\r\n\t
",isbn:"978-1-83968-571-2",printIsbn:"978-1-83968-570-5",pdfIsbn:"978-1-83968-599-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"dd81bc60e806fddc63d1ae22da1c779a",bookSignature:"Dr. Sebahattin Demirkan",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10818.jpg",keywords:"Decision Making, Blockchain, Accounting, Earnings Management, Strategic Alliances, Innovation, Performance, Corporate Governance, Accounting Quality, Digital Assets, Internationalization, MNCs",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 28th 2021",dateEndSecondStepPublish:"February 25th 2021",dateEndThirdStepPublish:"April 26th 2021",dateEndFourthStepPublish:"July 15th 2021",dateEndFifthStepPublish:"September 13th 2021",remainingDaysToSecondStep:"2 months",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Academician in the area of accounting who believes in the impact of interdisciplinary research. Dr. Sebahattin Demirkan's research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics.",coeditorOneBiosketch:"Researcher of strategic management, corporate entrepreneurship, and international business; specific interests include innovation, the ambidexterity framework, inter-organizational relationships, and networks. Experienced in teaching graduate and undergraduate courses in strategy, entrepreneurship, and international business and management areas.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"336397",title:"Dr.",name:"Sebahattin",middleName:null,surname:"Demirkan",slug:"sebahattin-demirkan",fullName:"Sebahattin Demirkan",profilePictureURL:"https://mts.intechopen.com/storage/users/336397/images/system/336397.jpg",biography:"Dr. Sebahattin Demirkan is a Professor of Accounting. He earned his Ph.D. in Accounting/Management Science at Jindal School of Management of the University of Texas at Dallas where he got his MS in Accounting, MSA Supply Chain, and MBA degrees. He got his BA in Economics and Management at the Faculty of Economics and Administrative Sciences at Bogazici University, Istanbul. He worked at Koc Holding, a private venture capital firm, and the University of California, Berkeley during and after his education at Bogazici University. His research interests are in the areas of financial accounting, capital markets, auditing, corporate governance, strategic alliances, taxation, CSR, and data analytics. Dr. Sebahattin Demirkan has published articles in Contemporary Accounting Research, JAPP, JAAF, TEM, Journal of Management, and other top academic journals. He teaches several different classes in both undergraduate and graduate levels in Accounting and Analytics programs. He is a treasurer and vice president of the TASSA, board member of the BURCIN and member of the American Accounting Association.",institutionString:"Manhattan College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Manhattan College",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"7",title:"Business, Management and Economics",slug:"business-management-and-economics"}],chapters:[{id:"75977",title:"The Economic Effect of Bitcoin Halving Events on the U.S. Capital Market",slug:"the-economic-effect-of-bitcoin-halving-events-on-the-u-s-capital-market",totalDownloads:26,totalCrossrefCites:0,authors:[null]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"42270",title:"Dynamic Modelling of Advanced Battery Energy Storage System for Grid-Tied AC Microgrid Applications",doi:"10.5772/52219",slug:"dynamic-modelling-of-advanced-battery-energy-storage-system-for-grid-tied-ac-microgrid-applications",body:'In the last decade, power generation technology innovations and a changing economic, financial, and regulatory environment of the power markets have resulted in a renewed interest in on-site small-scale electricity generation, also called distributed, dispersed or decentralized generation (DG) (Abdollahi Sofla & Gharehpetian, 2011). Other major factors that have contributed to this evolution are the constraints on the construction of new transmission lines, the increased customer demand for highly reliable electricity and concerns about climate change (Guerrero et al, 2010). Along with DG, local storage directly coupled to the grid (aka distributed energy storage or DES) is also assuming a major role for balancing supply and demand, as was done in the early days of the power industry. All these distributed energy resources (DERs), i.e. DG and DES, are presently increasing their penetration in developed countries as a means to produce in-situ highly reliable and good quality electrical power (Kroposki et al, 2008).
Incorporating advanced technologies, sophisticated control strategies and integrated digital communications into the existing electricity grid results in Smart Grids (SGs), which are presently seen as the energy infrastructure of the future intelligent cities (Wissner, 2011). Smart grids allow delivering electricity to consumers using two-way (full-duplex) digital technology that enable the efficient management of consumers and the efficient use of the grid to identify and correct supply-demand imbalances. Smartness in integrated energy systems (IESs) which are called microgrids (MG) refers to the ability to control and manage energy consumption and production in the distribution level. In such IES systems, the grid-interactive AC microgrid is a novel network structure that allows obtaining the better use of DERs by operating a cluster of loads, DG and DES as a single controllable system with predictable generation and demand that provides both power and heat to its local area by using advanced equipments and control methods (Hatziargyriou et al, 2007). This grid, which usually operates connected to the main power network but can be autonomously isolated (island operation) during an unacceptable power quality condition, is a new concept developed to cope with the integration of renewable energy sources (RESs) (Katiraei et al, 2008).
Grid connection of RESs, such as wind and solar (photovoltaic and thermal), is becoming today an important form of DG (Mathiesen et al, 2011). The penetration of these DG units into microgrids is growing rapidly, enabling reaching high percentage of the installed generating capacity. However, the fluctuating and intermittent nature of this renewable generation causes variations of power flow that can significantly affect the operation of the electrical grid (Tiwaria et al, 2011; Kanekoa, 2011). This situation can lead to severe problems that dramatically jeopardize the microgrid security, such as system frequency oscillations, and/or violations of power lines capability margin, among others (Serban & Marinescu 2008). This condition is worsened by the low inertia present in the microgrid; thus requiring having available sufficient fast-acting spinning reserve, which is activated through the MG primary frequency control (Vachirasricirikul & Ngamroo, 2011).
To overcome these problems, DES systems based on emerging technologies, such as advanced battery energy storage systems (ABESSs), arise as a potential alternative in order to balance any instantaneous mismatch between generation and load in the microgrid (Molina, 2011). With proper controllers, these advanced DESs are capable of supplying the microgrid with both active and reactive power simultaneously and very fast, and thus are able to provide the required security level. The most important advantages of these advanced DESs devices include: high power and energy density with outstanding conversion efficiency, and fast and independent power response in four quadrants (Molina & Zobaa, 2011).
Much work has been done, especially over the last decades, to assess the overall benefits of incorporating energy storage systems into power systems (Hewitt, 2012; Schroeder, 2011; Maharjan et al, 2011; Qian, 2011). However, much less has been done particularly on advanced distributed energy storage and its utilization in emerging electrical microgrid, although major benefits apply (Molina, 2011; Vazquez et al, 2010). Moreover, no studies have been conducted regarding a comparative analysis of the modeling and controlling of these modern DES technologies and its dynamic response in promising grid-interactive AC microgrids applications.
In this chapter, a unique assessment of the dynamic performance of novel BESS technologies for the stabilization of the power flow of emerging grid-interactive AC microgrids with RESs is presented. Generally, electrochemical batteries include the classic and well-known lead-acid type as well as the modern advanced battery energy storage systems. ABESSs comprise new alkaline batteries, nickel chemistry (nickel-metal hydride–NiMH, and nickel-cadmium–NiCd), lithium chemistry (lithium-ion–Li-Ion, and lithium–polymer-Li-po), and sodium chemistry (sodium-sulfur–NaS, and sodium-salt–NaNiCl) (Molina & Zobaa, 2011; Molina & Mercado, 2006; Iba et al. 2008). In this work, of the various advanced BESSs nowadays existing, the foremost ones are evaluated. In this sense, the design and implementation of the proposed ABESSs systems are described, including the power conditioning system (PCS) used as interface with the grid. Moreover, the document provides a comprehensive analysis of both the dynamic modeling and the control design of the leading ABESSs aiming at enhancing the operation security of the AC microgrid in both grid-independent (autonomous island) and grid-interactive (connected) modes.
Section 2 details the general considerations for selecting batteries. Section 3 summarizes the key features of selected batteries. Section 4 defines the parameters to be considered in each type of battery and reviews some of the existing models for batteries. Finally, section 5 proposes a general model of batteries developed in MATLAB/Simulink and implemented in a test power system.
Unlike other commodities, there are not significant stocks or inventories of electricity to mitigate differences in supply and demand. Electricity must be produced at the level of demand at any given moment, and demand changes continually. Without stored electricity to call on, electric power system operators must increase or decrease generation to meet the changing demand in order to maintain acceptable levels of power quality (PQ) and reliability.
Electricity markets are structured around this reality. Presently, generating capacity is set aside as reserve capacity every hour of every day to provide a buffer against fluctuations in demand. In this way, if the reserve capacity is needed, it can be dispatched or sent to the grid without delay. There are costs, at times considerable, for requiring the availability of generating capacity to provide reserves and regulation of power quality. However, economic storage of electricity could decrease or even eliminate the need for generating capacity to fill that role.
For the selection of a specific energy storage technology in order to participate in the power reserve of a grid-tied AC microgrid, storage capacity must be defined in terms of the time that the nominal energy capacity is intended to cover the load at rated power. All storage technologies are designed to respond to changes in the demand for electricity, but on varying timescales. Thus, various types of existing storage technologies are adapted for different uses. Then, the power reserve range can be divided into two kinds:
Power quality management (shorter timescales): Demand fluctuations on shorter timescales—sub-hourly, from a few minutes down to fractions of a second—require rapidly-responding technologies which are often of smaller capacity. Responding to these short-timescale fluctuations keeps the voltage and frequency characteristics of the grid electricity consistent within narrow bounds, providing an expected level of power quality. PQ is an important attribute of microgrid electricity, as poor quality electricity—momentary spikes, surges, sags (dips), or severe contingencies like outages—can harm electronic devices.
Energy management (long timescales). Daily, weekly, and seasonal variations in electricity demand are fairly predictable. Higher-capacity technologies capable of outputting electricity for extended periods of time (up to some hours) moderate the extremes of demand over these longer timescales. These technologies aid in energy management, reducing the need for generating capacity as well as the ongoing expenses of operating that capacity. This is the case of serious failures of generation or disconnection of the MG from bulk power system. Variations in demand are accompanied by price changes, which lead to arbitrage opportunities, where storage operators can buy power when prices are low (hours of low consumption) and sell when prices are high (peak hours).
As a result, the permanent participation of the storage system in the AC microgrid is required for both situations: to control severe contingencies and to balance the demand and continuous changes of minor contingencies. In the first case the level of storage system performance is lower than in the second, but the power requirements and dynamic response are significantly higher. Conversely, in the case of energy management events it requires more energy, but less rapidly.
Based on the previous considerations and taking into account the considered grid-tied AC microgrid applications the following criteria for selection of battery energy storage systems are proposed:
The possibility of build medium-scale units (MW), according to the size of the MG.
Commercially available technology with applications in electric power systems. It is required that the technology has been proven by industry to ensure a real solution.
High reliability. It is necessary that the equipment incorporated into the MG ensures high availability when required.
Minimum requirements to allow the location of the storage systems next to the loads as a distributed energy storage device.
Competitive costs (Installation and Operation-Maintenance). Storage devices should hold costs competitive with the benefit incorporated into the operation of the MGs.
Long lifetime, exceeding 2000 cycles. Studies on the efficient use of new storage devices show that it takes more than 2000 cycles of charge/discharge to consider possible implementation in MGs.
High electrical efficiency, defined as the ratio of the energy used to fully charge the storage device and the maximum extractable energy from it. This requirement requires maximum use of the device electrical storage, which will improve operating costs.
Minimal environmental impact.
Discharge time (bridging time) greater than a minute. According to the size and operation of the microgrid can be extended to several minutes or hours.
Very short time response (less than a second), to improve the response of other alternatives.
High discharge rate, which allows quickly cover large imbalances of power. This action will significantly improve regulation and reduce the impact of any disturbances in the main power system.
High re-charge rate, to quickly restore the lost reserve from the BESS units and to allow quickly absorb large excesses of energy. For this particular case, it must maintain a state of optimal storage load to ensure a minimum level of storage when required by the control system.
These general guidelines serve as a basis for the selection of the storage device, but it should be taken into consideration that the final evaluation of the BESS device should be carried out conjointly with the power system with it is to interact and taking into account the policies of control-economy established.
The term Battery contains the classic and well-known lead-acid (Pb-acid) type as well as the redox flow types batteries, and also include the so called advanced battery energy storage systems (ABESSs). ABESSs comprise new alkaline batteries, nickel chemistry (nickel metal hydride–NiMH, and nickel cadmium–NiCd), lithium chemistry (lithium polymer–Li-po, and lithium-ion–Li-Ion), and sodium chemistry (sodium sulfur–NaS, and sodium salt–NaNiCl). Based on the selection criteria previously described, the following batteries are studied:
Lead-acid batteries
Nickel cadmium and nickel metal hydride batteries
Lithium ion and lithium polymer batteries
Sodium sulfur batteries
Each cell of a lead-acid battery comprises a positive electrode of lead dioxide and a negative electrode of sponge lead, separated by a micro-porous material and immersed in an aqueous sulphuric acid electrolyte. In flooded type batteries (with an aqueous sulphuric acid solution) during discharge, the lead dioxide on the positive electrode is reduced to lead oxide, which reacts with sulphuric acid to form lead sulphate; and the sponge lead on the negative electrode is oxidized to lead ions, that reacts with sulphuric acid to form lead sulphate. In this manner, electricity is generated and during charging this reaction is reversed. Valve regulated (VRLA) type uses the same basic electrochemical technology as flooded lead-acid batteries, except that these batteries are closed with a pressure regulating valve, so that they are sealed. In addition, the acid electrolyte is immobilized (Divya & Østergaard 2009).
Pb-acid batteries are the most commonly used batteries in various applications worldwide. They are within the category of less physical efficiency battery. They have also the lower energy densities and power per weight and volume (20 to 40 kWh/ton and 40 to 100 kWh/m3) (Nourai 2002). For this reason, Pb-acid batteries require more space and have greater weight than any other type of batteries. However, they have significant advantages that positions best suited for applications requiring high power and speed. The units are robust and secure, and allow extremely fast downloads, in periods of about 5 ms. The most important features are its low cost and high electrical efficiency. The cost of these batteries is in the order of $ 300 to $ 600 per kWh and performance can reach 90% (Chen 2009).
Another problem with these batteries is their relatively short lifetime measured in charge-discharge cycles, which reaches 500 cycles for the batteries most basic to 1000 cycles for the latest models (Chen 2009). The low amount of charge-discharge cycles is due to the high volumetric density of lead. Another major problem they have is the charging time of around three hours to the total load of batteries.
Despite these disadvantages, Pb-acid batteries have been used in many storage systems. Among them are the system built at the plant of 8.5MWh/1h BEWAG in Berlin, Germany, the system of 14 MWh/1.5h at the plant PREPA (Puerto Rico) and the greatest of all in Chinese (California, U.S.) of 10MWh/4h (Chen 2009). The earliest transportable battery system of lead-acid is located at the Phoenix distribution system is a multi-mode battery. The battery switches between power quality (2MW up to 15 s) and energy management (200 kW for 45min) mode (Divya & Østergaard 2009).
Batteries of Ni-Cd type have a cadmium electrode (positive) and a nickel hydroxide (negative). The two electrodes are separated by nylon and potassium hydroxide. With sealed cells and half the weight of conventional lead acid batteries, these batteries have been used in a wide range of portable devices. Today, due to environmental problems and memory effect, Ni-Cd batteries are being replaced by Ni-MH or Li-Ion. Ni-Cd battery types are affected by the so-called memory effect. Memory effect, also known as battery effect or battery memory, is an effect that describes a specific situation in which Ni-Cd batteries gradually lose their maximum energy capacity if they are repeatedly recharged after being only partially discharged. The battery appears to remember the smaller capacity. The source of the effect is changes in the characteristics of the underused active materials of the cell.
Ni-Cd batteries have the advantage of a long life (up to 2000 charge-discharge cycles) and if they are charged and discharged properly maintain their properties to the end of its life. Each Ni-Cd cell can provide a voltage of 1.2 V and have a capacity between 0.5 and 2.3 Ah.
ABB and SAFT companies have developed a system based on Ni-Cd batteries for supporting the interconnected system of Alaska. The system is capable of delivering up to 40 MW during 15 minutes and is designed to act as a dumping reserve before activation of turbo-gas plants. So far, this battery system is the largest in the world.
Ni-HM batteries share several characteristics with Ni-Cd batteries. Each Ni-MH cell can also provide a voltage of 1.2 V and have a capacity between 0.8 and 2.7 Ah. Its energy density reaches 80 Wh/kg. They improve Ni-Cd batteries by changing the nickel hydroxide electrode and the other by a metal hydride alloy. Another advantage is that they have no memory effect. Their disadvantages are that they have less ability to release high peak power. They have also high self-discharge rate and are more susceptible to damage from overcharging.
These batteries are built with alternating layers of electrodes, among which cyclically circulate lithium ions. The Li-Ion batteries have no memory effect and support recharge before being fully discharged. This is called the topping charge capacity. They have high energy density of the order of 115 Wh/kg.
The first lithium batteries were developed in 1979 and had a great attraction due to its high energy density, but low commercial development because of the risks of explosion. Subsequently, thanks to improvements developed by Sony with the Li-Ion batteries in 1990 were popularized in electronic equipment such as laptops or mobile phones. In addition, the flat design of the containers, the high energy density and the topping charge characteristic make them ideal for automotive applications.
This type of battery has a ratio of energy density three times greater than Pb-acid batteries. This difference is due to the characteristics of low atomic weight of lithium, about 30 times lighter than lead. In addition to having a higher voltage than lead-acid cells, this means fewer cells in series to achieve the desired voltage and lower manufacturing costs.
In addition to the strict selection of batteries with same voltage and internal resistance for connection in parallel or in series, it is also necessary that each battery cell should be charged to the same value as the other cells permanently. The voltage in the cell during discharge should not be less than 2.6V. The self-discharge of the lithium battery is approximately 5% per month. After a year unused, the capacity can be significantly reduced as well as the voltage level.
The big drawback with Lithium-ion type batteries is that they are not adaptable to permanent deep discharge duty cycles even in cases in which its nominal capacity is respected. Even more, this type of battery does not accept overloads.
The lithium polymer batteries are a variation of the Li-Ion. Their characteristics are very similar, but allow a higher energy density and a significantly higher discharge rate. The high initial costs are the main drawbacks. It is expected that once the mass production of Li-po is reached it will be priced lower than those of Li-Ion due to its simpler manufacturing.
Lithium sulphur batteries operate quite differently from Li-Ion batteries. The overall reaction between lithium and sulphur can be expressed as:
Based on the above complete reaction, sulphur cathode can offer a theoretical specific capacity of 1675 mAh/g and a theoretical energy density of 2600 Wh/Kg (Li et al 2010). Although investigated by many workers for several decades the practical development of the lithium/sulphur battery has been so far hindered by a series of shortcomings. A major issue is the high solubility in the liquid organic electrolyte of the polysulfides that forms as intermediates during both charge and discharge processes (Scrosati & Garche 2010)
The US the Department of Energy has sponsored a project by SAFT and SatCon Power Systems to design and construct two 100 kW/1 min Li-ion battery energy storage systems for use in providing power quality for grid connected micro-turbines (Naish 2008). Sanyo has developed a lithium-ion mega battery system with one of the world’s largest capacities by installing approximately 1000 units of 1.6 kWh standard battery systems (a total of 1.5 MWh). This installation in the Kasai Green Energy Park, a massive testing site for large-scale, renewable power storage systems is located near Osaka (Japan). In the power storage building, economical late-night power is mainly used to charge batteries, which is then consumed during the day, while in the administration building, unconverted DC electricity from photovoltaic modules is the main source of power for charging batteries and direct consumption. The Standard Battery System for power storage is a storage battery unit with a capacity of approximately 1.6 kWh; containing 312 cylindrical lithium-ion battery cells often used in laptop PCs. Multiple systems can be connected to provide larger capacity. Batteries have a charge/discharge efficiency of 98% and are designed to last at least 10 years using the same rechargeable batteries (Panasonic).
Sodium sulphur batteries are one of the most favourable energy storage candidates for applications in electric power systems. They consist of an anode and a cathode of sodium and sulphur, respectively and a beta alumina ceramic material (beta-Al203) that is used as electrolyte and separator simultaneously. The tubular configuration of these batteries allows the change of state of the electrodes during charge and discharge cycles and minimizes the sealing area favouring the overall design of the cell (Wen 2008). Figure 1 shows the tubular design of each cell of sodium sulphur batteries.
The greatest advance in this type of battery has achieved very rapidly during the past two decades as a result of the collaboration between the Tokyo Power Company (TEPCO) and the NGK Insulators Company. TEPCO and NGK developed these batteries aiming at displacing the use of pumping stations.
Sodium sulphur batteries, usually work at temperatures between 300 and 350°C. At these temperatures, both sodium and sulphur and the reaction products are in liquid form, which facilitates the high reactivity of the electrodes. In this characteristic lies the high power density and energy of these batteries, nearly three times the density of lead acid batteries. They are environmentally safe because of the seal system with which they are constructed, thus not allowing any emissions during operation. Additionally over 99% of the battery materials can be recycled. They have a high efficiency in charge and discharge and a lifespan of approximately 15 years. The cells also have high efficiency (around 89%) and minimal degradation, which contributes to the life cycle, much larger than other cells (Baxter 2005). This type of battery has no self-discharge problems if they are kept at nominal operating temperature, which leads to having a high efficiency. For this purpose, the built containers have embedded heaters capable of maintaining the temperature with low energy consumption.
One of the most important characteristics of the sodium batteries is their ability to deliver power pulses of up to five times of its rated capacity over a period of time up to 30 seconds continuously. This is the fundamental reason because these batteries are considered economically viable for both power quality and energy managements applications. The pulse power capability is also available even if the unit is currently in the middle of a discharge process (Nourai 2002).The module of sodium batteries offered by TEPCO/NGK for power quality events have a nominal capacity of 50 kW, but the module can discharge up to 250 kW for 30 seconds or more, and comply with lower power levels for longer periods of time. Figure 2 shows the power vs. pulse duration of the discharge of a standard module with a capacity of 50 kW nominal power (Bito 2005).
Schematic representation of a sodium-sulphur cell
Pulsed power vs. discharge time of a NaS battery module
At 100% depth of discharge, sodium batteries last approximately 2500 cycles. Like other electrochemical batteries lower discharges extend its duration. At 90% depth of discharge, the cell has a lifespan of 4500 cycles, while 65% have a life of 6500 cycles and 20% a lifespan of 40 000 cycles. In practice, sodium battery discharge is limited to less than 100% of its theoretical capacity due to the corrosive properties of sodium polysulfide (Na2S3). This is the reason why the cells typically deliver 85-90% of its theoretical capacity. At 90% capacity of sodium polysulfide composition corresponds approximately to 1.82 V per cell. At this point, the main obstacles to large-scale applications of the sodium battery are its high cost of production which depends largely on the quantity of batteries produced. The approximate cost of these batteries, including the power electronic converters is $ 2500 to 3000 per kW (Iba at al 2006). According to (Gyuk 2003), the total system cost for a typical multifunctional NaS battery is $ 810 per kW, with 60% of this value attributable to the battery module.
Another obstacle in NaS batteries is given by the fact that the ceramic electrolyte is presently only commercially manufactured by one company, i.e. NGK. Moreover, the protection of intellectual property the company holds over the electrolyte difficult to study and implement appropriate models to simulate their dynamic behaviour (Hussien 2007).
The greatest sodium BESS installed is about 34 MW in Aomori, Japan, forming a hybrid system with a 51 MW wind farm. TEPCO/NGK commercializes sodium batteries under the trademark NaS in Japan and USA. So far the batteries TEPCO/NGK were the only ones available in the market for BESS, but POSCO, General Electric and Fiamm Sonick also develop sodium batteries. POSCO succeeded in developing a sodium sulfur battery for the first time in Korea, with the goal of commercializing by 2015 with RIST (a research institute wholly owned by POSCO). General Electric commercializes its Durathon battery which uses sodium metal halide chemistry and Fiamm Sonick battery is made up of salt (NaCl) and nickel (Ni). In China, research works began in the 70\'s and since 1980 the Chinese Institute SICCA has become the only institution outside of Japan with research in the area of sodium sulphur batteries.
The most important characteristics of a battery are determined by the voltage of their cells, the current capable of supplying over a given time (measured in Ah), the time constants and its internal resistance (Sorensen 2003). The two electrodes that supply or receive power are called positive electrodes (
The above description of the behaviour of the battery is in open circuit and the value of
where
Both the voltage
being
Potential distribution in an electrochemical cell. Solid line: unloaded cell, dashed line: loaded cell
The battery model taking into account equation (4) is very useful for steady-state studies, where the parameters
In studies where it is necessary to study the dynamic behaviour of the battery system, possible variations of values of
Equivalent electrical circuit of a steady-state battery
This sub-section discusses major performance characteristics curves of advanced BESS devices, obtained from the literature and by own experimental set-ups. These curves show indistinct of variations in voltage and/or internal resistance depending on the state of charge (SOC). In some of these curves instead of SOC they indicate the state of discharge (SOD). The relationship between these two states is given by equation (5).
Batteries of Pb-acid type are characterized by an internal resistance which varies depending on the state of discharge. Figure 5 shows the variation of the internal resistance per cell vs. depth of discharge (CIEMAT 1992). This figure shows not only a nonlinear variation but also a hysteresis loop that clearly differentiates the broad difference that has the internal resistance in charging or discharging state.
In the case of Ni-MH batteries, Figure 6 shows the variation of open circuit voltage (Voc) and the internal resistance (Rseries) for different states of charge. This figure was constructed from testing a 750 mAh Ni-MH cell with discharge pulsed current from 75 mAh up to 750 mAh (Chen & Rincon-Mora 2006). As shown, the open circuit voltage varies with the SOC, but is almost independent of the depth of discharge. The internal resistance however, depends largely on the current drawn from the battery.
Internal resistance in charging or discharging state as a function of SOD for a Pb-acid battery at 25°C.
Variation of internal resistance (a) and voltage (b) depending on the state of charge for Ni-MH battery at room temperature.
Figure 7 was built from a test of a 850 mAh Li-Ion Polymer battery with discharge pulses from 80 mAh to 640 mAh (Chen & Rincon-Mora 2006). This figure shows the variation of open circuit voltage (Voc) and the internal resistance (Rseries) for different charge states. As shown, the open circuit voltage varies with SOC but is almost independent of the depth of discharge. On the other hand, in such batteries it can be seen that the internal resistance is not only independent of the state of charge, but also of the depth of discharge. The internal resistance remains almost constant from 20% SOC.
Variation of internal resistance (a) and voltage (b) depending on the state of charge for Li-ion polymer at room temperature
Figure 8 shows that for the case of NaS battery type, voltage changes with the depth of discharge of the battery (Hussien 2007). Due to their internal reactions, the electromotive force of the sodium battery is relatively constant, but decreases linearly after 60 to 75% depth of discharge (Van der Bosche 2006). Figure 9 also shows that depending on the state of charge, charge direction and the temperature at which the battery is operated, the internal resistance can vary up to four times its base value (Hussien 2007). It also clearly shows a hysteresis loop similar to that observed for lead acid batteries (Figure 5), in which the internal resistance value varies not only with temperature and SOD, but also whit the direction of current flow.
Voltage variation as a function of SOD for NAS-type battery cell
Internal resistance variation depending on the state of charge/discharge for various temperatures in a NAS-type battery cell
Figures 5 through 9 shows a large nonlinearity in the behaviour of the most important batteries parameters. These features should be included in a model that wants to accurately represent the behaviour of batteries in power quality or energy management events.
Based on the analysis in the previous section, it can be seen that both, the battery voltage and the current capable of being delivered at any given time, generally depends on several factors. Among the most important ones are the following:
The room temperature
The amount of charge/discharge cycles the battery has been subjected to (cycles)
The depth of charge/discharge
The state of charge/discharge
If the aim of the battery model, for a given operating state, is to observe its behaviour in power quality or energy management events, this action sets a time within which the temperature can be considered constant for power quality-like events. While for energy management events lasting over an hour it should be considered a change of temperature; it may nevertheless be considered constant or studied to typical and/or extreme temperatures which would be the battery subjected to. In this way, for both cases (power quality or energy management events) the value of the parameters depends on the operating temperature of the battery.
It has been considered for the realization of the model that the battery is in a state of charge such that the characteristics curves are for the unit fully charged or discharged. This also sets the initial conditions of the model regarding the influence of the numbers of charge/discharge cycles that is capable of delivering the battery.
The depth of charge/discharge cycles influences not only the ability to the power or energy that the battery can deliver, but also its lifespan. In this sense, the depth of discharge must be taken into account in the maximum simulation time and the limitations recommended by the manufacturer.
The state of charge of the battery is the most important factor of all the above and should be taken into account directly in the model. This factor directly influences the value of power/energy that the battery can deliver in time of occurrence of events.
From the graphs shown above (Figures 5 through 9) it can be inferred a general model to simulate the battery considered. A model that includes all the batteries tested should consider that the open circuit voltage and internal resistance varies with the state and direction of the charge. The values of
Given the battery type, operating temperature and the depth of discharge, a model that takes into account these factors is show in Figure 10. This figure shows the outline of a general battery model, depicted as an example for a NaS-type battery.
Proposed general model of the BESS
The developed model of the BESS was tested using a single cell in order to validate the model. Figures 11 and 12 show the variation of internal resistance to changes of SOD for discharging and charging, respectively, in a NaS T5 type cell at 320ºC. Figure 13 shows the electromotive force variation vs. SOD. Finally, Figure 14 shows a test system where a NaS PQ-G50 module (Hussien 2007) is connected through an IGBT DC/AC Inverter to an infinite bus. This module is a 50 kW pack consisting of 320 cells connected in series for obtaining a higher capacity storage device with higher voltage.
The module is simulated to perform a power quality event. From the simulation carried out up to 10s, the NAS battery delivers 50 kW. At 10s (around 10% SOD), the battery is commanded to deliver its maximum capacity (1 p.u. of 250 kW). Figure 15 shows the variation of the output active and reactive power,
Simulation of cell resistance vs. SOD at 320ºC for a discharge situation
Simulation of cell resistance vs. SOD at 320ºC for a charge situation
Simulation of cell electromotive force vs. SOD
NAS module connected to a test power system
Variation of active and reactive power from the Battery module (AC side)
This model can be easily modified to operate also in energy management mode. Because of methodology of modelling used, the model can be easily modified to simulate the temperature variation.
With the exception of conventional lead-acid batteries, advanced batteries analyzed in this chapter represent the cutting edge technology in high power density BESS applications. Li-Ion batteries have the greatest potential for future development and optimization. In addition to small size and low weight of the Li-Ion, they offer higher energy density and high storage efficiency, making them ideal for portable devices and flexible grid-connected distributed generation applications in microgrids. However, some of the biggest drawbacks of Li-Ion technology are its high costs (due to the complexity arising from the manufacture of special circuits to protect the battery) and the detrimental effect of deep discharge in its lifespan (Divya & Østergaard 2009). Although the Ni-Cd and Pb-acid batteries can provide large peak power, they contain toxic heavy metals and suffer from high self-discharge.
Sodium sulfur-type BESS devices are best suited to the requirements set by modern microgrid applications. These batteries can act in contingencies where rapid action is required to maintain the adequate levels of the grid frequency, but also in the case of high penetration of renewable generation, such as wind or solar photovoltaic, since the NaS battery can operate as the perfect complement in valley hours. In this case, the excess energy can be stored for delivery in peak hours. They are environmentally safe and have low maintenance while operate at high temperatures; it does not represent a major drawback. The biggest drawbacks are the cost and the limited information about these type of batteries which difficult the development of experimental prototypes and computer models. It is expected however that the appearance of other vendors reduces costs and facilitate the modelling.
The oxidation-reduction reactions (also known as redox reaction) refer to all chemical reactions in which atoms have their oxidation state changed. Fundamentally, redox reactions are a family of reactions that are concerned with the transfer of electrons between species. Thus, in order to produce a redox reaction in the system, an element to yield electrons and one that will accept them must exist. This transfer occurs between a set of chemical elements, an oxidant and a reductant.
Oxidation involves an increase in oxidation number, while reduction involves a decrease in oxidation number. Usually the change in oxidation number is associated with a gain or loss of electrons, but there are some redox reactions (e.g., covalent bonding) that do not involve electron transfer. Depending on the chemical reaction, oxidation and reduction may involve any of the following for a given atom, ion, or molecule:
Oxidation - involves the loss of electrons or hydrogen or gain of oxygen or increase in oxidation state
Reduction - involves the gain of electrons or hydrogen or loss of oxygen or decrease in oxidation state
Oxidants are usually chemical substances with elements in high oxidation states (e.g., H2O2, CrO3, OsO4), or else highly electronegative elements (O2, F2, Cl2, Br2) that can gain extra electrons by oxidizing another substance. Reductants in chemistry are very diverse. Electropositive elemental metals, such as lithium, sodium, magnesium, iron, zinc, and aluminum, are good reducing agents. These metals donate or give away electrons readily.
In redox processes, the reductant transfers electrons to the oxidant. Thus, in the reaction, the reductant or reducing agent loses electrons and is oxidized, and the oxidant or oxidizing agent gains electrons and is reduced. The pair of an oxidizing and reducing agent that are involved in a particular reaction is called a redox pair or couple.
When a net reaction proceeds in an electrochemical cell, oxidation occurs at one electrode, the anode, and reduction takes place at the other electrode, the cathode. The cell consists of two half-cells joined together by an external circuit through which electrons flow and an internal pathway that allows ions to migrate between them. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.
The sign of the potential depends on the direction in which the electrode reaction has elapsed. By convention, the electrode potentials refer to the semi-reduction reaction. The potential is then positive, when the reaction occurs in the electrode (facing the reference) is the reduction, and is negative when oxidation. The most common electrode as a reference electrode is called the reference or normal hydrogen, which has zero volts.
Finally, the voltage of a cell is determined by the reduction potential of redox couple used and is usually between 1 V and 4 V per cell. A complete table of the type of potential constituent of the electrode can be seen in (Linden & Reddy 2001).
Batteries in which the redox process is not reversible are called primary (non-rechargeable). For this work, are of interest only secondary batteries (rechargeable) which are based on some kind of reversible process and can be repetitively charged and discharged. In this way, only this type of batteries are considered here when batteries are referred.
The authors wish to thank the CONICET (Argentinean National Council for Science and Technology Research), the UNSJ (National University of San Juan), and the ANPCyT (National Agency for Scientific and Technological Promotion) under grant FONCYT PICTO UNSJ 2009 – Cod. No. 0162, for the financial support of this work.
For the last few decades, climate change, food security and their complex interaction have become a global issue [1]. With the rapid increase in human population, we have destroyed our nature and polluted the environment. The level of greenhouse gases in the atmosphere is increasing day by day. Consequently, we are facing the threats of global warming and other climatic changes like cyclone, drought, flood, etc. Change in the climatic conditions may be limited to a specific region or may occur across the whole earth. But, it is affecting all the ecosystems including the aquatic ones. Aquatic organisms are very vulnerable to climate change because the average temperature of both air and water are changing simultaneously. Climate change in the aquatic system mainly occurs through sea level and temperature rise, change in monsoon patterns, extreme weather events and water stress having both direct and indirect impacts on aquatic animals including fish stocks. It directly acts upon the physiological behavior and growth pattern of organisms, subsequently decrease reproductive capacity and finally cause mortality. Indirectly it may alter the productivity, structure, function and composition of aquatic ecosystems. All these effects finally result in decreased fish production. It disturbs the economic condition of fish farmers and hamper their normal livelihood by huge economic losses. In this chapter, we will discuss how climate change affects the production of fish and the lives of fish farmers and how it could be mitigated through proper actions.
\nThe factors that can cause a change in the atmospheric system or climatic regime are called “climate forcing” or “forcing mechanisms.” So, forcing mechanisms can be of two types, i.e., internal forcing mechanism and external forcing mechanisms. Internal forcing mechanisms are natural processes in the climatic system like thermohaline circulation, etc. External forcing mechanisms can also be of two types- anthropogenic mechanisms including greenhouse gas emission and the emission of several other pollutants and natural mechanisms like changes in solar output, volcanic eruptions, etc. All these mechanisms are responsible for the change of climate. But overwhelming evidence exists that anthropogenic activities are the major reason behind this dreadful condition. These are described below.
Fossil fuel burning: Fossil fuel burning is one of the most important sources of climate change. As fossil fuels contain carbon for many years, they can release back CO2 into the air. This is one of the direct causes of carbon emission in the air, which can cause all sorts of environmental problems including global warming.
Livestock farming: Through livestock farming, methane (CH4) gas is emitted into the atmosphere. As we know, CH4 is a greenhouse gas, so capable of trapping a huge amount of heat from the sun. In that way, they can contribute to global warming in broad sense.
Aerosols: Aerosols also represent a big problem for the climate today. Aerosols are a very small naturally occurring particle in the atmosphere. Previously the number of aerosols in the atmosphere was very less, but now the level is increasing.
Use of fertilizers: Use of fertilizers in both agricultural and aquacultural farmland can increase the availability of food source greatly to us. To meet up the growing demand for food, the use of fertilizers have increased rapidly. Fertilizer contains a huge amount of nitrous oxide, which is responsible for a steady increase in the earth’s surface temperature.
All the aquatic organisms including fish and aquatic invertebrates are poikilothermic in nature and the body temperature of those organisms changes with environmental temperature. So, they are very much sensitive to the change in the temperature in their external environment where they live. When the external environmental temperature goes beyond the tolerance limit of these organisms, they will go for migration to the place where their internal system allows them to regain their internal homeostasis. This procedure is termed as behavioral thermoregulation [2]. This will result in rapid migration to the cooler zones of the water body [3]. This migration allows the shifting of the aquatic animals from shallow coastal waters and semi-enclosed areas into deeper cooler waters [4]. In spite of the negative impacts of these phenomenons like coral reef destruction and increased ocean acidification, it would have some conservative approach. This phenomenon of migration can alone reduce the maximum catch potential of the tropics by 40% [4].
\nAs the major consequences of climate change, especially increased temperature strongly affects the recruitment process [5]. Some stocks may become intolerance to the sustainable fishing effort because they experience them as overfishing due to the side effects of temperature enhancement [6]. Temperature enhancement of water, where fish live, will slow down their growth and maximum size as the temperature would increase their metabolic rate [2].
\nLocal extinction of fish species would be noticed, among freshwater and diadromous species especially [7]. Because of the higher potential for migration, terrestrial species show a higher rate (15–37%) of overall migration than marine species [8].
\nThe increased temperature would bring a deadly impact on reef fisheries by inducing bleaching of the coral reef [7].
\nThe levels of light and temperature determine the availability of nutrients in the water body, which in turn affects the primary productivity. Due to climate variability, reduced precipitation would lead to reduced run-off from land, which caused the starvation of wetland and mangrove and damage local fisheries. In some other places, due to increased precipitation from extreme weather events like flooding, nutrient level in the water body tremendously increased causing eutrophication and washout fertilizer causing harmful algal blooms into the water bodies, known as red tides [2, 9]. Most of the small scale fisheries locate at the lower latitude, where climate change hit the most and decline the primary productivity [10] of the fisheries sector.
\nFisheries and aquaculture are largely dependent on the interactions among the various factors like the earth’s climate and ocean environment. So, changing the pattern of air and sea-surface temperatures, rainfall, sea level, ocean acidity and wind-pattern will adversely affect the fisheries and aquaculture [3].
\nMarine fish production is largely disrupted by climate change. With the change in the climatic conditions, several changes are observed in the ocean including a rise in temperature, melting of polar ice, rising sea level, change in ocean current system and acidification of seawater. Over the coming decades, the temperature of the Indian seas is going to increase by 1–3°C [11]. The species that is going to be affected first due to these conditions is plankton. It forms the basis of the food chain in the marine ecosystem. Other species including corals, fishes, sea birds will be affected simultaneously. Due to increased ocean acidification, marine organisms like oysters, shrimps and corals would unable to form their outer covering or shell through the process of calcification. Thus, the entire marine food web get affected because of the formation of cracks in the marine food chain.
\nThe vulnerability of the freshwater ecosystems against climate change is very high. The size, depth and trophic status of the lake determine the vulnerability of this system against climate change. According to Field and coworkers [12], the negative impact was observed on the cold-water species and positive impact on the warm-water species. Due to acute effects of climate change, alteration of shapes and distribution is seen in the freshwater lake system and in some cases, they might be disappeared. These are the attributes of the dynamics change in precipitation, evaporation and run-off [13]. Climate change promotes long-term increases in fish-production by inducing the enhancement of the production rate of invertebrate prey logarithmically with increasing temperature. The increasing rates are 2–4 times for each 10°C increase in temperature [14]. But on the other hand, climate change will result in a change in prey-species composition. This change may cause antagonistic effects on the long-term enhancement of fish production [14]. In short-time, climate change will cause a decrease in fish-production because of timing mismatch [14]. The ability of the movement of the freshwater species is vital in determining the resistance of those species to withstand climate change [13].
\nThe coral reef is an important source of income for many developing countries [15]. Coral provides habitat for more than half of all marine species. But now coral reefs of the ecosystem are in great danger. The main reasons are increasing temperature, acidity, etc.
\nClimate change-related impact on the coral reef can be based on three different time-scales.
Years: Coral bleaching which increased in recent years and results in degradation of reefs.
A few decades: Acidification increased and carbonate structures degenerate.
Multi-decades: Weakened the structural integrity of the reefs which causes large scale composition shifts.
The coral reef is one of the most resistant ecosystems and too resilient to recover from weak chronic as well as acute stresses [16]. But according to Hughes and coworkers [17], the reef ecosystem is not able to sustain against chronic plus acute stress.
\nIncreasing acidity causes decreasing the pH of the ocean, which results in decreased aragonite saturation that can disrupt the calcification of coral [18]. Enhanced acidity of the world’s ocean is very much important and represents a long-term threat to coral reefs but the impact growth of the corals on the increasing acidity is unknown [15]. The saturation level of aragonite in deep cold water corals are 90–150 m [19]. The impact of the acidification is badly seen in these deep- cold-water corals.
\nIf corals are decreased due to adverse impacts from climatic change, it causes a negative impact on the reef fish- biodiversity [20]. According to Grandcourt and Cesar [21], coastal fisheries are badly affected by the warming of the climate and bleaching events. It can be concluded that coral reef destruction causes a long-term impact on the animals which depends on these reefs for their food and habitat.
\nClimate change acts as an important determinant of the distribution of biodiversity in past and future aspect [22, 23, 24, 25, 26]. Environmental factors reflect strong influences upon species richness of aquatic organisms [27]. Ocean warming can cause change to the marine species especially in their latitudinal range [28, 29, 30] and depth range [31]. At a larger scale, such changes can lead to local extinction and invasions and shifting to their bio-geographic pattern [28]. As a result, a huge shift in species richness can occur which is regarded as the main cause of disruption of marine biodiversity and ecosystem [2, 32, 33]. The climate in the aquatic environment can affect biodiversity, community structure and ecosystem function [34, 35, 36, 37].
\nChange in the aquatic environment has a direct impact on the lives of the fish farmers. Due to disturbed fish production, farmers face economic losses. Besides global warming, cyclone is another problem that affects the lives of the farmers. Cyclone combined with a flood and heavy rainfall creates a major problem every year for the farmers especially in the coastal states of India. It is a matter of great concern that the frequency of intense tropical cyclones has increased in the Indian ocean [38]. The factors such as warm sea temperature, high humidity and instability of atmosphere are responsible for intensifying the cyclone [39]. As a consequence of global warming, the temperature of the Indian Ocean has also increased promoting devastating cyclones. In May 2019, a cyclone named Fani hit Andhra Pradesh, Odisha and West Bengal. It caused damage to the coastal land, boats, jetties and the shelters of the fishermen and five lakh houses were destroyed in 14 districts [40]. In Odisha only, the losses were estimated to be 12,000 crores. Regarding the seafood sector, the production of shrimp was declined by 60–70% [41]. Most recently, in May 2020, cyclone Amphan hit eastern India specifically West Bengal and alos Bangladesh. This was the first super cyclone in Bay of Bengal since 1999 super cyclone that hit Odisha took the life of more than 9000 people [42]. Amphan affected the coastal areas of West Bengal including East Midnapur, North 24 Parganas, South 24 Parganas, Kolkata, Hoogly and Howrah. According to Chief Minister of West Bengal, the death toll was more than 86 and the state suffered a damage of 1 lakh crore rupees (15.38 Billion USD) [43]. Specially, the Sundarban areas were highly devastated, millions of homes were damaged breached embankments led to flood in villages. It takes years for the local residents as well as fishermen to recover from these situations. They do not have shelter to stay, do not have a boat for fishing and no money to pay back the loans that ultimately affects their psychological health sometimes leading to suicidal tendencies.
\nConsideration of future climate changes in advance and making them a part of short-term decision making is known as adaptation. This includes using more eco-friendly substances, planting more trees and preserving our nature as much as possible. On another hand, preventing the chances of climate change, before it has occurred, reducing the effects of climate change in case of occurrence is known as mitigation. Reducing the carbon footprint and related activities should be a major step. The level of environmental pollution should be decreased as soon as possible before it becomes too late to act. Some strategies that we should follow immediately are discussed below.
\nAdaptation of forest conservation measures: Forest plays an important role in maintaining equilibrium in our ecosystem. We should conserve and prevent the destruction of forest land through afforestation as well as reforestation and prohibit the use of forestland for nonforest purposes to meet the livelihood of local people.
\nInclusion of climate-study in the school-level educational system: If we want to generate awareness in the young generation by the introduction of climate-related study along with traditional educational system with the help of governmental initiatives. This will help to grow the consciousness among the young generation from very beginning which will significantly broaden this culture at the local, state and national levels.
\nSlowing down of population growth: Population growth is becoming a burden especially in the case of a developing country like India. It has become a major obstruction in achieving social and economic development. So, in order to fight against climate change, population pressure over the area need to be reduced by reversing down the population growth curve in developing countries.
\nIntegration of climate issue with economic planning: Climate protection-related policies and programs should be incorporated into the local, state and national levels in order to encourage the integration of climate issues with economic planning and management.
\n\n
The ecosystem approach should be comprehensive, sound, integrated, compact and revised to make complete management of sand oceans of coasts, fisheries and aquaculture.
Environmental friendly aquaculture and fishing practices to be undertaken.
Fuel-efficient aquaculture and fishing practices to be undertaken.
Integration of climate-proof aquaculture with other sectors.
Over-fishing and excess fishing capacity should be eliminated through the implementation of reduced subsidy systems.
Risk assessments should be proper and accurate at the local level.
Exploration of the carbon sequestration process by aquatic ecosystems.
There is a crucial knowledge gap between fisheries, aquaculture management and climate change that need to be filled practically. In order to assess the risk of climate change to coastal communities, human and institutional capacity building should be strengthened and proper adaptation and mitigation measures should be implemented. Therefore, well managed fisheries and aquaculture could give birth to a healthy and productive ecosystem. Careful use of coastal areas and catchment areas should be cross-sectoral responsibility to encourage the building process of a healthy and productive ecosystem. Moreover, youth engagement in each and every policy and decision-making process related to aquaculture and fisheries both at continental and national levels should be institutionalized efficiently as youth are the backbone of our society.
\n\n
Climate change is a major threat to both aquatic and terrestrial ecosystems. In present days, a random population explosion increases fossil fuel burning, industrialization, deforestation, and profit-oriented capitalism, which can, in turn, create synergistic effects on climate change. Aquaculture sector is much impacted by temperature increase in water and air, sea level rise, and associated water intrusion as affected by global warming and climate change. This change in the aquatic environment or a decrease in fish production is directly affecting the economic sustainability of fish farmers. Thus, this situation can be corrected if necessary actions will be taken in reducing environmental pollution as soon as possible. Researchers, economists, policymakers, and farmers should act together to fight economic instability and maintain harmony with nature. One thing we should remember that we should protect nature if we want to protect ourselves from the coming threats.
\nIntechOpen books are indexed by the following abstracting and indexing services:
",metaTitle:"Indexing and Abstracting",metaDescription:"IntechOpen was built by scientists, for scientists. We understand the community we serve, but to bring an even better service to the table for IntechOpen Authors and Academic Editors, we partnered with the leading companies and associations in the industry and beyond.",metaKeywords:null,canonicalURL:"/page/indexing-and-abstracting",contentRaw:'[{"type":"htmlEditorComponent","content":"Clarivate Web Of Science - Book Citation Index
\\n\\nCroatian Library (digital NSK)
\\n\\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\\n\\n\\n\\n
\\n"}]'},components:[{type:"htmlEditorComponent",content:'
Clarivate Web Of Science - Book Citation Index
\n\nCroatian Library (digital NSK)
\n\nOCLC (Online Computer Library Center) - WorldCat® Digital Collection Gateway
\n\n\n\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5817},{group:"region",caption:"Middle and South America",value:2,count:5282},{group:"region",caption:"Africa",value:3,count:1755},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15915}],offset:12,limit:12,total:119159},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:27},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:46},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5314},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"279",title:"Social Welfare",slug:"social-sciences-social-welfare",parent:{title:"Social Sciences",slug:"social-sciences"},numberOfBooks:1,numberOfAuthorsAndEditors:13,numberOfWosCitations:11,numberOfCrossrefCitations:7,numberOfDimensionsCitations:11,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"social-sciences-social-welfare",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1848",title:"Social Welfare",subtitle:null,isOpenForSubmission:!1,hash:"67f5dd4197c0618919f6150b7099846b",slug:"social-welfare",bookSignature:"Rosario Laratta",coverURL:"https://cdn.intechopen.com/books/images_new/1848.jpg",editedByType:"Edited by",editors:[{id:"118227",title:"Dr.",name:"Rosario",middleName:null,surname:"Laratta",slug:"rosario-laratta",fullName:"Rosario Laratta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"30852",doi:"10.5772/38089",title:"Welfare Effects of Third-Degree Price Discrimination: Ippolito Meets Schmalensee and Varian",slug:"welfare-effects-of-third-degree-price-discrimination-ippolito-meets-schmalensee-and-varian",totalDownloads:4428,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Iñaki Aguirre",authors:[{id:"115513",title:"Prof.",name:"Iñaki",middleName:null,surname:"Aguirre",slug:"inaki-aguirre",fullName:"Iñaki Aguirre"}]},{id:"30847",doi:"10.5772/37194",title:"Paradoxes of Welfare: Universality, Truth, and Power in Modern Welfare Provision",slug:"paradoxes-in-welfare-provision",totalDownloads:1852,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Kaspar Villadsen",authors:[{id:"111715",title:"Dr.",name:"Kaspar",middleName:null,surname:"Villadsen",slug:"kaspar-villadsen",fullName:"Kaspar Villadsen"}]},{id:"30846",doi:"10.5772/37439",title:"Privatization and Financial Markets in European Union: A Social Welfare Perspective",slug:"privatization-and-financial-markets-in-european-union-a-social-welfare-prespective",totalDownloads:2138,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Ioannis N. Kallianiotis",authors:[{id:"112770",title:"Dr.",name:"Ioannis",middleName:null,surname:"Kallianiotis",slug:"ioannis-kallianiotis",fullName:"Ioannis Kallianiotis"}]}],mostDownloadedChaptersLast30Days:[{id:"30846",title:"Privatization and Financial Markets in European Union: A Social Welfare Perspective",slug:"privatization-and-financial-markets-in-european-union-a-social-welfare-prespective",totalDownloads:2143,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Ioannis N. Kallianiotis",authors:[{id:"112770",title:"Dr.",name:"Ioannis",middleName:null,surname:"Kallianiotis",slug:"ioannis-kallianiotis",fullName:"Ioannis Kallianiotis"}]},{id:"30852",title:"Welfare Effects of Third-Degree Price Discrimination: Ippolito Meets Schmalensee and Varian",slug:"welfare-effects-of-third-degree-price-discrimination-ippolito-meets-schmalensee-and-varian",totalDownloads:4430,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Iñaki Aguirre",authors:[{id:"115513",title:"Prof.",name:"Iñaki",middleName:null,surname:"Aguirre",slug:"inaki-aguirre",fullName:"Iñaki Aguirre"}]},{id:"30851",title:"Can Competition Save Your Life?",slug:"can-competition-save-your-life-",totalDownloads:2037,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Helen Schneider",authors:[{id:"114341",title:"Dr.",name:"Helen",middleName:null,surname:"Schneider",slug:"helen-schneider",fullName:"Helen Schneider"}]},{id:"30845",title:"Contemporary Civil Society Theory Versus Hegel’s Understanding of Civil Society",slug:"contemporary-civil-society-theory-versus-hegel-s-understanding-of-civil-society",totalDownloads:5620,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Rosario Laratta",authors:[{id:"118227",title:"Dr.",name:"Rosario",middleName:null,surname:"Laratta",slug:"rosario-laratta",fullName:"Rosario Laratta"}]},{id:"30853",title:"Mediated Heuristic Approaches and Alternative Social Welfare Definitions for Complex Contract Negotiations Involving Highly Uncorrelated Utility Spaces",slug:"mediated-heuristic-approaches-and-alternative-social-welfare-definitions-for-complex-contract-negoti",totalDownloads:1445,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, Enrique de la Hoz and Mark Klein",authors:[{id:"118692",title:"Dr.",name:"Ivan",middleName:null,surname:"Marsa-Maestre",slug:"ivan-marsa-maestre",fullName:"Ivan Marsa-Maestre"},{id:"118695",title:"Dr.",name:"Miguel A.",middleName:null,surname:"Lopez-Carmona",slug:"miguel-a.-lopez-carmona",fullName:"Miguel A. Lopez-Carmona"},{id:"118696",title:"MSc.",name:"Enrique",middleName:null,surname:"De La Hoz",slug:"enrique-de-la-hoz",fullName:"Enrique De La Hoz"}]},{id:"30848",title:"Area-Based Partnerships and Social Welfare: Innovations and Challenges",slug:"innovations-in-social-welfare-systems-area-based-experiences",totalDownloads:1753,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Brendan O’Keeffe",authors:[{id:"112265",title:"Dr.",name:"Brendan",middleName:null,surname:"O'Keeffe",slug:"brendan-o'keeffe",fullName:"Brendan O'Keeffe"}]},{id:"30850",title:"Autonomy and Poverty – An Empirical Study of Long-Term Recipients of Social Assistance",slug:"autonomy-and-poverty",totalDownloads:2345,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Kjell Underlid",authors:[{id:"114571",title:"Prof.",name:"Kjell",middleName:null,surname:"Underlid",slug:"kjell-underlid",fullName:"Kjell Underlid"}]},{id:"30847",title:"Paradoxes of Welfare: Universality, Truth, and Power in Modern Welfare Provision",slug:"paradoxes-in-welfare-provision",totalDownloads:1852,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Kaspar Villadsen",authors:[{id:"111715",title:"Dr.",name:"Kaspar",middleName:null,surname:"Villadsen",slug:"kaspar-villadsen",fullName:"Kaspar Villadsen"}]},{id:"30849",title:"Look to Norway – A Sobering Challenge to a Success Story",slug:"look-to-norway-a-critical-remark-to-a-successful-story-",totalDownloads:1822,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Dag Leonardsen",authors:[{id:"118646",title:"Prof.",name:"Dag",middleName:null,surname:"Leonardsen",slug:"dag-leonardsen",fullName:"Dag Leonardsen"}]},{id:"30854",title:"Social Welfare and the Emergence of Negotiations",slug:"social-welfare-and-the-emergence-of-negotiations",totalDownloads:1406,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"social-welfare",title:"Social Welfare",fullTitle:"Social Welfare"},signatures:"Francisco Candel-Sánchez",authors:[{id:"116204",title:"Dr.",name:"Francisco",middleName:null,surname:"Candel-Sanchez",slug:"francisco-candel-sanchez",fullName:"Francisco Candel-Sanchez"}]}],onlineFirstChaptersFilter:{topicSlug:"social-sciences-social-welfare",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/323090/melinda-s-seering",hash:"",query:{},params:{id:"323090",slug:"melinda-s-seering"},fullPath:"/profiles/323090/melinda-s-seering",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()