Current approaches for the surgical correction of craniosynostosis are highly dependent on surgeon experience. Therefore, outcomes are often inadequate, causing suboptimal esthetic results. Novel methods for cranial shape analysis based on statistical shape models enable accurate and objective diagnosis from preoperative 3D photographs or computed tomography scans. Moreover, advanced algorithms are now available to calculate a reference cranial shape for each patient from a multi-atlas of healthy cases, and to determine the most optimal approach to restore normal calvarial shape. During surgery, multiple technologies are available to ensure accurate translation of the preoperative virtual plan into the operating room. Patient-specific cutting guides and templates can be designed and manufactured to assist during osteotomy and remodeling. Then, intraoperative navigation and augmented reality visualization can provide real-time guidance during the placement and fixation of the remodeled bone. Finally, 3D photography enables intraoperative surgical outcome evaluation and postoperative patient follow-up. This chapter summarizes recent literature on all these technologies, showing how their integration into the surgical workflow could increase reproducibility and reduce inter-surgeon variability in open cranial vault remodeling procedures.
Part of the book: Spina Bifida and Craniosynostosis