Raman frequencies of representative molecules and chemical bonds.
\\n\\n
These books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\\n\\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\\n\\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\\n\\n\\n\\n\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
IntechOpen and Knowledge Unlatched formed a partnership to support researchers working in engineering sciences by enabling an easier approach to publishing Open Access content. Using the Knowledge Unlatched crowdfunding model to raise the publishing costs through libraries around the world, Open Access Publishing Fee (OAPF) was not required from the authors.
\n\nInitially, the partnership supported engineering research, but it soon grew to include physical and life sciences, attracting more researchers to the advantages of Open Access publishing.
\n\n\n\nThese books synthesize perspectives of renowned scientists from the world’s most prestigious institutions - from Fukushima Renewable Energy Institute in Japan to Stanford University in the United States, including Columbia University (US), University of Sidney (AU), University of Miami (USA), Cardiff University (UK), and many others.
\n\nThis collaboration embodied the true essence of Open Access by simplifying the approach to OA publishing for Academic editors and authors who contributed their research and allowed the new research to be made available free and open to anyone anywhere in the world.
\n\nTo celebrate the 50 books published, we have gathered them at one location - just one click away, so that you can easily browse the subjects of your interest, download the content directly, share it or read online.
\n\n\n\n\n'}],latestNews:[{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"},{slug:"intechopen-identified-as-one-of-the-most-significant-contributor-to-oa-book-growth-in-doab-20210809",title:"IntechOpen Identified as One of the Most Significant Contributors to OA Book Growth in DOAB"}]},book:{item:{type:"book",id:"5232",leadTitle:null,fullTitle:"Restricted Growth - Clinical, Genetic and Molecular Aspects",title:"Restricted Growth",subtitle:"Clinical, Genetic and Molecular Aspects",reviewType:"peer-reviewed",abstract:"Restricted growth conditions are a group of genetic disorders with primary effect on growth (short stature); it is very heterogeneous and comprises two important categories: skeletal dysplasia and different genetic syndromes with primary effect on growth. It could also be caused by a medical condition. The book contains chapters regarding different aspects of the study of restricted growth that are divided into three broad sections. Section I: Defining Restricted Growth, Section II: Genetics and Diagnosis of Restricted Growth, and Section III: Signaling Pathways and Molecular Mechanisms of Restricted Growth. The book presents comprehensive reviews of each topic written by experts in the field. It will be the most valuable tool for physicians and life science researchers and students. We hope that the book will motivate discussion and research in this important health problem, setting the path for better therapeutic approaches.",isbn:"978-953-51-2695-9",printIsbn:"978-953-51-2694-2",pdfIsbn:"978-953-51-7315-1",doi:"10.5772/61620",price:119,priceEur:129,priceUsd:155,slug:"restricted-growth-clinical-genetic-and-molecular-aspects",numberOfPages:174,isOpenForSubmission:!1,isInWos:1,isInBkci:!1,hash:"c604493aaeaf8258adc42b2d7dc9b22d",bookSignature:"Maria del Carmen Cardenas- Aguayo",publishedDate:"October 12th 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5232.jpg",numberOfDownloads:10662,numberOfWosCitations:5,numberOfCrossrefCitations:2,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:4,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:11,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 27th 2015",dateEndSecondStepPublish:"December 5th 2015",dateEndThirdStepPublish:"March 1st 2016",dateEndFourthStepPublish:"May 21st 2016",dateEndFifthStepPublish:"August 3rd 2016",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo",fullName:"Maria del Carmen Cardenas-Aguayo",profilePictureURL:"https://mts.intechopen.com/storage/users/169616/images/4834_n.jpg",biography:"Maria del Carmen Cárdenas-Aguayo, PhD, is currently a Professor in the Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico. Her laboratory engages in multidisciplinary research to elucidate the molecular mechanisms of neuronal differentiation and the study of the effects of cellular stress and protein recycling impairments on neurodegeneration. Her research has been directed at studying the differentiation potential of hippocampal neural precursor cells from mouse and human models and its implication in neurological disorders.\nHer studies in molecular medicine started during her MS thesis work at CINVESTAV-IPN, Mexico City, Mexico, and continued with her PhD in molecular biomedicine on the neurosciences field at CINVESTAV-IPN, Mexico City, Mexico. Subsequently, she accomplished two international research trainings, one at the Nathan Kline Institute, Center for Dementia Research, Orangeburg, NY, and the other at the Institute for Basic Research in Developmental Disabilities, Staten Island, NY. Prior to her arrival at the School of Medicine, UNAM, Dr. Cárdenas-Aguayo held a Visiting Professor position at CINVESTAV-IPN, Mexico City, Mexico.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1049",title:"Mitochondrial Genetics",slug:"mitochondrial-genetics"}],chapters:[{id:"52104",title:"Growth Hormone Axis in Skeletal Dysplasias",doi:"10.5772/64802",slug:"growth-hormone-axis-in-skeletal-dysplasias",totalDownloads:1872,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Introduction: Skeletal dysplasias, also termed as osteochondrodysplasias, are a large heterogeneous group of disorders characterized by abnormalities of bone or cartilage growth or texture. They occur due to genetic mutations and their phenotype continues to evolve throughout life. Reduced growth is a common feature.",signatures:"Stefano Stagi, Annachiara Azzali, Luisa La Spina, Matteo Della\nMonica, Perla Scalini and Maurizio de Martino",downloadPdfUrl:"/chapter/pdf-download/52104",previewPdfUrl:"/chapter/pdf-preview/52104",authors:[{id:"28293",title:"Dr.",name:"Stefano",surname:"Stagi",slug:"stefano-stagi",fullName:"Stefano Stagi"},{id:"183637",title:"Dr.",name:"Annachiara",surname:"Azzali",slug:"annachiara-azzali",fullName:"Annachiara Azzali"},{id:"183638",title:"Dr.",name:"Luisa",surname:"La Spina",slug:"luisa-la-spina",fullName:"Luisa La Spina"},{id:"183639",title:"Dr.",name:"Matteo",surname:"Della Monica",slug:"matteo-della-monica",fullName:"Matteo Della Monica"},{id:"183640",title:"Dr.",name:"Perla",surname:"Scalini",slug:"perla-scalini",fullName:"Perla Scalini"},{id:"183641",title:"Prof.",name:"Maurizio",surname:"De Martino",slug:"maurizio-de-martino",fullName:"Maurizio De Martino"}],corrections:null},{id:"51860",title:"Growth Hormone Deficiency: Diagnosis and Therapy in Children",doi:"10.5772/64803",slug:"growth-hormone-deficiency-diagnosis-and-therapy-in-children",totalDownloads:1947,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Short stature has been defined as a height below the 2 standard deviation for age, sex and ethnicity. Growth hormone deficiency (GHD) represents a condition characterized by reduced GH secretion, isolated or associated with other pituitary hormone deficiencies. In a child with short stature and growth deceleration, after the exclusion of other causes of growth failure, the diagnosis of GHD has to be confirmed by measurement of GH secretion after at least two stimulation tests. Patients with GHD should be treated with rhGH as soon as possible, to obtain normalization of growth and normal final height. The catch-up growth in response to rhGH therapy is maximal during the first years and could be affected by many variables, such as birth-weight, age and height at start of treatment and of puberty, and duration of treatment. Overall, rhGH is believed to be safe and significant side-effects in children are very rare, including benign intracranial hypertension, hyperglycaemia, arthralgia and myalgia.\nPatients with childhood onset GHD are usually retested in late adolescence to confirm the GHD persistence and to continue of GH therapy.\nIn conclusion, the present chapter provides useful and updated information about the diagnosis, treatment and follow-up of children with GHD.",signatures:"Mauro Bozzola and Cristina Meazza",downloadPdfUrl:"/chapter/pdf-download/51860",previewPdfUrl:"/chapter/pdf-preview/51860",authors:[{id:"85383",title:"Prof.",name:"Mauro",surname:"Bozzola",slug:"mauro-bozzola",fullName:"Mauro Bozzola"},{id:"87621",title:"Dr.",name:"Cristina",surname:"Meazza",slug:"cristina-meazza",fullName:"Cristina Meazza"}],corrections:null},{id:"52131",title:"Genetic Determinants of Short Stature",doi:"10.5772/64561",slug:"genetic-determinants-of-short-stature",totalDownloads:1772,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Growth in height is a multifactorial process in which 80–90% of the contributing factors are genetic. The genes that determine the appropriate morphology and function of the skeletal and endocrinal system are the most being involved. Short stature is a clinical sign noted in conditions that intrinsically affect the growth plate, such as skeletal dysplasia, or in genetic syndromes such as Turner's, Silver‐Russell, Noonan's, Cornelia de Lange's, Rubinstein‐Taybi and Prader‐Willi syndrome. Also, some endocrine diseases or chronic disorders can lead to change growth in the plate physiology, leading to short stature; the endocrine disorders are often genetically determined. Another category is idiopathic short stature, which is the most important in terms of frequency, and even though in this case, the aetiology is not proven; it seems that the genetic factors have the main role. In this chapter, the genetic syndromes with primary effect on growth are presented and the principal aim is to highlight the main clinical signs associated with short stature, which can lead to an easier clinical diagnosis of a genetic disease that mainly influence growth, thus facilitating the selection of the genetic test needed for the etiologic diagnosis in short stature.",signatures:"Diana Miclea",downloadPdfUrl:"/chapter/pdf-download/52131",previewPdfUrl:"/chapter/pdf-preview/52131",authors:[{id:"181083",title:"Ph.D.",name:"Diana",surname:"Miclea",slug:"diana-miclea",fullName:"Diana Miclea"}],corrections:null},{id:"51770",title:"Molecular Defects and Cellular Dysfunctions in Restricted Growth Conditions",doi:"10.5772/64560",slug:"molecular-defects-and-cellular-dysfunctions-in-restricted-growth-conditions",totalDownloads:1289,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Restricted growth (RG) or dwarfism is a varied phenotype ascribable to many different causes, most of which are genetic. Conditions associated with disproportionate short stature (DSS) are usually caused by de novo dominant mutations in genes coding for proteins involved in cartilage/bone development. Rarer conditions, which may occur in inbred families, show an autosomal recessive inheritance. Causative mutations, consequent to cellular dysfunctions, genotype-to-phenotype correlations in RG conditions such as achondroplasia, hypochondroplasia, thanatophoric dysplasia, severe achondroplasia with delay in development and acanthosis nigricans, pseudoachondroplasia, multiple epiphyseal dysplasia, diastrophic dysplasia, achondrogenesis, and osteogenesis imperfecta, are discussed in this chapter.",signatures:"Monica Mottes and Patricia Marie-Jeanne Lievens",downloadPdfUrl:"/chapter/pdf-download/51770",previewPdfUrl:"/chapter/pdf-preview/51770",authors:[{id:"181007",title:"Prof.",name:"Monica",surname:"Mottes",slug:"monica-mottes",fullName:"Monica Mottes"},{id:"187117",title:"Prof.",name:"Patricia Marie Jeanne",surname:"Lievens",slug:"patricia-marie-jeanne-lievens",fullName:"Patricia Marie Jeanne Lievens"}],corrections:null},{id:"51922",title:"Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2",doi:"10.5772/64606",slug:"growth-hormone-receptor-signaling-pathways-and-its-negative-regulation-by-socs2",totalDownloads:1990,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic development, adulthood, and aging. GHR belongs to a family of receptors without intrinsic kinase activity. However, GH binding to homodimers of GHR results in a conformational change in the receptors and the associated tyrosine kinase Janus kinase 2 (JAK2) molecules. Activated JAK2 phosphorylates the GHR cytoplasmic domain on tyrosine residues, and subsequent JAK2-dependent and JAK2-independent intracellular signal transduction pathways evoke cell responses including changes in gene transcription, proliferation, cytoskeletal reorganization, and lipid and glucose metabolism. JAK2 phosphorylates STAT5b, which is a key transcription factor in GH regulation of target genes associated with body growth, intermediate metabolism, and gender dimorphism; although STAT1, 3, and 5a have also been shown to be recruited by the GHR. In addition, many transcripts are regulated independently of STAT5b as a result of GHR activation of Src, ERK, and PI3K-mTOR signaling pathways. The analysis of molecular mechanisms involved in inactivation of GHR-dependent signaling pathway is also imperative for understanding GH physiology. This is clearly illustrated in the case of hepatic GHR-JAK2-STAT5b activation where signal duration regulates gender differences in liver gene expression. An early step in the termination of GH-dependent signaling is removal of GHRs by endocytosis and ubiquitination. The level of ubiquitin ligase SOCS2 is constitutively low, but its expression is rapidly induced by GH. SOCS2 binding to GHR complex promotes their ubiquitination and subsequent proteasomal degradation, contributing to the termination of the GH intracellular signaling. Clinically relevant, SOCS2 is a key negative regulator of GH-dependent body growth and lipid and glucose homeostasis. Furthermore, several cytokines, growth factors, xenobiotics, and sex hormones can regulate SOCS2 protein level, which provides a mechanism for cross-talking where multiple factors can regulate GHR signaling during somatic development. A better understanding of this complex regulation in physiological and pathological states will contribute to prevent health damage and improve clinical management of patients with growth and metabolic disorders.",signatures:"Leandro Fernández-Pérez, Amilcar Flores-Morales, Borja Guerra,\nJuan C. Díaz-Chico and Diego Iglesias-Gato",downloadPdfUrl:"/chapter/pdf-download/51922",previewPdfUrl:"/chapter/pdf-preview/51922",authors:[{id:"70660",title:"Dr.",name:"Amilcar",surname:"Flores-Morales",slug:"amilcar-flores-morales",fullName:"Amilcar Flores-Morales"},{id:"181749",title:"Dr.",name:"Leandro",surname:"Fernández-Pérez",slug:"leandro-fernandez-perez",fullName:"Leandro Fernández-Pérez"},{id:"185534",title:"Dr.",name:"Diego",surname:"Iglesias-Gato",slug:"diego-iglesias-gato",fullName:"Diego Iglesias-Gato"},{id:"185535",title:"Dr.",name:"Juan Carlos",surname:"Díaz-Chico",slug:"juan-carlos-diaz-chico",fullName:"Juan Carlos Díaz-Chico"},{id:"185536",title:"Dr.",name:"Borja",surname:"Guerra",slug:"borja-guerra",fullName:"Borja Guerra"}],corrections:null},{id:"52043",title:"Mannose-6-Phosphate/Insulin-Like Growth Factor 2 Receptor (M6P/IGF2-R) in Growth and Disease: A Review",doi:"10.5772/64810",slug:"mannose-6-phosphate-insulin-like-growth-factor-2-receptor-m6p-igf2-r-in-growth-and-disease-a-review",totalDownloads:1794,totalCrossrefCites:1,totalDimensionsCites:3,hasAltmetrics:0,abstract:"This work aims to summarize the current knowledge about Mannose-6- Phosphate/Insulin-like Growth Factor 2 Receptor (M6P/IGF2-R) in the regulation of growth and development, and its involvement in tumor progression. M6P/IGF2-R binds both molecules sharing M6P signals and IGF2. The studies showed that M6P/IGF2-R is involved in the trafficking of mannnose-6-phosphorylated enzymes from the Trans-Golgi Network (TGN) to lysosomes and the uptake of secreted proenzymes from the plasma membrane to the lysosomes via clathrin-coated vesicles for their maturation. The M6P/IGF2-R acts as a scavenger that binds IGF2 and transports it to lysosomes for its degradation since IGF2 exerts its biological effects on cell proliferation and development by binding with lower affinity on IGF1 receptor, which is structurally similar to insulin receptor and different from the M6P/IGF2-R. The M6P/IGF2-R has also been studied in human cancer, and frequent losses of heterozygosity (LOH) at the 6q25-27 gene region with mutations in the remaining allele have been described. These results led to consider M6P/IGF2-R gene as a putative tumor suppressor and its potential prognostic value has been suggested.",signatures:"Guy Joseph Lemamy, Bénédicte Ndeboko, Serge Thierry Omouessi\nand Justine Mouecoucou",downloadPdfUrl:"/chapter/pdf-download/52043",previewPdfUrl:"/chapter/pdf-preview/52043",authors:[{id:"182568",title:"Dr.",name:"Guy-Joseph",surname:"Lemamy",slug:"guy-joseph-lemamy",fullName:"Guy-Joseph Lemamy"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"6684",title:"Mitochondrial DNA",subtitle:"New Insights",isOpenForSubmission:!1,hash:"326a9354db0c23d8a26659e8a0c26872",slug:"mitochondrial-dna-new-insights",bookSignature:"Hervé Seligmann",coverURL:"https://cdn.intechopen.com/books/images_new/6684.jpg",editedByType:"Edited by",editors:[{id:"118814",title:"Dr.",name:"Herve",surname:"Seligmann",slug:"herve-seligmann",fullName:"Herve Seligmann"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6060",title:"Mitochondrial Diseases",subtitle:null,isOpenForSubmission:!1,hash:"66c079bd70478fcc63072a8a42da4c33",slug:"mitochondrial-diseases",bookSignature:"Eylem Taskin, Celal Guven and Yusuf Sevgiler",coverURL:"https://cdn.intechopen.com/books/images_new/6060.jpg",editedByType:"Edited by",editors:[{id:"192567",title:"Prof.",name:"Eylem",surname:"Taskin",slug:"eylem-taskin",fullName:"Eylem Taskin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7850",title:"Mitochondria and Brain Disorders",subtitle:null,isOpenForSubmission:!1,hash:"e4cb9b34e45c6177ede9cf78fbda4b82",slug:"mitochondria-and-brain-disorders",bookSignature:"Stavros Baloyannis",coverURL:"https://cdn.intechopen.com/books/images_new/7850.jpg",editedByType:"Edited by",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"66062",slug:"corrigendum-to-pain-management-in-plastic-surgery",title:"Corrigendum to: Pain Management in Plastic Surgery",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/66062.pdf",downloadPdfUrl:"/chapter/pdf-download/66062",previewPdfUrl:"/chapter/pdf-preview/66062",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/66062",risUrl:"/chapter/ris/66062",chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]}},chapter:{id:"62958",slug:"pain-management-in-plastic-surgery",signatures:"I Gusti Ngurah Mahaalit Aribawa, Made Wiryana, Tjokorda Gde\nAgung Senapathi and Pontisomaya Parami",dateSubmitted:"April 5th 2017",dateReviewed:"June 5th 2018",datePrePublished:"November 5th 2018",datePublished:"April 3rd 2019",book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"208429",title:"M.D.",name:"I Gusti Ngurah",middleName:null,surname:"Mahaalit Aribawa",fullName:"I Gusti Ngurah Mahaalit Aribawa",slug:"i-gusti-ngurah-mahaalit-aribawa",email:"mahaalit@unud.ac.id",position:null,institution:{name:"Udayana University",institutionURL:null,country:{name:"Indonesia"}}},{id:"209749",title:"Dr.",name:"Tjokorda Gde Agung",middleName:null,surname:"Senapathi",fullName:"Tjokorda Gde Agung Senapathi",slug:"tjokorda-gde-agung-senapathi",email:"tjoksenapathi@unud.ac.id",position:null,institution:null},{id:"209750",title:"Mrs.",name:"Pontisomaya",middleName:null,surname:"Parami",fullName:"Pontisomaya Parami",slug:"pontisomaya-parami",email:"ponti@unud.ac.id",position:null,institution:null},{id:"209752",title:"Prof.",name:"Made",middleName:null,surname:"Wiryana",fullName:"Made Wiryana",slug:"made-wiryana",email:"wiryana@unud.ac.id",position:null,institution:null}]},book:{id:"6221",title:"Anesthesia Topics for Plastic and Reconstructive Surgery",subtitle:null,fullTitle:"Anesthesia Topics for Plastic and Reconstructive Surgery",slug:"anesthesia-topics-for-plastic-and-reconstructive-surgery",publishedDate:"April 3rd 2019",bookSignature:"Víctor M. Whizar-Lugo",coverURL:"https://cdn.intechopen.com/books/images_new/6221.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"169249",title:"Prof.",name:"Víctor M.",middleName:null,surname:"Whizar-Lugo",slug:"victor-m.-whizar-lugo",fullName:"Víctor M. Whizar-Lugo"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"11792",leadTitle:null,title:"Insects as Food",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,hash:"4f553a9813d17305dcd47eb334670001",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11792.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"December 20th 2021",dateEndSecondStepPublish:"January 10th 2022",dateEndThirdStepPublish:"March 11th 2022",dateEndFourthStepPublish:"May 30th 2022",dateEndFifthStepPublish:"July 29th 2022",remainingDaysToSecondStep:"4 months",secondStepPassed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10359",title:"Landraces",subtitle:"Traditional Variety and Natural Breed",isOpenForSubmission:!1,hash:"0600836fb2c422f7b624363d1e854f68",slug:"landraces-traditional-variety-and-natural-breed",bookSignature:"Amr Elkelish",coverURL:"https://cdn.intechopen.com/books/images_new/10359.jpg",editedByType:"Edited by",editors:[{id:"231337",title:"Dr.",name:"Amr",surname:"Elkelish",slug:"amr-elkelish",fullName:"Amr Elkelish"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"78871",title:"High-Wavenumber Raman Analysis",doi:"10.5772/intechopen.100474",slug:"high-wavenumber-raman-analysis",body:'
Raman scattering is the inelastic scattering of photons by a matter; specifically, it results from the interactions between the photons and molecular vibrations in the matter. In a simple scenario, a molecule is composed of two atoms, and the vibrational energy of such a diatomic molecule can be approximately treated as a simple harmonic oscillator with the energy states of
Molecules or chemical bonds | Vibration modes | Raman frequency [cm−1] |
---|---|---|
H2 | stretch | 4395 |
H2O | symmetric stretch | 3657 |
CO | stretch | 2170 |
HCl | stretch | 2990 |
NO | stretch | 1904 |
OH of hydroxyapatite | OH stretch | 3570 |
PO4 of hydroxyapatite | symmetric stretch | 960 |
CH of CH4 | symmetric stretch | 2914 |
Raman frequencies of representative molecules and chemical bonds.
Detection of high-wavenumber (HW) Raman signals is as simple as other Raman signals for most of the inorganic materials (e.g., water, graphene) and nonliving organic material (e.g., alcohol, glycerol etc.). However, obtaining HWRaman signals from biological tissues, which have auto-fluorescent emissions under laser excitation, has been challenging. As an inelastic scattering, the Raman effect can happen with lasers at any wavelength from UV lights to near-infrared. However, excitation with lasers at a shorter wavelength is preferred because the efficiency of Raman scattering is inversely proportional to the fourth-order of the incident wavelength. Reduce the excitation, e.g., by a factor of 2, could easily lead to the increase of signal intensity by a factor of 16, which is significant to most Raman studies with low scattering efficiency (in the order of one part per million) [3]. On the other hand, the higher energy photons of the shorter wavelength are more capable of producing fluorescence from materials (especially biological tissues) which could overwhelm the weak Raman signals of interests [4]. Excitation with lasers at longer wavelength has been shown to be a major practice that could alleviate the strong fluorescence from biological tissues [5]. Therefore, for a given material with high auto-fluorescence, exploring various excitation wavelengths may be employed to find the optimal one [6, 7, 8, 9, 10].
In addition to the need to balance lower fluorescence interference and higher collecting efficiency, several factors in Raman instrumentations (e.g., the availability of lasers and detectors) should also be considered for detecting HWRaman signals. The most critical component in Raman instrumentation is the Raman spectrometer, which varies from simple, compact version to user-adjustable complex version. Research grade Raman spectrometers allow users to modify componential configurations such as replacing detectors, changing gratings, adjusting slit width, repositioning focusing mirror, etc. The combination of small slit width, high groove density grating, and long focal distance can allow research-grade spectrometers to achieve sub-wavenumber (cm−1) spectral resolution [11]. Compact Raman spectrometers have fixed spectral range and resolution and usually allow none/limited configuration modifications for end users. However, utilizing high-dispersion and high-efficiency volume phase transmission gratings, as well as sensitivity enhancement (through back illumination and special coating) and noise reduction (through one or two stages of thermal electric cooling), the compact spectrometers can achieve comparable and even higher signal to noise ratio than research-grade spectrometers under similar experiment conditions (e.g., laser power, integration time, and spectral resolution). In addition, having no moving parts in the device, compact spectrometers are generally robust and appropriate for fieldwork or on-site tasks.
The small dimension of the detector sensor/chip determines that the spectral resolution must compromise with the covered spectral range, especially for compact spectrometers. Most commercial compact Raman spectrometers can only cover ~200-2000 cm−1 with a resolution in the range of 6-12 cm−1. Majority of modern Raman spectrometers are based on silicon-based CCD detectors, which usually have optimal responses between 400 and 900 nm. Although this range may be slightly extended through UV or NIR enhanced technologies [ 12, 13, 14, 15], CCD-detector based UV and NIR Raman studies out the range of 400-900 nm are scarce. As the result of the consideration of factors mentioned above, i.e., the need to balance Raman efficiency and autofluorescence and the availability of lasers and detectors, the combination of the 785 nm laser excitation and a NIR enhanced CCD detector has been chosen for most biologically related Raman studies. The results turned out to be satisfactory in many cases, especially signals in the fingerprint region (i.e., 200 – 2000 cm−1).
The high-wavelength Raman signals from chemical bonds involving hydrogen atoms (e.g., CH and OH) will appear above 2900 cm−1 (see Table 1). With NIR enhanced silicon-based CCD detector, the CH groups appearing near 2900 cm−1 may be weakly observed, but the OH related signal expecting near 3500 cm−1 (corresponding to ~1090 nm) is hardly observable. Earlier literature reports on HW Raman signals from biological samples seemed primarily conducted by Fourier Transformed Raman spectroscopy (FT-Raman) [16, 17, 18, 19]. FT-Raman is typically composed of Nd:Yag laser and germanium detector, it ghus has the great adavantages of fluorescence reduction and high resulution. However, because all the lights including the residuals of the laser simultaneously strikes the detector, FT-Raman is detector noise limited and typically requires much longer (up to 3 orders) integration time than dispersive Raman system [19, 20]. This explained why FT-Raman is still not very popular despite it has emerged over three decades.
Indium gallium arsenide (InGaAs) based arrays have emerged as a dispersive detector for spectroscopy devices around 2000 [21]. Unlike CCD, InGaAs has optimal sensitivity across 900-1700 nm, and has gained increasing interest for Raman applications based on 1064 nm laser as its great potential in further suppress the auto-fluorescence, especially from biological tissues. Unal et al. demonstrated that the InGaAs spectrometer designated for 1064 nm Raman spectroscopy can be combined with 852 nm laser to probe hydrations in bone tissues [22]. Yang and He et al. modified the system with a 866 nm laser and demonstrated water detection in other biological tissues, including animal skin, human teeth, and fruits [23, 24, 25]. For example, the Raman spectrum acquired with an InGaAs Raman spectrometer under 866/1064 nm dual excitation (red curve) shows strong signals from CH and OH bonds. Those signals were barely observable with Raman spectroscopy composing a 785 nm laser and a CCD detector (Figure 1).
Raman spectra of grape skin acquired with 785 nm (blue curve) excitation and CCD.
Room temperature HW Raman signals typically result from chemical bonds formed by light atoms such as CO, CH, OH, CN. In contrast, the signals greater than 2500 cm−1 mostly result from chemical bonds containing hydrogen atoms (e.g., CH and OH groups), except for second-order processes, e.g., the 2D signal in graphene. HW Raman signals of the majority of inorganic compounds and non-living organic materials can be illuminated with visible light (e.g., 532 nm or 633 nm) without exciting problematic fluorescence interference. For example, Raman signals from water can be acquired with Raman spectroscopy at any wavelengths from UV to NIR as long as the detector responds. The HW Raman signals from hydroxyapatite crystal, the primary component in human mineral tissues, can also be obtained under the illumination of a green laser at 515 nm [2].
Simple and small molecule organic materials with a low visible light absorption rate can generally be examined with visible Raman spectroscopy. Thus their full range Raman spectra covering the HW Raman signals can be acquired as easily as fingerprint signals. Despite the fingerprint Raman signals of these material are sufficient for identification, HW Raman signals can provide additional information to understand the molecular dynamics. Nedić et al. studied water, methanol, ethanol dimer and trimers and found that both methanol and ethanol are better hydrogen bond donors and acceptors than water through investigating the red shif of HW OH signals [26]. In addition, Starciuc et al. were able to study the tranisitions of unclusered water to large water clusters through the analysis of highwavenumber and lowwave number Rmaan signals in mixed glycerol-water system [27].
Although the HW region Raman signals, including CH, NH, and OH bonds, are informative in analyzing biological tissues, as seen in many Fourier Transformed Infrared (FTIR) absorption spectrum, Raman studies in this region on biological tissues have been underperformed. Other than the few studies using FT-Raman spectrometer, there are several studies using CCD-based dispersive Raman spectrometers. Santos et al. investigated the effects of different optical fibers on 720 nm laser based Raman spectroscopy and demonstrated the system was capable of acquireing HW Ramang signals from sliced porce brain tissues [28]. Carvalho et al. demonstrated HW Raman signals may be obtained with 532 nm laser from oral cells immersed in distilled water [29]. Barroso et al. studied the difference of HW Raman signals between healthy and cancer oral tissues and found that water contents may be used as a biomarker for cancer diagnosis [30]. It is worth to note that all these biological tissues that was able to stuied by the visible light do not produce intense fluorescence that overwhelm the Raman signals. Skin tissue is also one type of tisse that does not have problematic fluorescenc under Raman study. Therefore, skin tissues especially the stratum corneum, have also been well studied in terms of HW Raman region. By using a confocal Raman micro-spectrometer to exclude out of plane fluorescence emissions, the HW regions Raman signals were able to be acquired from human skins. Caspers et al. used a confocal Raman micro-spectrometer based on 720 nm excitation to obtain Raman spectra of skin showing clear water profile and detailed CH structures [31, 32]. Later, Choe et al. deconvoluted the CH and OH groups of Raman signal and studied the profile variation of bound water affected by protein and lipids interactions at different depths [33]; while Quatela et al. observed variation of spectral markers including OH and CH groups among different individuals [34]. It is worth noting that in Choe’s work, two lasers operating at 671 nm and 785 nm were used. Such a dual-wavelength Raman setup is an alternative approach to acquiring the HW Raman signals when only a compact spectrometer with a fixed spectral range is available. For a compact Raman system designed for acquiring fingerprint region ~240-2000 cm−1 (corresponding to 800-930 nm) under 785 nm excitation, send in a second laser beam operating at 671 nm will effectively extend the spectral range to cover the region of ~2400-4100 cm−1 which include the main HW CH and OH groups.
In contrast to the study on the HW region Raman spectral variations with the depth of the skin tissue, Yang et al. investigated the lateral variations on the skin surface [25]. The team identified mainly two types of spots on the skin surface, i.e., high-water spots and low-water spots (Figure 2). Further analysis on other tissues, including muscle, fat, and tendons, the authors found that the skin tissues contain both fat and protein (keratin) and suggested the high-water spots on chicken skin are protein-rich while the low-water spots are lipids-rich. This suggestion is supported by the observation of the characteristic CH bonds (Figure 3) among these tissues and the fact that the muscle tissue has the highest OH (3412 cm−1) to CH (2895 cm−1) signal intensity ratio, while the fat tissue has the lowest one among those tissues under investigation. Additional investigations on dehydrated tissues indicated that protein-rich tissues were more capable of retaining water and more resistant to dehydration. In other words, the protein component is positively correlated with skin hydration, in contrast to the fat component.
Raman spectra of chicken skin at representative (a) low-water spots and (b) high-water spots before (blue curve) and after 24-hour air drying (red curve). Peaks marked with vertical dashed lines from low to high were located at 2854, 2895, and 2934 cm−1 respectively. The spectra were acquired with 85 mw, 866 nm laser light with 30 s exposure and 6 averages. All skin spectra were normalized according to the 2895 cm−1 signal for easier comparison, while the spectrum of distilled water was rescaled to match the corresponding OH signal of the skin.
Raman spectra of chicken tissues (a) before and (b) after dehydration (except fat). Spectra in (b) were vertically enlarged. Dehydrated fat was prepared with 6 hours of air drying at room temperature, while dehydrated muscle or tendon were prepared with 72 hours of air drying at room temperature or overnight oven drying at 45°C. All spectra were acquired under the condition of 85 mW laser at 866 nm illumination, with 30 s exposure, and averaged 6 times. All spectra in (a) and (b) were normalized according to the 2895 cm−1 signal.
As mentioned earlier, the combination of the NIR laser lights near 850 nm and the InGaAs detector-based spectrometer allowed the observation of water contents in mineral tissues, including dental hard tissues and bones [22, 23]. Mineral tissues appeared more fluorescent than stratum corneum, and were challenging for Raman measurement using visible lights. Unal et al. characterized several HW peaks, including CH group and OH group, and suggest bound water in bone could be interacting with both collagen and mineral matrix [22]. He et al. discovered similar HW Raman signals from dental hard tissues, including dentin and enamel [23]. The authors demonstrated the spectral profile not only varied between enamel and dentin tissues but also varied among different locations within enamel tissues. As shown in Figure 4, representative spectra from dentin and enamel were stacked for comparison (rescaled Raman spectrum of distilled water was also provided for reference). The spectra were taken from the sagittal surface. The lower wavenumber region containing the fingerprint 960 cm−1 signal was acquired under 1064 nm laser excitation, while the HW region was acquired under 866 nm laser excitation. The spectra were normalized according to the 960 cm−1 signal intensity, and the same factor was applied to the HW region for consistency. The differences between the spectra indicated that both enamel and dentin contain water that is not ‘free’ like in distilled water, and dentin contains a greater number of organic components than enamel, evidenced by the much greater C-H stretch peak located at 2943 cm−1. The author suggested part of the water in dentin interacts with the surrounding environment, likely the organic matrix, evidenced by the appearance of an additional peak at 3328 cm−1, which could be partially contributed by the N-H bond (but not all considering its intensity) [35].
Representative Raman spectra from enamel (blue curve) and dentin (red curve) portions from the sagittal surface of a tooth. Spectra below 1200 cm−1 were acquired under 20s 1064 nm excitation while the spectra above 3000 cm−1 were acquired under (30s × 16) 866 nm excitation. Water spectrum was scaled down for easier comparison.
Another major difference between the enamel and dentin spectra is the appearance of a sharp 3570 cm−1 Raman signal in enamel, but the same signal is barely noticeable in dentin. Additional spectra acquired from different spots on enamel showed that the signal varied with locations (Figure 5). Further, the signal intensity from the same spot will also change with the polarization of the incident light. Because a very similar signal appears in synthetic hydroxyapatite crystals, the authors assign the peak at 3570 cm−1 to the OH radicals of hydroxyapatite crystals. This signal is polarization-dependent because most of the hydroxyapatite crystals align along the c-axis (see dashed red line in the inset tooth picture), which is roughly perpendicular to the external enamel surface. The difference in the signal between enamel and dentin tissues is mainly due to the sizes of hydroxyapatite crystals. The signal is stronger from internal enamel spots than external spots because the internal tissues keep better integrity.
Representative HW Raman spectra under linearly polarized laser excitation from internal and external surfaces of a tooth enamel. The inset shows the picture of the sagittal surface of a tooth, with dashed red line showing the approximate c-axis of HAP crystals of enamel layer. Experimental conditions are 30s × 16 integration time and 50 mW, 866 nm laser light illumination.
The spectrum of enamel also showed a small difference between the internal and the external spots on enamel: a peak located at 3508 cm−1 that only obviously appearing in the spectra from internal enamel spots. This signal is absent in the spectra of single hydroxyapatite crystals or any hydroxyapatite powders reported before. Based on its similar location as the 3570 cm−1 signals this signal is suggested to be structure water bound to the mineral matrix of unaffected enamel tissue. In other words, this signal is likely the water that is bound to hydroxyapatite crystal, similar to how the OH radical forms during the crystal growth. The enamel may lose these bound waters when demineralization happens to the surface enamel.
Pigmented tissues, from both animals and plants, are usually high fluorescent for Raman studies; thus, probing HW Raman signals from these tissues are difficult with visible lights. Muscle tissues showing in the previous section are one example that requires NIR laser excitation (e.g., 866 nm). Santos et al. demonstrated acquiring HW Raman signals from pigmented skin lesions with 976 nm excitation [36]. Acquiring the HW Raman signals from orange and plum skins are two other examples of pigmented tissues, [24] as shown in Figure 6.
Raman spectra acquired from skins of orange (a) and plum (b).
Based on the InGaAs spectrometer, there are basically three options to set up a Raman spectroscopy to acquire full range Raman spectrum. For a spectrometer that combined an InGaAs detector and a tunable spectrograph, one laser and one spectrometer will allow the acquisition of a full range Raman spectrum that includes the HW region. For a compact InGaAs spectrometer designed to work with a 1064 nm laser, it will typically have a fixed range starting ~1100 and ending ~1350 nm. In order to acquire a full range spectrum, one could add a second laser (e.g., 850 nm) to extend the range to cover the HW region. Alternatively, one could use a single laser (e.g., 850 nm) but use a second spectrometer (e.g., CCD detector based compact spectrometer) to record fingerprint region Raman signals. The advantage of the dual laser plus one spectrometer is it suppress the fluorescence to the maximum extent as 1064 nm is fluorescence free many biological tisses. The disadvantage is that the HW and fingerprint region must be taken consecutively, resulting in different sampling if the specimen is moving or changes with time. While the one laser plus two spectrometers will ensure HW and fingerprint regions are taken simultaneously on a same spot.
Our mobiles, laptops, houses, and cars, rely on identification and authentication procedures to protect ourselves, data, and assets. Different methods are existing for this purpose which differ in their way and security level. These methods were ranging from traditional techniques where the user must “know” or “have” such as passwords, keys, or cards, to biometric techniques that define the user himself. Scientists tried in the last two decades to focus on biometric techniques to avoid problems associated with traditional ones, such as loss, theft, forgery, or coping. Biometric techniques defined the individual’s characteristics and required his/her physical presence to access the system without the need to carry or memorize anything. Unlike the traditional techniques, biometrics cannot be shared with anyone.
To identify any feature as a biometric, the following requirements should exist;
Many human features achieved these requirements and are labeled as biometric techniques where it can be categorized into; behavioral, physiological, and cognitive. Behavioral biometrics deal with functional features, such as voice, gait, signature, and keystroke. Physiological biometrics deal with anatomical features, such as fingerprint, face, iris, and ear shape. Cognitive biometrics use a biological signal generated from the heart, brain, or automatic nervous system which is an indicator of the individual’s mental and emotional states, such as electrocardiogram (ECG) and electroencephalogram (EEG).
Cognitive biometrics outweigh behavioral and physiological biometrics as it cannot be acquired, falsified, manipulated, or copied by external attackers [2] another advantage it can be utilized as a liveness detector.
This chapter reviews the state-of-the-art of human vital signs (cognitive biometrics) as biometric authentication. It will involve the recently discovered techniques, their description, limitation, and applications. This chapter is organized as follows: Section two investigates the electrocardiogram (ECG), while section three investigates electroencephalogram (EEG). Section four describes electrooculography as an authentication technique. Section five cites the blood flow as a patent to be used as a biometric. While section six discusses the ability of the vital signs to be used as unimodal authentication. Finally, section seven concludes this chapter.
Electrocardiogram (ECG) is a recording of the electrical activity produced by the heart by placing electrodes on the body’s skin to obtain the signals originating from the heart muscle. Any ECG consists of three components; P waves represent atria contractions (left and right), QRS reflect ventricular contractions (left and right) and appeared as a series of three waves, and T wave represents the electrical activity produced by the ventricular when it charging for the next contraction (repolarization), each ECG signal has six peaks and valleys [3, 4, 5, 6]. Individual’s ECG varies from one person to another based on the physiological, anatomical, and geometrical conditions, in addition to the position and size of the heart, also age and sex play a role in its uniqueness. Therefore, it can be used as an authentication technique [4].
Every living person can produce ECG therefore, the universality requirement is satisfied. Moreover, it is a proof of life which means that the ECG is more universal than any other physiological and behavioral biometrics. The extracted features vary for each person where the distinctiveness requirement has been achieved. These features can be measured quantitively using a standard available system which proves its collectability requirement. Although these systems are already in use for the patient within the medical field but not widely accepted in daily use. Finally, circumvention is achieved as we can measure how much easy the intruder will bypass the ECG authentication system. This is more difficult than the other biometric features as the ECG cannot be falsified or manipulated and require a living individual to authenticate his identity. As a result, the ECG can be considered a biometric authentication.
Any ECG-based authentication system comprises the following steps: (1) Acquisition: Electrodes placed on the body’s skin to capture the signals. (2) Quality Assessment: The system preprocesses the captured data to eliminate the noise and appropriately represent the signal. (3) Feature Extraction: The system extracted and normalized the features in two approaches; Fiducial Approach: The system detects, process, and classify the three waves P, QRS, and T based on their peaks, boundaries, and intervals between them. Non-Fiducial Approach: The system applies time or frequency analysis to obtain statistical features [7]. (4) Finally, Decision: The system classifies the extracted features to make the authentication decision [5, 8].
Numerous studies deliberate how the ECG is effective as a biometric, the following studies illustrate different approaches and algorithms.
In ref. [9], the authors proposed an identification technique based on ECG and musical features. After pre-processing ECG recordings, they transform them into audio wave files, split them into segments, and extract five musical dimensions to be faded into the classifier. They used MIT-BIH Normal Sinus Rhythm dataset. The proposed technique achieved 96.6% accuracy.
In ref. [10], the authors proposed EDITH, a deep learning-based framework for ECG Biometric Authentication systems. They demonstrate that Siamese architecture can be used over typical distance metrics to improve performance. They evaluated EDITH in four datasets using a single heartbeat. Their accuracy reached (96–99.75%) which can be enhanced using multiple heartbeats. The proposed framework reduced the Equal Error Rate to 1.29%.
In ref. [11], authors proposed two Model CNN and RestNet-Attention using ECG Signals where the signals are authenticated using an end-to-end structure without any handcrafting preprocessing, feature extraction, and classification which reduced the computational complexity. The proposed algorithm achieved 98.59 and 99.72% accuracy using PTB and CYBHi datasets.
To address the individuality issue of ECG over a larger population, authors in ref. [12] the present non-fiducial approach of ECG authentication and identification. They used autocorrelation and a combination of three transformation techniques DCT, DFT, and WHT to extract the features. Then the performance of these techniques has been evaluated on two-dimensionality reduction techniques—PCA and LDA. The best accuracy results achieved using DFT and LDA in QT Database (100%).
In ref. [13], the authors proposed a Dynamic Time Wrapping (DTW) algorithm to provide identification and authentication to the authorized people using ECG signals in Wireless Medical Devices (WMD). They used DTW to measure the correlation between different ECG records. They used Physionet dataset that contains 20 subjects of all ages with 310 records including abnormal ECGs, and a long period interval between ECG recordings to increase the reliability. They achieved a 99.9% accuracy rate.
In ref. [14], the authors proposed an algorithm to authenticate users with their doctors remotely using ECG signals. The algorithm consists of two parts; a registration process where the Discrete Wavelet Transform (DWT) extracts the features to be stored. The second part is the authentication process where the features will be matched with existing templates using the Sum of Squared Differences (SSD). They utilized the ECG IDDB Physionet dataset, and one lead has been used to fit in IoT devices, the algorithm uses non-Fiducial features, and achieved 91% accuracy.
In ref. [15], the authors develop an authentication algorithm using Linear Discrimination Analysis (LDA) to classify 16 subjects taken from the Physionet dataset based on their ECG signals (each one has 75–150 heartbeats); they extracted eight fiducial features from the ECG where they achieved 92.69% accuracy rate. The algorithm is scalable to large databases.
In ref. [16], the authors introduced authentication technology to record ECG signals of 55 voluntary subjects before and after insensitive exercise for five minutes using two positions; rest and sitting. LDA was used for feature extraction and classification. The best accuracy achieved within five minutes of recording is 96.11%.
In ref. [17], the authors proposed a framework for authentication using ECG where they used a Neural Network (NN) as a classifier. The test was not successful considering the small size of the dataset.
In ref. [18], the authors apply four nonlinear methods to extract fiducial features for the ECG authentication system; Generalized Hurst Exponent (GHE), Detrended Fluctuation Analysis (DFA), Higuchi\'s Fractal Dimension (HFD), and Rescaled Range Analysis (RSA). A record of 18 subjects from the MIT-BIH Normal Sinus Rhythm Database fed into SVM as a classifier that achieved a 99.06% accuracy rate. The results showed that GHE has the optimal index to authenticate the subjects.
In ref. [19], the authors propose the use of long short-term memory (LSTM)-based Recurrent Neural Networks (RNN) to use ECG as an authentication solution where there is no feature extraction. The method has been applied to ECG-ID and MIT-BIH Arrhythmia (MITDB) datasets. They achieved a 100% accuracy rate. As the number of subjects increases, the equal error rate drops.
In ref. [20], the authors proposed a method using phase-space reconstruction (PSR) of a single lead of ECG. They used a time delay technique to reconstruct the ECG\'s signal into phase space to find the best identifiable time-delay value. Twenty-one geometric features have been extracted in different situations: rest, during exercises, listening to music, and watching a movie. The procedure was conducted on 31 subjects and the accuracy rate was 97.7% when the delay is 8 ms.
In ref. [21], the authors proposed an identification method by extracting five fiducial points using Empirical Mode Decomposition (EMD). Hidden Markov Model (HMM) has been used as a classifier with the Bakis model on 44 subjects from the MIT-BIH Arrhythmia database. The method achieved a 98.52% accuracy rate.
In ref. [22], the authors proposed a mobile authentication algorithm based on ECG where the user will need to touch only two electrodes (lead I) of the mobile device to be authenticated. The experiments were conducted on ten subjects in addition to 37 records from the Physionet dataset. The algorithm uses a hierarchal scheme that reduces the acquisition time to 4s.
The following table summarizes the previous studies to use ECG as biometric authentication (Table 1).
[9] | 2022 | Identification | Deep Learning (Transform ECG records into sound wave files characterized with musical features for human identification) | MIT-BIH | 18 | — | non-fiducial | 96.6 % |
[10] | 2021 | Authentication | EDITH, a deep learning-based framework | ECG-ID, MIT-BIH Arrhythmia – PTB Diagnostic ECG Database – MIT-BIH NSRDB | 90-47-290-18 | — | — | 96.247%-98.170%-99.702%-99.500% (closed environment) |
[11] | 2020 | Authentication | two end-to-end deep neural networks (CNN and ResNet) | PTB and CYBHi | 290 - 65 | — | — | 98.85 and 99.27% |
[12] | 2019 | Identification & Authentication | Autocorrelation (AC) with DCT -DFT-WHT Then Then PCA & LDA | MIT-BIH arrhythmia & QT database | 48-39 | non-fiducial | DFT & LDA (99.98% (99.83%) for QT DB | |
[13] | 2018 | Authentication | DTW | Physionet ECG-ID | 20 | 310 ECG | — | 99.9% |
[14] | 2017 | Authentication for Remote patient in IoT | Template Matching SSD | Physionet - IDDB dataset | 90 | N/A | Non-Fiducial | 91% |
[15] | 2017 | Authentication | LDA | Physionet | 16 | 5 or more for each subject | Fiducial | 92.69% |
[16] | 2017 | Authentication with the ECG data recorded after the harsh exercise | LDA | University of Toronto Database (UofTDB) | 55 | N/A | Fiducial | The subject recognition accuracy was 59.64%, which is too low to utilize, after one minute the accuracy was higher than 90% and it increased up to 96.22% within 5 minutes, which is plausible to use in authentication circumstances |
[17] | 2017 | Authentication | RF | Physikalisch-Technische Bundesanstalt (PTB) Diagnostic ECG Database | 290 | 549 | - | 88.45% |
[18] | 2017 | Authentication | SVM | MIT-BIH Normal Sinus Rhythm Database | 18 | N/A | Fiducial | 99.06 |
[19] | 2017 | Authentication | LSTM-based RNN | ECG-ID & MIT-BIH Arrhythmia (MITDB) | 90 47 | 310 | No extraction | 100% |
[20] | 2017 | Authentication | SVM | Voluntarily subjects | 13 | — | Fiducial | 97.7% |
[21] | 2016 | Authentication | Hidden Markov model (HMM) classifier with Bakis model | MIT-BIH Arrhythmia (MITDB) | 44 | — | Fiducial | 98.52% |
[22] | 2016 | Mobile Authentication | — | Voluntary Subjects | 10 | Fiducial | — |
A comparison of the latest studies in ECG.
Moreover, different scientists propose various utilization of the ECG besides authentication. In ref. [23], researchers at Binghamton University developed a robust and reusable authentication and data encryption means to protect the patients’ health records using their heartbeat (ECG) where the cost, time, storage, and complexity will be much more effective than using traditional encryption solutions. In ref. [24], the authors use ECG steganography to secure patient\'s confidential information. Another use is generating a secret key for data encryption and enhanced security in personal wearable devices using a patient’s ECG [25]. In ref. [26], the authors proposed software for remote interaction between the cardiovascular disease patients and the health provider to monitor their ECG, blood pressure, and heart rate.
As a summary of the previous studies, we can observe that there is some limitation that may lessen the ECG’s effectiveness as a biometric which needs further studies to be addressed. (1) The performance of ECG depends on how (P, T, QRS) are detected accurately. (2) Heart Rate Variability: Many factors can affect the ECG morphology which can be classified into short-term and long-term factors. In the short term where physical activity, mental status, drinking caffeine … etc. can affect the ECG, while the long-term factors are the change in the lifestyle such as using the medication, or heart diseases [4]. (3) The size of tested subjects does not exceed 300 which indicates ECG has not proven its ability within a large population to be deployed to the market as an authentication technique; more studies need to be done to confirm its scalability. (4) Also, there is no one study has studied the issue in the case of the heart transplant and whether it will affect the ECG authentication process or not. (5) Similarly, in the case of the twins, whether there is any matching that can breach the confidentiality of the authentication process?
Electroencephalogram (EEG) signals are the representation of the brain activity in the neurons either in the baseline task (relaxed) situation or in response to a functional status such as sleeping, solving a mathematical problem, reading some text, or having some diseases. These activities generated signals captured by placing electrodes on the scalp. There are five different waves in each EEG; Alpha wave appears during relaxation. Theta waves appear in the quite focus, short-memory tasks, and memory retrieval. Beta waves appear in a normal working rhythm; such as increased alertness, and anxious thinking. Delta wave happened during deep sleep. Gamma waves represent active information processing [27, 28]. Unlike other biometric techniques, the user can change the password by changing the mental task itself. EEG cannot be copied since it represents the real status of the brain.
As the ECG, every living person can produce EEC therefore, the universality requirement is satisfied also, it is aliveness detection. Each EEG has a different pattern in terms of its wave shape where the distinctiveness requirement has been achieved. These features can be measured quantitively using portable devices which proves its collectability requirement. The Acceptance of EEG may it will be a quite little difficult among the users, to raise the level of acceptance of EEG among the users the following may be done—(1) the typical EEG device consists of a number of electrodes that may be needed to be minimized into three or four [29]. (2) The use of dry electrodes instead of wet ones. Finally, the circumvention of EEG cannot be occurring as the spoofing in EEG is not possible. In addition to that, any intruder will not be able to generate a real EEG and impersonate the real user.
For each EEG-based authentication system, the following steps must occur; (1) Acquisition: EEG is captured using electrodes placed over the scalp where the subject is exposed to a specific task. Each electrode collects a wave for a specific region within the brain where all the waves will be combined into one. (2) Quality Assessment: The system preprocesses the captured signals to eliminate the noise and represent the signal in an appropriate way. (3) Feature Extraction: The system extracts and normalized the features. (4) Finally, Decision: The system classifies the extracted features to make the authentication decision [5, 8].
Numerous studies deliberate how the EEG is effective as a biometric, the following studies illustrate different approaches and algorithms.
In ref. [30], the authors proposed MusicID, a behavioral biometric framework for smart headset-enabled IoT environments. MusicID is induced by the user’s brain’s response to two forms of music: Common English songs and an individual’s favorite song. Their analysis showed that Alpha and Beta waves have more predictive capabilities. The framework achieved 98% for user identification and 97% for user verification.
In ref. [31], the authors designed electroencephalogram authentication access control for the smart car. The accuracy results achieved 87.3%
In ref. [32], the authors proposed an ECG authentication system using neurological responses to music. They used Alpha and Beta waves collected from seven electrodes. KNN is used to classify the data. They achieved 76.4%–92.3% accuracy results.
In ref. [33], the authors proposed a method to denoise the ECG signals based on the multi-objective Flower Pollination Algorithm and Wavelet Transform to extract the features. The test was conducted using an EEG motor movement/imagery dataset.
In ref. [34], the authors used power spectral density analysis to analyze EEG signals which fed into KNN to classify the EEG. The achieved accuracy was 89.21%.
In ref. [35], the authors proposed a pragmatic authentication system using EEG. They collected EEG of 29 subjects using a single dry electrode via a cheap Neurosky Mindwave headset and ten subjects using 14 electrodes via Emotive. The achieved accuracy for the first group was 80% while the second group achieved 92.88%.
In ref. [36], the authors studied how the differences in the emotional states affect the classification performance. The results showed that there is better performance when the subjects have the same emotional status.
In ref. [37], the authors proposed a biometric system using an in-ear EEG sensor where there is no need for skilled assistance or preparation. The results showed equivalent results to the on-scalp recording.
In ref. [38], the authors proposed an authentication framework using self or non-self-face images which were applied using Rapid Serial Visual Presentation (RSVP).
In ref. [39], the authors proposed an identification framework to identify users while they are listening to four genres of music.
In terms of the band type\'s performance, authors in ref. [40] present a superior performance of power spectral density features of gamma band during the rest state over the delta, theta, alpha, and beta of EEG signals.
In ref. [41] investigate the most effective frequency bands for authentication purposes using EEG signals at the rest status via Neural Networks (NN) as a classifier. The results show that beta has the best performance while delta gave the worst performance.
Another study [42] found that extracted feature from the gamma band in the left-posterior quarter of the brain has more reliable and stable information regardless of the emotional status. They classify the signals using five features and SVM as a classifier.
The following table summarizes the previous studies to use EEG as biometric authentication (Table 2).
[30] | 2021 | Authentication for IoT | Random Forest classifiers | Real Users | 4 electrodes | Listening to Music | 20 | 98% Accuracy for user identification and 97% accuracy for user verification | Alpha, Beta, Theta, Delta, Gamma, and raw EEG |
[31] | 2020 | Authentication access control to smart car | Fisher distance analysis method | Real Users | 40-channel neuroscan amplifier was used to collect EEG signals | Imagery Tasks | 10 | 87.3% | — |
[32] | 2019 | Authentication | KNN | — | 7 | Listening to Music | — | 76.4% - 92.3% | Alpha, Beta |
[33] | 2018 | Authentication | NN | EEG motor movement/imagery | 64 electrodes | Several motor/imagery tasks | 109 | — | — |
[34] | 2018 | Authentication | KNN | — | — | Visualization | — | 80% - 89.21% | Combined theta, alpha, beta, and gamma |
[35] | 2018 | Authentication | SVM - RLR - LDA | Mindwave | Single dry electrodes | — | 29 | 80% | — |
Emotiv Epoc+ | 14 electrodes | ||||||||
[36] | 2018 | Identification | LSVM - RSVM – KNN - MLP – (AdaBoost with DT) | DEAP, MAHNOB-HCI, SEED | — | 32 (DEAP) 27 (MAHNOB-HCI) 15 (SEED) | 99.51 (KNN) in (DEAP) 95.89 (LSVM) in (MAHNOB-HCI) 94.75% (LSVM) in (SEED) | — | |
[37] | 2018 | Authentication | Cosine Distance, SVM, LDA, | Two in-house datasets | In-ear sensor with two electrodes | Resting State | 15, 5 | 95.7% | Alpha |
[38] | 2018 | Authentication | HDCA | In-house | 16 | Visualization | 45 | 91.46% | - |
[39] | 2017 | Authentication | HMM, SVM | In-house | - | Listening Music (devotional, electronic, classical and rock) | 60 | 97.50 % (HMM) 93.83 % (SVM) | Gamma, Beta, Alpha, Theta, Delta |
[40] | 2017 | Authentication | - | PhysioNet | — | Rest State | 109 | 0.001 (64 channels) 0.002 (19 channels) | (PSD) features of gamma band |
[41] | 2017 | Authentication | NN | In-house | — | Eyes closed and solving some specific mathematical problem mentally | 3 | Beta (98.20% - 100%) Delta (92.82%-95.67%) | All |
[42] | 2017 | Authentication | SVM | DEAP | — | 1) mixture of emotional states; 2) the same specific emotional states; 3) different emotional states | 32 | 88% - 99% | Gamma |
A comparison of the latest studies in EEG.
Moreover, the authors in ref. [43], presented a monitoring and safety platform consisting of automotive sensors to capture real-time information about the driver and the vehicle in addition to a wearable body sensor network to collect the driver\'s EEG and ECG. They investigate the effect of the driver’s behavior on road conditions. The experiment was conducted on five subjects via 16 dry electrodes using theta and beta bands. The results showed that these biometrics could be used detection of driver distortion.
From the previous studies and as well as the ECG, EEG has its limitations that need to address to raise the effectiveness of the EEG as a unimodal authentication system; (1) the acquisition process is quite difficult as the electrode cap needs a significant effort to place it above the head in specific places. Most of the used acquisition equipment was a medical cap, and it needs to be simplified. (2) Different factors may affect the EEG, such as stress and general arousal. Therefore, it may not authenticate the right person. (3) EEG acquisition has a low power signal which needs a controlled environment. (4) the size of tested subjects does not exceed 150 which indicates ECG has not proven its ability within a large population to be deployed to the market as an authentication technique; more studies need to be done to confirm its scalability. (5) similarly, to ECG, in the case of the twins, is there any matching that can breach the confidentiality of the authentication process?
For both ECG and EEG, we cannot guarantee that the user will generate the same signals under different factors such as mental status, age, etc. We may be able to eliminate this issue by registering the user in a periodic way under different situations [28].
Electrooculography (EOG) signals are the representation of generated signals due to eyeball or eyelid movements. These signals are generated once the eyeball rotates from its axis, and it is detectable by the electrodes placed around the eye. A positive deflection is generated in the signal when the eyeball rotates upwards or the eyelid closes and a negative deflection is generated when the eyeball rotated downwards or the eyelid opens [44].
These movements are captured by placing electrodes placed around the eye. There are five different waves in each EEG; the Alpha wave appears during relaxation. Theta waves appear in the quite focus, short-memory tasks, and memory retrieval. Beta waves appear in a normal working rhythm. Such as increased alertness, and anxious thinking. Delta wave happened during deep sleep. Gamma waves represent active information processing [27, 28]. Unlike other biometric techniques, the user can change the password by changing the mental task itself. EEG cannot be copied since it represents the real status of the brain.
In ref. [44], the authors adopt human recognition eye blinking where a preprocessing stage has been conducted to isolate EOG signals from EEG signals. They used time delineation as a discriminative feature. The experiment was done using the Neurosky Mindwave headset, which is used mainly for EEG signals, but the sensor arm can be used for this purpose.
A patent has been published in 2018 by SAMSUNG ELECTRONICS CO titled “Real Time Authentication Based on Blood Flow Parameters," the patent declared that we could use the blood flow as an authentication technique using a wearable sensor. The sensor detects at least the first physiological biomarker of the blood and the first morphological characteristic of the blood to determine the individual’s uniqueness [45]. So far, no studies have explored and dealt with this patent.
Despite the limitation of the vital signs as an authentication technique, there are promising features that can outweigh, and overcome the limitations. Vital signs characterize by their confidentiality and resistance to the spoofing attack as it is corresponding to emotional or mental status moreover, the users cannot authenticate themselves unwillingly as it will generate different signal statuses. Therefore, the Identity cannot be impersonated, copied, or captured from a distance. Also, it is impossible for an intruder to force the user to authenticate as it is subject to his mental status in some situations not under stress [28]. And most importantly, the vital sign is a liveness detector as it needs a live person recording. Unlike the face, finger, and eyes, the brain and heart have a rare chance to be injured.
However, it can be used as a multi-authentication system, a continuous authentication, or unimodal in specific cases until all the issues will be eliminated. Several domains can utilize the EEG and ECG signals in their current status. In the following we have proposed some applications to use ECG and EEG biometrics:
ECG sensors can be placed in the ATM to authenticate users using their ECG, which requires a previous registration of different user\'s emotional status (e.g., rest, horrified). The approach will be effective when the user is under attack from a burglar to withdraw an amount of money. The system will detect if the user is in an abnormal condition (horrified under coercion), and it will block the transaction.
The proposed model will be based on ref. [43] where it can detect whether the driver is in a distraction mode or not in addition to that, it will prevent stealing the car or using it to commit a crime. The model can take advantage of either ECG or EEG as biometric authentication, ECG’s sensors can be placed on the steering wheel, while the EEG can be placed in front of the headrest and behind the driver’s head.
EEG and ECG can be used in sensitive and top secure entities, such as military and nuclear power reactors even in their status as they cannot be spoofed at all. A lair detector will be combined with the system and utilized the EEG and ECG to authenticate and verify the reason behind the access.
EEG and ECG can be used as a way for continuous authentication, such as the remote interaction in the online games to authenticate that the real user is who is claiming during the session game. The implementation of EEG and ECG within the online game environment can be accepted as the player wearing the headset and holding the control in his hands all the time.
This chapter surveyed the work done within the field of cognitive biometric authentication (vital signs) in terms of its limitation, requirement, advantages, and disadvantages specifically the ECG and EEG signals. Moreover, it investigated and raised some issues within the field that have not been studied yet and need to be addressed. Also, a recent patent on blood flow and electrooculography has been cited which can be considered a biometric authentication within the vital signs.
The authors declare no conflict of interest.
IntechOpen is the first native scientific publisher of Open Access books, with more than 116,000 authors worldwide, ranging from globally-renowned Nobel Prize winners to up-and-coming researchers at the cutting edge of scientific discovery. Established in Europe with the new headquarters based in London, and with plans for international growth, IntechOpen is the leading publisher of Open Access scientific books. The values of our business are based on the same ones that any scientist applies to their research -- we have created a culture of respect, collegiality and collaboration within an atmosphere that’s relaxed, friendly and progressive.
",metaTitle:"Social Media Community Manager and Marketing Assistant",metaDescription:"We are looking to add further talent to our team in The Shard office in London with a full-time Marketing and Communications Specialist position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate will be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\\n\\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\\n\\nResponsibilities:
\\n\\nEssential Skills:
\\n\\nDesired Skills:
\\n\\nWhat makes IntechOpen a great place to work?
\\n\\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\\n\\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\\n\\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\\n\\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'We are looking to add further talent to our team in The Shard office in London with a full-time Social Media Community Manager and Marketing Assistant position. The candidate will bring with them a creative and enthusiastic mindset, high level problem-solving skills, the latest marketing and social media platforms skills and strong involvement in community-best practices to engage with researchers and scholars online. The ideal candidate wll be a dynamic, forward thinking, approachable team player, able to communicate with all in the global, growing company, with an ability to understand and build a rapport within the research community.
\n\nThe Social Media Community Manager and Marketing Assistant will report to the Senior Marketing Manager. They will work alongside the Marketing and Corporate Communications team, supporting the preparation of all marketing programs, assisting in the development of scientific marketing and communication deliverables, and creating content for social media outlets, as well as managing international social communities.
\n\nResponsibilities:
\n\nEssential Skills:
\n\nDesired Skills:
\n\nWhat makes IntechOpen a great place to work?
\n\nIntechOpen is a global, dynamic and fast-growing company offering excellent opportunities to develop. We are a young and vibrant company where great people do great work. We offer a creative, dedicated, committed, passionate, and above all, fun environment where you can work, travel, meet world-renowned researchers and grow your career and experience.
\n\nTo apply, please email a copy of your CV and covering letter to hogan@intechopen.com stating your salary expectations.
\n\nNote: This full-time position will have an immediate start. In your cover letter, please indicate when you might be available for a block of two hours. As part of the interview process, all candidates that make it to the second phase will participate in a writing exercise.
\n\n*IntechOpen is an Equal Opportunities Employer consistent with its obligations under the law and does not discriminate against any employee or applicant on the basis of disability, gender, age, colour, national origin, race, religion, sexual orientation, war veteran status, or any classification protected by state, or local law.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{regionId:"4",sort:"featured,name"},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6583},{group:"region",caption:"Middle and South America",value:2,count:5888},{group:"region",caption:"Africa",value:3,count:2381},{group:"region",caption:"Asia",value:4,count:12511},{group:"region",caption:"Australia and Oceania",value:5,count:1006},{group:"region",caption:"Europe",value:6,count:17529}],offset:12,limit:12,total:12511},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:42},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:11},{group:"topic",caption:"Business, Management and Economics",value:7,count:6},{group:"topic",caption:"Chemistry",value:8,count:21},{group:"topic",caption:"Computer and Information Science",value:9,count:20},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:60},{group:"topic",caption:"Environmental Sciences",value:12,count:8},{group:"topic",caption:"Immunology and Microbiology",value:13,count:10},{group:"topic",caption:"Materials Science",value:14,count:27},{group:"topic",caption:"Mathematics",value:15,count:9},{group:"topic",caption:"Medicine",value:16,count:122},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:9},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:7},{group:"topic",caption:"Physics",value:20,count:11},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:4},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10351",title:"Enhanced Liposuction",subtitle:"New Perspectives and Techniques",isOpenForSubmission:!1,hash:"f08ed6de16da357614586c5b58ed4dfa",slug:"enhanced-liposuction-new-perspectives-and-techniques",bookSignature:"Diane Irvine Duncan",coverURL:"https://cdn.intechopen.com/books/images_new/10351.jpg",editors:[{id:"279869",title:"Dr.",name:"Diane Irvine",middleName:null,surname:"Duncan",slug:"diane-irvine-duncan",fullName:"Diane Irvine Duncan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10779",title:"21st Century Nanostructured Materials",subtitle:"Physics, Chemistry, Classification, and Emerging Applications in Industry, Biomedicine, and Agriculture",isOpenForSubmission:!1,hash:"72c67f97f9bef68200df115b5fd79884",slug:"21st-century-nanostructured-materials-physics-chemistry-classification-and-emerging-applications-in-industry-biomedicine-and-agriculture",bookSignature:"Phuong V. Pham",coverURL:"https://cdn.intechopen.com/books/images_new/10779.jpg",editors:[{id:"236073",title:"Dr.",name:"Phuong",middleName:"Viet",surname:"Pham",slug:"phuong-pham",fullName:"Phuong Pham"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3665,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10222",title:"Demyelination Disorders",subtitle:null,isOpenForSubmission:!1,hash:"b6c26ceccacdde70c41c587361bd5558",slug:"demyelination-disorders",bookSignature:"Stavros J. Baloyannis, Fabian H. Rossi and Welwin Liu",coverURL:"https://cdn.intechopen.com/books/images_new/10222.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1713,editors:[{id:"156098",title:"Emeritus Prof.",name:"Stavros J.",middleName:"J.",surname:"Baloyannis",slug:"stavros-j.-baloyannis",fullName:"Stavros J. Baloyannis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",publishedDate:"April 28th 2022",numberOfDownloads:2481,editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10979",title:"Parenting",subtitle:"Challenges of Child Rearing in a Changing Society",isOpenForSubmission:!1,hash:"6f345ebcf4fd61e73643c69063a12c7b",slug:"parenting-challenges-of-child-rearing-in-a-changing-society",bookSignature:"Sayyed Ali Samadi",coverURL:"https://cdn.intechopen.com/books/images_new/10979.jpg",publishedDate:"May 4th 2022",numberOfDownloads:1107,editors:[{id:"52145",title:"Dr.",name:"Sayyed Ali",middleName:null,surname:"Samadi",slug:"sayyed-ali-samadi",fullName:"Sayyed Ali Samadi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3307,editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3266,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10764",title:"Antenna Systems",subtitle:null,isOpenForSubmission:!1,hash:"2fbf1c7a5d92723f08198fc9b526a8ad",slug:"antenna-systems",bookSignature:"Hussain Al-Rizzo and Said Abushamleh",coverURL:"https://cdn.intechopen.com/books/images_new/10764.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1868,editors:[{id:"153384",title:"Prof.",name:"Hussain",middleName:null,surname:"Al-Rizzo",slug:"hussain-al-rizzo",fullName:"Hussain Al-Rizzo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10668",title:"Sustainability of Concrete With Synthetic and Recycled Aggregates",subtitle:null,isOpenForSubmission:!1,hash:"55856c6a8bc3a5b21dae5a1af09a56b6",slug:"sustainability-of-concrete-with-synthetic-and-recycled-aggregates",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/10668.jpg",publishedDate:"May 4th 2022",numberOfDownloads:856,editors:[{id:"144691",title:"Prof.",name:"Hosam",middleName:null,surname:"Saleh",slug:"hosam-saleh",fullName:"Hosam Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!1,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:"reactive-oxygen-species",bookSignature:"Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",publishedDate:"April 28th 2022",numberOfDownloads:1704,editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7489,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,isOpenForSubmission:!1,hash:"49cce3f548da548c718c865feb343509",slug:"rabies-virus-at-the-beginning-of-21st-century",bookSignature:"Sergey Tkachev",coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10861",title:"Furan Derivatives",subtitle:"Recent Advances and Applications",isOpenForSubmission:!1,hash:"fdfc39cecd82f91b0effac994f75c877",slug:"furan-derivatives-recent-advances-and-applications",bookSignature:"Anish Khan, Mohammed Muzibur Rahman, M. Ramesh, Salman Ahmad Khan and Abdullah Mohammed Ahmed Asiri",coverURL:"https://cdn.intechopen.com/books/images_new/10861.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"293058",title:"Dr.",name:"Anish",middleName:null,surname:"Khan",slug:"anish-khan",fullName:"Anish Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10870",title:"Ultrasound Imaging",subtitle:"Current Topics",isOpenForSubmission:!1,hash:"2f0bc3733ab226d67fa73759ef0e12ad",slug:"ultrasound-imaging-current-topics",bookSignature:"Felix Okechukwu Erondu",coverURL:"https://cdn.intechopen.com/books/images_new/10870.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"68312",title:"Prof.",name:"Felix",middleName:null,surname:"Okechukwu Erondu",slug:"felix-okechukwu-erondu",fullName:"Felix Okechukwu Erondu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11392",title:"Leadership in a Changing World",subtitle:"A Multidimensional Perspective",isOpenForSubmission:!1,hash:"86a6d33cf601587e591064ce92effc02",slug:"leadership-in-a-changing-world-a-multidimensional-perspective",bookSignature:"Muhammad Mohiuddin, Bilal Khalid, Md. Samim Al Azad and Slimane Ed-dafali",coverURL:"https://cdn.intechopen.com/books/images_new/11392.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10400",title:"The Application of Ant Colony Optimization",subtitle:null,isOpenForSubmission:!1,hash:"f4fdfd07ee1ab99fb7c740d6d0c144c6",slug:"the-application-of-ant-colony-optimization",bookSignature:"Ali Soofastaei",coverURL:"https://cdn.intechopen.com/books/images_new/10400.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"257455",title:"Dr.",name:"Ali",middleName:null,surname:"Soofastaei",slug:"ali-soofastaei",fullName:"Ali Soofastaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10915",title:"Leadership",subtitle:"New Insights",isOpenForSubmission:!1,hash:"0d72e79892f2a020cee66a52d09de5a4",slug:"leadership-new-insights",bookSignature:"Mário Franco",coverURL:"https://cdn.intechopen.com/books/images_new/10915.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"105529",title:"Dr.",name:"Mário",middleName:null,surname:"Franco",slug:"mario-franco",fullName:"Mário Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10683",title:"Technological Innovations and Advances in Hydropower Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ce7ad8768bd2cad155470fe1fd883f4",slug:"technological-innovations-and-advances-in-hydropower-engineering",bookSignature:"Yizi Shang, Ling Shang and Xiaofei Li",coverURL:"https://cdn.intechopen.com/books/images_new/10683.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7102",title:"Pneumonia",subtitle:null,isOpenForSubmission:!1,hash:"9fd70142814192dcec58a176749f1b60",slug:"pneumonia",bookSignature:"Nima Rezaei",coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",publishedDate:"May 11th 2022",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"213",title:"Neurobiology",slug:"life-sciences-neuroscience-neurobiology",parent:{id:"18",title:"Neuroscience",slug:"life-sciences-neuroscience"},numberOfBooks:10,numberOfSeries:0,numberOfAuthorsAndEditors:191,numberOfWosCitations:69,numberOfCrossrefCitations:73,numberOfDimensionsCitations:147,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"213",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10554",title:"Proprioception",subtitle:null,isOpenForSubmission:!1,hash:"e104e615fbd94caa987df3a8d8b3fb8b",slug:"proprioception",bookSignature:"José A. Vega and Juan Cobo",coverURL:"https://cdn.intechopen.com/books/images_new/10554.jpg",editedByType:"Edited by",editors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9347",title:"Neuroimaging",subtitle:"Neurobiology, Multimodal and Network Applications",isOpenForSubmission:!1,hash:"a3479e76c6ac538aac76409c9efb7e41",slug:"neuroimaging-neurobiology-multimodal-and-network-applications",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9347.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6899",title:"Chronobiology",subtitle:"The Science of Biological Time Structure",isOpenForSubmission:!1,hash:"521dfb38a216470da6f8f7d02469832c",slug:"chronobiology-the-science-of-biological-time-structure",bookSignature:"Pavol Svorc",coverURL:"https://cdn.intechopen.com/books/images_new/6899.jpg",editedByType:"Edited by",editors:[{id:"169212",title:"Prof.",name:"Pavol",middleName:null,surname:"Svorc",slug:"pavol-svorc",fullName:"Pavol Svorc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6907",title:"Feed Your Mind",subtitle:"How Does Nutrition Modulate Brain Function throughout Life?",isOpenForSubmission:!1,hash:"91a663d09b6d6e80db3a69fca11e5b68",slug:"feed-your-mind-how-does-nutrition-modulate-brain-function-throughout-life-",bookSignature:"Clémentine Bosch-Bouju, Sophie Layé and Véronique Pallet",coverURL:"https://cdn.intechopen.com/books/images_new/6907.jpg",editedByType:"Edited by",editors:[{id:"265901",title:"Dr.",name:"Clémentine",middleName:null,surname:"Bosch-Bouju",slug:"clementine-bosch-bouju",fullName:"Clémentine Bosch-Bouju"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6991",title:"Neurons",subtitle:"Dendrites and Axons",isOpenForSubmission:!1,hash:"696489f55e1077935f47087fa3829b5f",slug:"neurons-dendrites-and-axons",bookSignature:"Gonzalo Emiliano Aranda Abreu and María Elena Hernández Aguilar",coverURL:"https://cdn.intechopen.com/books/images_new/6991.jpg",editedByType:"Edited by",editors:[{id:"72314",title:"Dr.",name:"Gonzalo Emiliano",middleName:null,surname:"Aranda Abreu",slug:"gonzalo-emiliano-aranda-abreu",fullName:"Gonzalo Emiliano Aranda Abreu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6786",title:"Optic Nerve",subtitle:null,isOpenForSubmission:!1,hash:"b21864e6a0b3b316480d18efda1e18ee",slug:"optic-nerve",bookSignature:"Felicia M. Ferreri",coverURL:"https://cdn.intechopen.com/books/images_new/6786.jpg",editedByType:"Edited by",editors:[{id:"32442",title:"Prof.",name:"Felicia M.",middleName:null,surname:"Ferreri",slug:"felicia-m.-ferreri",fullName:"Felicia M. Ferreri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6808",title:"Autonomic Nervous System",subtitle:null,isOpenForSubmission:!1,hash:"d95e7c43f124d1a6e39b88862a917fc1",slug:"autonomic-nervous-system",bookSignature:"Pavol Svorc",coverURL:"https://cdn.intechopen.com/books/images_new/6808.jpg",editedByType:"Edited by",editors:[{id:"169212",title:"Prof.",name:"Pavol",middleName:null,surname:"Svorc",slug:"pavol-svorc",fullName:"Pavol Svorc"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6250",title:"The Hippocampus",subtitle:"Plasticity and Functions",isOpenForSubmission:!1,hash:"78f1e57726307f003f39510c175c3102",slug:"the-hippocampus-plasticity-and-functions",bookSignature:"Ales Stuchlik",coverURL:"https://cdn.intechopen.com/books/images_new/6250.jpg",editedByType:"Edited by",editors:[{id:"207908",title:"Dr.",name:"Ales",middleName:null,surname:"Stuchlik",slug:"ales-stuchlik",fullName:"Ales Stuchlik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6092",title:"Neuroplasticity",subtitle:"Insights of Neural Reorganization",isOpenForSubmission:!1,hash:"1003fc63680b1c04e9135f3dea18a8c3",slug:"neuroplasticity-insights-of-neural-reorganization",bookSignature:"Victor V. Chaban",coverURL:"https://cdn.intechopen.com/books/images_new/6092.jpg",editedByType:"Edited by",editors:[{id:"83427",title:"Prof.",name:"Victor",middleName:null,surname:"Chaban",slug:"victor-chaban",fullName:"Victor Chaban"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5521",title:"Synaptic Plasticity",subtitle:null,isOpenForSubmission:!1,hash:"9eea3c7f926cd466ddd14ab777b663d8",slug:"synaptic-plasticity",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/5521.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:10,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"59437",doi:"10.5772/intechopen.74318",title:"Music and Brain Plasticity: How Sounds Trigger Neurogenerative Adaptations",slug:"music-and-brain-plasticity-how-sounds-trigger-neurogenerative-adaptations",totalDownloads:2085,totalCrossrefCites:5,totalDimensionsCites:14,abstract:"This contribution describes how music can trigger plastic changes in the brain. We elaborate on the concept of neuroplasticity by focussing on three major topics: the ontogenetic scale of musical development, the phenomenon of neuroplasticity as the outcome of interactions with the sounds and a short survey of clinical and therapeutic applications. First, a distinction is made between two scales of description: the larger evolutionary scale (phylogeny) and the scale of individual development (ontogeny). In this sense, listeners are not constrained by a static dispositional machinery, but they can be considered as dynamical systems that are able to adapt themselves in answer to the solicitations of a challenging environment. Second, the neuroplastic changes are considered both from a structural and functional level of adaptation, with a special focus on the recent findings from network science. The neural activity of the medial regions of the brain seems to become more synchronised when listening to music as compared to rest, and these changes become permanent in individuals such as musicians with year-long musical practice. As such, the question is raised as to the clinical and therapeutic applications of music as a trigger for enhancing the functionality of the brain, both in normal and impaired people.",book:{id:"6092",slug:"neuroplasticity-insights-of-neural-reorganization",title:"Neuroplasticity",fullTitle:"Neuroplasticity - Insights of Neural Reorganization"},signatures:"Mark Reybrouck, Peter Vuust and Elvira Brattico",authors:[{id:"196698",title:"Prof.",name:"Mark",middleName:null,surname:"Reybrouck",slug:"mark-reybrouck",fullName:"Mark Reybrouck"},{id:"209976",title:"Prof.",name:"Elvira",middleName:null,surname:"Brattico",slug:"elvira-brattico",fullName:"Elvira Brattico"},{id:"209977",title:"Prof.",name:"Peter",middleName:null,surname:"Vuust",slug:"peter-vuust",fullName:"Peter Vuust"}]},{id:"67730",doi:"10.5772/intechopen.86822",title:"Circadian Rhythms of the Autonomic Nervous System: Scientific Implication and Practical Implementation",slug:"circadian-rhythms-of-the-autonomic-nervous-system-scientific-implication-and-practical-implementatio",totalDownloads:1074,totalCrossrefCites:8,totalDimensionsCites:12,abstract:"Circadian rhythms are omnipresent in almost any biosignal. In this chapter, we join them with the need for practical tools for screening in preventive settings and point out heart rate variability (HRV), a measure of autonomic nervous system activity, as a chronobiologic, unspecific index of mental and physical health. We discuss methods to calculate the circadian variation of HRV measures, particularly the cosinor procedure. We present reference values for circadian variation parameters of HRV and data concerning reproducibility. Furthermore, we show data giving first evidence of HRV as a comprehensive health index by showing altered circadian variation patterns of HRV depending on mental (trait dysthymia) as well as physical (inflammatory markers) health. Finally, we present examples of disturbed chronobiology of HRV in clinical and preventive settings and its practical application in medical consultation.",book:{id:"6899",slug:"chronobiology-the-science-of-biological-time-structure",title:"Chronobiology",fullTitle:"Chronobiology - The Science of Biological Time Structure"},signatures:"Marc N. Jarczok, Harald Guendel, Jennifer J. McGrath and Elisabeth M. Balint",authors:[{id:"289160",title:"Dr.",name:"Marc",middleName:"N",surname:"Jarczok",slug:"marc-jarczok",fullName:"Marc Jarczok"},{id:"289379",title:"Dr.",name:"Elisabeth",middleName:null,surname:"Balint",slug:"elisabeth-balint",fullName:"Elisabeth Balint"},{id:"299975",title:"Prof.",name:"Jennifer J",middleName:null,surname:"McGrath",slug:"jennifer-j-mcgrath",fullName:"Jennifer J McGrath"},{id:"304667",title:"Prof.",name:"Harald",middleName:null,surname:"Gündel",slug:"harald-gundel",fullName:"Harald Gündel"}]},{id:"57827",doi:"10.5772/intechopen.71165",title:"A Role for the Longitudinal Axis of the Hippocampus in Multiscale Representations of Large and Complex Spatial Environments and Mnemonic Hierarchies",slug:"a-role-for-the-longitudinal-axis-of-the-hippocampus-in-multiscale-representations-of-large-and-compl",totalDownloads:1397,totalCrossrefCites:6,totalDimensionsCites:12,abstract:"The hippocampus is involved in spatial navigation and memory in rodents and humans. Anatomically, the hippocampus extends along a longitudinal axis that shows a combination of graded and specific interconnections with neocortical and subcortical brain areas. Functionally, place cells are found all along the longitudinal axis and exhibit gradients of properties including an increasing dorsal-to-ventral place field size. We propose a view of hippocampal function in which fine-dorsal to coarse-ventral overlapping representations collaborate to form a multi-level representation of spatial and episodic memory that is dominant during navigation in large and complex environments or when encoding complex memories. This view is supported by the fact that the effects of ventral hippocampal damage are generally only found in larger laboratory-scale environments, and by the finding that human virtual navigation studies associate ventral hippocampal involvement with increased environmental complexity. Other mechanisms such as the ability of place cells to exhibit multiple fields and their ability to scale their fields with changes in environment size may be utilized when forming large-scale cognitive maps. Coarse-grained ventral representations may overlap with and provide multi-modal global contexts to finer-grained intermediate and dorsal representations, a mechanism that may support mnemonic hierarchies of autobiographical memory in humans.",book:{id:"6250",slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Bruce Harland, Marcos Contreras and Jean-Marc Fellous",authors:[{id:"210681",title:"Dr.",name:"Bruce",middleName:null,surname:"Harland",slug:"bruce-harland",fullName:"Bruce Harland"},{id:"210682",title:"Dr.",name:"Marco",middleName:null,surname:"Contreras",slug:"marco-contreras",fullName:"Marco Contreras"},{id:"210683",title:"Prof.",name:"Jean-Marc",middleName:null,surname:"Fellous",slug:"jean-marc-fellous",fullName:"Jean-Marc Fellous"}]},{id:"68423",doi:"10.5772/intechopen.88232",title:"Polyunsaturated Fatty Acid Metabolism in the Brain and Brain Cells",slug:"polyunsaturated-fatty-acid-metabolism-in-the-brain-and-brain-cells",totalDownloads:1128,totalCrossrefCites:8,totalDimensionsCites:10,abstract:"Dietary polyunsaturated fatty acids (PUFAs) have gained more importance these last decades since they regulate the level of long-chain PUFAs (LC-PUFAs) in all cells and especially in brain cells. Because LC-PUFAs, especially those of the n-3 family, display both anti-inflammatory and pro-resolution properties, they play an essential role in neuroinflammation. Neuroinflammation is a hallmark of neurological disorders and requires to be tightly controlled or at least limited otherwise it can have functional consequences and negatively impact the quality of life and well-being of patients. LC-PUFAs exert these beneficial properties in part through the synthesis of specialized pro-resolving mediators (SPMs) that are involved in the resolution of inflammation and to the return of homeostasis. SPMs are promising relevant candidates to resolve brain inflammation and to contribute to neuroprotective functions and lead to novel therapeutics for brain inflammatory diseases. Here we present an overview of the origin and accumulation of PUFAs in the brain and brain cells and their conversion into SPMs that are involved in neuroinflammation and how nutrition induces variations in LC-PUFA and SPM levels in the brain and in brain cells.",book:{id:"6907",slug:"feed-your-mind-how-does-nutrition-modulate-brain-function-throughout-life-",title:"Feed Your Mind",fullTitle:"Feed Your Mind - How Does Nutrition Modulate Brain Function throughout Life?"},signatures:"Corinne Joffre",authors:[{id:"281107",title:"Dr.",name:"Corinne",middleName:null,surname:"Joffre",slug:"corinne-joffre",fullName:"Corinne Joffre"}]},{id:"61465",doi:"10.5772/intechopen.76603",title:"The Importance of Distinguishing Allocentric and Egocentric Search Strategies in Rodent Hippocampal-Dependent Spatial Memory Paradigms: Getting More Out of Your Data",slug:"the-importance-of-distinguishing-allocentric-and-egocentric-search-strategies-in-rodent-hippocampal-",totalDownloads:1419,totalCrossrefCites:4,totalDimensionsCites:8,abstract:"While the brain works as a dynamic network, with no brain region solely responsible for any particular function, it is generally accepted that the hippocampus plays a major role in memory. Spatial memory operates through the hippocampus with communication with the prefrontal and parietal cortices. This chapter will focus on two separate reference frames involved in spatial memory, egocentric and allocentric, and outline the differences of these reference frames and associated search strategies with relevance to behavioural neuroscience. The importance of dissociating these search strategies is put forward, and steps researchers can take to do so are suggested. Neurophysiological and clinical differences between these spatial reference frames are outlined to further support the view that distinguishing them would be beneficial.",book:{id:"6250",slug:"the-hippocampus-plasticity-and-functions",title:"The Hippocampus",fullTitle:"The Hippocampus - Plasticity and Functions"},signatures:"Adrienne M. Grech, Jay Patrick Nakamura and Rachel Anne Hill",authors:[{id:"230389",title:"Dr.",name:"Rachel",middleName:null,surname:"Hill",slug:"rachel-hill",fullName:"Rachel Hill"},{id:"230394",title:"Ms.",name:"Adrienne",middleName:null,surname:"Grech",slug:"adrienne-grech",fullName:"Adrienne Grech"},{id:"230395",title:"Mr.",name:"Jay",middleName:null,surname:"Nakamura",slug:"jay-nakamura",fullName:"Jay Nakamura"}]}],mostDownloadedChaptersLast30Days:[{id:"64482",title:"Neurodegenerative Diseases and Their Therapeutic Approaches",slug:"neurodegenerative-diseases-and-their-therapeutic-approaches",totalDownloads:1324,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"Alzheimer’s disease and Parkinson’s disease are characterized as a chronic and progressive neurodegenerative disorder and are manifested by the loss of neurons within the brain and/or spinal cord. In the present chapter, we would like to summarize the molecular mechanism focusing on metabolic modification associated with neurodegenerative diseases or heritable genetic disorders. The identification of the exact molecular mechanisms involved in these diseases would facilitate the discovery of earlier pathophysiological markers along with substantial therapies, which may consist (of) mitochondria-targeted antioxidant therapy, mitochondrial dynamics modulators, epigenetic modulators, and neural stem cell therapy. Therefore, all these therapies may hold particular assurance as influential neuroprotective therapies in the treatment of neurodegenerative diseases.",book:{id:"6991",slug:"neurons-dendrites-and-axons",title:"Neurons",fullTitle:"Neurons - Dendrites and Axons"},signatures:"Farhin Patel and Palash Mandal",authors:[{id:"217215",title:"Dr.",name:"Palash",middleName:null,surname:"Mandal",slug:"palash-mandal",fullName:"Palash Mandal"}]},{id:"75762",title:"Structural and Biological Basis for Proprioception",slug:"structural-and-biological-basis-for-proprioception",totalDownloads:474,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"The proprioception is the sense of positioning and movement. It is mediate by proprioceptors, a small subset of mechanosensory neurons localized in the dorsal root ganglia that convey information about the stretch and tension of muscles, tendons, and joints. These neurons supply of afferent innervation to specialized sensory organs in muscles (muscle spindles) and tendons (Golgi tendon organs). Thereafter, the information originated in the proprioceptors travels throughout two main nerve pathways reaching the central nervous system at the level of the spinal cord and the cerebellum (unconscious) and the cerebral cortex (conscious) for processing. On the other hand, since the stimuli for proprioceptors are mechanical (stretch, tension) proprioception can be regarded as a modality of mechanosensitivity and the putative mechanotransducers proprioceptors begins to be known now. The mechanogated ion channels acid-sensing ion channel 2 (ASIC2), transient receptor potential vanilloid 4 (TRPV4) and PIEZO2 are among candidates. Impairment or poor proprioception is proper of aging and some neurological diseases. Future research should focus on treating these defects. This chapter intends provide a comprehensive update an overview of the anatomical, structural and molecular basis of proprioception as well as of the main causes of proprioception impairment, including aging, and possible treatments.",book:{id:"10554",slug:"proprioception",title:"Proprioception",fullTitle:"Proprioception"},signatures:"José A. Vega and Juan Cobo",authors:[{id:"59892",title:"Prof.",name:"José A.",middleName:null,surname:"Vega",slug:"jose-a.-vega",fullName:"José A. Vega"},{id:"100648",title:"Dr.",name:"Juan",middleName:null,surname:"Cobo",slug:"juan-cobo",fullName:"Juan Cobo"}]},{id:"62564",title:"Inflammation and Autonomic Function",slug:"inflammation-and-autonomic-function",totalDownloads:1785,totalCrossrefCites:2,totalDimensionsCites:3,abstract:"Inflammation is generally a temporary and limited condition but may lead to a chronic one if immune and physiological homeostasis are disrupted. The autonomic nervous system has an important role in the short- and, also, long-term regulation of homeostasis and, thus, on inflammation. Autonomic modulation in acute and chronic inflammation has been implicated with a sympathetic interference in the earlier stages of the inflammatory process and the activation of the vagal inflammatory reflex to regulate innate immune responses and cytokine functional effects in longer processes. The present review focuses on the autonomic mechanisms controlling proinflammatory responses, and we will discuss novel therapeutic options linked to autonomic modulation for diseases associated with a chronic inflammatory condition such as sepsis.",book:{id:"6808",slug:"autonomic-nervous-system",title:"Autonomic Nervous System",fullTitle:"Autonomic Nervous System"},signatures:"Ângela Leal, Mafalda Carvalho, Isabel Rocha and Helder Mota-Filipe",authors:[{id:"227590",title:"Prof.",name:"Isabel",middleName:null,surname:"Rocha",slug:"isabel-rocha",fullName:"Isabel Rocha"},{id:"253537",title:"Ph.D.",name:"Ângela",middleName:null,surname:"Leal",slug:"angela-leal",fullName:"Ângela Leal"},{id:"253581",title:"MSc.",name:"Mafalda",middleName:null,surname:"Carvalho",slug:"mafalda-carvalho",fullName:"Mafalda Carvalho"},{id:"253701",title:"Prof.",name:"Hélder",middleName:null,surname:"Mota-Filipe",slug:"helder-mota-filipe",fullName:"Hélder Mota-Filipe"}]},{id:"62850",title:"Anatomy of the Human Optic Nerve: Structure and Function",slug:"anatomy-of-the-human-optic-nerve-structure-and-function",totalDownloads:2939,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The optic nerve (ON) is constituted by the axons of the retinal ganglion cells (RGCs). These axons are distributed in an organized pattern from the soma of the RGC to the lateral geniculated nucleus (where most of the neurons synapse). The key points of the ON are the optic nerve head and chiasm. This chapter will include a detailed and updated review of the ON different parts: RGC axons, glial cells, connective tissue of the lamina cribrosa and the septum and the blood vessels derivate from the central retina artery and from the ciliary system. There will be an up-to-date description about the superficial nerve fibre layer, including their organization, and about prelaminar, laminar and retrolaminar regions, emphasizing the axoplasmic flow, glial barriers, biomechanics of the lamina cribrosa and the role of the macro- and microglia in their working.",book:{id:"6786",slug:"optic-nerve",title:"Optic Nerve",fullTitle:"Optic Nerve"},signatures:"Juan J. Salazar, Ana I. Ramírez, Rosa De Hoz, Elena Salobrar-Garcia,\nPilar Rojas, José A. Fernández-Albarral, Inés López-Cuenca, Blanca\nRojas, Alberto Triviño and José M. Ramírez",authors:null},{id:"68362",title:"Carbohydrates and the Brain: Roles and Impact",slug:"carbohydrates-and-the-brain-roles-and-impact",totalDownloads:1398,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Even if its size is fairly small (about 2% of body weight), the brain consumes around 20% of the total body energy. Whereas organs such as muscles and liver may use several sources of energy, under physiological conditions, the brain mainly depends on glucose for its energy needs. This involves the need for blood glucose level to be tightly regulated. Thus, in addition to its fueling role, glucose plays a role as signaling molecule informing the brain of any slight change in blood level to ensure glucose homeostasis. In this chapter, we will describe the fueling and sensing properties of glucose and other carbohydrates on the brain and present some physiological brain functions impacted by these sugars. We will also highlight the scientific questions that need to be answered in order to better understand the impact of sugars on the brain.",book:{id:"6907",slug:"feed-your-mind-how-does-nutrition-modulate-brain-function-throughout-life-",title:"Feed Your Mind",fullTitle:"Feed Your Mind - How Does Nutrition Modulate Brain Function throughout Life?"},signatures:"Xavier Fioramonti and Luc Pénicaud",authors:[{id:"281112",title:"Ph.D.",name:"Xavier",middleName:null,surname:"Fioramonti",slug:"xavier-fioramonti",fullName:"Xavier Fioramonti"},{id:"281113",title:"Dr.",name:"Luc",middleName:null,surname:"Pénicaud",slug:"luc-penicaud",fullName:"Luc Pénicaud"}]}],onlineFirstChaptersFilter:{topicId:"213",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:105,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"May 15th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:27,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:48,paginationItems:[{id:"81799",title:"Cross Talk of Purinergic and Immune Signaling: Implication in Inflammatory and Pathogenic Diseases",doi:"10.5772/intechopen.104978",signatures:"Richa Rai",slug:"cross-talk-of-purinergic-and-immune-signaling-implication-in-inflammatory-and-pathogenic-diseases",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81764",title:"Involvement of the Purinergic System in Cell Death in Models of Retinopathies",doi:"10.5772/intechopen.103935",signatures:"Douglas Penaforte Cruz, Marinna Garcia Repossi and Lucianne Fragel Madeira",slug:"involvement-of-the-purinergic-system-in-cell-death-in-models-of-retinopathies",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"81756",title:"Alteration of Cytokines Level and Oxidative Stress Parameters in COVID-19",doi:"10.5772/intechopen.104950",signatures:"Marija Petrusevska, Emilija Atanasovska, Dragica Zendelovska, Aleksandar Eftimov and Katerina Spasovska",slug:"alteration-of-cytokines-level-and-oxidative-stress-parameters-in-covid-19",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",subseries:{id:"18",title:"Proteomics"}}},{id:"81681",title:"Immunomodulatory Effects of a M2-Conditioned Medium (PRS® CK STORM): Theory on the Possible Complex Mechanism of Action through Anti-Inflammatory Modulation of the TLR System and the Purinergic System",doi:"10.5772/intechopen.104486",signatures:"Juan Pedro Lapuente",slug:"immunomodulatory-effects-of-a-m2-conditioned-medium-prs-ck-storm-theory-on-the-possible-complex-mech",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11671",title:"Importance of Oxidative Stress and Antioxidant System in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11671.jpg",hash:"2bd98244cd9eda2107f01824584c1eb4",secondStepPassed:!0,currentStepOfPublishingProcess:4,submissionDeadline:"March 17th 2022",isOpenForSubmission:!0,editors:[{id:"270856",title:"Associate Prof.",name:"Suna",surname:"Sabuncuoglu",slug:"suna-sabuncuoglu",fullName:"Suna Sabuncuoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11669",title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",hash:"9117bd12dc904ced43404e3383b6591a",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 3rd 2022",isOpenForSubmission:!0,editors:[{id:"415310",title:"Assistant Prof.",name:"Erik",surname:"Froyen",slug:"erik-froyen",fullName:"Erik Froyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11672",title:"Chemokines Updates",coverURL:"https://cdn.intechopen.com/books/images_new/11672.jpg",hash:"c00855833476a514d37abf7c846e16e9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"14794",title:"Prof.",name:"Murat",surname:"Şentürk",slug:"murat-senturk",fullName:"Murat Şentürk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11674",title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",hash:"5d7d49bd80f53dad3761f78de4a862c6",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 6th 2022",isOpenForSubmission:!0,editors:[{id:"238047",title:"Dr.",name:"Gaia",surname:"Favero",slug:"gaia-favero",fullName:"Gaia Favero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11670",title:"Chitin-Chitosan - Isolation, Properties, and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11670.jpg",hash:"69f009be08998711eecfb200adc7deca",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 26th 2022",isOpenForSubmission:!0,editors:[{id:"176093",title:"Dr.",name:"Brajesh",surname:"Kumar",slug:"brajesh-kumar",fullName:"Brajesh Kumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11673",title:"Stem Cell Research",coverURL:"https://cdn.intechopen.com/books/images_new/11673.jpg",hash:"13092df328080c762dd9157be18ca38c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 8th 2022",isOpenForSubmission:!0,editors:[{id:"203598",title:"Ph.D.",name:"Diana",surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:25,paginationItems:[{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"80187",title:"Potential Utilization of Insect Meal as Livestock Feed",doi:"10.5772/intechopen.101766",signatures:"Sipho Moyo and Busani Moyo",slug:"potential-utilization-of-insect-meal-as-livestock-feed",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79909",title:"Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models",doi:"10.5772/intechopen.101750",signatures:"Feda S. Aljaser",slug:"cryopreservation-methods-and-frontiers-in-the-art-of-freezing-life-in-animal-models",totalDownloads:160,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79866",title:"Ruminal Microbiome Manipulation to Improve Fermentation Efficiency in Ruminants",doi:"10.5772/intechopen.101582",signatures:"Yosra Ahmed Soltan and Amlan Kumar Patra",slug:"ruminal-microbiome-manipulation-to-improve-fermentation-efficiency-in-ruminants",totalDownloads:216,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"79782",title:"Avian Reproduction",doi:"10.5772/intechopen.101185",signatures:"Kingsley Omogiade Idahor",slug:"avian-reproduction",totalDownloads:149,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Kingsley O.",surname:"Idahor"}],book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"78802",title:"Intraovarian Gestation in Viviparous Teleosts: Unique Type of Gestation among Vertebrates",doi:"10.5772/intechopen.100267",signatures:"Mari-Carmen Uribe, Gabino De la Rosa-Cruz, Adriana García-Alarcón and Juan Carlos Campuzano-Caballero",slug:"intraovarian-gestation-in-viviparous-teleosts-unique-type-of-gestation-among-vertebrates",totalDownloads:183,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Reproduction",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",subseries:{id:"28",title:"Animal Reproductive Biology and Technology"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:136,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:67,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78998",title:"Effect of Various Feed Additives on the Methane Emissions from Beef Cattle Based on an Ammoniated Palm Frond Feeds",doi:"10.5772/intechopen.100142",signatures:"Mardiati Zain, Rusmana Wijaya Setia Ningrat, Heni Suryani and Novirman Jamarun",slug:"effect-of-various-feed-additives-on-the-methane-emissions-from-beef-cattle-based-on-an-ammoniated-pa",totalDownloads:143,totalCrossrefCites:0,totalDimensionsCites:1,authors:null,book:{title:"Animal Feed Science and Nutrition - Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",subseries:{id:"20",title:"Animal Nutrition"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:7,group:"subseries"},{caption:"Animal Reproductive Biology and Technology",value:28,count:7,group:"subseries"},{caption:"Animal Science",value:19,count:11,group:"subseries"}],publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:1},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:3},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:1},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:0,paginationItems:[]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:19,paginationItems:[{id:"81067",title:"Encapsulation of Essential Oils and Their Use in Food Applications",doi:"10.5772/intechopen.103147",signatures:"Hamdy A. Shaaban and Amr Farouk",slug:"encapsulation-of-essential-oils-and-their-use-in-food-applications",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80959",title:"Biological Application of Essential Oils and Essential Oils Components in Terms of Antioxidant Activity and Inhibition of Cholinesterase Enzymes",doi:"10.5772/intechopen.102874",signatures:"Mejra Bektašević and Olivera Politeo",slug:"biological-application-of-essential-oils-and-essential-oils-components-in-terms-of-antioxidant-activ",totalDownloads:46,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80859",title:"Antioxidant Effect and Medicinal Properties of Allspice Essential Oil",doi:"10.5772/intechopen.103001",signatures:"Yasvet Yareni Andrade Avila, Julián Cruz-Olivares and César Pérez-Alonso",slug:"antioxidant-effect-and-medicinal-properties-of-allspice-essential-oil",totalDownloads:33,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80777",title:"Starch: A Veritable Natural Polymer for Economic Revolution",doi:"10.5772/intechopen.102941",signatures:"Obi P. Adigwe, Henry O. Egharevba and Martins O. Emeje",slug:"starch-a-veritable-natural-polymer-for-economic-revolution",totalDownloads:43,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80673",title:"Teucrium ramosissimum Derived-Natural Products and Its Potent Effect in Alleviating the Pathological Kidney Damage in LPS-Induced Mice",doi:"10.5772/intechopen.102788",signatures:"Fatma Guesmi and Ahmed Landoulsi",slug:"teucrium-ramosissimum-derived-natural-products-and-its-potent-effect-in-alleviating-the-pathological",totalDownloads:35,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80600",title:"Essential Oil as Green Preservative Obtained by Ecofriendly Extraction Techniques",doi:"10.5772/intechopen.103035",signatures:"Nashwa Fathy Sayed Morsy",slug:"essential-oil-as-green-preservative-obtained-by-ecofriendly-extraction-techniques",totalDownloads:57,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Nashwa",surname:"Morsy"}],book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79875",title:"Comparative Study of the Physiochemical Composition and Techno-Functional Properties of Two Extracted Acorn Starches",doi:"10.5772/intechopen.101562",signatures:"Youkabed Zarroug, Mouna Boulares, Dorra Sfayhi and Bechir Slimi",slug:"comparative-study-of-the-physiochemical-composition-and-techno-functional-properties-of-two-extracte",totalDownloads:49,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80395",title:"History, Evolution and Future of Starch Industry in Nigeria",doi:"10.5772/intechopen.102712",signatures:"Obi Peter Adigwe, Judith Eloyi John and Martins Ochubiojo Emeje",slug:"history-evolution-and-future-of-starch-industry-in-nigeria",totalDownloads:51,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80168",title:"Benzimidazole: Pharmacological Profile",doi:"10.5772/intechopen.102091",signatures:"Mahender Thatikayala, Anil Kumar Garige and Hemalatha Gadegoni",slug:"benzimidazole-pharmacological-profile",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80122",title:"Pharmaceutical and Therapeutic Potentials of Essential Oils",doi:"10.5772/intechopen.102037",signatures:"Ishrat Nazir and Sajad Ahmad Gangoo",slug:"pharmaceutical-and-therapeutic-potentials-of-essential-oils",totalDownloads:123,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80130",title:"Exploring the Versatility of Benzimidazole Scaffolds as Medicinal Agents: A Brief Update",doi:"10.5772/intechopen.101942",signatures:"Gopakumar Kavya and Akhil Sivan",slug:"exploring-the-versatility-of-benzimidazole-scaffolds-as-medicinal-agents-a-brief-update",totalDownloads:55,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80018",title:"Potato Starch as Affected by Varieties, Storage Treatments and Conditions of Tubers",doi:"10.5772/intechopen.101831",signatures:"Saleem Siddiqui, Naseer Ahmed and Neeraj Phogat",slug:"potato-starch-as-affected-by-varieties-storage-treatments-and-conditions-of-tubers",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"80023",title:"Binary Interactions and Starch Bioavailability: Critical in Limiting Glycemic Response",doi:"10.5772/intechopen.101833",signatures:"Veda Krishnan, Monika Awana, Debarati Mondal, Piyush Verma, Archana Singh and Shelly Praveen",slug:"binary-interactions-and-starch-bioavailability-critical-in-limiting-glycemic-response",totalDownloads:73,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79964",title:"The Anticancer Profile of Benzimidazolium Salts and their Metal Complexes",doi:"10.5772/intechopen.101729",signatures:"Imran Ahmad Khan, Noor ul Amin Mohsin, Sana Aslam and Matloob Ahmad",slug:"the-anticancer-profile-of-benzimidazolium-salts-and-their-metal-complexes",totalDownloads:90,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79835",title:"Advances of Benzimidazole Derivatives as Anticancer Agents: Bench to Bedside",doi:"10.5772/intechopen.101702",signatures:"Kashif Haider and Mohammad Shahar Yar",slug:"advances-of-benzimidazole-derivatives-as-anticancer-agents-bench-to-bedside",totalDownloads:105,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"79856",title:"Starch-Based Hybrid Nanomaterials for Environmental Remediation",doi:"10.5772/intechopen.101697",signatures:"Ashoka Gamage, Thiviya Punniamoorthy and Terrence Madhujith",slug:"starch-based-hybrid-nanomaterials-for-environmental-remediation",totalDownloads:101,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Starch - Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",subseries:{id:"15",title:"Chemical Biology"}}}]},publishedBooks:{paginationCount:9,paginationItems:[{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.jpg",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:8,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:98,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:286,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:9,numberOfPublishedChapters:101,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:11,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"4",title:"Fungal Infectious Diseases",scope:"Fungi are ubiquitous and there are almost no non-pathogenic fungi. Fungal infectious illness prevalence and prognosis are determined by the exposure between fungi and host, host immunological state, fungal virulence, and early and accurate diagnosis and treatment. \r\nPatients with both congenital and acquired immunodeficiency are more likely to be infected with opportunistic mycosis. Fungal infectious disease outbreaks are common during the post- disaster rebuilding era, which is characterised by high population density, migration, and poor health and medical conditions.\r\nSystemic or local fungal infection is mainly associated with the fungi directly inhaled or inoculated in the environment during the disaster. The most common fungal infection pathways are human to human (anthropophilic), animal to human (zoophilic), and environment to human (soilophile). Diseases are common as a result of widespread exposure to pathogenic fungus dispersed into the environment. \r\nFungi that are both common and emerging are intertwined. In Southeast Asia, for example, Talaromyces marneffei is an important pathogenic thermally dimorphic fungus that causes systemic mycosis. Widespread fungal infections with complicated and variable clinical manifestations, such as Candida auris infection resistant to several antifungal medicines, Covid-19 associated with Trichoderma, and terbinafine resistant dermatophytosis in India, are among the most serious disorders. \r\nInappropriate local or systemic use of glucocorticoids, as well as their immunosuppressive effects, may lead to changes in fungal infection spectrum and clinical characteristics. Hematogenous candidiasis is a worrisome issue that affects people all over the world, particularly ICU patients. CARD9 deficiency and fungal infection have been major issues in recent years. Invasive aspergillosis is associated with a significant death rate. Special attention should be given to endemic fungal infections, identification of important clinical fungal infections advanced in yeasts, filamentous fungal infections, skin mycobiome and fungal genomes, and immunity to fungal infections.\r\nIn addition, endemic fungal diseases or uncommon fungal infections caused by Mucor irregularis, dermatophytosis, Malassezia, cryptococcosis, chromoblastomycosis, coccidiosis, blastomycosis, histoplasmosis, sporotrichosis, and other fungi, should be monitored. \r\nThis topic includes the research progress on the etiology and pathogenesis of fungal infections, new methods of isolation and identification, rapid detection, drug sensitivity testing, new antifungal drugs, schemes and case series reports. It will provide significant opportunities and support for scientists, clinical doctors, mycologists, antifungal drug researchers, public health practitioners, and epidemiologists from all over the world to share new research, ideas and solutions to promote the development and progress of medical mycology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/4.jpg",keywords:"Emerging Fungal Pathogens, Invasive Infections, Epidemiology, Cell Membrane, Fungal Virulence, Diagnosis, Treatment"},{id:"5",title:"Parasitic Infectious Diseases",scope:"Parasitic diseases have evolved alongside their human hosts. In many cases, these diseases have adapted so well that they have developed efficient resilience methods in the human host and can live in the host for years. Others, particularly some blood parasites, can cause very acute diseases and are responsible for millions of deaths yearly. Many parasitic diseases are classified as neglected tropical diseases because they have received minimal funding over recent years and, in many cases, are under-reported despite the critical role they play in morbidity and mortality among human and animal hosts. The current topic, Parasitic Infectious Diseases, in the Infectious Diseases Series aims to publish studies on the systematics, epidemiology, molecular biology, genomics, pathogenesis, genetics, and clinical significance of parasitic diseases from blood borne to intestinal parasites as well as zoonotic parasites. We hope to cover all aspects of parasitic diseases to provide current and relevant research data on these very important diseases. In the current atmosphere of the Coronavirus pandemic, communities around the world, particularly those in different underdeveloped areas, are faced with the growing challenges of the high burden of parasitic diseases. At the same time, they are faced with the Covid-19 pandemic leading to what some authors have called potential syndemics that might worsen the outcome of such infections. Therefore, it is important to conduct studies that examine parasitic infections in the context of the coronavirus pandemic for the benefit of all communities to help foster more informed decisions for the betterment of human and animal health.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/5.jpg",keywords:"Blood Borne Parasites, Intestinal Parasites, Protozoa, Helminths, Arthropods, Water Born Parasites, Epidemiology, Molecular Biology, Systematics, Genomics, Proteomics, Ecology"},{id:"6",title:"Viral Infectious Diseases",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"7",title:"Biomedical Engineering",doi:"10.5772/intechopen.71985",issn:"2631-5343",scope:"Biomedical Engineering is one of the fastest-growing interdisciplinary branches of science and industry. The combination of electronics and computer science with biology and medicine has improved patient diagnosis, reduced rehabilitation time, and helped to facilitate a better quality of life. Nowadays, all medical imaging devices, medical instruments, or new laboratory techniques result from the cooperation of specialists in various fields. The series of Biomedical Engineering books covers such areas of knowledge as chemistry, physics, electronics, medicine, and biology. This series is intended for doctors, engineers, and scientists involved in biomedical engineering or those wanting to start working in this field.",coverUrl:"https://cdn.intechopen.com/series/covers/7.jpg",latestPublicationDate:"May 7th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:96,numberOfPublishedBooks:12,editor:{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",biography:"Robert Koprowski, MD (1997), PhD (2003), Habilitation (2015), is an employee of the University of Silesia, Poland, Institute of Computer Science, Department of Biomedical Computer Systems. For 20 years, he has studied the analysis and processing of biomedical images, emphasizing the full automation of measurement for a large inter-individual variability of patients. Dr. Koprowski has authored more than a hundred research papers with dozens in impact factor (IF) journals and has authored or co-authored six books. Additionally, he is the author of several national and international patents in the field of biomedical devices and imaging. Since 2011, he has been a reviewer of grants and projects (including EU projects) in biomedical engineering.",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}},subseries:[{id:"7",title:"Bioinformatics and Medical Informatics",keywords:"Biomedical Data, Drug Discovery, Clinical Diagnostics, Decoding Human Genome, AI in Personalized Medicine, Disease-prevention Strategies, Big Data Analysis in Medicine",scope:"Bioinformatics aims to help understand the functioning of the mechanisms of living organisms through the construction and use of quantitative tools. The applications of this research cover many related fields, such as biotechnology and medicine, where, for example, Bioinformatics contributes to faster drug design, DNA analysis in forensics, and DNA sequence analysis in the field of personalized medicine. Personalized medicine is a type of medical care in which treatment is customized individually for each patient. Personalized medicine enables more effective therapy, reduces the costs of therapy and clinical trials, and also minimizes the risk of side effects. Nevertheless, advances in personalized medicine would not have been possible without bioinformatics, which can analyze the human genome and other vast amounts of biomedical data, especially in genetics. The rapid growth of information technology enabled the development of new tools to decode human genomes, large-scale studies of genetic variations and medical informatics. The considerable development of technology, including the computing power of computers, is also conducive to the development of bioinformatics, including personalized medicine. In an era of rapidly growing data volumes and ever lower costs of generating, storing and computing data, personalized medicine holds great promises. Modern computational methods used as bioinformatics tools can integrate multi-scale, multi-modal and longitudinal patient data to create even more effective and safer therapy and disease prevention methods. Main aspects of the topic are: Applying bioinformatics in drug discovery and development; Bioinformatics in clinical diagnostics (genetic variants that act as markers for a condition or a disease); Blockchain and Artificial Intelligence/Machine Learning in personalized medicine; Customize disease-prevention strategies in personalized medicine; Big data analysis in personalized medicine; Translating stratification algorithms into clinical practice of personalized medicine.",annualVolume:11403,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/7.jpg",editor:{id:"351533",title:"Dr.",name:"Slawomir",middleName:null,surname:"Wilczynski",fullName:"Slawomir Wilczynski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000035U1loQAC/Profile_Picture_1630074514792",institutionString:null,institution:{name:"Medical University of Silesia",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"5886",title:"Dr.",name:"Alexandros",middleName:"T.",surname:"Tzallas",fullName:"Alexandros Tzallas",profilePictureURL:"https://mts.intechopen.com/storage/users/5886/images/system/5886.png",institutionString:"University of Ioannina, Greece & Imperial College London",institution:{name:"University of Ioannina",institutionURL:null,country:{name:"Greece"}}},{id:"257388",title:"Distinguished Prof.",name:"Lulu",middleName:null,surname:"Wang",fullName:"Lulu Wang",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRX6kQAG/Profile_Picture_1630329584194",institutionString:null,institution:{name:"Shenzhen Technology University",institutionURL:null,country:{name:"China"}}},{id:"225387",title:"Prof.",name:"Reda",middleName:"R.",surname:"Gharieb",fullName:"Reda Gharieb",profilePictureURL:"https://mts.intechopen.com/storage/users/225387/images/system/225387.jpg",institutionString:"Assiut University",institution:{name:"Assiut University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"8",title:"Bioinspired Technology and Biomechanics",keywords:"Bioinspired Systems, Biomechanics, Assistive Technology, Rehabilitation",scope:'Bioinspired technologies take advantage of understanding the actual biological system to provide solutions to problems in several areas. Recently, bioinspired systems have been successfully employing biomechanics to develop and improve assistive technology and rehabilitation devices. The research topic "Bioinspired Technology and Biomechanics" welcomes studies reporting recent advances in bioinspired technologies that contribute to individuals\' health, inclusion, and rehabilitation. Possible contributions can address (but are not limited to) the following research topics: Bioinspired design and control of exoskeletons, orthoses, and prostheses; Experimental evaluation of the effect of assistive devices (e.g., influence on gait, balance, and neuromuscular system); Bioinspired technologies for rehabilitation, including clinical studies reporting evaluations; Application of neuromuscular and biomechanical models to the development of bioinspired technology.',annualVolume:11404,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/8.jpg",editor:{id:"144937",title:"Prof.",name:"Adriano",middleName:"De Oliveira",surname:"Andrade",fullName:"Adriano Andrade",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRC8QQAW/Profile_Picture_1625219101815",institutionString:null,institution:{name:"Federal University of Uberlândia",institutionURL:null,country:{name:"Brazil"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"49517",title:"Prof.",name:"Hitoshi",middleName:null,surname:"Tsunashima",fullName:"Hitoshi Tsunashima",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTP4QAO/Profile_Picture_1625819726528",institutionString:null,institution:{name:"Nihon University",institutionURL:null,country:{name:"Japan"}}},{id:"425354",title:"Dr.",name:"Marcus",middleName:"Fraga",surname:"Vieira",fullName:"Marcus Vieira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003BJSgIQAX/Profile_Picture_1627904687309",institutionString:null,institution:{name:"Universidade Federal de Goiás",institutionURL:null,country:{name:"Brazil"}}},{id:"196746",title:"Dr.",name:"Ramana",middleName:null,surname:"Vinjamuri",fullName:"Ramana Vinjamuri",profilePictureURL:"https://mts.intechopen.com/storage/users/196746/images/system/196746.jpeg",institutionString:"University of Maryland, Baltimore County",institution:{name:"University of Maryland, Baltimore County",institutionURL:null,country:{name:"United States of America"}}}]},{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",keywords:"Biotechnology, Biosensors, Biomaterials, Tissue Engineering",scope:"The Biotechnology - Biosensors, Biomaterials and Tissue Engineering topic within the Biomedical Engineering Series aims to rapidly publish contributions on all aspects of biotechnology, biosensors, biomaterial and tissue engineering. We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics can include but are not limited to: Biotechnology such as biotechnological products and process engineering; Biotechnologically relevant enzymes and proteins; Bioenergy and biofuels; Applied genetics and molecular biotechnology; Genomics, transcriptomics, proteomics; Applied microbial and cell physiology; Environmental biotechnology; Methods and protocols. Moreover, topics in biosensor technology, like sensors that incorporate enzymes, antibodies, nucleic acids, whole cells, tissues and organelles, and other biological or biologically inspired components will be considered, and topics exploring transducers, including those based on electrochemical and optical piezoelectric, thermal, magnetic, and micromechanical elements. Chapters exploring biomaterial approaches such as polymer synthesis and characterization, drug and gene vector design, biocompatibility, immunology and toxicology, and self-assembly at the nanoscale, are welcome. Finally, the tissue engineering subcategory will support topics such as the fundamentals of stem cells and progenitor cells and their proliferation, differentiation, bioreactors for three-dimensional culture and studies of phenotypic changes, stem and progenitor cells, both short and long term, ex vivo and in vivo implantation both in preclinical models and also in clinical trials.",annualVolume:11405,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/9.jpg",editor:{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"35539",title:"Dr.",name:"Cecilia",middleName:null,surname:"Cristea",fullName:"Cecilia Cristea",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYQ65QAG/Profile_Picture_1621007741527",institutionString:null,institution:{name:"Iuliu Hațieganu University of Medicine and Pharmacy",institutionURL:null,country:{name:"Romania"}}},{id:"40735",title:"Dr.",name:"Gil",middleName:"Alberto Batista",surname:"Gonçalves",fullName:"Gil Gonçalves",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYRLGQA4/Profile_Picture_1628492612759",institutionString:null,institution:{name:"University of Aveiro",institutionURL:null,country:{name:"Portugal"}}},{id:"211725",title:"Associate Prof.",name:"Johann F.",middleName:null,surname:"Osma",fullName:"Johann F. Osma",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDv7QAG/Profile_Picture_1626602531691",institutionString:null,institution:{name:"Universidad de Los Andes",institutionURL:null,country:{name:"Colombia"}}},{id:"69697",title:"Dr.",name:"Mani T.",middleName:null,surname:"Valarmathi",fullName:"Mani T. Valarmathi",profilePictureURL:"https://mts.intechopen.com/storage/users/69697/images/system/69697.jpg",institutionString:"Religen Inc. | A Life Science Company, United States of America",institution:null},{id:"205081",title:"Dr.",name:"Marco",middleName:"Vinícius",surname:"Chaud",fullName:"Marco Chaud",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSDGeQAO/Profile_Picture_1622624307737",institutionString:null,institution:{name:"Universidade de Sorocaba",institutionURL:null,country:{name:"Brazil"}}}]}]}},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/322815",hash:"",query:{},params:{id:"322815"},fullPath:"/profiles/322815",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()