cdn.intechopen.com/books/images_new/11635.jpg",editedByType:null,editors:[{id:"209746",title:"Dr.",name:"Saeed",surname:"El-Ashram",slug:"saeed-el-ashram",fullName:"Saeed El-Ashram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11796",title:"Cytomegalovirus - Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"4e442adc2808f68ccc1aeac17e6ae746",slug:null,bookSignature:"Dr. Seyyed Shamsadin Athari and Dr. Entezar Mehrabi Nasab",coverURL:"https://cdn.intechopen.com/books/images_new/11796.jpg",editedByType:null,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11797",title:"Clostridium difficile",subtitle:null,isOpenForSubmission:!0,hash:"4cb066b44bb8d4a8b93a627de26e3ebf",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11797.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11798",title:"Listeria monocytogenes",subtitle:null,isOpenForSubmission:!0,hash:"678ca4185133438014939804bf8a05e6",slug:null,bookSignature:"Prof. Cristina Saraiva, Dr. Sónia Saraiva and Prof. Alexandra Esteves",coverURL:"https://cdn.intechopen.com/books/images_new/11798.jpg",editedByType:null,editors:[{id:"226197",title:"Prof.",name:"Cristina",surname:"Saraiva",slug:"cristina-saraiva",fullName:"Cristina Saraiva"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11799",title:"Salmonella - Past, Present and Future",subtitle:null,isOpenForSubmission:!0,hash:"6ddb13c31fb19c6f79d19f11ceeb860e",slug:null,bookSignature:"Ph.D. Hongsheng Huang and Dr. Sohail Naushad",coverURL:"https://cdn.intechopen.com/books/images_new/11799.jpg",editedByType:null,editors:[{id:"342722",title:"Ph.D.",name:"Hongsheng",surname:"Huang",slug:"hongsheng-huang",fullName:"Hongsheng Huang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11800",title:"Cyanobacteria - Recent Advances and New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"645b037b086ec8c36af614326dce9804",slug:null,bookSignature:"Dr. Archana Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/11800.jpg",editedByType:null,editors:[{id:"186791",title:"Dr.",name:"Archana",surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11801",title:"Roundworms - A Survey From Past to Present",subtitle:null,isOpenForSubmission:!0,hash:"5edc96349630be8bb4e67170be677d8c",slug:null,bookSignature:"Dr. Nihal Dogan",coverURL:"https://cdn.intechopen.com/books/images_new/11801.jpg",editedByType:null,editors:[{id:"169552",title:"Dr.",name:"Nihal",surname:"Dogan",slug:"nihal-dogan",fullName:"Nihal Dogan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:23},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4430},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1207",title:"Forensic Toxicology",slug:"forensic-toxicology",parent:{id:"220",title:"Toxicology",slug:"pharmacology-toxicology-and-pharmaceutical-science-toxicology"},numberOfBooks:1,numberOfSeries:0,numberOfAuthorsAndEditors:14,numberOfWosCitations:70,numberOfCrossrefCitations:45,numberOfDimensionsCitations:94,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"1207",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"4557",title:"Toxicology Studies",subtitle:"Cells, Drugs and Environment",isOpenForSubmission:!1,hash:"e547709cb19f12af25b2eb23aecc726d",slug:"toxicology-studies-cells-drugs-and-environment",bookSignature:"Ana Cristina Andreazza and Gustavo Scola",coverURL:"https://cdn.intechopen.com/books/images_new/4557.jpg",editedByType:"Edited by",editors:[{id:"172081",title:"Dr.",name:"Ana Cristina",middleName:null,surname:"Andreazza",slug:"ana-cristina-andreazza",fullName:"Ana Cristina Andreazza"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"48406",doi:"10.5772/59710",title:"Impact of Pesticides on Environmental and Human Health",slug:"impact-of-pesticides-on-environmental-and-human-health",totalDownloads:7379,totalCrossrefCites:25,totalDimensionsCites:62,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Mariana Furio Franco Bernardes, Murilo Pazin, Lilian Cristina Pereira\nand Daniel Junqueira Dorta",authors:[{id:"172524",title:"Dr.",name:"Daniel",middleName:null,surname:"Dorta",slug:"daniel-dorta",fullName:"Daniel Dorta"}]},{id:"48270",doi:"10.5772/59885",title:"Estrogenic Compounds in Estuarine and Coastal Water Environments of the Iberian Western Atlantic Coast and Selected Locations Worldwide — Relevancy, Trends and Challenges in View of the EU Water Framework Directive",slug:"estrogenic-compounds-in-estuarine-and-coastal-water-environments-of-the-iberian-western-atlantic-coa",totalDownloads:1814,totalCrossrefCites:10,totalDimensionsCites:10,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Maria João Rocha and Eduardo Rocha",authors:[{id:"172652",title:"Prof.",name:"Eduardo",middleName:null,surname:"Rocha",slug:"eduardo-rocha",fullName:"Eduardo Rocha"},{id:"172670",title:"Prof.",name:"Maria João",middleName:null,surname:"Rocha",slug:"maria-joao-rocha",fullName:"Maria João Rocha"}]},{id:"48295",doi:"10.5772/60439",title:"Tramadol Poisoning",slug:"tramadol-poisoning",totalDownloads:4094,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Omid Mehrpour, Mohammaddavood Sharifi and Nasim Zamani",authors:[{id:"172571",title:"Dr.",name:"Omid",middleName:null,surname:"Mehrpour",slug:"omid-mehrpour",fullName:"Omid Mehrpour"}]},{id:"48230",doi:"10.5772/59719",title:"Mitochondrial Targeting for Drug Development",slug:"mitochondrial-targeting-for-drug-development",totalDownloads:6841,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Jalal Pourahmad, Ahmad Salimi and Enayatollah Seydi",authors:[{id:"172672",title:"Prof.",name:"Jalal",middleName:null,surname:"Pourahmad",slug:"jalal-pourahmad",fullName:"Jalal Pourahmad"}]},{id:"48151",doi:"10.5772/59945",title:"Pathological Aspects with Global Impact Induced by Toxicants at Cellular Level",slug:"pathological-aspects-with-global-impact-induced-by-toxicants-at-cellular-level",totalDownloads:2100,totalCrossrefCites:1,totalDimensionsCites:3,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Dorina E. Coricovac and Cristina A. Dehelean",authors:[{id:"141027",title:"Dr.",name:"Cristina",middleName:null,surname:"Dehelean",slug:"cristina-dehelean",fullName:"Cristina Dehelean"},{id:"173283",title:"Dr.",name:"Dorina",middleName:null,surname:"Coricovac",slug:"dorina-coricovac",fullName:"Dorina Coricovac"}]}],mostDownloadedChaptersLast30Days:[{id:"48230",title:"Mitochondrial Targeting for Drug Development",slug:"mitochondrial-targeting-for-drug-development",totalDownloads:6841,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Jalal Pourahmad, Ahmad Salimi and Enayatollah Seydi",authors:[{id:"172672",title:"Prof.",name:"Jalal",middleName:null,surname:"Pourahmad",slug:"jalal-pourahmad",fullName:"Jalal Pourahmad"}]},{id:"48406",title:"Impact of Pesticides on Environmental and Human Health",slug:"impact-of-pesticides-on-environmental-and-human-health",totalDownloads:7379,totalCrossrefCites:25,totalDimensionsCites:62,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Mariana Furio Franco Bernardes, Murilo Pazin, Lilian Cristina Pereira\nand Daniel Junqueira Dorta",authors:[{id:"172524",title:"Dr.",name:"Daniel",middleName:null,surname:"Dorta",slug:"daniel-dorta",fullName:"Daniel Dorta"}]},{id:"48302",title:"Forensic Toxicology",slug:"forensic-toxicology",totalDownloads:2471,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Donata Favretto, Massimo Montisci and Rossella Snenghi",authors:[{id:"172305",title:"Prof.",name:"Donata",middleName:null,surname:"Favretto",slug:"donata-favretto",fullName:"Donata Favretto"},{id:"172775",title:"Dr.",name:"Rossella",middleName:null,surname:"Snenghi",slug:"rossella-snenghi",fullName:"Rossella Snenghi"}]},{id:"48295",title:"Tramadol Poisoning",slug:"tramadol-poisoning",totalDownloads:4094,totalCrossrefCites:6,totalDimensionsCites:8,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Omid Mehrpour, Mohammaddavood Sharifi and Nasim Zamani",authors:[{id:"172571",title:"Dr.",name:"Omid",middleName:null,surname:"Mehrpour",slug:"omid-mehrpour",fullName:"Omid Mehrpour"}]},{id:"48270",title:"Estrogenic Compounds in Estuarine and Coastal Water Environments of the Iberian Western Atlantic Coast and Selected Locations Worldwide — Relevancy, Trends and Challenges in View of the EU Water Framework Directive",slug:"estrogenic-compounds-in-estuarine-and-coastal-water-environments-of-the-iberian-western-atlantic-coa",totalDownloads:1814,totalCrossrefCites:10,totalDimensionsCites:10,abstract:null,book:{id:"4557",slug:"toxicology-studies-cells-drugs-and-environment",title:"Toxicology Studies",fullTitle:"Toxicology Studies - Cells, Drugs and Environment"},signatures:"Maria João Rocha and Eduardo Rocha",authors:[{id:"172652",title:"Prof.",name:"Eduardo",middleName:null,surname:"Rocha",slug:"eduardo-rocha",fullName:"Eduardo Rocha"},{id:"172670",title:"Prof.",name:"Maria João",middleName:null,surname:"Rocha",slug:"maria-joao-rocha",fullName:"Maria João Rocha"}]}],onlineFirstChaptersFilter:{topicId:"1207",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null,scope:"\r\n\tGlobally, the ecological footprint is growing at a faster rate than GDP. This phenomenon has been studied by scientists for many years. However, clear strategies and actions are needed now more than ever. Every day, humanity, from individuals to businesses (public and private) and governments, are called to change their mindset in order to pursue a virtuous combination for sustainable development. Reasoning in a sustainable way entails, first and foremost, managing the available resources efficiently and strategically, whether they are natural, financial, human or relational. In this way, value is generated by contributing to the growth, improvement and socio-economic development of the communities and of all the players that make up its value chain. In the coming decades, we will need to be able to transition from a society in which economic well-being and health are measured by the growth of production and material consumption, to a society in which we live better while consuming less. In this context, digitization has the potential to disrupt processes, with significant implications for the environment and sustainable development. There are numerous challenges associated with sustainability and digitization, the need to consider new business models capable of extracting value, data ownership and sharing and integration, as well as collaboration across the entire supply chain of a product. In order to generate value, effectively developing a complex system based on sustainability principles is a challenge that requires a deep commitment to both technological factors, such as data and platforms, and human dimensions, such as trust and collaboration. Regular study, research and implementation must be part of the road to sustainable solutions. Consequently, this topic will analyze growth models and techniques aimed at achieving intergenerational equity in terms of economic, social and environmental well-being. It will also cover various subjects, including risk assessment in the context of sustainable economy and a just society.
",coverUrl:"https://cdn.intechopen.com/series_topics/covers/91.jpg",hasOnlineFirst:!0,hasPublishedBooks:!1,annualVolume:11975,editor:{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo",profilePictureURL:"https://mts.intechopen.com/storage/users/181603/images/system/181603.jpg",biography:"Antonella Petrillo is a Professor at the Department of Engineering of the University of Naples “Parthenope”, Italy. She received her Ph.D. in Mechanical Engineering from the University of Cassino. Her research interests include multi-criteria decision analysis, industrial plant, logistics, manufacturing and safety. She serves as an Associate Editor for the International Journal of the Analytic Hierarchy Process. She is a member of AHP Academy and a member of several editorial boards. She has over 160 Scientific Publications in International Journals and Conferences and she is the author of 5 books on Innovation and Decision Making in Industrial Applications and Engineering.",institutionString:null,institution:{name:"Parthenope University of Naples",institutionURL:null,country:{name:"Italy"}}},editorTwo:null,editorThree:null,series:{id:"24",title:"Sustainable Development",doi:"10.5772/intechopen.100361",issn:null},editorialBoard:[{id:"179628",title:"Prof.",name:"Dima",middleName:null,surname:"Jamali",slug:"dima-jamali",fullName:"Dima Jamali",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSAIlQAO/Profile_Picture_2022-03-07T08:52:23.jpg",institutionString:null,institution:{name:"University of Sharjah",institutionURL:null,country:{name:"United Arab Emirates"}}},{id:"170206",title:"Prof.",name:"Dr. Orhan",middleName:null,surname:"Özçatalbaş",slug:"dr.-orhan-ozcatalbas",fullName:"Dr. Orhan Özçatalbaş",profilePictureURL:"https://mts.intechopen.com/storage/users/170206/images/system/170206.png",institutionString:null,institution:{name:"Akdeniz University",institutionURL:null,country:{name:"Turkey"}}},{id:"250347",title:"Associate Prof.",name:"Isaac",middleName:null,surname:"Oluwatayo",slug:"isaac-oluwatayo",fullName:"Isaac Oluwatayo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVIVQA4/Profile_Picture_2022-03-17T13:25:32.jpg",institutionString:null,institution:{name:"University of Venda",institutionURL:null,country:{name:"South Africa"}}},{id:"141386",title:"Prof.",name:"Jesús",middleName:null,surname:"López-Rodríguez",slug:"jesus-lopez-rodriguez",fullName:"Jesús López-Rodríguez",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRBNIQA4/Profile_Picture_2022-03-21T08:24:16.jpg",institutionString:null,institution:{name:"University of A Coruña",institutionURL:null,country:{name:"Spain"}}},{id:"208657",title:"Dr.",name:"Mara",middleName:null,surname:"Del Baldo",slug:"mara-del-baldo",fullName:"Mara Del Baldo",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLMUQA4/Profile_Picture_2022-05-18T08:19:24.png",institutionString:"University of Urbino Carlo Bo",institution:null}]},onlineFirstChapters:{},publishedBooks:{paginationCount:6,paginationItems:[{type:"book",id:"9493",title:"Periodontology",subtitle:"Fundamentals and Clinical Features",coverURL:"https://cdn.intechopen.com/books/images_new/9493.jpg",slug:"periodontology-fundamentals-and-clinical-features",publishedDate:"February 16th 2022",editedByType:"Edited by",bookSignature:"Petra Surlin",hash:"dfe986c764d6c82ae820c2df5843a866",volumeInSeries:8,fullTitle:"Periodontology - Fundamentals and Clinical Features",editors:[{id:"171921",title:"Prof.",name:"Petra",middleName:null,surname:"Surlin",slug:"petra-surlin",fullName:"Petra Surlin",profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institutionString:"University of Medicine and Pharmacy of Craiova",institution:{name:"University of Medicine and Pharmacy of Craiova",institutionURL:null,country:{name:"Romania"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9588",title:"Clinical Concepts and Practical Management Techniques in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9588.jpg",slug:"clinical-concepts-and-practical-management-techniques-in-dentistry",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Aneesa Moolla",hash:"42deab8d3bcf3edf64d1d9028d42efd1",volumeInSeries:7,fullTitle:"Clinical Concepts and Practical Management Techniques in Dentistry",editors:[{id:"318170",title:"Dr.",name:"Aneesa",middleName:null,surname:"Moolla",slug:"aneesa-moolla",fullName:"Aneesa Moolla",profilePictureURL:"https://mts.intechopen.com/storage/users/318170/images/system/318170.png",institutionString:"University of the Witwatersrand",institution:{name:"University of the Witwatersrand",institutionURL:null,country:{name:"South Africa"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8202",title:"Periodontal Disease",subtitle:"Diagnostic and Adjunctive Non-surgical Considerations",coverURL:"https://cdn.intechopen.com/books/images_new/8202.jpg",slug:"periodontal-disease-diagnostic-and-adjunctive-non-surgical-considerations",publishedDate:"February 5th 2020",editedByType:"Edited by",bookSignature:"Nermin Mohammed Ahmed Yussif",hash:"0aee9799da7db2c732be44dd8fed16d8",volumeInSeries:6,fullTitle:"Periodontal Disease - Diagnostic and Adjunctive Non-surgical Considerations",editors:[{id:"210472",title:"Dr.",name:"Nermin",middleName:"Mohammed Ahmed",surname:"Yussif",slug:"nermin-yussif",fullName:"Nermin Yussif",profilePictureURL:"https://mts.intechopen.com/storage/users/210472/images/system/210472.jpg",institutionString:"MSA University",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8837",title:"Human Teeth",subtitle:"Key Skills and Clinical Illustrations",coverURL:"https://cdn.intechopen.com/books/images_new/8837.jpg",slug:"human-teeth-key-skills-and-clinical-illustrations",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Zühre Akarslan and Farid Bourzgui",hash:"ac055c5801032970123e0a196c2e1d32",volumeInSeries:5,fullTitle:"Human Teeth - Key Skills and Clinical Illustrations",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:{id:"52177",title:"Prof.",name:"Farid",middleName:null,surname:"Bourzgui",slug:"farid-bourzgui",fullName:"Farid Bourzgui",profilePictureURL:"https://mts.intechopen.com/storage/users/52177/images/system/52177.png",biography:"Prof. Farid Bourzgui obtained his DMD and his DNSO option in Orthodontics at the School of Dental Medicine, Casablanca Hassan II University, Morocco, in 1995 and 2000, respectively. Currently, he is a professor of Orthodontics. He holds a Certificate of Advanced Study type A in Technology of Biomaterials used in Dentistry (1995); Certificate of Advanced Study type B in Dento-Facial Orthopaedics (1997) from the Faculty of Dental Surgery, University Denis Diderot-Paris VII, France; Diploma of Advanced Study (DESA) in Biocompatibility of Biomaterials from the Faculty of Medicine and Pharmacy of Casablanca (2002); Certificate of Clinical Occlusodontics from the Faculty of Dentistry of Casablanca (2004); University Diploma of Biostatistics and Perceptual Health Measurement from the Faculty of Medicine and Pharmacy of Casablanca (2011); and a University Diploma of Pedagogy of Odontological Sciences from the Faculty of Dentistry of Casablanca (2013). He is the author of several scientific articles, book chapters, and books.",institutionString:"University of Hassan II Casablanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"University of Hassan II Casablanca",institutionURL:null,country:{name:"Morocco"}}},equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7060",title:"Gingival Disease",subtitle:"A Professional Approach for Treatment and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/7060.jpg",slug:"gingival-disease-a-professional-approach-for-treatment-and-prevention",publishedDate:"October 23rd 2019",editedByType:"Edited by",bookSignature:"Alaa Eddin Omar Al Ostwani",hash:"b81d39988cba3a3cf746c1616912cf41",volumeInSeries:4,fullTitle:"Gingival Disease - A Professional Approach for Treatment and Prevention",editors:[{id:"240870",title:"Ph.D.",name:"Alaa Eddin Omar",middleName:null,surname:"Al Ostwani",slug:"alaa-eddin-omar-al-ostwani",fullName:"Alaa Eddin Omar Al Ostwani",profilePictureURL:"https://mts.intechopen.com/storage/users/240870/images/system/240870.jpeg",institutionString:"International University for Science and Technology.",institution:{name:"Islamic University of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6668",title:"Dental Caries",subtitle:"Diagnosis, Prevention and Management",coverURL:"https://cdn.intechopen.com/books/images_new/6668.jpg",slug:"dental-caries-diagnosis-prevention-and-management",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Zühre Akarslan",hash:"b0f7667770a391f772726c3013c1b9ba",volumeInSeries:1,fullTitle:"Dental Caries - Diagnosis, Prevention and Management",editors:[{id:"171887",title:"Prof.",name:"Zühre",middleName:null,surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan",profilePictureURL:"https://mts.intechopen.com/storage/users/171887/images/system/171887.jpg",institutionString:"Gazi University",institution:{name:"Gazi University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/327887",hash:"",query:{},params:{id:"327887"},fullPath:"/profiles/327887",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()