Resistance of CNT sheet in parallel and perpendicular to the drawing direction.
\r\n\t[2] J. V. Moloney, A. C. Newell. Nonlinear Optics. Westview Press, Oxford, 2004.
\r\n\t[3] M. Kauranen, A. V. Zayats. Nonlinear Plasmonics. Nature Photonics, vol. 6, 2012, pp. 737-748.
\r\n\t[4] P. Dombi, Z. Pápa, J. Vogelsang et al. Strong-field nano-optics. Reviews of Modern Physics, vol. 92, 2020, pp. 025003-1 – 025003-66.
\r\n\t[5] N. C. Panoiu, W. E. I. Sha, D.Y. Lei, G.-C. Li. Nonlinear optics in plasmonic nanostructures. Journal of Optics, 20, 2018, pp. 1-36.
\r\n\t[6] A. Krasnok, A. Alu. Active nanophotonics. Proceedings of IEEE, vol. 108, 2020, pp. 628-654.
\r\n\t[7] M. Lapine, I.V. Shadrivov, Yu. S. Kivshar. Colloquium: Nonlinear metamaterials. Reviews of Modern Physics, vol. 86, 2014, pp. 1093-1123.
\r\n\t[8] Iam Choon Khoo. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Progress in Quantum Electronics, vol. 38, 2014, pp. 77- 117.
\r\n\t
Lightweight and low-power-consuming heaters that can be easily integrated in different materials and devices are needed for many industries including aerospace and medicine. The cold seasons usually bring the risk for several health problems, such as hypothermia, frostbite, flu, and even heart attacks. These adverse conditions make it difficult for people to conduct their daily routines effectively and safely during cold weather, due to the lack of proper gear to protect them. Some of the main attributes of a heating material, which can be safely incorporated into apparel, are lightweight, flexibility, fast heating rate, and energy efficiency. CNT sheets meet most of these qualities and thus are potential candidates as heating materials.
\nCarbon nanotubes have been the subject of immense interest since their official discovery in 1991 [1]. They attracted much attention due to their unique electrical, structural, mechanical and thermal conductivities, and their multiple potential applications [2–5]. It has been shown that CNT arrays can be processed into yarns and sheets, which have excellent properties [6–11]. One of the newer applications of CNT sheets is their use as a heating material [12–17]. The resistivity of CNT films can be controlled by the number of layers within the sheet or by the reagents used for their densification [17, 18]. CNTs can be incorporated into polymers to form composites for heating applications [16, 19]. However, CNT/polymer composites have a limited range of performance temperatures due to possible decomposition of the polymers [20]. Powdered CNTs dispersed in solvents have been used to coat cotton fabric and create CNT/textile heaters [21]. CNT-based heaters have also found applications as efficient and durable electrodes for Faradaic water splitting [22]. CNT sheet heaters have been fabricated as transparent film heaters, due to their high transmittance and good heating capabilities [12, 15–17]. CNT heaters have also demonstrated to be more efficient than commercial heating materials such as nichrome [18, 23]. Additionally, CNT-based heaters revealed rapid heating capabilities [23], which make them ideal candidates for applications in aerospace and heated clothing.
\nIn this study, we fabricated CNT sheets from CNT arrays produced by the chemical vapor deposition (CVD) process. These sheets were densified by solvents and used for the manufacture of CNT heaters. The goal of this work is to study how the heater’s design (number of layers in the CNT sheets, their post-processing) influences its performance, including the voltage required to generate heat and the rapid heating response. Finally, some possible applications of the CNT heater are provided in this study.
\nCNT sheet fabrication started with the synthesis of vertically aligned, spinnable CNTs, typically about 400 µm in length. Thin films of Fe and Co were used as a catalyst (1.2 nm), which were sputtered on 4-inch Si wafers with 5-nm Al2O3 as a buffer sublayer. The obtained surface-engineered substrates were placed in a deposition reactor ET 3000 made by chemical vapor deposition (CVD) Equipment Corporation for the growth of the CNT arrays. Details of the growth process have been published elsewhere [24].
\nUpon completion of the CNT growth, detached, drawable CNT arrays were transferred onto an Si wafer or glass. CNT sheets with the desired number of layers were then assembled by continuously accumulating CNT ribbon onto a drum covered with a Teflon film as shown in Figure 1.
\nThe resulting CNT sheets were densified, layer by layer, using acetone, as they were collected onto the drum. This solvent was used because a previous work showed that it can significantly improve the electro-thermal behavior of CNT sheets [18]. Each revolution of the Teflon drum added one CNT layer of 50–70 nm thick ribbon onto the sheet. CNT sheets with various numbers of layers (1, 10, 100, 200 and 300) were produced by this technique.
\nCNT ribbons being collected on a Teflon-covered drum from a CNT array.
CNT sheets were transferred onto a polyethylene terephthalate (PET) tape and then cut with a laser machine (Micro Machining Systems by Oxford Lasers, wavelength of 532 nm). PET tape was used as a supporting substrate, because this material is thermally stable up to 200°C and makes handling the CNT heaters easier. Samples were cut into 10 mm × 60 mm dimensions with a laser power of 5% and at a speed of 1 mm/s. The laser machine was also used to cut copper foils into 20 mm × 5 mm strips at a laser power of 40% and speed of 1 mm/s. The copper strips were attached at both ends of the CNT sheet with silver paste as shown in Figure 2, to form the CNT heater.
\nCNT sheet assembled between two polyethylene terephthalate (PET) tapes with Cu electrodes attached at both ends to form a CNT heater.
A DC power source (Hewlett Packard E 3612A) was used to supply power to the CNT heaters. The surface temperatures of the CNT heaters were measured using an infrared (IR) camera (FLIR T640). The average temperature was determined by measuring the surface temperature at three different locations across the sheet. The effective area of the CNT sheet actually heated up was 10 mm × 50 mm for all samples. The voltage was stepped until pre-determined heater temperatures were reached, and the corresponding current was measured. Measurements were taken at room temperature and pressure, after the heaters were allowed to reach an equilibrium temperature.
\nThe sheet resistance of the CNT sheets was measured using a Jandel 4-probe instrument (Model RM3000). Prior to the measurement of the sheet resistance, samples were placed on a flat substrate, and then the sheet resistance was measured in the direction parallel and perpendicular to the alignment of the CNT sheet.
\nThe sheet resistance of samples was measured in both parallel and perpendicular to the drawing directions, using four probe techniques, as shown in Figure 3. This method involves passing current through the two outer probes, while the resulting voltage drop is measured by the two inner probes. The measured sheet resistance is presented in Table 1.
\nScheme of the four-probe measurement applied to the CNT sheets in (a) parallel and (b) perpendicular to the drawing direction.
Number of layers | \nParallel sheet resistance (Ω/sq.) | \nPerpendicular sheet resistance (Ω/sq.) | \n
---|---|---|
1 | \n3567.80 ± 1413.03 | \n3463.40 ± 727.35 | \n
10 | \n171.26 ± 13.13 | \n187.08 ± 21.72 | \n
100 | \n17.21 ± 0.52 | \n18.10 ± 0.39 | \n
200 | \n9.89 ± 0.52 | \n11.24 ± 0.69 | \n
300 | \n6.03 ± 0.23 | \n6.51 ± 0.18 | \n
Resistance of CNT sheet in parallel and perpendicular to the drawing direction.
As the number of layers increased, the sheet resistance decreased accordingly. A growth in the number of layers leads to an increase in the density of CNTs, as shown by SEM images in Figure 4. The increase in density leads to a reduction in the electrical resistance, because the tube-to-tube contacts were increased, allowing for more electrons to be transferred through the sample.
\nSEM images of (a) 1-, (b) 10- and (c) 100-layer-densified CNT sheets (high magnification in inset) showing an increase in density with increasing number of layers.
The parallel sheet resistance is lower than the perpendicular sheet resistance for 10, 100, 200 and 300 layers. This is because there is less resistance when electrons travel along the tube length, compared to the lateral tube-to-tube interactions, which take place in the perpendicular case. This is, however, not the case for a 1-layer sheet. As shown in Figure 4a, the probability of the 4 probes hitting the same bundle of sheets, to measure the resistance, is lower in the perpendicular direction compared to the parallel direction. The anisotropy of the sheets is, however, lower than what has been in reported in some cases. Inoue et al. reported an anisotropy of 7.3 between the sheet resistances in the parallel direction compared to that in the perpendicular direction [25].
\nThe CNT sheets were connected to a DC power source, and the corresponding temperature was measured using an IR camera in ambient environment, as shown in Figure 5. The heat generated across the sheet is as a result of the Joule heating phenomenon. Joule heating is a phenomenon that occurs when electrical current is passed through a material with an electrical resistance. The resistance inherent to the material leads to a conversion of electrical energy to thermal energy. This is caused by the collision of the moving electrons with the atoms that are the main material’s constituents. The quantity of heat (Q) that is yielded from the applied electrical energy is proportional to the square of the current (I) multiplied by the resistance (R) over a period of time (t) as per Eq. (1).
\nSchematic illustration of the temperature acquisition setup using an infrared (IR) camera.
However, we usually use another parameter, known as power (P), to describe how much electrical energy is converted into thermal energy. This is simply the quantity of heat (Q) divided by the time (t) as per Eq. (1), which leads to Eq. (2).
\nThe power (P) generated by the CNT sheet when connected to a voltage source is also directly proportional to the voltage (V) across the sheet and the current (I) passing through the sheet (Eq. (2)). Different CNT heaters were connected to a DC power source, and the voltage was changed to correspond to temperatures 30, 50, 70, 90 and 110°C. The resultant current and voltage at each temperature were noted and used to calculate the corresponding power. The effect of the number of layers on the power needed to reach a particular temperature is illustrated in Figure 6. It can be seen that, as the number of layers increased, the power needed to generate a particular temperature also increased. This can be explained using Eq. (2), which shows that the resistance is inversely proportional to the power. An increase in the number of layers leads to a decrease in resistance, and this in turn leads to an increase in power needed to attain a particular temperature. Therefore, sheets with high resistance need a lower power to attain the same temperature as sheets with lower resistances.
\nPower versus temperature for different number of layers within the CNT sheet.
Equation 2 also shows that the higher the resistance of the sheet, the greater the voltage needed to attain a specific temperature. This trend is clearly seen in Figure 7. The lower number layer sheets (1 and 10) needed very high voltages to attain the same temperature as the high number layer sheets (100, 200 and 300). For practical applications, the heater might be limited by the available low voltage supply. In such a case, CNT sheets with less number of layers would not be a feasible option, and higher number of layer sheets would be preferred.
\nVoltage versus temperature for different number of layers within the CNT sheet.
The electrical resistivity of the CNT sheets was also investigated in this study. The resistivity (ρ) is related to the sheet resistance (Rs) and thickness (t) of the sheet by Eq. (3).
\nThe resistivity of the CNT sheet can therefore be calculated if the thickness of the CNT sheet is known. Cross-sectional SEM images were taken on a selected number of samples to determine their thicknesses. The sheets were cut perpendicular to the drawing direction with a laser powered 0.5%, using a cutting speed of 0.1 mm/s.
\nThe lower power and reduced speed of the laser were important to ensure a clean cut of the sheet and avoid pullouts of the CNTs disturbing the thickness uniformity. In order to increase the conductivity of the CNT sheets for SEM imaging, the samples were mounted on a vertical stub and coated with a thin layer of Au/Pd by a sputtering machine (Denton Vacuum Desk IV) using a sputtering time of 25 s. SEM images of the different sheet thicknesses are displayed in Figure 8. The SEM images show the CNT samples with uniform thickness across the sheet. The average thickness of 100, 200 and 300 layer sheets was 6.25, 13.32 and 20.31 µm, respectively. The calculated resistivity in the parallel direction using Eq. (2) for 100, 200 and 300 layer sheets was 1.08 × 10−2 Ω cm, 1.32 × 10−2 Ω cm, and 1.23 × 10−2 Ω cm, respectively. The resistivity of the sheets is comparable to the data reported in the literature where MWCNT films have been studied revealing a resistivity of 20 × 10−3 Ω cm [26]. Our resistivity is higher than those sheets composed of single-wall carbon nanotubes (SWCNTs), reported to be in the range of 10−4 to 10−5 Ω cm [4]. The high resistivity in our work is due to several factors, including the packing density of the nanotubes and the nature of the MWCNTs, which are less conductive than SWCNTs.
\nCross-sectional SEM images showing the thickness of: (a) and (b) 100-layer CNT sheet; (c) and (d) 200-layer CNT sheet; and (e) and (f) 300-layer CNT sheet.
It has been shown in the literature that an improved packing density (by stretching and pressing) leads to improvement in electrical and mechanical properties [7, 27]. In the future, we intend to use these two approaches in order to increase the density of our CNT sheets and decrease their resistivity.
\nThe heat generated by the CNT heater, when connected to a power source, is lost into the ambient environment during heating. The total heat is dissipated into the air and substrate through three mechanisms: conduction, convection and radiation [12].
\nThe heating profiles with time of CNT sheets at selected low voltages (1.5, 3 and 4.5 V) are presented in Figure 9. The obtained data mimic possible low-voltage applications of the heaters. Sheets with 1 and 10 layers have not been included because they show negligible increase in temperature at the applied voltages.
\nThe observed temperature evolution is divided into 3 stages: heating, saturation, and cooling. Cooling happens after the voltage source is turned off. During the saturation stage, the heat gained by the applied electric power is almost equal to the heat lost by radiation and convection. The average time for the heater to reach the temperature saturation is 20 s. However, the average cooling time depends on the final temperature of the heater and, therefore, varies, as shown in Figure 9. This fast heating time is a desirable characteristic of a heater that will be incorporated into clothing or textiles, to keep the body warm during cold seasons. This quality is also beneficial for deicing applications. We present some feasible applications of the CNT heaters created and studied in this work.
\nHeating profile as a function of time for 100-, 200- and 300-layer CNT sheets at (a) 1.5 V, (b) 3 V, and (c) 4.5 V.
CNT heaters are easy to design and manufacture, which makes them attractive for a variety of applications. Their lightweight, mechanical flexibility and low voltage make the CNT heaters appealing candidates for apparel, to protect operators performing in cold weather. We have fabricated CNT heaters and embedded them into gloves, based on the approach described in this work. The heaters were made using 200 and 150 layer sheets. Such gloves are lightweight since the CNT heaters do not add significant mass (total change of 1.21 g) and can also be operated with either a 9-V battery or a rechargeable Li-ion (2700 mAh, 3.7 V) battery, as shown in Figure 10. This type of application has advantages because of the ease of fabrication of the CNT heaters and the low voltage needed to power them.
\nThe use of CNT heaters for deicing applications was also studied. This approach was similar to that described by Janas et al. [23]. A 300-layer CNT heater was attached to the right wing of a model airplane. The test model was inserted into a freezer with a continuous voltage (3V) supply attached to the heater. Droplets of water were then sprinkled on both wings of the model airplane, shown in Figure 11a, and it was left in the freezer. The thermal image before ice formation is shown in Figure 11b, where the right wing temperature is above 0°C. After an hour of cooling, the wing without the CNT heater had visible ice formation on its surface, while the wing with the functioning heater was dry as shown in Figure 11c. The corresponding infrared image, after ice formation, is shown in 11d, where the entire model airplane is frozen except for the right wing. This experiment shows that CNT heaters can be used in deicing applications to prevent the formation of ice on airplanes, which is a major issue in the aerospace industry. The heater can be incorporated into the surface of the fuselage, which is made of polymer composite for most of the military and some of the advanced commercial airplanes.
\nCNT-heated gloves connected to (a) 9-V battery and (b) rechargeable lithium ion battery. The color scale represents temperature in °C obtained by an IR camera.
(a) Droplets of water on the wings of a model airplane with related (b) IR thermal image; (c) ice formation on the left wing of the model airplane after an hour of freezing and related (d) IR thermal image.
A simple and easy way for fabricating flexible and low-voltage CNT heaters was described. The resistance of the CNT sheets with different numbers of layers was studied. It was observed that as the number of layers increased, the sheet resistance decreased, showing that this property is dependent on the thickness of the sheet. The heating and cooling rates of these heaters were also studied. The obtained results suggested that the fast heating rate of the heaters makes them attractive for manufacturing body protection clothing used in cold weather. An example of the latter was demonstrated in this work by incorporating CNT heaters into a glove. Maximum glove temperatures of 39°C and 31°C were attained using a 9-V battery and Li-ion battery, respectively. Another application demonstrated that the CNT heater can find application in deicing solid surfaces exposed to freezing weather, such as airplanes. The CNT sheet heaters can be easily incorporated in polymer composites recently used as materials of choice for making advanced cars and fuselages.
\nThis work was funded by the National Science Foundation (NSF) through the following grants: CMMI-0727250, SNM-1120382, ERC-0812348, and DURIP-ONR. The partial support by the National Institute for Occupational Safety and Health Pilot Research Project Training Program of the UC Education and Research Center Grant #T42/OH008432-10 is also acknowledged. The authors are grateful for the financial support from the UC Office of Research and the Mathewson Renewable Energy Research Fund. Seyram Gbordzoe is thankful for the graduate assistantship provided to him by the College of Engineering and Applied Science (CEAS) at UC and the Cincinnati Engineering Enhanced Mathematics and Science (CEEMS) program (NSF, DRL-1102990).
\nFruits and vegetables are appreciated as “healthy foods” compared with beef or pork meat. Many epidemiological studies as well as clinical investigations have suggested that a vegetable-based diet is beneficial in preventing chronic diseases including cancer, coronary heart disease, stroke and hypertension [1, 2]. Meanwhile, traditional herbal medicines have used specific plant species that contain phytochemicals exhibiting pharmacological activities [3]. Novel compounds have been isolated from such plants and they have been chemically synthesized for pharmaceutical production [4]. Nobody doubts that edible plants are beneficial in human health.
\nIn “western” medicine, a disease can be defined as dysfunction of a physiological mechanism. Based on this concept, a drug in general is presumed to act on a specific component of a physiological mechanism. In many cases, these are inhibitors of enzymes or transporters, showing the “one-to-one” relationship between drug and target molecule. While recent drug designs have drastically changed due to a rapid development of computer technology [5] as well as gene therapy [6], the hunt for novel bioactive compounds contained in plants is still active for new drug discovery.
\nThe “one-to-one” philosophy in medicine and pharmacology works well, if the cause of a disease is ascribed to a single component such as a protein or an enzyme. However, most diseases that are difficult to prevent and cure are “syndromes” that are governed by multiple components with complicated interactions. Whatever the cause of such diseases, overproduction of harmful reactive oxygen species (ROS) can often be observed in progression of the disease. Under such conditions, the cells may be challenged by “oxidative stress” due to excessively generated oxidants. The oxidative stress potentially impairs cellular functions eventually leading to death [7, 8]. This is a common biological feature that can be seen in all living organisms including bacteria, fungi, plants and animals. Living organisms have evolved to cope with the oxidative stress induced by biotic (pathogen attack or biological interactions) and abiotic (or environmental) stresses. Thus, under stress conditions, living organisms need to control cellular ROS levels for their survival. In this context, antioxidant systems are essential in any living organisms. This is a biological rationale for the importance of antioxidants in prevention and cure of diseases in humans.
\nPlant antioxidant research shows a history of twists and turns. Some early studies had suggested concepts opposite to the present recognition. Plant antioxidants had sometimes even been considered to be toxic or carcinogenic to animals. Contradictory reports in the old literatures may lead non-specialists to a state of confusion. Thus, to follow the current state of research advances in phytochemical antioxidants, understanding its historical background is of help for non-specialists and new researchers. Highlighting the research progress of plant pigments flavonoids and betalains, here, we provide an overview of phytochemical antioxidants with some prospects for future research.
\nA retrospective of the history of research on plant antioxidants needs to go back to the age of discovery. When voyagers such as Magellan, Columbus, Vasco da Gam and Cook were sailing over the world’s oceans, more than three times as many sailors died due to the mysterious disease “scurvy” as soldiers died in the American Civil War [9]. For hundreds of years, the cause of the disease had not been clarified and there had been no cure for this disease of sailors [10]. In 1747, James Lind working as a naval surgeon at sea on the HMS Salisbury conducted “clinical trials” of potential cures for the disorder. In Treatise of the Scurvy published in 1753, he reported that there was no effect with the potential remedies vinegar, mustard, garlic purges, elixir of vitriol, but citrus fruits (orange and lemon) showed a significant cure effect [11]. It is now known that scurvy is caused by a vitamin C (L-ascorbate) deficiency due to a lack of fresh fruits and vegetables.
\nHistorically, antioxidant and vitamin studies have developed independently in chemistry and health science, respectively. In chemistry, antioxidants were defined as chemical compounds that can suppress oxidation reactions. In early studies, oxidation was observed as absorption of molecular oxygen in a reaction such as polymerization reaction of natural rubber. On the other hand, a vitamin (the name “vitamine, vital + amine” was the original proposal and it was later renamed to “vitamin”) was defined as an organic nutrient that is essential for human health care. The major recognized vitamins are vitamin A, B1, B2, B3, B5, B6, B7, B9, B12, C, D, E, and K. The biochemical requirements of these vitamins were revealed after their chemical identifications. Among these vitamins, vitamin A, C and E have been highlighted again in the late 20th century due to their antioxidant activities that potentially reduce the oxygen toxicity.
\nAlthough molecular oxygen (O2) is required for respiration in animals, a high concentration or high partial pressure of oxygen often damages the central nervous and pulmonary systems, which leads to disease or death. Oxygen toxicity in the central nervous system and that in pulmonary system had been referred to as the Paul Bert effect and the Lorrain Smith effect, respectively [12]. Although the toxicity of oxygen itself was implied by Joseph Priestley in 1774 (dephlogisticated air at that time) [13], the modern style of experimental science has been opened up by Bert (1833–1886), the Father of Aviation of Medicine [14, 15]. In his La Pression Barometrique (1878), Bert described that a high partial pressure of breathing oxygen (hyperoxia) can lead to death of animals, the first experimental demonstration for the toxicity of pure oxygen [14]. Since his pioneering discovery had not been appreciated for a long time, unfortunately, eye damage (retinopathy of prematurity) to premature infants frequently occurred due to the use of pure oxygen [16].
\nThe biochemical basis of the oxygen toxicity is ascribed to overproduction of reactive oxygen species (ROS) in cells. The ROS firstly produced in cells is mostly superoxide radical (O2\n−), which is the reaction product of the one electron reduction of molecular oxygen (O2) [17]. Whereas chemists have known the inorganic reaction that produces O2\n− from O2, the biological relevance of the reaction had not been considered in biochemistry. At that time most biochemists were fascinated by the oxidative phosphorylation that is the final step of ATP synthesis in aerobic respiration. For mitochondrial ATP synthesis, the presence of O2 is prerequisite to drive the respiratory electron transport. Therefore, the toxicity of O2 had been overlooked. The discovery of the enzyme superoxide dismutase (SOD) that destroys O2\n− is a landmark in the research history of oxygen toxicity [18]. The discovery of the antioxidant enzyme SOD has drastically changed our recognition: O2 might be toxic for living organisms.
\nTo prevent oxygen toxicity, it has been revealed that antioxidant enzyme systems are essential for the survival of all living organisms, including humans. The ROS O2\n− and H2O2 can be removed by the enzymatic reactions of SOD and peroxidases, but other unstable ROS molecules, hydroxyl radicals (•OH) for example, cannot be destroyed by those enzymatic reactions. These molecules are scavenged by antioxidants. Vitamin A or carotenoid can scavenge singlet oxygen (1O2) that could be produced in the eyes or skin under ultraviolet (UV) light [19]. Vitamin E, or 𝛼- tocopherol, can react with the ROS radicals produced in lipophilic environments such as in lipid membranes. Vitamin C (ascorbate) serves as a universal reducing power to the antioxidant enzyme systems while the ascorbate molecule itself scavenges various types of ROS (except H2O2) by its spontaneous reactions [20]. It is important to note that humans need to acquire these essential antioxidant vitamins (A, C, E) from dietary foods, largely from fruits and vegetables.
\nHistorically, there was a short-lived Vitamin P concept. Albert Szent-Györgyi, a Nobel prize winner who isolated ascorbate, demonstrated that flavonoid glycosides rich in citrus fruits can behave similar to ascorbate in maintaining capillary permeability [21]. Based on his observations, Szent-Györgyi proposed that the plant flavonoids, as a group of plant pigments, are also essential nutrients and referred to them as vitamin P (permeability) [22]. However, this vitamin P concept did not gain broad acceptance due to the chemical diversity of flavonoids. More recently, his idea that flavonoids can complement the function of ascorbate has been renewed with the development of the antioxidant hypothesis.
\nPlant fruits and flowers display beautiful colorations ranging from blue to red. These plant colorations are produced with three major pigments i.e., chlorophylls, carotenoids and flavonoids. In plants, biological functions of chlorophylls and carotenoids have been known as the photosynthetic pigments that absorb light energy to drive photosynthesis. In contrast, only the visual attraction for flower pollinators such as bees or butterflies had been proposed as a biological function of colored flavonoids for a long time [23]. The chemical diversity of flavonoids found across plant species had made it difficult to consider common physiological or biochemical functions. Conversely, the huge chemical diversity of flavonoids was useful for plant taxonomy until amino acid or DNA sequence information available.
\nIn 1990s, red anthocyanin, a flavonoid subgroup, was highlighted to account for the paradoxical epidemiological observation termed the “French paradox”. French people have a relatively low incidence of coronary heart disease even though they consume a diet relatively rich in saturated fats [24]. Researchers were interested in anthocyanins and polyphenols contained in red wine that may suppress heart disease through their antioxidant activities [24]. Similarly, the longevity of Japanese people was explained by their daily consumption of green tea rich in catechin, another subgroup of flavonoid [25, 26]. These epidemiological reports have stimulated biochemical screening of natural antioxidants contained in plants.
\nTo date, health science, biochemistry, botany and other different field of studies have been integrated into antioxidant research. A timeline for antioxidant research of phytochemicals is summarized in Figure 1.
\nA timeline of antioxidant research of phytochemicals. Flavonoids are major plant pigments that are widely appreciated as natural antioxidants. Historically, antioxidant studies, vitamin studies and flavonoid studies have independently progressed in health science, biochemistry and botany, respectively. These different lines of studies have been integrated into the present plant antioxidant studies.
Flavonoids are representative secondary metabolites of land plants. The pigments commonly accumulate in epidermal cells of the organs such as in flowers, leaves, stems, roots, seeds and fruits [27, 28]. Flavonoids are found as glycosidic forms (glycosides) and non-glycosidic forms (aglycones). Subcellular localization of the glycosides is largely confined to hydrophilic regions such as vacuoles and apoplasts. The aglycones are localized in lipophilic regions e.g., oil glands and waxy layers.
\nThe term “flavonoid” originated from its yellow color (the Latin word flavus means yellow). Bioactive flavonoids such as flavones and flavonols are sometimes referred as to “bioflavonoids”. Figure 2 shows the basic structures of flavonoids. The general structure of flavonoids includes a C6-C3-C6 carbon skeleton with two phenyl rings (A- and B-rings) and a heterocyclic ring (C-ring). Based on the structure of the aglycones, flavonoids can be classified into subgroups: chalcone, flavanone, flavone, isoflavone, flavonol, and anthocyanidin (Figure 3). According to the IUPAC nomenclature, flavonoids are recommended to be subcategorized into flavonoids (bioflavonoids), isoflavonoids and neoflavonoids [29]. Since this classification has yet not been widely adopted, in this chapter, traditional phytochemical names and classifications are used to avoid confusions. Most of these subgroups show yellowish coloration while anthocyanins exhibit multiple colorations depending on the aglycone structure, the presence of metal, pH and conjugation with other molecules (Figure 3).
\nChemical structures of flavonoids. Chemical structures of flavonoids include a C6-C3-C6 carbon skeleton with two phenyl rings (A- and B-rings) and a heterocyclic ring (C-ring). Left, the basic structures of a flavone, isoflavone and flavonol. Right, the basic structures of anthocyanin. The –R on the rings can be replaced by other molecules including sugars to make a huge variety of chemical structures of flavonoids.
Representative flavonoid subgroups. Based on the aglycone structures, flavonoids can be classified into flavone, isoflacone, flavonol, chalcone and anthocyanidin. Representative flavonoids with parenthesis along with apparent visual colorations are shown.
Common glycosylation positions are the 7-hydroxyl in flavones, isoflavones and dihydroflavones; the 3- and 7- hydroxyl in flavonols and dihydroflavones; the 3- and 5-hydroxyl in anthocyanidins [30]. The typical sugars involved in glycoside formation are glucose, galactose, rhamnose, xylose and arabinose. In addition to the glycosylation, methylation, isoprenylation and dimerization occur at those positions [30]. These modifications produce a huge structural diversity of flavonoids. More than 9,000 chemical structures of flavonoids have been reported to date [31].
\nEnzymes and genes involved in flavonoid biosynthesis have been identified [27, 32, 33, 34, 35]. Figure 4 shows an outline of biosynthetic pathways of the major subclasses of flavonoids. Flavonoids are synthesized from phenylalanine, an aromatic amino acid produced in the shikimate pathway. Phenylalanine is sequentially metabolized by phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, and 4-coumarate CoA ligase to 4-coumaroyl CoA. This 4-coumaroyl CoA and 3 molecules of malonyl CoA are condensed by chalcone synthase to form the flavonoid chalcone (yellow). Chalcone is isomerized to the flavanone naringenin (colorless) by chalcone isomerase. Naringenin is further converted to flavones (pale yellow) and isoflavone (pale yellow) catalyzed by flavone synthase and isoflavone synthase, respectively. Naringenin is hydroxylated to dihydroflavonol by flavanone 3-hydroxylase and further metabolized to flavonol (yellow) by flavonoid synthetase. Dihydroflavonol is converted to anthocyanidin (red, red-violet or blue-violet), an aglycone of anthocyanin, by dihydroflavonol 4-reductase and anthocyanidin synthase. Anthocyanidin is glycosylated by UDP-glycose-dependent glycosyltransferase. Manipulation of those genes has been challenged to change of flower or fruits coloration [28].
\nAn outline of flavonoid biosynthesis pathways in plants. The synthesis of the flower pigment anthocyanins requires multiple steps including the shikimate pathway, phenylpropanoid pathway, via chalone and flavanone. The number of required enzymatic steps reflects the evolutional order of the pigments.
Antioxidant activity or antioxidant capacity of flavonoids has been experimentally evaluated with either assays based on hydrogen atom transfer (HAT) reaction or assays based on electron transfer [36]. There are several protocols or assays that have been proposed. The ORAC (oxygen radical absorbance capacity), TRAP (total radical trapping antioxidant parameter) and crocin bleaching assays are based on HAT. TEAC (Torolox equivalent antioxidant capacity), ABTS (2,2′-azino-bis-(3-ethyl-benzthiazoline-6-sulfonic acid)) and DPPH (1,1-diphenyl-2-picryl-hydrazyl) assays are based on the electron transfer activity. Among these protocols, the DPPH assay has been widely used for plant materials because it is an easy and accurate method suitable for measuring antioxidant activity of fruits, vegetable juices or plant extracts [36]. Inhibition of the lipid peroxidation reaction is also a measure to assess the antioxidant activity of plant polyphenols [37].
\nIn addition to the reactions with model radical substrates, it has been demonstrated that flavonoids can directly react with a various type of ROS. The flavonol quercetin was demonstrated to show quenching activity for the singlet oxygen (1O2), a non-radical ROS molecule [38]. The flavonol kaempferol [39] and the anthocyanidin cyanidin [40] in vitro were shown to scavenge superoxide radical (O2\n−). The flavonol quercetin was reported to scavenge hydroxyl radicals (•OH) produced by radiolysis of water [41, 42]. The flavonols rutin and quercetin were demonstrated to scavenge the hydroperoxide of linoleic acid (LOO•) to inhibit lipid peroxidation [43]. It is now evident that flavonoids are natural plant antioxidants contained in fruits and vegetables.
\nIn principle, the OH groups on the aromatic rings of flavonoids are responsible for the antioxidant or free radical scavenging activity. Most antioxidant flavonoids share the catechol structure with two hydroxy groups (-OH) and/or the double bond between C2-C3 and carbonyl structure [44, 45]. Antioxidant flavonoids satisfying such criteria bear multiple hydroxy groups in a molecule, thereby the name of “polyphenols” being synonymously used for plant antioxidants by the public. It should be noted that polyphenol structure can be found not only in flavonoids but also in other plant phenolic compounds such as hydroxycinnamic acid [35].
\nWhen polyphenols scavenge ROS, either through a direct chemical reaction or as an electron donor for an enzymatic reaction, polyphenolic compounds are oxidized and phenoxyl radicals are generated [46]. The phenoxyl radicals are unstable, forming dimers or polymers as a result of spontaneous reaction. Tannin and lignin are the polymerization products of such phenoxyl radical reactions. In the presence of reductant such as ascorbate, the phenoxyl radicals produced are rapidly regenerated into their parent compounds [46]. The enzyme monodehydroascorbate reductase (MDAR) was demonstrated to regenerate flavonoids from their phenoxyl radicals, a possible recycling system of antioxidants [47]. In plants, it has been proposed that flavonoids complement the ascorbate antioxidant system [35].
\nPlant coloration can be mostly attributed to spectral property of the colored flavonoids, i.e., anthocyanidins. The plant pigment betalains are exceptional. The term “betalain” comes from the Latin name of the common beet (Beta vulgaris) from which betalains were first extracted. Betalains are a class of tyrosine-derived pigments that are distributed in only 13 families of Caryophyllales order such as red beet (Amaranthaceae) and cactus (Cactaceae), and in some fungi [48], where they replace anthocyanin pigments [32]. To date, anthocyanins and betalains have never been detected jointly in plant tissues [48]. The biological meaning of the mutually exclusive relationship between betalains and anthocyanidins is still unknown [49, 50].
\nBetalains are immonium derivatives of betalamic acid [4-(2-oxoethylidene)-1,2,3,4-tetrahydropyridine-2,6-dicarboxylic acid] [48]. Betalains are classified into two groups: betacyanin (red-violet) and betaxanthin (yellow) as shown in Figure 5. Betacyanin is a conjugate with cyclo-dopa and its glycoside, while betaxanthin is a conjugate with amino acid or amine (Figure 5).
\nStructures and biosynthesis pathways of betalains. Betalains are synthesized from L-tyrosine via L-dopa. The intermediate betalamic acid is condensed with cyclo-dopa glycoside or amino acid/amine to betacyanin and betaxanthin, respectively.
In contrast with flavonoids, biosynthetic pathway of betalains in plants has not been fully clarified [32, 50, 51]. Hydroxylation of tyrosine by tyrosinase or polyphenol oxidase produces L-dopa, which is catalyzed by 4,5-dopa dioxygenase to form betalamic acid, the basic common skeleton of betalains. Cyclo-dopa, a component of betacyanin, had been considered to be formed by spontaneous chemical reaction after L-dopa is oxidized to dopaquinone by tyrosinase. Recently, the cytochrome P450 CYP76AD1 has been identified as the enzyme which catalyzes the conversion of L-dopa to cyclo-dopa, a novel biosynthesis route [52]. CYP76AD1 is a bifunctional enzyme that catalyzes tyrosine hydroxylation as well as cyclo-dopa synthesis. This P450 enzyme appears to play important roles not only in betacyanin synthesis but also in betalain synthesis. Furthermore, CYP76AD6 that catalyzes only tyrosine hydroxylation has also been reported [53]. No enzyme for condensing the obtained betalamic acid with a cyclo-dopa or an amino acid/amine has been found to date; instead, these condensations likely occur by a spontaneous reaction to form betacyanin or betaxanthin, respectively. Betacyanin usually accumulates as a glycoside, and two routes are estimated for glycosylation: cyclo-dopa being condensed with betalamic acid after it is glycosylated and cyclo-dopa and betalamic acid being condensed to be betacyanin and then glycosylated. Both are catalyzed by glucosyltransferases [54].
\nSimilar to flavonoids, betalains exhibit antioxidant or radical scavenging activity [55, 56]. In contrast with flavonoids, however, the chemistry of the antioxidant mechanism of betalains is less understood. It has been suggested that the common skeleton betalamic acid may contribute to their antioxidant activities [57, 58, 59]. Phenolic hydroxy group in cyclo-dopa moiety of betacyanin and the amino acid/amine portion of betaxanthin may increase the radical scavenging activities of betalamic acids [58]. Betalains can act as an electron donor for the enzyme peroxidases to detoxify hydrogen peroxide (H2O2) [60]. In food chemistry it has been suggested that the degradation of betalains during storage is suppressed in the presence of ascorbate, suggesting that betalain radicals formed by the oxidation might be reduced by ascorbate back to the parent molecules, similar to flavonoids.
\nIt is now evident that plant antioxidants remove ROS and free radicals that increase under oxidative stress conditions within cells. In addition to ROS, new players behaving similar to ROS have recently been identified, namely, reactive nitrogen species (RNS) and reactive sulfur species (RSS) [61]. As ROS refers to a group of reactive molecular species originating from molecular oxygen (O2), RNS and RSS are named for the groups of reactive molecular species derived from nitric oxide (NO) and hydrogen sulfide (H2S), respectively. Both NO and H2S are simple gaseous molecules that had initially been appreciated within the life sciences only for their toxicity [62]. Recent investigations have confirmed that NO and H2S are essential biomolecules synthesized in plants and animals. RNS and RSS are involved in the regulation of a variety of physiological processes. Along with carbon monoxide (CO), NO and H2S are categorized as “gasotransmitters” [62]. Until recently, many enzymes that produce NO and H2S have been identified in plants, animals and bacteria.
\nIt is important to note that NO and H2S are involved not only in physiological regulations (positive effect) but also in dysfunctions or disorders (negative effect). Similar to ROS, unregulated RNS and/or RSS production potentially causes dysfunction of metabolism under biotic as well as abiotic stress conditions, leading to sickness or death in humans [17]. Although a limited number of studies are available on anti-RNS and anti-RSS functions of phytochemicals, it has been reported that flavonoids and betalains could remove RNS and possibly RSS too.
\nNO reacts rapidly with O2\n− to produce the RNS peroxynitrite (ONOO−) following the reaction:
\nONOO− at physiological pH is unstable and is in rapid equilibrium with its conjugate acid, peroxynitrous acid (ONOOH, pKa\n 6.8) [63]. In early studies, NO was considered to act as an antioxidant because NO removes O2\n− from a solution as the consequence of the spontaneous reaction. However, this is half-side of a coin since the reaction product ONOO− attacks proteins and nucleic acids. The nitrated amino acid 3-nitrotyrosine (3-NO2-Tyr) is produced when ONOO− reacts with tyrosine residues of proteins, which potentially disturbs enzyme activities that may lead dysfunction of metabolism, a situation referred as to “nitrosative stress” [64]. It is now widely accepted that ONOO− is a major cytotoxic agent of RNS.
\nH2S is synthesized in plants and animals by multiple enzyme systems [62]. Biogenic H2S production is involved in various physiological mechanisms as a signaling molecule [62]. Analogous to ROS and RNS, H2S (or HS−) produces many reactive molecular species such as persulfide, polysulfide, polysulfane and others [65]. These RSS modify thiol (-SH) groups of the cysteine residue of proteins and change enzymatic activities, resulting in both positive regulation and negative inhibition. Uncontrolled overproduction of RSS is a potential risk to damage the cells. Although there is yet little evidence to confirm that flavonoids and betalains scavenge RSS, results of epidemiological studies imply that dietary phytoantioxidants also contribute to reduce the cytotoxicity of RSS in humans [66].
\nPlant phenolic compounds, such as anthocyanin [67, 68] and p-hydroxybenzoic acid [69], have been reported to scavenge ONOO− [70]. Betalains also react with ONOO− [71, 72]. As the consequence of these reactions, the phytochemical antioxidants inhibit the ONOO−-induced L-tyrosine nitration and DNA damage [35, 71]. In flavonoids, -OH group at the C3 position of the C-ring has been proposed to be involved in the ONOO− scavenging activity [69, 73]. As the result of the reaction with ONOO−, the phytochemical antioxidants are nitrated [74]. These in vitro studies have suggested that flavonoids and betalains potentially protect the cells from the nitrosative stress that may induce disorders or mutations [75, 76].
\nReactions of the phytochemicals that contribute to reduce the toxicity of RSS are largely unknown. The plant phenolic hydroxycinnamic acids are known to be sulfated by sulfotransferases highly expressed in the human liver and intestine [66]. Flavonoids act as inhibitors of the human sulfotransferases (SULTs) [66]. In plants, sulfate esters of flavonoids are rare compounds [77, 78] that are found in species occurring coastal and swampy areas as well as arid habitats [78]. Functions of sulfated flavonoids in plants and animals are not clear [79]. Sulfated flavonoids, such as quercetin 3-sulfate or quercetin persulfate, have been demonstrated with animals to show antioxidant activity, anti-inflammatory activity, antitumor activity and anticoagulant activity [80, 81, 82, 83]. These different lines of studies may imply that sulfated phytochemicals might be associated with physiological regulations in stress tolerance or disease in plants and animals. Although, at present, it must be a speculation to consider specific reactions of flavonoids and betalains with RSS, it is promising that the future investigations of S-containing phytochemicals including sulfated flavonoids or sulfoflavonoids will open up a new research field in life sciences.
\nIn modern science, a great number of studies have suggested health benefits of vegetable-based diets for humans. Many compounds identified from plants have been tested to evaluate their biochemical or pharmacological actions in prevention, mitigation and cure of diseases. According to the “one-to-one” principle, researchers have searched for novel bioactive phytochemicals that interact with specific target enzymes or molecules associated with disorders or diseases. The pharmacokinetic action of antioxidants, however, does not follow the “one-to-one” principle. The actual target is not a specific enzyme or protein but ROS. Since production of ROS is exclusively involved in any types of diseases including cancer, antioxidant activity of phytochemicals has attracted attention not only from researchers but also from the public due to their perceived “cure-all” actions. Nowadays, the antioxidant hypothesis described above has been accepted as the most probable explanation for the health benefits of vegetable-based diets.
\nRecent progress in medical science has clarified that unregulated RNS and RSS production are observed in many disorders or diseases, echoing findings from ROS research. Although a little is known how plants and animals might regulate RNS and RSS in the cells to achieve a fine balance, there is accumulating evidence to support the hypothesis that phytochemical antioxidants, such as flavonoids and betalains, also reduce the toxicity of RNS and RSS. The occurrence of nitrated flavonoids as well as sulfated flavonoids may imply the possible associations of the phytochemical antioxidants with RNS and/or RSS metabolisms in plants and animals. In this context, the term “antioxidant” for phytochemicals may need to be given a new name to reflect the latest research findings.
\nIn 2020, more than million people died due to the coronavirus disease 2019 (COVID-19) pandemic. There is no promising specific drug or treatment (as of December 2020) for the severe hospitalized patients. A “cytokine storm” occurs in severe cases of COVID-19 and the anti-inflammatory steroid dexamethasone has been applied to lower mortality [84]. COVID-19 and the common “cold” both present a syndrome of disease states. It seems unrealistic to rely on a single drug or chemical to cure the disease. In prevention of the infection, ascorbate and vegetables appears to be effective. The antioxidant flavonoids can reduce inorganic nitrite (NO2\n−) to generate NO in an acidic solution [85]. The vegetable diets and beverages such as the beet juice have been reported to prevent hypertension probably because of increase in NO bioavailability due to nitrite-dependent NO production [2, 86]. It is likely that vegetable-based foods and beverages could prevent or mitigate COVID-19 through their phytochemical antioxidant activities along with their provision of nitrate/nitrite supplementation [84, 87].
\nOxygen toxicity can be attributed ultimately to the biological evolution of oxygenic photosynthesis. In the ancient earth, H2S and NO concentrations are considered to have been much higher than the present day due to active volcanism [62]. The concentration of these “old” gasses fell down following the evolutional development of oxygenic photosynthesis in cyanobacteria [62]. It is presumed that most living organisms that were dominant at that time went extinct but some of them successfully developed antioxidant systems to cope with new oxic environments. The survivors from the lethal environments are the ancestors of the present animals. Even for plants, a high partial pressure of O2 made by photosynthesis is yet a great risk. To protect the photosynthetic apparatus, green plants have developed their unique antioxidant systems along with creation of many types of antioxidant molecules [88]. The left panel of Figure 6 represents a conceptual illustration for ROS, RNS and RSS in biological evolution in the earth history from past to the present. The order (ROSRNSRSS) can be found in ecological niches from surface to deep such as in soils (Figure 6, right). In the case of plants grown in the field, leaves are in oxic environments and roots are in hypoxic environments where there exists a gradient of O2, NO and H2S. Taking into account that sulfated plant phenolic compounds are found in plants inhabiting harsh environments, we consider it plausible that novel bioactive phytochemicals associated with RNS and RSS metabolisms might be found in the roots grown in such hypoxic environments [89].
\nThe ONS gradient in evolution and habitats. In plants, antioxidants can be found abundantly in leaves where oxygenic photosynthesis occurs, with a risk of overproduction of ROS. If oxidative stress is defined as a condition of disturbance of the fine-tuned redox balance, knowing the interplays among ROS, RNS and RSS is important for understanding cellular homeostasis. Oxygen tension would alter the best balance for each living organism in the field where there is the ONS (O2-NO-H2S) gradient from surface to the deep in soils, which also reflects the order of their evolutional development (from ancient to the present) [54].
Flavonoids and batalains are natural antioxidants that mitigate oxidative stress in plants and animals. In life sciences, oxidative stress can be defined as an imbalance of pro-oxidants and antioxidants in cells. Oxidative stress can be also defined as a disruption of redox signaling and control, emphasizing the importance of a dynamic but fine-tuned redox balance in cellular homeostasis [90]. According to this new definition, the ROS scavenging activity may be just a part of the pleiotropic functions of phytochemicals. Flavonoids and betalains could tune a fine redox balance through modulating the interplays among ROS, RNS and RSS. We are now entering into the next stage of plant “antioxidant” research.
\nWe thank Dr. Michael Cohen at the Sonoma State University for his critical reading of the manuscript. This work was partly supported by JSPS KAKENHI Grant Number JP19K06339 to H.Y.
\nThe authors declare no conflict of interest.
This is a brief overview of the main steps involved in publishing with IntechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Author Service Manager who will be your single point of contact and lead you through all the described steps below.
",metaTitle:"Publishing Process Steps and Descriptions",metaDescription:"This is a brief overview of the main steps involved in publishing with InTechOpen Compacts, Monographs and Edited Books. Once you submit your proposal you will be appointed a Publishing Process Manager who will be your single point of contact and lead you through all the described steps below.",metaKeywords:null,canonicalURL:"page/publishing-process-steps",contentRaw:'[{"type":"htmlEditorComponent","content":"1. SEND YOUR PROPOSAL
\\n\\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\\n\\n2. SUBMIT YOUR MANUSCRIPT
\\n\\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\\n\\n3. PEER REVIEW RESULTS
\\n\\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\\n\\n4. ACCEPTANCE AND PRICE QUOTE
\\n\\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\\n\\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\\n\\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\\n\\nAt this step you will also be asked to accept the Copyright Agreement.
\\n\\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\\n\\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\\n\\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\\n\\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\\n\\n6. INVOICE PAYMENT
\\n\\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\\n\\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\\n\\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\\n\\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\\n\\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. SEND YOUR PROPOSAL
\n\nPlease complete the publishing proposal form. The completed form should serve as an overview of your future Compacts, Monograph or Edited Book. Once submitted, your publishing proposal will be sent for evaluation, and a notice of acceptance or rejection will be sent within 10 to 30 working days from the date of submission.
\n\n2. SUBMIT YOUR MANUSCRIPT
\n\nAfter approval, you will proceed in submitting your full-length manuscript. 50-130 pages for compacts, 130-500 for Monographs & Edited Books.Your full-length manuscript must follow IntechOpen's Author Guidelines and comply with our publishing rules. Once the manuscript is submitted, but before it is forwarded for peer review, it will be screened for plagiarism.
\n\n3. PEER REVIEW RESULTS
\n\nExternal reviewers will evaluate your manuscript and provide you with their feedback. You may be asked to revise your draft, or parts of your draft, provide additional information and make any other necessary changes according to their comments and suggestions.
\n\n4. ACCEPTANCE AND PRICE QUOTE
\n\nIf the manuscript is formally accepted after peer review you will receive a formal Notice of Acceptance, and a price quote.
\n\nThe Open Access Publishing Fee of your IntechOpen Compacts, Monograph or Edited Book depends on the volume of the publication and includes: project management, editorial and peer review services, technical editing, language copyediting, cover design and book layout, book promotion and ISBN assignment.
\n\nWe will send you your price quote and after it has been accepted (by both the author and the publisher), both parties will sign a Statement of Work binding them to adhere to the agreed upon terms.
\n\nAt this step you will also be asked to accept the Copyright Agreement.
\n\n5. LANGUAGE COPYEDITING, TECHNICAL EDITING AND TYPESET PROOF
\n\nYour manuscript will be sent to SPi Global, a leader in content solution services, for language copyediting. You will then receive a typeset proof formatted in XML and available online in HTML and PDF to proofread and check for completeness. The first typeset proof of your manuscript is usually available 10 days after its original submission.
\n\nAfter we receive your proof corrections and a final typeset of the manuscript is approved, your manuscript is sent to our in house DTP department for technical formatting and online publication preparation.
\n\nAdditionally, you will be asked to provide a profile picture (face or chest-up portrait photograph) and a short summary of the book which is required for the book cover design.
\n\n6. INVOICE PAYMENT
\n\nThe invoice is generally paid by the author, the author’s institution or funder. The payment can be made by credit card from your Author Panel (one will be assigned to you at the beginning of the project), or via bank transfer as indicated on the invoice. We currently accept the following payment options:
\n\nIntechOpen will help you complete your payment safely and securely, keeping your personal, professional and financial information safe.
\n\n7. ONLINE PUBLICATION, PRINT AND DELIVERY OF THE BOOK
\n\nIntechOpen authors can choose whether to publish their book online only or opt for online and print editions. IntechOpen Compacts, Monographs and Edited Books will be published on www.intechopen.com. If ordered, print copies are delivered by DHL within 12 to 15 working days.
\n\nIf you feel that IntechOpen Compacts, Monographs or Edited Books are the right publishing format for your work, please fill out the publishing proposal form. For any specific queries related to the publishing process, or IntechOpen Compacts, Monographs & Edited Books in general, please contact us at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5227},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10367},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15789}],offset:12,limit:12,total:118188},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10270",title:"Fog Computing",subtitle:null,isOpenForSubmission:!0,hash:"54853b3034f0348a6157b5591f8d95f3",slug:null,bookSignature:"Dr. Isiaka Ajewale Alimi, Dr. Nelson Muga, Dr. Qin Xin and Dr. Paulo P. Monteiro",coverURL:"https://cdn.intechopen.com/books/images_new/10270.jpg",editedByType:null,editors:[{id:"208236",title:"Dr.",name:"Isiaka",surname:"Alimi",slug:"isiaka-alimi",fullName:"Isiaka Alimi"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9662",title:"Vegetation Index and Dynamics",subtitle:null,isOpenForSubmission:!0,hash:"0abf2a59ee63fc1ba4fb64d77c9b1be7",slug:null,bookSignature:"Dr. Eusebio Cano Carmona, Dr. Ricardo Quinto Canas, Dr. Ana Cano Ortiz and Dr. Carmelo Maria Musarella",coverURL:"https://cdn.intechopen.com/books/images_new/9662.jpg",editedByType:null,editors:[{id:"87846",title:"Dr.",name:"Eusebio",surname:"Cano Carmona",slug:"eusebio-cano-carmona",fullName:"Eusebio Cano Carmona"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10543",title:"Psychology and Patho-physiological Outcomes of Eating",subtitle:null,isOpenForSubmission:!0,hash:"2464b5fb6a39df380e935096743410a0",slug:null,bookSignature:"Dr. Akikazu Takada and Dr. Hubertus Himmerich",coverURL:"https://cdn.intechopen.com/books/images_new/10543.jpg",editedByType:null,editors:[{id:"248459",title:"Dr.",name:"Akikazu",surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10654",title:"Brain-Computer Interface",subtitle:null,isOpenForSubmission:!0,hash:"a5308884068cc53ed31c6baba756857f",slug:null,bookSignature:"Dr. Vahid Asadpour",coverURL:"https://cdn.intechopen.com/books/images_new/10654.jpg",editedByType:null,editors:[{id:"165328",title:"Dr.",name:"Vahid",surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!0,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:null,bookSignature:"Dr. Guillermo Téllez and Associate Prof. Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:null,editors:[{id:"73465",title:"Dr.",name:"Guillermo",surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10765",title:"Environmental Management",subtitle:null,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",slug:null,bookSignature:"Dr. John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10567",title:"Uncertainty Management in Engineering - Topics in Pollution Prevention and Controls",subtitle:null,isOpenForSubmission:!0,hash:"4990db602d31f1848c590dbfe97b6409",slug:null,bookSignature:"Prof. Rehab O. Abdel Rahman and Dr. Yung-Tse Hung",coverURL:"https://cdn.intechopen.com/books/images_new/10567.jpg",editedByType:null,editors:[{id:"92718",title:"Prof.",name:"Rehab",surname:"Abdel Rahman",slug:"rehab-abdel-rahman",fullName:"Rehab Abdel Rahman"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10582",title:"Chemical Vapor Deposition",subtitle:null,isOpenForSubmission:!0,hash:"f9177ff0e61198735fb86a81303259d0",slug:null,bookSignature:"Dr. Sadia Ameen, Dr. M. Shaheer Akhtar and Prof. Hyung-Shik Shin",coverURL:"https://cdn.intechopen.com/books/images_new/10582.jpg",editedByType:null,editors:[{id:"52613",title:"Dr.",name:"Sadia",surname:"Ameen",slug:"sadia-ameen",fullName:"Sadia Ameen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10519",title:"Middleware Architecture",subtitle:null,isOpenForSubmission:!0,hash:"c326d436ae0f4c508849d2336dbdfb48",slug:null,bookSignature:"Dr. Mehdia Ajana El Khaddar",coverURL:"https://cdn.intechopen.com/books/images_new/10519.jpg",editedByType:null,editors:[{id:"26677",title:"Dr.",name:"Mehdia",surname:"Ajana El Khaddar",slug:"mehdia-ajana-el-khaddar",fullName:"Mehdia Ajana El Khaddar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:14},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:3},{group:"topic",caption:"Business, Management and Economics",value:7,count:1},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:2},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Social Sciences",value:23,count:2},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:101},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8098",title:"Resources of Water",subtitle:null,isOpenForSubmission:!1,hash:"d251652996624d932ef7b8ed62cf7cfc",slug:"resources-of-water",bookSignature:"Prathna Thanjavur Chandrasekaran, Muhammad Salik Javaid, Aftab Sadiq",coverURL:"https://cdn.intechopen.com/books/images_new/8098.jpg",editedByType:"Edited by",editors:[{id:"167917",title:"Dr.",name:"Prathna",middleName:null,surname:"Thanjavur Chandrasekaran",slug:"prathna-thanjavur-chandrasekaran",fullName:"Prathna Thanjavur Chandrasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editedByType:"Edited by",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editedByType:"Edited by",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editedByType:"Edited by",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8415",title:"Extremophilic Microbes and Metabolites",subtitle:"Diversity, Bioprospecting and Biotechnological Applications",isOpenForSubmission:!1,hash:"93e0321bc93b89ff73730157738f8f97",slug:"extremophilic-microbes-and-metabolites-diversity-bioprospecting-and-biotechnological-applications",bookSignature:"Afef Najjari, Ameur Cherif, Haïtham Sghaier and Hadda Imene Ouzari",coverURL:"https://cdn.intechopen.com/books/images_new/8415.jpg",editedByType:"Edited by",editors:[{id:"196823",title:"Dr.",name:"Afef",middleName:null,surname:"Najjari",slug:"afef-najjari",fullName:"Afef Najjari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9731",title:"Oxidoreductase",subtitle:null,isOpenForSubmission:!1,hash:"852e6f862c85fc3adecdbaf822e64e6e",slug:"oxidoreductase",bookSignature:"Mahmoud Ahmed Mansour",coverURL:"https://cdn.intechopen.com/books/images_new/9731.jpg",editedByType:"Edited by",editors:[{id:"224662",title:"Prof.",name:"Mahmoud Ahmed",middleName:null,surname:"Mansour",slug:"mahmoud-ahmed-mansour",fullName:"Mahmoud Ahmed Mansour"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"204",title:"Urology",slug:"urology",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:46,numberOfAuthorsAndEditors:1337,numberOfWosCitations:427,numberOfCrossrefCitations:230,numberOfDimensionsCitations:601,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"urology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6424",title:"Evolving Trends in Kidney Cancer",subtitle:null,isOpenForSubmission:!1,hash:"e9305ef1c5e6ad63407fd9262a27cf31",slug:"evolving-trends-in-kidney-cancer",bookSignature:"Sashi S. Kommu and Inderbir S. Gill",coverURL:"https://cdn.intechopen.com/books/images_new/6424.jpg",editedByType:"Edited by",editors:[{id:"9902",title:"Dr.",name:"Sashi S.",middleName:"S",surname:"Kommu",slug:"sashi-s.-kommu",fullName:"Sashi S. Kommu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7985",title:"Circumcision and the Community",subtitle:null,isOpenForSubmission:!1,hash:"023cc135aeeae6d2ea8cfc01ab3f4dc7",slug:"circumcision-and-the-community",bookSignature:"Ahmad Zaghal and Nishat Rahman",coverURL:"https://cdn.intechopen.com/books/images_new/7985.jpg",editedByType:"Edited by",editors:[{id:"240621",title:"Dr.",name:"Ahmad",middleName:null,surname:"Zaghal",slug:"ahmad-zaghal",fullName:"Ahmad Zaghal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7957",title:"Lower Urinary Tract Dysfunction",subtitle:"From Evidence to Clinical Practice",isOpenForSubmission:!1,hash:"e29f9949691e86e226d6c7f7aa81134c",slug:"lower-urinary-tract-dysfunction-from-evidence-to-clinical-practice",bookSignature:"Ran Pang",coverURL:"https://cdn.intechopen.com/books/images_new/7957.jpg",editedByType:"Edited by",editors:[{id:"186524",title:"Prof.",name:"Ran",middleName:null,surname:"Pang",slug:"ran-pang",fullName:"Ran Pang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7931",title:"Male Reproductive Health",subtitle:null,isOpenForSubmission:!1,hash:"5754baea5de6a634c66bae12a33d52d9",slug:"male-reproductive-health",bookSignature:"Wei Wu, Francesco Ziglioli and Umberto Maestroni",coverURL:"https://cdn.intechopen.com/books/images_new/7931.jpg",editedByType:"Edited by",editors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7935",title:"Renal Diseases",subtitle:null,isOpenForSubmission:!1,hash:"44715ed141cf23ebdd35ff0d772492df",slug:"renal-diseases",bookSignature:"Edward T. Zawada Jr. and Sohail Abdul Salim",coverURL:"https://cdn.intechopen.com/books/images_new/7935.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8459",title:"Glomerulonephritis and Nephrotic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"404561518d53b3dd68ce74d6225588c0",slug:"glomerulonephritis-and-nephrotic-syndrome",bookSignature:"Thomas Rath",coverURL:"https://cdn.intechopen.com/books/images_new/8459.jpg",editedByType:"Edited by",editors:[{id:"67436",title:"Dr.",name:"Thomas",middleName:null,surname:"Rath",slug:"thomas-rath",fullName:"Thomas Rath"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7511",title:"Aspects in Continuous Renal Replacement Therapy",subtitle:null,isOpenForSubmission:!1,hash:"b844bd530165ca058e32517002b29837",slug:"aspects-in-continuous-renal-replacement-therapy",bookSignature:"Ayman Karkar",coverURL:"https://cdn.intechopen.com/books/images_new/7511.jpg",editedByType:"Edited by",editors:[{id:"156627",title:"Dr.",name:"Ayman",middleName:null,surname:"Karkar",slug:"ayman-karkar",fullName:"Ayman Karkar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7276",title:"Advances in Nephropathy",subtitle:null,isOpenForSubmission:!1,hash:"487b332191e4266ae8e9d24b9b0a0985",slug:"advances-in-nephropathy",bookSignature:"Thomas Rath",coverURL:"https://cdn.intechopen.com/books/images_new/7276.jpg",editedByType:"Edited by",editors:[{id:"67436",title:"Dr.",name:"Thomas",middleName:null,surname:"Rath",slug:"thomas-rath",fullName:"Thomas Rath"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6423",title:"Prostate Cancer",subtitle:null,isOpenForSubmission:!1,hash:"d072a079624084c12169a118fdbbfa87",slug:"prostate-cancer",bookSignature:"Cem Onal",coverURL:"https://cdn.intechopen.com/books/images_new/6423.jpg",editedByType:"Edited by",editors:[{id:"43940",title:"Dr.",name:"Cem",middleName:null,surname:"Onal",slug:"cem-onal",fullName:"Cem Onal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6537",title:"Evolving Strategies in Peritoneal Dialysis",subtitle:null,isOpenForSubmission:!1,hash:"76bb5dc2ce63f0026f7993b54f062861",slug:"evolving-strategies-in-peritoneal-dialysis",bookSignature:"Edward T. Zawada, Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/6537.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6147",title:"Urinary Tract Infection",subtitle:"The Result of the Strength of the Pathogen, or the Weakness of the Host",isOpenForSubmission:!1,hash:"16821e1bfd105986c31e991510e94e70",slug:"urinary-tract-infection-the-result-of-the-strength-of-the-pathogen-or-the-weakness-of-the-host",bookSignature:"Tomas Jarzembowski, Agnieszka Daca and Maria Alicja Dębska-Ślizień",coverURL:"https://cdn.intechopen.com/books/images_new/6147.jpg",editedByType:"Edited by",editors:[{id:"205604",title:"Dr.",name:"Tomas",middleName:null,surname:"Jarzembowski",slug:"tomas-jarzembowski",fullName:"Tomas Jarzembowski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6079",title:"Spermatozoa",subtitle:"Facts and Perspectives",isOpenForSubmission:!1,hash:"2d4488814a6ea68efcd3544209c9e4d2",slug:"spermatozoa-facts-and-perspectives",bookSignature:"Rosaria Meccariello and Rosanna Chianese",coverURL:"https://cdn.intechopen.com/books/images_new/6079.jpg",editedByType:"Edited by",editors:[{id:"143980",title:"Prof.",name:"Rosaria",middleName:null,surname:"Meccariello",slug:"rosaria-meccariello",fullName:"Rosaria Meccariello"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:46,mostCitedChapters:[{id:"37101",doi:"10.5772/36832",title:"The Psychological Impact of Hemodialysis on Patients with Chronic Renal Failure",slug:"the-psychological-impact-of-hemodialysis-on-patients-with-chronic-renal-failure",totalDownloads:5533,totalCrossrefCites:6,totalDimensionsCites:17,book:{slug:"renal-failure-the-facts",title:"Renal Failure",fullTitle:"Renal Failure - The Facts"},signatures:"Liang-Jen Wang and Chih-Ken Chen",authors:[{id:"110035",title:"Dr.",name:"Liang Jen",middleName:null,surname:"Wang",slug:"liang-jen-wang",fullName:"Liang Jen Wang"}]},{id:"35641",doi:"10.5772/34541",title:"Immunoinflammation in Diabetic Nephropathy: Molecular Mechanisms and Therapeutic Options",slug:"immunoinflammation-in-diabetic-nephropathy-molecular-mechanisms-and-therapeutic-options-",totalDownloads:2540,totalCrossrefCites:8,totalDimensionsCites:13,book:{slug:"diabetic-nephropathy",title:"Diabetic Nephropathy",fullTitle:"Diabetic Nephropathy"},signatures:"Virginia Lopez-Parra, Beñat Mallavia, Jesus Egido and Carmen Gomez-Guerrero",authors:[{id:"100622",title:"Dr.",name:"Carmen",middleName:null,surname:"Gomez-Guerrero",slug:"carmen-gomez-guerrero",fullName:"Carmen Gomez-Guerrero"},{id:"108756",title:"Dr.",name:"Virginia",middleName:null,surname:"Lopez-Parra",slug:"virginia-lopez-parra",fullName:"Virginia Lopez-Parra"},{id:"108757",title:"BSc.",name:"Beñat",middleName:null,surname:"Mallavia",slug:"benat-mallavia",fullName:"Beñat Mallavia"},{id:"108758",title:"Prof.",name:"Jesus",middleName:null,surname:"Egido",slug:"jesus-egido",fullName:"Jesus Egido"}]},{id:"30215",doi:"10.5772/39088",title:"\ufeffMechanisms in Erectile Function and Dysfunction: An Overview",slug:"mechanisms-in-erectile-function-and-dysfunction-an-overview",totalDownloads:7034,totalCrossrefCites:1,totalDimensionsCites:12,book:{slug:"erectile-dysfunction-disease-associated-mechanisms-and-novel-insights-into-therapy",title:"Erectile Dysfunction",fullTitle:"Erectile Dysfunction - Disease-Associated Mechanisms and Novel Insights into Therapy"},signatures:"Kenia Pedrosa Nunes and R. Clinton Webb",authors:[{id:"71405",title:"Dr.",name:"Kenia",middleName:"Pedrosa",surname:"Nunes",slug:"kenia-nunes",fullName:"Kenia Nunes"},{id:"134106",title:"Dr.",name:"R. Clinton",middleName:null,surname:"Weeb",slug:"r.-clinton-weeb",fullName:"R. Clinton Weeb"}]}],mostDownloadedChaptersLast30Days:[{id:"17956",title:"Sexual and Reproductive Function in Chronic Kidney Disease and Effect of Kidney Transplantation",slug:"sexual-and-reproductive-function-in-chronic-kidney-disease-and-effect-of-kidney-transplantation",totalDownloads:11743,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"after-the-kidney-transplant-the-patients-and-their-allograft",title:"After the Kidney Transplant",fullTitle:"After the Kidney Transplant - The Patients and Their Allograft"},signatures:"Mahboob Lessan-Pezeshki and Shirin Ghazizadeh",authors:[{id:"26564",title:"Prof.",name:"Mahboob",middleName:null,surname:"Lessan Pezeshki",slug:"mahboob-lessan-pezeshki",fullName:"Mahboob Lessan Pezeshki"},{id:"26571",title:"Prof.",name:"Shirin",middleName:null,surname:"Ghazizadeh",slug:"shirin-ghazizadeh",fullName:"Shirin Ghazizadeh"}]},{id:"48020",title:"Dialysis Membranes — Physicochemical Structures and Features",slug:"dialysis-membranes-physicochemical-structures-and-features",totalDownloads:4579,totalCrossrefCites:3,totalDimensionsCites:5,book:{slug:"updates-in-hemodialysis",title:"Updates in Hemodialysis",fullTitle:"Updates in Hemodialysis"},signatures:"Akihiro C. Yamashita and Kenji Sakurai",authors:[{id:"171999",title:"Prof.",name:"Akihiro",middleName:null,surname:"Yamashita",slug:"akihiro-yamashita",fullName:"Akihiro Yamashita"}]},{id:"56350",title:"Understanding the Pathophysiology of Nephrocalcinosis",slug:"understanding-the-pathophysiology-of-nephrocalcinosis",totalDownloads:1575,totalCrossrefCites:5,totalDimensionsCites:6,book:{slug:"updates-and-advances-in-nephrolithiasis-pathophysiology-genetics-and-treatment-modalities",title:"Updates and Advances in Nephrolithiasis",fullTitle:"Updates and Advances in Nephrolithiasis - Pathophysiology, Genetics, and Treatment Modalities"},signatures:"Giovanna Priante, Monica Ceol, Liliana Terrin, Lisa Gianesello,\nFederica Quaggio, Dorella Del Prete and Franca Anglani",authors:[{id:"196705",title:"Dr.",name:"Franca",middleName:null,surname:"Anglani",slug:"franca-anglani",fullName:"Franca Anglani"},{id:"196902",title:"Dr.",name:"Giovanna",middleName:null,surname:"Priante",slug:"giovanna-priante",fullName:"Giovanna Priante"},{id:"196903",title:"Dr.",name:"Federica",middleName:null,surname:"Quaggio",slug:"federica-quaggio",fullName:"Federica Quaggio"},{id:"196905",title:"Dr.",name:"Liliana",middleName:null,surname:"Terrin",slug:"liliana-terrin",fullName:"Liliana Terrin"},{id:"208980",title:"Dr.",name:"Monica",middleName:null,surname:"Ceol",slug:"monica-ceol",fullName:"Monica Ceol"},{id:"208981",title:"Dr.",name:"Lisa",middleName:null,surname:"Gianesello",slug:"lisa-gianesello",fullName:"Lisa Gianesello"},{id:"208982",title:"Dr.",name:"Dorella",middleName:null,surname:"Del Prete",slug:"dorella-del-prete",fullName:"Dorella Del Prete"}]},{id:"62565",title:"Hemodiafiltration in Acute Kidney Injury",slug:"hemodiafiltration-in-acute-kidney-injury",totalDownloads:803,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"aspects-in-continuous-renal-replacement-therapy",title:"Aspects in Continuous Renal Replacement Therapy",fullTitle:"Aspects in Continuous Renal Replacement Therapy"},signatures:"Kullaya Takkavatakarn, Paweena Susantitaphong and Somchai\nEiam-Ong",authors:[{id:"49591",title:"Dr.",name:"Somchai",middleName:null,surname:"Eiam-Ong",slug:"somchai-eiam-ong",fullName:"Somchai Eiam-Ong"},{id:"253229",title:"Dr.",name:"Kullaya",middleName:null,surname:"Takkavatakarn",slug:"kullaya-takkavatakarn",fullName:"Kullaya Takkavatakarn"},{id:"253230",title:"Dr.",name:"Paweena",middleName:null,surname:"Susantitaphong",slug:"paweena-susantitaphong",fullName:"Paweena Susantitaphong"}]},{id:"57682",title:"Environmental Factors and Male Infertility",slug:"environmental-factors-and-male-infertility",totalDownloads:770,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"spermatozoa-facts-and-perspectives",title:"Spermatozoa",fullTitle:"Spermatozoa - Facts and Perspectives"},signatures:"Qiuqin Tang, Wei Wu, Jing Zhang, Rong Fan and Mu Liu",authors:[{id:"178661",title:"Dr.",name:"Wei",middleName:null,surname:"Wu",slug:"wei-wu",fullName:"Wei Wu"},{id:"184798",title:"Ms.",name:"Qiuqin",middleName:null,surname:"Tang",slug:"qiuqin-tang",fullName:"Qiuqin Tang"},{id:"207434",title:"Mr.",name:"Mu",middleName:null,surname:"Liu",slug:"mu-liu",fullName:"Mu Liu"},{id:"218026",title:"Mrs.",name:"Jing",middleName:null,surname:"Zhang",slug:"jing-zhang",fullName:"Jing Zhang"},{id:"218027",title:"Mrs.",name:"Rong",middleName:null,surname:"Fan",slug:"rong-fan",fullName:"Rong Fan"}]},{id:"53697",title:"Physiotherapy in Women with Urinary Incontinence",slug:"physiotherapy-in-women-with-urinary-incontinence",totalDownloads:1598,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"synopsis-in-the-management-of-urinary-incontinence",title:"Synopsis in the Management of Urinary Incontinence",fullTitle:"Synopsis in the Management of Urinary Incontinence"},signatures:"Özlem Çinar Özdemir and Mahmut Surmeli",authors:[{id:"185712",title:"Ph.D.",name:"Özlem",middleName:null,surname:"Çinar Özdemir",slug:"ozlem-cinar-ozdemir",fullName:"Özlem Çinar Özdemir"},{id:"193852",title:"Mr.",name:"Mahmut",middleName:null,surname:"Surmeli",slug:"mahmut-surmeli",fullName:"Mahmut Surmeli"}]},{id:"63552",title:"Acute Kidney Injury",slug:"acute-kidney-injury",totalDownloads:680,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"aspects-in-continuous-renal-replacement-therapy",title:"Aspects in Continuous Renal Replacement Therapy",fullTitle:"Aspects in Continuous Renal Replacement Therapy"},signatures:"Ahmed M. Alkhunaizi",authors:[{id:"259335",title:"Dr.",name:"Ahmed",middleName:null,surname:"Alkhunaizi",slug:"ahmed-alkhunaizi",fullName:"Ahmed Alkhunaizi"}]},{id:"47722",title:"Water Treatment for Centre and Home-Based Haemodialysis",slug:"water-treatment-for-centre-and-home-based-haemodialysis",totalDownloads:2504,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"updates-in-hemodialysis",title:"Updates in Hemodialysis",fullTitle:"Updates in Hemodialysis"},signatures:"Shyam Dheda, Carolyn Van Eps, Carmel Hawley and David W.\nJohnson",authors:[{id:"50425",title:"Prof.",name:"David",middleName:null,surname:"Johnson",slug:"david-johnson",fullName:"David Johnson"},{id:"172329",title:"Dr.",name:"Carmel",middleName:null,surname:"Hawley",slug:"carmel-hawley",fullName:"Carmel Hawley"},{id:"172514",title:"Dr.",name:"Shyam",middleName:null,surname:"Dheda",slug:"shyam-dheda",fullName:"Shyam Dheda"}]},{id:"66847",title:"Historical Perspective and Innovations in Penile Urethroplasty",slug:"historical-perspective-and-innovations-in-penile-urethroplasty",totalDownloads:772,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"lower-urinary-tract-dysfunction-from-evidence-to-clinical-practice",title:"Lower Urinary Tract Dysfunction",fullTitle:"Lower Urinary Tract Dysfunction - From Evidence to Clinical Practice"},signatures:"Francisco E. Martins, Pedro Simoes de Oliveira and Natalia M. Martins",authors:[{id:"240780",title:"M.D.",name:"Francisco",middleName:null,surname:"Martins",slug:"francisco-martins",fullName:"Francisco Martins"},{id:"249678",title:"Dr.",name:"Pedro",middleName:null,surname:"Simoes De Oliveira",slug:"pedro-simoes-de-oliveira",fullName:"Pedro Simoes De Oliveira"}]},{id:"42879",title:"The Evolution of HLA-Matching in Kidney Transplantation",slug:"the-evolution-of-hla-matching-in-kidney-transplantation",totalDownloads:6505,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"current-issues-and-future-direction-in-kidney-transplantation",title:"Current Issues and Future Direction in Kidney Transplantation",fullTitle:"Current Issues and Future Direction in Kidney Transplantation"},signatures:"Hung Do Nguyen, Rebecca Lucy Williams, Germaine Wong and Wai Hon Lim",authors:[{id:"26333",title:"Associate Prof.",name:"Wai",middleName:"Hon",surname:"Lim",slug:"wai-lim",fullName:"Wai Lim"},{id:"38112",title:"Dr.",name:"Hung",middleName:null,surname:"Do Nguyen",slug:"hung-do-nguyen",fullName:"Hung Do Nguyen"},{id:"156592",title:"Dr.",name:"Rebecca",middleName:null,surname:"Williams",slug:"rebecca-williams",fullName:"Rebecca Williams"},{id:"165454",title:"Dr.",name:"Germaine",middleName:null,surname:"Wong",slug:"germaine-wong",fullName:"Germaine Wong"}]}],onlineFirstChaptersFilter:{topicSlug:"urology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/306858/marcelo-lemos",hash:"",query:{},params:{id:"306858",slug:"marcelo-lemos"},fullPath:"/profiles/306858/marcelo-lemos",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()