While it has been suggested that diagonal rhythmical bilateral movements promote improvement in motor and cognitive functions, no study that we are aware of has actually examined electrophysiological changes during diagonal movements. Therefore, we aimed to study cerebral activity during the performance of diagonal and vertical movements (DM and VM, respectively), through EEG recording focusing on theta, alpha, and beta frequency bands. Following independent component analysis, we computed time-frequency and source localization analysis. We found that (1) increased frontal theta during the initiation of DM was possibly related to the computational effort; (2) a biphasic pattern of frontoparietal alpha/beta modulations was found during VM; and in addition, (3) source localization showed increased frontal theta during DM generated in the middle frontal cortex. We will discuss the current results and their implications in relation to task difficulty, spatial and temporal computation.
Part of the book: Advances in Neural Signal Processing