Pollution caused by chemical and dairy effluent is a major concern worldwide. Dairy wastewaters are the most challenging to treat because of the presence of various pollutants in them. The characteristics of effluent like temperature, color, pH, Dissolved Oxygen, Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), dissolved solids, suspended solids, chloride, sulfate, oil, and grease depend solely on the volume of milk processed and the form of finished produce. It is difficult to select an efficient wastewater treatment method for the dairy wastewaters because of their selective nature in terms of pH, flow rate, volume, and suspended solids. Thus there exists a clear need for a technology or a combination of technologies that would efficiently treat the dairy wastewaters. This chapter explains the energy-generating microbial fuel cell or MFC technologies for dairy wastewaters treatment having different designs of MFCs, mechanism of action, different electrode materials, their surface modification, operational parameters, applications and outcomes delivered through the technology in reducing the COD, BOD, suspended solids and other residues present in the wastewaters. The chapter also elaborates on the availability of various natural low-cost anode materials which can be derived from agricultural wastes. The current chapter elaborates on MFC technology and its tools used for dairy wastewater treatment, providing useful insight for integrating it with existing conventional wastewater treatment methods to achieve the degradation of various dairy pollutants including emerging micropollutants.
Part of the book: Environmental Issues and Sustainable Development