Malaria driven pathophysiology inimically conjoined to systemic inflammation response cascade in a vicious feed-forward cycle destined to a terrible debilitation or demise of the host. The Plasmodium parasite initiates physiological changes when it is transmitted into the human host by intermediate host and vector. Sporozoites injection elicits immunological and inflammatory response suppression facilitating movement into the blood stream undetected, destined to hepatocyte. Subsequently, hepatocyte invasion culminates in intracellular growth and conversion of the parasites rapturing hepatocytes releasing merozoites into the extrahepatic circulation. Inflammatory and immunological response initiation results in overt malarial disease symptoms. Initially, inflammatory response alleviates and curtails infection. Activation of leukocytes, lymphocytes, monocytes, and phagocytes secretes inflammatory mediators, chemokines, cytokines cytoadhering molecules which accelerate infection patency. Hormonal processes influence disease tolerance without necessarily interfering with parasitemia. Current treatment is anti-parasitic. Phytotherapeutic intervention in malaria is anti-parasitic and anti-disease effects that terminate the vicious cycle and alleviating disease. The phytochemicals, in malarial experimental and clinical work, include asiatic acid, maslinic acid, oleanolic acid, and inflammatory and immunological aberrations evolving in malaria and the effects of phytochemical therapeutics in the alleviation of the disease to enable leverage of future treatment regimens through harnessing existing plants materials is explored.
Part of the book: Parasitology and Microbiology Research