WSN applications based on data collection requirements.
\r\n\tThe hope is that this book will include three main topics: threshold-based segmentation, clustering-based segmentation, and artificial neural networks based segmentation. But it is not limited to these topics in any specific way. This is a purely organizational division, seeking to present papers that describe the segmentation process through traditional, intermediate, and advanced approaches.
",isbn:"978-1-83881-906-4",printIsbn:"978-1-83881-113-6",pdfIsbn:"978-1-83881-907-1",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"687a58dfbb2e544237cda3807153ff2c",bookSignature:"Dr. Paulo Eduardo Ambrosio",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11923.jpg",keywords:"Thresholding, Binarization, Threshold Determination, Thresholding Methods and Techniques, Clustering, Similarity, Segmentation by Regions, Clustering Methods and Techniques, Artificial Neural Networks, Deep Learning, Artificial Intelligence, AI Methods and Techniques",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 13th 2022",dateEndSecondStepPublish:"June 21st 2022",dateEndThirdStepPublish:"August 20th 2022",dateEndFourthStepPublish:"November 8th 2022",dateEndFifthStepPublish:"January 7th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"9 days",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Dr. Paulo E. Ambrósio is vice-director of the Center for Radiation Sciences and Technology (CPqCTR/UESC) and coordinates a Special Committee on Computing Applied to Health, Brazilian Computer Society. His research interests include applied computing, with an emphasis on health and biology, working mainly with pattern recognition, medical imaging, and computational modeling.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"256064",title:"Dr.",name:"Paulo",middleName:"Eduardo",surname:"Ambrosio",slug:"paulo-ambrosio",fullName:"Paulo Ambrosio",profilePictureURL:"https://mts.intechopen.com/storage/users/256064/images/system/256064.png",biography:"Paulo E. Ambrósio has a Ph.D. in Medical Sciences from the Medical School of Ribeirão Preto, University of São Paulo (FMRP/USP), Brazil. He is currently an associate professor in the Department of Exact and Technological Sciences, State University of Santa Cruz (UESC); vice-director of the Center for Radiation Sciences and Technology (CPqCTR/UESC); and coordinator of the Special Committee on Computing Applied to Health, Brazilian Computer Society. His research interests include applied computing, with emphasis on health and biology, working mainly with pattern recognition, medical imaging, and computational modeling.",institutionString:"Universidade Estadual de Santa Cruz",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Universidade Estadual de Santa Cruz",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347259",firstName:"Karmen",lastName:"Daleta",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"karmen@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"24942",title:"The Place of a Village Within a Tsunami Early Warning System",doi:"10.5772/25107",slug:"the-place-of-a-village-within-a-tsunami-early-warning-system",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/24942.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/24942",previewPdfUrl:"/chapter/pdf-preview/24942",totalDownloads:1559,totalViews:76,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:39,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"December 22nd 2010",dateReviewed:"August 29th 2011",datePrePublished:null,datePublished:"December 16th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/24942",risUrl:"/chapter/ris/24942",book:{id:"406",slug:"tsunami-a-growing-disaster"},signatures:"Henry Rempel",authors:[{id:"61902",title:"Prof.",name:"Henry",middleName:null,surname:"Rempel",fullName:"Henry Rempel",slug:"henry-rempel",email:"hgrempel@mymts.net",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"406",type:"book",title:"Tsunami",subtitle:"A Growing Disaster",fullTitle:"Tsunami - A Growing Disaster",slug:"tsunami-a-growing-disaster",publishedDate:"December 16th 2011",bookSignature:"Mohammad Mokhtari",coverURL:"https://cdn.intechopen.com/books/images_new/406.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-431-3",pdfIsbn:"978-953-51-5163-0",reviewType:"peer-reviewed",numberOfWosCitations:45,isAvailableForWebshopOrdering:!0,editors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"834"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"24934",type:"chapter",title:"Advances for Tsunami Measurement Technologies and Its Applications",slug:"advances-for-tsunami-measurement-technologies-and-its-applications",totalDownloads:3614,totalCrossrefCites:1,signatures:"Hiroyuki Matsumoto",reviewType:"peer-reviewed",authors:[{id:"58971",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Matsumoto",fullName:"Hiroyuki Matsumoto",slug:"hiroyuki-matsumoto"}]},{id:"24935",type:"chapter",title:"Tsunami Detection by Ionospheric Sounding: New Tools for Oceanic Monitoring",slug:"tsunami-detection-by-ionospheric-sounding-new-tools-for-oceanic-monitoring",totalDownloads:2501,totalCrossrefCites:2,signatures:"Giovanni Occhipinti",reviewType:"peer-reviewed",authors:[{id:"56276",title:"Dr.",name:"Giovanni",middleName:null,surname:"Occhipinti",fullName:"Giovanni Occhipinti",slug:"giovanni-occhipinti"}]},{id:"24936",type:"chapter",title:"Proximal Records of Paleotsunami Runup in Barrage Creek Floodplains from Late-Holocene Great Earthquakes in the Central Cascadia Suduction Zone, Oregon, USA",slug:"proximal-records-of-paleotsunami-runup-in-barrage-creek-floodplains-from-late-holocene-great-earthqu",totalDownloads:1763,totalCrossrefCites:0,signatures:"Curt D. Peterson and Kenneth M. Cruikshank",reviewType:"peer-reviewed",authors:[{id:"57425",title:"Prof.",name:"Curt",middleName:null,surname:"Peterson",fullName:"Curt Peterson",slug:"curt-peterson"},{id:"57566",title:"Dr.",name:"Kenneth",middleName:null,surname:"Cruikshank",fullName:"Kenneth Cruikshank",slug:"kenneth-cruikshank"}]},{id:"24937",type:"chapter",title:"Post-Tsunami Lifeline Restoration and Reconstruction",slug:"post-tsunami-lifeline-restoration-and-reconstruction",totalDownloads:2858,totalCrossrefCites:3,signatures:"Yasuko Kuwata",reviewType:"peer-reviewed",authors:[{id:"55698",title:"Dr.",name:"Yasuko",middleName:null,surname:"Kuwata",fullName:"Yasuko Kuwata",slug:"yasuko-kuwata"}]},{id:"24938",type:"chapter",title:"Tsunamis as Long-Term Hazards to Coastal Groundwater Resources and Associated Water Supplies",slug:"tsunamis-as-long-term-hazards-to-coastal-groundwater-resources-and-associated-water-supplies",totalDownloads:2868,totalCrossrefCites:0,signatures:"Karen G. Villholth and Bhanu Neupane",reviewType:"peer-reviewed",authors:[{id:"17892",title:"Dr.",name:"Karen",middleName:null,surname:"Villholth",fullName:"Karen Villholth",slug:"karen-villholth"},{id:"62023",title:"Mr.",name:"Bhanu",middleName:null,surname:"Neupane",fullName:"Bhanu Neupane",slug:"bhanu-neupane"}]},{id:"24939",type:"chapter",title:"Experimental and Numerical Modeling of Tsunami Force on Bridge Decks",slug:"experimental-and-numerical-modeling-of-tsunami-force-on-bridge-decks",totalDownloads:3156,totalCrossrefCites:4,signatures:"Tze Liang Lau, Tatsuo Ohmachi, Shusaku Inoue and Panitan Lukkunaprasit",reviewType:"peer-reviewed",authors:[{id:"52845",title:"Dr.",name:"Tze Liang",middleName:null,surname:"Lau",fullName:"Tze Liang Lau",slug:"tze-liang-lau"}]},{id:"24940",type:"chapter",title:"Comments About Tsunami Occurrences in the Northern Caribbean",slug:"comments-about-tsunami-occurrences-in-the-northern-caribbean",totalDownloads:2556,totalCrossrefCites:1,signatures:"Mario Octavio Cotilla Rodríguez and Diego Córdoba Barba",reviewType:"peer-reviewed",authors:[{id:"51492",title:"Dr.",name:"Mario Octavio",middleName:null,surname:"Cotilla Rodriguez",fullName:"Mario Octavio Cotilla Rodriguez",slug:"mario-octavio-cotilla-rodriguez"},{id:"61727",title:"Dr.",name:"Diego",middleName:null,surname:"Córdoba Barba",fullName:"Diego Córdoba Barba",slug:"diego-cordoba-barba"}]},{id:"24941",type:"chapter",title:"Tsunami in Makran Region and Its Effect on the Persian Gulf",slug:"tsunami-in-makran-region-and-its-effect-on-the-persian-gulf",totalDownloads:7398,totalCrossrefCites:4,signatures:"Mohammad Mokhtari",reviewType:"peer-reviewed",authors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",fullName:"Mohammad Mokhtari",slug:"mohammad-mokhtari"}]},{id:"24942",type:"chapter",title:"The Place of a Village Within a Tsunami Early Warning System",slug:"the-place-of-a-village-within-a-tsunami-early-warning-system",totalDownloads:1559,totalCrossrefCites:0,signatures:"Henry Rempel",reviewType:"peer-reviewed",authors:[{id:"61902",title:"Prof.",name:"Henry",middleName:null,surname:"Rempel",fullName:"Henry Rempel",slug:"henry-rempel"}]},{id:"24943",type:"chapter",title:"Post Tsunami Heavy Mineral Distribution Between Cuddalore to Kanyakumari Along the Tamil Nadu Coast, India – A Review",slug:"post-tsunami-heavy-mineral-distribution-between-cuddalore-to-kanyakumari-along-the-tamil-nadu-coast-",totalDownloads:3156,totalCrossrefCites:1,signatures:"M. Suresh Gandhi, A. Solai, Sivaraj Kaveri, Kasilingam Kanan, Venkatesan Dhamodharan, Kuppusamy Baskar and Victor Rajamanickam",reviewType:"peer-reviewed",authors:[{id:"51412",title:"Dr.",name:"Suresh",middleName:null,surname:"Gandhi",fullName:"Suresh Gandhi",slug:"suresh-gandhi"},{id:"57697",title:"Dr.",name:"A.",middleName:null,surname:"Solai",fullName:"A. Solai",slug:"a.-solai"},{id:"122145",title:"Dr.",name:"Sivaraj",middleName:null,surname:"Kaveri",fullName:"Sivaraj Kaveri",slug:"sivaraj-kaveri"},{id:"122147",title:"Mr.",name:"Venkatesan",middleName:null,surname:"Dhamodharan",fullName:"Venkatesan Dhamodharan",slug:"venkatesan-dhamodharan"},{id:"122148",title:"Dr.",name:"Kuppusamy",middleName:null,surname:"Baskar",fullName:"Kuppusamy Baskar",slug:"kuppusamy-baskar"},{id:"122149",title:"Mr.",name:"Kasilingam",middleName:null,surname:"Kanan",fullName:"Kasilingam Kanan",slug:"kasilingam-kanan"},{id:"122150",title:"Prof.",name:"Victor",middleName:null,surname:"Rajamanickam",fullName:"Victor Rajamanickam",slug:"victor-rajamanickam"}]},{id:"24944",type:"chapter",title:"The Management of Medical Services in the Early and Late Phase of Tsunami: A Preparation for Humanitarian Health Assistance",slug:"the-management-of-medical-services-in-the-early-and-late-phase-of-tsunami-a-preparation-for-humanita",totalDownloads:1796,totalCrossrefCites:0,signatures:"Agung Budi Sutiono, Tri Wahyu Murni, Andri Qiantori, Hirohiko Suwa and Toshizumi Ohta",reviewType:"peer-reviewed",authors:[{id:"55453",title:"Dr.",name:"Agung Budi",middleName:null,surname:"Sutiono",fullName:"Agung Budi Sutiono",slug:"agung-budi-sutiono"},{id:"55464",title:"Dr.",name:"Andri",middleName:null,surname:"Qiantori",fullName:"Andri Qiantori",slug:"andri-qiantori"},{id:"55465",title:"Dr.",name:"Hirohiko",middleName:null,surname:"Suwa",fullName:"Hirohiko Suwa",slug:"hirohiko-suwa"},{id:"55467",title:"Dr.",name:"Tri Wahyu",middleName:null,surname:"Murni",fullName:"Tri Wahyu Murni",slug:"tri-wahyu-murni"},{id:"55468",title:"Prof.",name:"Toshizumi",middleName:null,surname:"Ohta",fullName:"Toshizumi Ohta",slug:"toshizumi-ohta"}]},{id:"24945",type:"chapter",title:"Prevention of Psychopathological Consequences in Survivors of Tsunamis",slug:"prevention-of-psychopathological-consequences-in-survivors-of-tsunamis",totalDownloads:2098,totalCrossrefCites:1,signatures:"Felipe E. García",reviewType:"peer-reviewed",authors:[{id:"51255",title:"MSc.",name:"Felipe",middleName:"E.",surname:"Garcia",fullName:"Felipe Garcia",slug:"felipe-garcia"}]}]},relatedBooks:[{type:"book",id:"5316",title:"Tsunami",subtitle:null,isOpenForSubmission:!1,hash:"43b9aa1649d76ec048022b3578bdc3f1",slug:"tsunami",bookSignature:"Mohammad Mokhtari",coverURL:"https://cdn.intechopen.com/books/images_new/5316.jpg",editedByType:"Edited by",editors:[{id:"52451",title:"Dr.",name:"Mohammad",surname:"Mokhtari",slug:"mohammad-mokhtari",fullName:"Mohammad Mokhtari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"52282",title:"Introductory Chapter: A General Overview of Tsunami and Effectiveness of Early Warning System",slug:"introductory-chapter-a-general-overview-of-tsunami-and-effectiveness-of-early-warning-system",signatures:"Mohammad Mokhtari",authors:[{id:"52451",title:"Dr.",name:"Mohammad",middleName:null,surname:"Mokhtari",fullName:"Mohammad Mokhtari",slug:"mohammad-mokhtari"}]},{id:"51595",title:"Multiscale Meteorological Systems Resulted in Meteorological Tsunamis",slug:"multiscale-meteorological-systems-resulted-in-meteorological-tsunamis",signatures:"Kenji Tanaka and Daiki Ito",authors:[{id:"79216",title:"Dr.",name:"Kenji",middleName:null,surname:"Tanaka",fullName:"Kenji Tanaka",slug:"kenji-tanaka"},{id:"186727",title:"Mr.",name:"Daiki",middleName:null,surname:"Ito",fullName:"Daiki Ito",slug:"daiki-ito"}]},{id:"51690",title:"Tsunami Generation Due to a Landslide or a Submarine Eruption",slug:"tsunami-generation-due-to-a-landslide-or-a-submarine-eruption",signatures:"Taro Kakinuma",authors:[{id:"183830",title:"Dr.",name:"Taro",middleName:null,surname:"Kakinuma",fullName:"Taro Kakinuma",slug:"taro-kakinuma"}]},{id:"51297",title:"Tsunami Propagation from the Open Sea to the Coast",slug:"tsunami-propagation-from-the-open-sea-to-the-coast",signatures:"Hiroshi Kanayama and Hiroshi Dan",authors:[{id:"183836",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Kanayama",fullName:"Hiroshi Kanayama",slug:"hiroshi-kanayama"},{id:"186350",title:"Mr.",name:"Hiroshi",middleName:null,surname:"Dan",fullName:"Hiroshi Dan",slug:"hiroshi-dan"}]},{id:"51411",title:"Coastal Tsunami Warning with Deployed HF Radar Systems",slug:"coastal-tsunami-warning-with-deployed-hf-radar-systems",signatures:"Belinda Lipa, Donald Barrick and James Isaacson",authors:[{id:"184807",title:"Dr.",name:"Belinda",middleName:null,surname:"LIpa",fullName:"Belinda LIpa",slug:"belinda-lipa"}]},{id:"51183",title:"Tsunamis in Sweden: Occurrence and Characteristics",slug:"tsunamis-in-sweden-occurrence-and-characteristics",signatures:"Nils-Axel Mörner",authors:[{id:"15619",title:"Dr.",name:"Nils-Axel",middleName:null,surname:"Morner",fullName:"Nils-Axel Morner",slug:"nils-axel-morner"}]},{id:"52135",title:"Challenges and Opportunities for Reducing Losses to Fast- Arriving Tsunamis in Remote Villages Along the Coast of Pakistan",slug:"challenges-and-opportunities-for-reducing-losses-to-fast-arriving-tsunamis-in-remote-villages-along-",signatures:"Ghazala Naeem, Abdullah Usman and Jamila Nawaz",authors:[{id:"193736",title:"Ms.",name:"Ghazala",middleName:null,surname:"Naeem",fullName:"Ghazala Naeem",slug:"ghazala-naeem"}]}]}],publishedBooks:[{type:"book",id:"41",title:"The Tsunami Threat",subtitle:"Research and Technology",isOpenForSubmission:!1,hash:null,slug:"the-tsunami-threat-research-and-technology",bookSignature:"Nils-Axel M?rner",coverURL:"https://cdn.intechopen.com/books/images_new/41.jpg",editedByType:"Edited by",editors:[{id:"15619",title:"Dr.",name:"Nils-Axel",surname:"Morner",slug:"nils-axel-morner",fullName:"Nils-Axel Morner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[]},onlineFirst:{chapter:{type:"chapter",id:"73535",title:"Data Collection Protocols in Wireless Sensor Networks",doi:"10.5772/intechopen.93659",slug:"data-collection-protocols-in-wireless-sensor-networks",body:'Wireless sensor networks (WSNs) [1] are distributed among environment with lightweight and small sensor nodes. These sensor nodes are used to measure the parameters of environment. Some of such parameters are vibration, pressure, sound, movements, temperature, humidity, etc. The sensors are well coordinated and connected to the base station (BS) or sink using wireless communication for forwarding sensed information. Due to this, many IoT-based applications such as home applications [2], vehicular monitoring [3], medical applications, structural monitoring, habitat monitoring, intrusion detection, tracking for military purpose, etc., are using WSNs for data collection [1, 4, 5].
Ad hoc and cellular network routing protocols are not suitable for sensor networks due to the sensor node design challenges such as node deployment, node mobility, and limited resource constraints (battery, communication, and processing capabilities) [6]. In WSNs, large number of sensor nodes are deployed for specific application due to this global addressing which is too difficult to maintain. Due to this large number, nodes located in the same area may generate redundant data and transmit to BS. This leads to bandwidth wastage and network traffic which in turn effects the more energy consumption. Another main resource constraint of a sensor node is limited battery power due to battery replacement or recharge not being possible in most of the WSN applications. WSN has a wireless communication medium, which leads to an increased probability of collisions in the data communication process and which impacts on the network performance. While designing a new data collection routing protocol and achieving its requirements such as coverage area, data accuracy, and low latency, we need to consider the above stated issues [7].
In WSN, collection of sensed data can be done in a regular or non-regular mode. Data have to be collected continuously from sensor nodes in regular mode. Whereas, in the non-regular mode, the data have to be collected at some periodic intervals from sensor nodes. Table 1 refers to different design metrics such as energy efficiency (EE), lifetime (LT), low latency (LL), fault tolerance (FT), security (S), quality of service (Q), and reliability (R), which are considered with the level of importance [low (L), medium (M), and high (H)] for different WSN applications.
Data collection | Applications | EE | LT | LL | FT | S | Q | R | |
---|---|---|---|---|---|---|---|---|---|
Regular data collection | Health care | Patient monitoring | M | M | H | H | H | H | H |
Military | Battlefield surveillance | H | H | H | H | H | H | H | |
Structural monitoring | H | H | H | H | M | M | H | ||
Public | Factory monitoring | M | M | H | M | M | M | H | |
Industrial | Machine monitoring | M | M | H | M | L | M | H | |
Safety | Chemical monitoring | M | M | H | M | M | M | H | |
Environmental | Disaster monitoring | H | H | H | H | L | M | M | |
Traffic control and monitoring | M | M | H | H | M | H | M | ||
Non-regular data collection | Agriculture | Precision agriculture | H | H | L | M | L | L | H |
Environment control in buildings | M | M | M | L | L | L | M | ||
Industrial | Managing inventory control | M | M | M | L | L | L | M | |
Home | Smart home automation | M | M | L | L | L | L | M | |
Animal monitoring | H | H | L | L | L | L | M | ||
Environmental | Vehicle tracking and detection | H | H | L | L | L | M | M | |
Disaster damage assessment | M | M | L | L | L | M | M |
WSN applications based on data collection requirements.
EE: energy efficiency; LT: lifetime; LL: low latency; FT: fault tolerance; S: scalability; Q: quality of service; R: reliability; L: low; M: medium; H: high.
This chapter’s main objective is the better understanding of data collection protocol with respect to network lifetime, energy conservation, fault tolerance, and low latency. In addition to this, understanding of some existing techniques such as multi-hop, clustering, duty cycling, aggregation, directional antennas, network coding, sink mobility, and cross-layer solutions for achieving these parameters.
For sensing the data from the environment and transferring to the BS, the sensor nodes are deployed at specific locations. The data collection’s main goal is accuracy of sensing and transmitting the data to BS without any information loss and delay. Transmitting of sensed data to BS is either by data dissemination (data diffusion) or data gathering (data delivery) [8]. Data/queries (network setup/management and/or control collection commands) propagation throughout the network is done in the data dissemination stage. Low latency is the main issue for disseminating data/queries to BS.
Data delivery or data gathering is the forwarding of sensed data to the BS. The main aim of data gathering is to maximize the number of rounds of data transferring toward BS before the network died. This will be achieved by minimizing energy consumption and delay for each transmission.
Single-hop or multi-hop is the basic communication technique between source sensor node and BS in data gathering. Sensed data are forwarded directly to BS in the single-hop communication. In multi-hop [9], the sensed data are forwarded to the base station with the help of intermediate sensor nodes. In multi-hop routing, energy conservation, route discovery, QoS, and low latency are the major issues. Introducing mobility in sink nodes, called mobile sinks or mobile collectors [10] is also a single-hop communication. In this network, mobile sink nodes move along a trajectory path to access the data from all source sensor nodes in a single-hop fashion. The trajectory path identification is the important step in this single-hop communication to cover all the nodes throughout the network. Energy conservation and mobility are the major issues in mobility-based single-hop data transmission.
Different classification of data collection routing protocols [6, 11, 12, 13, 14, 15] are proposed in recent years by researchers. Figure 1 shows the different classifications of data collection routing protocols.
Taxonomy of data collection protocols.
Network architecture-based classification was presented by Akkaya et al. [6] in 2005. According to Akkaya et al., routing protocols are classified as data-centric, hierarchical, and location-based protocols. Sink disseminating the queries in network to get the sensor data from sensor nodes is the work of data-centric protocols. In cluster- or hierarchical-based protocols, network of nodes is divided into clusters and each cluster is managed by the cluster head (CH). Each CH will receive the sensed data from the corresponding cluster member and forward it to the BS. Aggregation techniques can be used by the CH to save energy while forwarding to BS. Geographic- or location-based protocols are considering the position information of sensor nodes for routing.
Multipath, query-based, negotiation-based, quality of service (QoS)-based, and coherent-based protocols are the classification of routing protocols as given by Karaki et al. [11]. In multipath routing, multiple paths are selected for achieving a variety of benefits such as reliability, fault tolerance, and increased bandwidth. Data acquisition is done by the sink node with the help of query dissemination in query-based routing. All sensor nodes are going to store the data based on the interest of nodes. Then the data are forwarded to the destination only if the sensed or received node data match with the received queries. Data descriptors are used by negotiation-based protocols for reducing redundant data relays through negotiation. QoS-based protocols mainly consider QoS metrics such as delay, throughput, bandwidth, etc., when routing the data to the base station. In coherent routing, the sensed data is transferred directly to the aggregate node. Whereas in noncoherent routing, node data processing is done locally and then is transferred to neighbor nodes. In addition, routing protocols are classified into proactive, reactive, and hybrid protocols depending on path establishment between the source and destination.
Continuous, event-driven, observer-initiated, and hybrid-based on application interest are the different classifications given by Tilak et al. [12] in 2002. The sensor nodes transfer their sensed data at a prespecified rate to the server in the continuous model. Only when an event occurs, the sensor nodes forward data to base station in the event-driven data model. In the observer-initiated model, the observer will give an explicit request, then only the corresponding sensor nodes respond with the results. The combination of above three approaches will be called as hybrid protocols.
Based on data communication functionalities of routing protocols, Kai Han et al. [31], in 2013, classified the routing protocols into unicast, anycast, broadcast, multicast, and converge-cast. One-to-one association between sensor nodes is used in unicast routing. For forwarding the sensed data, unicast routing is using one neighboring node as a relay node. In anycast routing, nodes transfer the sensed data to a potential receiver node of a group. Multicast routing is transferring the data to a selected number of neighbor nodes simultaneously in a single transmission. Broadcast routing uses a one-to-many association; in a single transmission, sensor nodes transfer the data to their all neighbor nodes simultaneously. The data are aggregated at relay nodes and forwarded toward the base station in the converge-cast mechanism. Information exchanges will be done between the pair of sensor nodes in unicast/anycast. Whereas, multicast/broadcast is required for disseminating commands to sensor nodes, and converge-cast uses to collect the data from sensor nodes.
Routing protocols are classified as classical and swarm intelligence-based protocols by A.M. Zungeru et al. [14]. Further, each protocol is categorized into data-centric, hierarchical, location-based, network flow, and quality of service (QoS) awareness. In addition, they divided the routing protocols into proactive, reactive, and hybrid, depending on the path establishment between the source and destination.
The energy-efficient routing protocols are classified into network structure, communication model, topology-based, and reliable routing, as presented by Pantazis et al. [15]. Network structure routing protocols are classified into flat and hierarchical protocols. Communication model routing protocols can be divided into coherent or query-based and negotiation-based or noncoherent-based protocols. Mobile agent-based or location-based routing protocols are under the category of topology-based routing protocols. Reliable routing protocols are classified as multipath-based or QoS-based.
In addition to the above, some other literature [16, 17, 18, 19, 20] also presented different classifications of routing protocol. However, Figure 1 represents the overall classification of routing protocols in WSN.
In this section, some common design issues for data collection, such as energy, lifetime, latency, and fault tolerance are discussed. The techniques such as clustering, aggregation, network coding, duty cycling, directional antennas, sink mobility, and cross-layer solutions which are used to achieve efficient data collection routing protocols are also presented.
Managing energy of the sensor nodes is the primary concern in WSN because it is the critical constraint of the sensor nodes. Saving of the node energy increases the network lifetime. Sensor node depletes much energy in two significant operations such as environment sensing and communicating sensed data to the BS. Energy consumption is stable for sensing operation because it depends on the sampling rate and does not depend on the other factors such as the topology of network or the location of the sensors. While, data forwarding process depends on them. Hence, energy conservation is feasible by designing an effective data forwarding process. Network lifetime [21] is defined as the period from the starting of the WSN operation to the time when any or a given percentage of sensor nodes die. Hence, the major objective of the data collection protocol is to gather the data with the maximum number of rounds within the lifetime of the network. The data gathering is the vital factor which considers energy saving as well as lifetime. In literature [4, 22], the authors have presented energy-efficient techniques for data collection. Rault et al. [4] have reviewed the energy-saving techniques and its classification such as radio optimization, data reduction, sleep/wake-up schemes, energy-efficient routing, and battery repletion. Anastasi et al. [22] in 2009 discussed directions for energy conservation in WSNs and presented the taxonomy of energy conservation techniques such as duty cycling, data driven, and mobility-based routing.
Latency is the period from the time unit that the data generation at the sensor node started to the time unit that data reception was completed at the base station. It is one of the main concerns for time significant applications such as military and medical health-care monitoring. Attaining low latency is a vital concern because of the following reasons:
Due to limited constraints of sensor nodes which are more prone to failure.
Collisions and network traffic will be increased due to the broadcast nature of radio channel.
Same kind of data will be sensed by densely deployed sensors and transfer to BS will increase the network traffic and exhaust the communication bandwidth.
To deal with the above issues, there is a need for low-latency protocols. Literature [23, 24] presents recent survey works on low-latency routing protocols. Srivathsan and Iyengar [23] have reviewed some key mechanisms to reduce the latency in single-hop and multi-hop wireless sensor networks; such mechanisms are sampling time, propagation time, processing time, scheduling, use of directional antennas, MAC protocols, sleep/wake-up cycles, predictions, use of dual-frequency radios, etc. A review on energy-efficient and low-latency routing protocols for WSNs without dominating the other design factors is presented by Bagyalakshmi et al. [24].
Fault tolerance [25] enhances the availability, reliability, and dependability of the system by ensuring the usage availability of the system without any disruption in the presence of faults. In WSN, fault tolerance is also a demanding issue due to the sensor nodes more vulnerable to failure because of energy depletions, desynchronization, communication link errors, etc., which are provoked owing to hardware and software failures, environmental conditions, etc. Hence, fault management in WSN must be administered with additional care. Initial review works on fault-tolerant routing schemes are present in literature [21, 25, 26, 27, 28]. Yu et al. [26] have explained issues in the fault management of WSN. Three phases called fault diagnosis, fault detection, and fault recovery for supervising faults have been proposed. In fault detection phase, an unexpected failure should be identified by the system. Literature [26, 27, 28] explains various fault detection techniques. In fault diagnosis phase, comprehensive description or model has been determined to distinguish various faults in WSNs [21] or fault recovery action. In the fault recovery phase, the sensor network is redesigned from failures or fault nodes to enhance the network performance. Fault recovery techniques have been dealt by literature [25].
The major techniques utilized for attaining energy saving, low latency, long lifetime, and fault tolerance in WSNs are discussed in this section.
Cluster-based architecture is a foremost technique for effective energy conservation. In this mechanism, the network is partitioned into clusters, where the cluster head (CH) is a leader to manage the members of each cluster. Every member sensor node transmits the sensed data to their corresponding CH; then, CHs communicate the collected data to the BS. This technique avoids flooding, routing loops, and multiple routes; hence, reduced network traffic and low latency are attained. The major advantage of cluster-based architecture is that it needs less transmission power because of small communication ranges within the cluster. The CH uses the fusion mechanism to minimize the size of the transmission data. CH selection is performed in a rotation basis to balance the energy consumption in the network and improve the network lifetime. However, in cluster-based routing protocols, cluster head selection plays a critical role. Further, clustering algorithms do not consider the location of the base station, which creates a hot spot problem in multi-hop wireless sensor networks.
Data aggregation is one of the significant methods applied to aggregate the raw data evolved from multiple sources. In data aggregation schemes, nodes receive the data, reduce the amount of data by employing data aggregation techniques, and then transmit the data to the BS. The average or minimum amount of received data are merely forwarded by the received node. This reduces the network traffic and hence low latency is achieved. However, the base station (sink) cannot ensure the accuracy of the aggregated data that have been received by it and also cannot restore the data.
Network coding is the same as the aggregation technique. In this technique, the nodes collect the data from neighbor nodes and combine them together by applying mathematical operations; then it transmits data to the BS. This technique improves the network throughput, reliability, energy efficiency, and scalability; it is also resilient to attacks and eavesdropping. Network traffic in broadcast scenarios can be reduced by combining several packets as a single packet rather than sending separate packets.
For energy conservation, duty cycling is one of the important techniques in WSNs. In duty cycling, the radio transceiver mode of sensor node is changing between active and sleep. This technique requires cooperative coordination between nodes for communication. Nodes want to communicate with each other and the nodes will shift from sleep mode to wake-up mode. A node must wait for its neighbor nodes to awake for communication. Sleep latency is increased due to this. Multi-hop broadcasting is complex in this technique because all the neighboring nodes are not active at the same time.
Transmitting or receiving signals with one or more directions at a time with greater power is done with directional antennas. This technique improves the performance with respect to throughput by increasing the transmission range. With the help of directional antennas, bandwidth reusability is also possible. However, transmission power calculations and optimal antenna pattern selection overhead is more in these directional antennas. Also, directional antennas are more exposed to hidden and exposed terminal problems.
Sink mobility is one of the energy-efficient technique, where mobility is introduced with sink nodes. The mobile sink nodes collect the data from sensor nodes with single-hop while moving in a specified path and then forward the same to the BS. This scheme reduces the workload of nodes which are placed nearer to the sink nodes and it increases the network lifetime. With the help of sink mobility, so many sparse networks can be connected and communicated which in turn provides scalability of the network. Reliability will be improved because of single-hop communication between the mobile sink and sensor nodes. However, trajectory path maintenance is a critical part of sink node while moving. Mobile collector needs a proper synchronization mechanism with sensor nodes, otherwise this causes packet loss while data gathering.
When compared to layered approaches, cross-layered approach in WSN is energy efficient. The protocol stack is considered as a single system instead of individual layers in the cross-layered approach. For interaction among the protocol layers, state information of the protocols is shared among all layers. Cross-layered protocol implementations significantly affect the system efficiency with respect to the energy and lifetime.
In WSN, so many techniques are proposed to achieve energy efficiency, longer lifetime, fault tolerance. Low latency by different researchers are briefly explained in this section. Most of these solutions are designed based on different techniques such as clustering, network coding, duty cycling, aggregation, directional antennas, sink mobility, and cross-layer solutions.
Low-energy adaptive clustering hierarchy (LEACH) routing strategy was proposed by Heinzelman et al. [29]. It is a cluster-based routing algorithm to decrease energy consumption and improve the network lifetime. In this protocol, the network is divided into clusters; each cluster contains a set of CMs and a leader called CH. The CMs send the data to its respective CH; CHs communicate the collected data to the BS and are elected in a random and distributed manner. Subsequently, LEACH was altered to LEACH-C [30], a centralized approach. The process of CH selection is performed based on the residual energy of the sensor nodes. However, due to dynamic cluster formation, the distance between CH and BS is faraway and some of the cluster nodes are also faraway from the CHs; it increases the communication cost. Later, a lot of modified LEACH protocols have been proposed to enhance the network lifetime and have been reviewed in [17].
LEACH protocol has been improved as power-efficient gathering in information systems (PEGASIS) [31], a multi-hop chain-based protocol, where every node aids in transmitting and/or receiving the data from its neighbor node by forming the chain. The collected data are aggregated and carried from node to node. One of the nodes in the chain is selected as a leader; the leader node transfers data to the BS. PEGASIS performs better than LEACH by minimizing the number of transmissions from sensor nodes to BS and clustering overhead. However, data transmission delay is higher due to the large chain length.
Threshold-sensitive energy-efficient sensor network protocol (TEEN) [32] is a homogenous reactive routing protocol. In this approach, the process of CH selection is performed similar to LEACH; the data transmission varies from LEACH. The workings of TEEN are based on the thresholds, namely, Hard threshold (
Hybrid energy-efficient distributed (HEED) protocol [33] has been proposed by Younis and Fahmy. It is a homogenous cluster-based routing protocol; CH selection is accomplished based on the probability function of residual energy and node degree. Later, HEED protocol is extended as the heterogeneous HEED to manage the routing in the heterogeneous network field. This protocol utilizes fuzzy logic model for the CH selection process; the parameters considered in the fuzzy logic model are node degree, distance, and remaining energy. Finally, direct data transmission is carried out between the CM and CH and between the CH and BS.
Qing et al. [34] have presented distributed energy-efficient clustering scheme (DEEC), a heterogeneous data collection protocol. The sensor nodes possess varied energy levels. The selection of CHs is done based on the probability ratio between the residual energy of the nodes and average energy of the whole network. The possibility of evolving a CH is higher for the nodes which possess more residual energy. However, the probabilistic CH selection process prompts unequal clusters which leads to more energy dissipation.
Periodic, event-driven, and query-based protocol (PEQ) and its variation, CPEQ, were proposed by Boukerche et al. [35] in 2006. PEQ is designed for achieving the following: low latency, high reliability, and broken path reconfiguration. CPEQ is a cluster-based routing protocol. The publish/subscribe mechanism is used to broadcast requests throughout the network.
Genetic algorithm-based clustering approach (LEACH-GA) was introduced in literature [36] to predict the optimal probability for electing an optimal number of CHs. This approach improved the network lifetime by achieving energy-efficient clustering.
Artificial bee colony (ABC)-based algorithm [37] has been proposed, where the CH selection is performed by adopting the ABC algorithm. ABC algorithm improves the clustering process by employing efficient and fast search feature to select the CHs. Both cluster members to CH, and CH to BS communication is performed by direct data communication. However, this protocol does not consider the coverage of the CH and it prompts more energy dissipation.
Ant colony algorithm for data aggregation (DAACA) has been introduced by Chi Lin et al. [38]. This approach comprises of three phases: initialization, packets transmissions, and operations on pheromones. In the transmission phase, the next hop is dynamically selected by determining the number of pheromones of neighbor nodes and the residual energy. Pheromones’ adjustments are accomplished for every specified number of rounds of data transmissions. Besides, various pheromones’ adjustment strategies such as basic-DAACA, elitist strategy-based DAACA (ES-DAACA), maximum- and minimum-based DAACA (MM-DAACA), and ant colony system-based DAACA (ACS-DAACA) are utilized to enhance the network lifetime. However, duplication packets are transmitted from sink nodes to initialize the network, which causes higher energy depletion in the network.
Lusheng Miao et al. [39] have introduced network coding to resolve the issues in gradient-based routing (GBR) scheme, such as broadcasting of interest messages by sink node which prompts duplication of packets, which causes more energy dissipation, and point-to-point message delivery forces more data retransmissions due to the unstable network environment in WSNs. The authors have proposed network coding for GBR (GBR-NC) to implement energy-efficient broadcasting algorithm which reduces network traffic. Further, the authors have presented two competing algorithms such as GBRC and auto-adaptable GBR-C to minimize the data retransmissions.
In 2012, Rashmi Ranjan Rout et al. [40] proposed an energy-efficient triangular (regular) deployment strategy with directional antenna (ETDDA), where 2-connectivity pattern has been utilized. This pattern is accomplished by aligning the directional antenna beam of a sensor node in a specified direction toward the sink. Data forwarding depends on network coding for many-to-one traffic flow from sensor nodes to sink. The proposed approach ensures energy efficiency, robustness, and better connectivity in communicating data to the sink.
Ming Ma et al. [41] have put forward a mobility-based data-gathering mechanism for WSNs. A mobile data collector (M-collector), perhaps a mobile robot or a vehicle, is implemented with a transceiver and battery. The M-collector travels through a specific path and determines the sensor nodes, which comes within its communication range while traversing. Then, it collects the data from the sensor nodes in the single-hop communication and forward the data to the base station without delays. Hence, this mechanism improves the lifetime of the sensor nodes. The authors have primarily focused to reduce the length of each data-gathering tour called as single-hop data-gathering problem (SHDGP).
Roja Chandanala et al. [42] have presented a mechanism to preserve energy in flood-based WSNs by applying two techniques: network coding and duty cycling. Initially, the authors have proposed DutyCode, a cross-layer technique, where Random Low Power Listening MAC protocol was devised to implement packet streaming. The authors have applied flexible intervals for randomizing sleep cycles. Further, an enhanced coding scheme was proposed, which selects appropriate network coding schemes for nodes to remove redundant packet transmissions.
Meikang Qiu et al. [43] have introduced informer homed routing (IHR), which is a novel energy-aware cluster-based fault-tolerance mechanism for WSN. IHR is the foremost variant of dual homed routing (DHR) fault-tolerance mechanism. In this mechanism, each sensor node is attached with two cluster heads called primary cluster head (PCH) and backup cluster head (BCH). Sensor nodes deliver the data to PCH rather than sending simultaneously to both PCH and BCH. In each round, BCH probes the PCH to identify whether the PCH is active or not using the beacon message. In three continuous rounds, if BCH cannot receive any beacon message from PCH, then BCH will declare that the PCH has failed and it informs to sensor nodes to transmit data to BCH. Hence, IHR provides an energy-efficient fault-tolerance mechanism to prolong the lifetime of the network. However, cluster head selection process is containing more overhead.
A novel evolutionary approach for load-balanced clustering problem is presented in literature [44]. CH (gateway) formation is performed using a novel genetic algorithm. This algorithm differs from the traditional GA in the initial population and mutation phase. This approach balances the load among the gateways and it is energy efficient. However, sensor nodes that are not reachable to any gateway are left out from communication. Later, they extended a differential evolution-based approach [45] used for clustering the nodes with gateways (CHs) in a load-balanced way to ensure load balancing among the gateways and energy efficiency. But, this approach used single-hop communication between the gateway to BS and hence it may not be suitable for long-distance communication.
Flow partitioned unequal clustering (FPUC) algorithm has been proposed by Jian Peng et al. [46] to attain an enhanced network lifetime and coverage. FPUC has two phases: clustering and flow partition routing. In the clustering phase, cluster head is decided based on the higher residual energy and larger overlapping degree of sensor nodes. In the flow partition routing phase, cluster head collects the data from the member nodes and aggregates the data into a single packet; then it forwards the data to the sink through gateway nodes depending on residual energy The flow-partitioned routing phase has two subphases: dataflow partitioning phase and relaying phase. In the dataflow partitioning phase, the cluster head segments the dataflow into various smaller packets and then delivers these packets to its gateway nodes. In the relaying phase, gateways communicate the received data to the next hop with minimum cost.
An energy-efficient adaptive data aggregation strategy using network coding (ADANC) to attain improved energy efficiency in a cluster based duty-cycled WSN has been introduced by Rashmi Ranjan Rout et al. [47]. Network coding minimizes the network traffic inside a cluster and duty cycling scheme has been used in the cluster network to prolong network lifetime.
Dariush Ebrahimi and Chadi Assi [48] have presented a new compressive data gathering method. This method utilizes compressive sensing (CS) and random projection techniques to enhance the lifetime of large WSNs. The authors preferred the method to equally distribute the energy throughout the network rather than decreasing the overall network energy consumption. In the proposed data-gathering method, minimum spanning tree projection (MSTP) has been adopted. MSTP creates several minimum spanning trees (MSTs) and each root node of the tree aggregates sensed data from the sensor nodes using compressive sensing. A random projection root node with compressive data-gathering aids to achieve a balanced energy consumption all over the network. Besides, eMSTP has been introduced which is the extended version of MSTP; the sink node in the eMSTP behaves like a root node for all MST.
Ahmad et al. [49] proposed a protocol called Away Cluster Heads with Adaptive Clustering Habit (ACH2) and this mechanism has been utilized for enhancing network lifetime. However, global node information is required for communicating data and the size of the clusters is also unequal. As the node distribution among the clusters is unequal, this approach prompts to variation in energy depletion ratio among clusters in the network.
A genetic algorithm-based approach [50] has been applied for binding the sensor nodes to the sink nodes, considering the balanced load among the sink nodes. The authors have presented a fitness function which takes into account the communication cost between the sensor node and sink node and the processing cost of the sink node. This approach dealt with the nodes which do not have any sink node in their communication range.
In 2015, energy-aware routing (ERA) [51] has been proposed, where the residual energy of the CHs and the intra-cluster distance are the parameters taken into account for the process CH selection. However, the parameters such as the optimal number of CHs, network density, and cluster coverage are not considered in the CH selection process; hence this causes uneven energy consumption in every cluster.
A GSA-based approach titled GSA-based energy-efficient clustering (GSA-EEC) was presented by literature [52]. For the fitness value calculation, the parameters considered are the distance between the sensor nodes and gateways, the distance between gateways and sink, and residual energy of gateways. This approach improves the network lifetime and total energy consumption. Further, they introduced a routing strategy titled gravitational search algorithm-based multi-sink placement (GSA-MSP) for placing multiple sinks on the sensor network [53].
Priority-based WSN clustering of multiple sink scenario using artificial bee colony [54] has been proposed. The fitness function in this approach considers the energy of the sink node and the sensor node, the distance between the sensor node to the sink node, and the priority of each sink.
PSO-based approach for energy-efficient routing and clustering has been proposed in literature [55]. Routing path between the gateway to BS is determined using the PSO technique. This approach provides energy-efficient routing and energy-balanced clustering. This approach is fault tolerant when CHs failed. But, nodes that are not reachable to any gateway are left out from communication.
Gravitational search algorithm for cluster head selection and routing (GSA-CHSR) [56] has been proposed. The authors have used GSA algorithm for deciding the optimal number of CH nodes and finding the optimal route between CH and BS. This approach improves performance parameters such as network lifetime, residual energy, and the number of packets received at BS. However, this approach incurs clustering overhead for selecting the optimal set of CHs.
Guravaiah and Leela Velusamy [57] proposed a routing protocol titled hybrid cluster communication using RFD (HCCRFD) based on clustering using river formation dynamics-based multi-hop routing protocol (RFDMRP) [58]. This protocol increases the network lifetime. However, load balancing among CHs is not considered and clustering overhead exists due to periodic CH selection. Further, the authors have proposed a balanced energy and adaptive cluster head selection algorithm (BEACH) [59]. They considered the parameters such as degree of the node, remaining energy of the node, the distance from BS to the sensor node, and the average transmission distance to its neighbors for achieving the load-balanced clustering.
An approach called LEACH-PSO [60] has been proposed for improving the network lifetime by selecting an optimum number of CHs in every round. In this work, the particle swarm optimization method is integrated with LEACH for forming the clusters.
Energy-efficient CH-based GSA (GSA-EC) [61] for finding an optimal set of CHs using GSA has been proposed. To balance the energy consumption, one-hop clusters are formed using an optimal set of CHs. The authors have also proposed the hybrid approach of PSO and GSA. This approach increases network lifetime and network stability. However, this approach also incurs clustering overhead for selecting the optimal set of CHs. Later, Kavitha et al. [62] used GSA for assigning sensor nodes to an appropriate cluster head (CH) in a load-balanced way such that it reduces the energy consumption and hence enhances the lifetime of a network.
Integrated clustering and routing protocol using cuckoo and harmony search has been proposed in literature [63]. This approach has adopted the cuckoo search algorithm for CH selection. Residual energy, degree of a node, intra-cluster distance, and coverage ratio are the parameters for developing fitness function used in CH selection. The harmony search algorithm has been employed for routing from CH to BS. It is energy efficient and balances the energy consumption of the network. Further, it minimizes the un-cluster nodes, that is, nodes that are not within the communication range of any CH are minimized. But, load balancing among CHs is not considered.
Multi-objective load-balancing clustering technique (MLBC) [64] has been proposed for clustering in WSN by adopting multi-objective PSO (MOPSO) strategy which is used for CH selection. The shortest-path tree (SPT) for loop-free routing is created using Dijkstra’s algorithm. It is energy efficient and reliable. But, the nodes that are not reachable to any CH are not considered.
In energy-efficient and delay-less routing [65], CH selection is performed using firefly with cyclic randomization (FCR) algorithm. This approach reduces transmission delay in the network. But, this approach has not considered energy balancing.
Overall comparison of above routing protocols are shown in Table 2 with the techniques used, metrics considered, and drawbacks of each solution.
Sl. No. | Algorithm | Techniques used | Metrics | Drawbacks |
---|---|---|---|---|
1 | PEGASIS [31] | Chain construction | Lifetime | Network throughput decreased |
2 | LEACH [30] | Clustering | Lifetime, scalability | Not considering RE for CH selection, unbalanced energy consumption |
3 | TEEN [32] | Clustering | Lifetime | Same as LEACH, network throughput decreased |
4 | HEED [33] | Clustering | Lifetime | Direct transmission, heterogeneity is not considered |
5 | DEEC [34] | Clustering | Lifetime, scalability | Direct transmission, unequal size of clusters, unbalanced energy consumption |
6 | PEQ and CPEQ [35] | Clustering and publish/subscribe mechanism | Fault tolerance, low latency, and energy | Traffic overhead |
7 | DAACA [38] | Clustering, ACA | Energy, network lifetime | Bottleneck problem nearer to sink node, overhead in pheromones calculation at each round |
8 | GBR-NC, GBR-C, and auto-adaptable GBR-C [39] | Network coding and multi-hop | Network lifetime, energy | Transmission delays in competing algorithm |
9 | ETD-DA [40] | Directional antennas, network coding, and multi-hop | Energy, throughput, and low latency | Overhead in optimal antenna pattern and transmission power calculations |
10 | SHDGP [41] | Mobile collectors and single-hop | Energy, low latency, scalability, and throughput | High control overhead to maintain the trajectory path, packet loss due to speed of data collector |
11 | DutyCode and ECS [42] | Network coding, duty cycling, and multi-hop | Energy | Transition between active and sleep states overhead |
12 | IHR [43] | Clustering and multi-hop | Fault tolerance and energy | Node unable to find CH, leads to reliability problems |
13 | Novel evolutionary approach [44] | Clustering, genetic algorithm | Energy efficiency | Single-hop communication between the CH to BS |
14 | DE-based clustering algorithm [45] | Clustering using differential evolution | Energy efficiency | Single-hop communication between the CH and BS |
15 | FPUC [46] | Clustering, data aggregation, and multi-hop | Energy efficiency, lifetime | CH selection overhead |
16 | ADANC [47] | Clustering, network coding, and duty cycling | Energy, low latency, and lifetime | Cluster maintenance overhead |
17 | MSTP [48] | Data aggregation using compressive sensing | Energy, network lifetime | Computational overhead in MST calculations |
18 | ACH2 [49] | Clustering | Lifetime, throughput | Global node information for data transmission, cluster head selection overhead |
19 | GA-based approach [50] | Clustering using genetic algorithm | Energy efficiency | Single-hop communication between sink and BS |
20 | Energy-aware routing (ERA) [51] | Clustering | Energy efficiency, lifetime | Optimum number of CHs is not considered |
21 | GSA-EEC [52] | Clustering, GSA | Energy efficiency | Load balancing among CHs not considered |
22 | PSO-based routing [55] | Clustering (gateways) using PSO | Energy efficiency | Nodes that are not reachable to any gateway are not considered |
23 | GSA-CHSR [56] | Clustering using multi-hop GSA | Energy efficiency | Clustering overhead |
24 | HCCRFD [57] | Clustering using LEACH, RFD | Energy efficiency | No load-balanced clustering |
25 | BEACH [59] | Clustering, RFD | Energy efficiency | CH selection overhead |
26 | GSA-EC [61] | GSA, multi-hop | Network lifetime | Clustering overhead |
27 | Cuckoo and harmony search-based routing [63] | Cuckoo search algorithm | Energy efficiency | Load balance among CHs not considered |
28 | MLBC [64] | MOPSO, multi-hop, spanning tree | Energy efficiency, reliable | Nodes that are not reachable to any CH are not considered |
29 | Energy-efficient and delay-less routing [65] | FCR algorithm | Energy efficiency | Energy balancing is not ensured |
Existing protocols for data collection.
Overall, the above discussed techniques’ main objective is energy-efficient data gathering and is concentrated on the following issues:
Duplication of data generation and forwarding
Congestion or data storm problem nearer to the base station
Selection of multi-hop routing path
Operations to perform data aggregation
Selection of cluster head
However, we need to concentrate on the following future directions for proposing new routing techniques:
Almost all protocols require location information for routing. Location finding can be done using localization or GPS techniques, which are dependent on energy consumption. Finding of sensor location with less consumption of energy is an issue.
Most of the multi-hop routing protocols suffer from overheads and delay due to path setup and relay nodes. Also, formation of loops in aggregate tree generation increases the energy consumption.
Most of the literature failed in energy calculations at the time of CH selection in cluster-based routing protocols.
Uneven distribution of cluster heads will generate unequal-sized clusters, unbalanced energy consumption between cluster members, and CH coverage problem.
The size (with respect to area and number of members) inequality among the clusters leads to network coverage problem due to limited communication range in large size (area) cluster and faraway nodes consume more energy in large size (area) cluster.
The sizes of the clusters formed in the existing protocols are not equal. This leads to unbalanced energy consumption among the clusters.
Density of network was not considered as a parameter in CH selection process. This impacts the formation of unequal sized clusters and leads to uneven distribution of load to CH.
Uneven distribution of load on CH and the intra- and inter-communication path length is more.
Security is the major parameter need to be considered in military applications. Considering security, energy efficiency is still challenging issues.
In recent years, more popularity gain is deterministic rather than probabilistic-based clustering due to reliability. However, CH selection and other computational complexity are still a challenging area.
Heterogeneous network in WSN is also an important problem due to different communication and processing capabilities.
In this chapter, classification of data collection routing protocols in WSN has been thoroughly discussed. Various techniques such as clustering, duty cycling, aggregation, network coding, sink mobility, and cross-layered solutions, and directional antennas have been utilized by data collection routing protocols for attaining long lifetime, energy efficiency, fault tolerance, and low latency. These techniques are reviewed briefly in this chapter. Finally, this chapter demonstrates a paramount comparison among the existing approaches applicable on data collection process in WSN. Future directions of routing protocols are presented at the end of this chapter.
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n\\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\\n\\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\\n\\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\\n\\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\\n\\n\\n"}]'},components:[{type:"htmlEditorComponent",content:'
The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n\nOpen Science is transparent and accessible knowledge that is shared and developed through collaborative networks.
\n\nOpen Science is about increased rigour, accountability, and reproducibility for research. It is based on the principles of inclusion, fairness, equity, and sharing, and ultimately seeks to change the way research is done, who is involved and how it is valued. It aims to make research more open to participation, review/refutation, improvement and (re)use for the world to benefit.
\n\nOpen Science refers to doing traditional science with more transparency involved at various stages, for example by openly sharing code and data. It implies a growing set of practices - within different disciplines - aiming at:
\n\nWe aim at improving the quality and availability of scholarly communication by promoting and practicing:
\n\n\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6669},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2457},{group:"region",caption:"Asia",value:4,count:12710},{group:"region",caption:"Australia and Oceania",value:5,count:1016},{group:"region",caption:"Europe",value:6,count:17716}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{"hasNoEditors=0&sort=-dateEndThirdStepPublish&src=S-T-0":null},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"303",title:"Veterinary Genetics",slug:"veterinary-genetics",parent:{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:32,numberOfWosCitations:26,numberOfCrossrefCitations:21,numberOfDimensionsCitations:41,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"303",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6647",title:"Animal Genetics",subtitle:"Approaches and Limitations",isOpenForSubmission:!1,hash:"8c7e69892d305f7231a5600de2acdc16",slug:"animal-genetics-approaches-and-limitations",bookSignature:"Dana Liana Pusta",coverURL:"https://cdn.intechopen.com/books/images_new/6647.jpg",editedByType:"Edited by",editors:[{id:"90748",title:"Prof.",name:"Dana Liana",middleName:null,surname:"Pusta",slug:"dana-liana-pusta",fullName:"Dana Liana Pusta"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5543",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",subtitle:null,isOpenForSubmission:!1,hash:"3d2bf9a6dccb151b4c68b986ec4e59d6",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",bookSignature:"Rosa Estela Quiroz-Castañeda",coverURL:"https://cdn.intechopen.com/books/images_new/5543.jpg",editedByType:"Edited by",editors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"5405",title:"Trends and Advances in Veterinary Genetics",subtitle:null,isOpenForSubmission:!1,hash:"b81ca0dfa8e83073171dd1b5c29b2232",slug:"trends-and-advances-in-veterinary-genetics",bookSignature:"Muhammad Abubakar",coverURL:"https://cdn.intechopen.com/books/images_new/5405.jpg",editedByType:"Edited by",editors:[{id:"112070",title:"Dr.",name:"Muhammad",middleName:null,surname:"Abubakar",slug:"muhammad-abubakar",fullName:"Muhammad Abubakar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"52715",doi:"10.5772/65804",title:"Major Histocompatibility Complex-Associated Resistance to Infectious Diseases: The Case of Bovine Leukemia Virus Infection",slug:"major-histocompatibility-complex-associated-resistance-to-infectious-diseases-the-case-of-bovine-leu",totalDownloads:2314,totalCrossrefCites:6,totalDimensionsCites:10,abstract:"The major histocompatibility complex (MHC) is a polymorphic gene cluster of about 150 genes, present in all vertebrates. Many of these genes contribute to immunity. Particularly, MHC‐encoded class I and class II molecules, which are typically highly polymorphic and polygenic, are central in defining the specificity of the adaptive immune response. Among the diversity of genes associated with disease resistance, MHC genes are particularly interesting as they are associated with resistance and susceptibility to a wide range of diseases, some of which produce important economic losses in livestock. Enzootic bovine leukosis is an infectious disease caused by the retrovirus bovine leukemia virus (BLV), with an important economic impact, mainly in dairy herds. In this chapter, MHC‐associated genetic resistance to BLV is revised. Certain alleles of the bovine MHC (BoLA) class II locus have been found strongly associated with resistance to viral dissemination. Genetic selection of resistant animals emerges as a natural strategy for the control of infectious diseases, especially when there is no other alternative of control or prevention, as vaccines. Founded on this knowledge, a BLV control program based on selection of genetically resistant cattle was designed. The proof of concept indicates that this strategy is feasible to implement in dairy herds.",book:{id:"5405",slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Silvina Elena Gutiérrez, Eduardo Néstor Esteban, Claudia María\nLützelschwab and Marcela Alicia Juliarena",authors:[{id:"188776",title:"Dr.",name:"Silvina Elena",middleName:null,surname:"Gutiérrez",slug:"silvina-elena-gutierrez",fullName:"Silvina Elena Gutiérrez"},{id:"189290",title:"Dr.",name:"Marcela Alicia",middleName:null,surname:"Juliarena",slug:"marcela-alicia-juliarena",fullName:"Marcela Alicia Juliarena"},{id:"189291",title:"Dr.",name:"Eduardo Néstor",middleName:null,surname:"Esteban",slug:"eduardo-nestor-esteban",fullName:"Eduardo Néstor Esteban"},{id:"189293",title:"Dr.",name:"Claudia María",middleName:null,surname:"Lützelschwab",slug:"claudia-maria-lutzelschwab",fullName:"Claudia María Lützelschwab"}]},{id:"52940",doi:"10.5772/65848",title:"Beyond Fifty Shades: The Genetics of Horse Colors",slug:"beyond-fifty-shades-the-genetics-of-horse-colors",totalDownloads:3218,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"Since the dawn of horse domestication, coat colors have always fascinated humankind. In the last century, knowledge of genetics and development of scientific tools have become powerful enough so that the effects of many DNA mutations could be critically studied. Coat color nomenclature varies according to countries and breed associations; in addition, many factors can modify the color of the coat, such as sun exposure, age, sex, and nutritional status of the animal. Nevertheless, horses are capable of producing only two pigments. Several genes have been indicated as putative to coat color modification, altering the basic color by dilution, redistribution, or lacking of pigments.",book:{id:"5405",slug:"trends-and-advances-in-veterinary-genetics",title:"Trends and Advances in Veterinary Genetics",fullTitle:"Trends and Advances in Veterinary Genetics"},signatures:"Adriana Pires Neves, Eduardo Brum Schwengber, Fabiola Freire\nAlbrecht, José Victor Isola and Liana de Salles van der Linden",authors:[{id:"188768",title:"Associate Prof.",name:"Adriana",middleName:null,surname:"Pires Neves",slug:"adriana-pires-neves",fullName:"Adriana Pires Neves"},{id:"188993",title:"Dr.",name:"Eduardo",middleName:null,surname:"Brun Schwengber",slug:"eduardo-brun-schwengber",fullName:"Eduardo Brun Schwengber"},{id:"188994",title:"Mrs.",name:"Fabiola",middleName:null,surname:"Freire Albrecht",slug:"fabiola-freire-albrecht",fullName:"Fabiola Freire Albrecht"},{id:"188996",title:"Ph.D. Student",name:"Liana",middleName:null,surname:"de Salles van der Linden",slug:"liana-de-salles-van-der-linden",fullName:"Liana de Salles van der Linden"},{id:"188997",title:"Mr.",name:"José Victor",middleName:null,surname:"Vieira Isola",slug:"jose-victor-vieira-isola",fullName:"José Victor Vieira Isola"}]},{id:"59305",doi:"10.5772/intechopen.74008",title:"Avian Coccidiosis, New Strategies of Treatment",slug:"avian-coccidiosis-new-strategies-of-treatment",totalDownloads:3686,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The control of avian coccidiosis since the 1940s has been associated with the use of ionophores and chemical drugs. Recently, a significant interest in natural sources has developed due to the pressure to poultry industry to produce drug-free birds. Consequently, the search of products derived from plants and other natural sources has increased in the last years. Today, many commercial products containing essential oils, extracts, and other compounds are available. The use of these compounds of natural origin is related to an increased immune response, a body weight gain, destruction of oocyst, among other benefits. The main inconvenience of these products is the act on some species of Eimeria, but not all. This genetic variability found in the parasite makes the use of products difficult to control and treat coccidiosis. In this chapter, several proposals of treatment are presented based on the use of natural products, considering the new strategies of treatment with minimal consequences to birds.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"58461",doi:"10.5772/intechopen.72638",title:"Natural Compounds as an Alternative to Control Farm Diseases: Avian Coccidiosis",slug:"natural-compounds-as-an-alternative-to-control-farm-diseases-avian-coccidiosis",totalDownloads:2078,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Coccidiosis is one of the most aggressive and expensive parasite diseases in poultry industry worldwide. Currently, the most used control techniques are chemoprophylaxis and anticoccidial feed additives. Although there is a great variety of commercial anticoccidial drugs and vaccines in the market, there is also a significant resistance to use them in animals with human as final consumer. To date, none available product offers effective protection toward coccidiosis; however, the search for novel strategies to control this disease continues, and natural products have arisen as a potential way to cope with avian coccidiosis. In this chapter, we highlight recent advances in natural compounds, their anticoccidial properties, and mechanisms.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Mayra E. Cobaxin-Cárdenas",authors:[{id:"223051",title:"Dr.",name:"Mayra E.",middleName:null,surname:"Cobaxin-Cárdenas",slug:"mayra-e.-cobaxin-cardenas",fullName:"Mayra E. Cobaxin-Cárdenas"}]},{id:"58679",doi:"10.5772/intechopen.72636",title:"Genome-Based Vaccinology Applied to Bovine Babesiosis",slug:"genome-based-vaccinology-applied-to-bovine-babesiosis",totalDownloads:1161,totalCrossrefCites:1,totalDimensionsCites:3,abstract:"Genomics approaches in veterinary research have been a very useful tool to identify candidates with potential to be used in prevention of animal diseases. In Babesia, genome information analysis has elucidated a wide variety of protein families and some members are described in this chapter. Here, we present some of the most recent studies about B. bovis and B. bigemina genomes where some proteins have been identified with potential to prevent infections by these parasites.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Juan Mosqueda, Diego Josimar Hernández-Silva and Mario\nHidalgo-Ruiz",authors:[{id:"220191",title:"Dr.",name:"Juan",middleName:null,surname:"Mosqueda",slug:"juan-mosqueda",fullName:"Juan Mosqueda"}]}],mostDownloadedChaptersLast30Days:[{id:"59305",title:"Avian Coccidiosis, New Strategies of Treatment",slug:"avian-coccidiosis-new-strategies-of-treatment",totalDownloads:3686,totalCrossrefCites:2,totalDimensionsCites:4,abstract:"The control of avian coccidiosis since the 1940s has been associated with the use of ionophores and chemical drugs. Recently, a significant interest in natural sources has developed due to the pressure to poultry industry to produce drug-free birds. Consequently, the search of products derived from plants and other natural sources has increased in the last years. Today, many commercial products containing essential oils, extracts, and other compounds are available. The use of these compounds of natural origin is related to an increased immune response, a body weight gain, destruction of oocyst, among other benefits. The main inconvenience of these products is the act on some species of Eimeria, but not all. This genetic variability found in the parasite makes the use of products difficult to control and treat coccidiosis. In this chapter, several proposals of treatment are presented based on the use of natural products, considering the new strategies of treatment with minimal consequences to birds.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"58604",title:"Genomics of Apicomplexa",slug:"genomics-of-apicomplexa",totalDownloads:1181,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Apicomplexa is a eukaryotic phylum of intracellular parasites with more than 6000 species. Some of these single-celled parasites are important pathogens of livestock. At present, 128 genomes of phylum Apicomplexa have been reported in the GenBank database, of which 17 genomes belong to five genera that are pathogens of farm animals: Babesia, Theileria, Eimeria, Neospora and Sarcocystis. These 17 genomes are Babesia bigemina (five chromosomes), Babesia divergens (514 contigs) and Babesia bovis (four chromosomes and one apicoplast); Theileria parva (four chromosomes and one apicoplast), Theileria annulata (four chromosomes), Theileria orientalis (four chromosomes and one apicoplast) and Theileria equi (four chromosomes and one apicoplast); Eimeria brunetti (24,647 contigs), Eimeria necatrix (4667 contigs), Eimeria tenella (12,727 contigs), Eimeria acervulina (4947 contigs), Eimeria maxima (4570 contigs), Eimeria mitis (65,610 contigs) and Eimeria praecox (53,359 contigs); Neospora caninum (14 chromosomes); and Sarcocystis neurona strains SN1 (2862 contigs) and SN3 (3191 contigs). The study of these genomes allows us to understand their mechanisms of pathogenicity and identify genes that encode proteins as a possible vaccine antigen.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Fernando Martínez-Ocampo",authors:[{id:"195818",title:"Dr.",name:"Fernando",middleName:null,surname:"Martinez",slug:"fernando-martinez",fullName:"Fernando Martinez"}]},{id:"59436",title:"Pathogenomics and Molecular Advances in Pathogen Identification",slug:"pathogenomics-and-molecular-advances-in-pathogen-identification",totalDownloads:1642,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"Today exists a spread spectrum of tools to be used in pathogen identification. Traditional staining and microscopic methods as well as modern molecular methods are presented in this chapter. Pathogen identification is only the beginning to obtain information related to pathogenicity of the microorganism in the near future. Once the pathogen is identified, genome-sequencing methods will provide a significant amount of information that can be elucidated only through bioinformatics methods. In this point, pathogenomics is a powerful tool to identify potential virulence factors, pathogenicity islands, and many other genes that could be used as therapeutic targets or in vaccine development. In this chapter, we present an update of the molecular advances used to identify pathogens and to obtain information of their diversity. We also review the most recent studies on pathogenomics with a special attention on pathogens of veterinary importance.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Rosa Estela Quiroz-Castañeda",authors:[{id:"187735",title:"Dr.",name:"Rosa Estela",middleName:null,surname:"Quiroz Castañeda",slug:"rosa-estela-quiroz-castaneda",fullName:"Rosa Estela Quiroz Castañeda"}]},{id:"61222",title:"The Use of Genetically Modified Organisms for Repopulation of Species of Commercial Importance in Aquatic Environment: Effects on Genetic Pool, Risks to Protected Areas and Policies for Their Proper Management",slug:"the-use-of-genetically-modified-organisms-for-repopulation-of-species-of-commercial-importance-in-aq",totalDownloads:1073,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"In recent years, the reproduction of organisms through genetic engineering has been presented as an option for the repopulation of fish stocks of species that are at the limit or have passed their maximum sustainable exploitation. However, are the potential effects on genetic diversity known? The possible mutations? The risks to protected ecosystems? or Are there adequate policies and regulations for its management? This chapter aims to review the biological and population effects of the use of these organisms and the potential impacts they can cause to natural protected areas, as well as if there are adequate regulations or policies for their use. Finally, the authors give indicators for the sustainable integrated management of genetically modified organisms.",book:{id:"6647",slug:"animal-genetics-approaches-and-limitations",title:"Animal Genetics",fullTitle:"Animal Genetics - Approaches and Limitations"},signatures:"Maurilio Lara-Flores and Evelia Rivera-Arriaga",authors:null},{id:"58730",title:"Metagenomics and Diagnosis of Zoonotic Diseases",slug:"metagenomics-and-diagnosis-of-zoonotic-diseases",totalDownloads:1800,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"Zoonotic diseases represent a public health problem worldwide, since approximately 60% of human pathogens have a zoonotic origin. A variety of methodologies have been developed to diagnose zoonosis, including culture-dependent and immunological-based methods, which allow the identification of a huge range of pathogens. However, some of them are not detected easily with these approaches. Additionally, molecular tests have been developed, and they are designed to identify a single pathogen or mixtures of them. In this context, metagenomics comes as an alternative to get genome sequences of different microorganisms, which comprise a microbial community. Metagenomics have been used to characterize microbiomes and viromes, which are not cultivable under laboratory conditions. This methodology could be a powerful tool in the diagnosis of zoonotic diseases because it allows not only identification of genus and species, but also detection of some proteins in specific conditions on specific tissues, through structural and functional metagenomics, respectively.",book:{id:"5543",slug:"farm-animals-diseases-recent-omic-trends-and-new-strategies-of-treatment",title:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment",fullTitle:"Farm Animals Diseases, Recent Omic Trends and New Strategies of Treatment"},signatures:"Laura Inés Cuervo-Soto, Silvio Alejandro López-Pazos and Ramón\nAlberto Batista-García",authors:[{id:"201362",title:"Dr.",name:"Ramón Alberto",middleName:null,surname:"Batista-García",slug:"ramon-alberto-batista-garcia",fullName:"Ramón Alberto Batista-García"}]}],onlineFirstChaptersFilter:{topicId:"303",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],testimonialsList:[]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"38",title:"Pollution",coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",isOpenForSubmission:!0,editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",slug:"ismail-m.m.-rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",biography:"Ismail Md. Mofizur Rahman (Ismail M. M. Rahman) assumed his current responsibilities as an Associate Professor at the Institute of Environmental Radioactivity, Fukushima University, Japan, in Oct 2015. He also has an honorary appointment to serve as a Collaborative Professor at Kanazawa University, Japan, from Mar 2015 to the present. \nFormerly, Dr. Rahman was a faculty member of the University of Chittagong, Bangladesh, affiliated with the Department of Chemistry (Oct 2002 to Mar 2012) and the Department of Applied Chemistry and Chemical Engineering (Mar 2012 to Sep 2015). Dr. Rahman was also adjunctly attached with Kanazawa University, Japan (Visiting Research Professor, Dec 2014 to Mar 2015; JSPS Postdoctoral Research Fellow, Apr 2012 to Mar 2014), and Tokyo Institute of Technology, Japan (TokyoTech-UNESCO Research Fellow, Oct 2004–Sep 2005). \nHe received his Ph.D. degree in Environmental Analytical Chemistry from Kanazawa University, Japan (2011). He also achieved a Diploma in Environment from the Tokyo Institute of Technology, Japan (2005). Besides, he has an M.Sc. degree in Applied Chemistry and a B.Sc. degree in Chemistry, all from the University of Chittagong, Bangladesh. \nDr. Rahman’s research interest includes the study of the fate and behavior of environmental pollutants in the biosphere; design of low energy and low burden environmental improvement (remediation) technology; implementation of sustainable waste management practices for treatment, handling, reuse, and ultimate residual disposition of solid wastes; nature and type of interactions in organic liquid mixtures for process engineering design applications.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",slug:"zinnat-ara-begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",biography:"Zinnat A. Begum received her Ph.D. in Environmental Analytical Chemistry from Kanazawa University in 2012. She achieved her Master of Science (M.Sc.) degree with a major in Applied Chemistry and a Bachelor of Science (B.Sc.) in Chemistry, all from the University of Chittagong, Bangladesh. Her work affiliations include Fukushima University, Japan (Visiting Research Fellow, Institute of Environmental Radioactivity: Mar 2016 to present), Southern University Bangladesh (Assistant Professor, Department of Civil Engineering: Jan 2015 to present), and Kanazawa University, Japan (Postdoctoral Fellow, Institute of Science and Engineering: Oct 2012 to Mar 2014; Research fellow, Venture Business Laboratory, Advanced Science and Social Co-Creation Promotion Organization: Apr 2018 to Mar 2021). The research focus of Dr. Zinnat includes the effect of the relative stability of metal-chelator complexes in the environmental remediation process designs and the development of eco-friendly soil washing techniques using biodegradable chelators.",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null},{id:"39",title:"Environmental Resilience and Management",coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",isOpenForSubmission:!0,editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",slug:"jose-navarro-pedreno",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",biography:"Full professor at University Miguel Hernández of Elche, Spain, previously working at the University of Alicante, Autonomous University of Madrid and Polytechnic University of Valencia. Graduate in Sciences (Chemist), graduate in Geography and History (Geography), master in Water Management, Treatment, master in Fertilizers and Environment and master in Environmental Management; Ph.D. in Environmental Sciences. His research is focused on soil-water and waste-environment relations, mainly on soil-water and soil-waste interactions under different management and waste reuse. His work is reflected in more than 230 communications presented in national and international conferences and congresses, 29 invited lectures from universities, associations and government agencies. Prof. Navarro-Pedreño is also a director of the Ph.D. Program Environment and Sustainability (2012-present) and a member of several societies among which are the Spanish Society of Soil Science, International Union of Soil Sciences, European Society for Soil Conservation, DessertNet and the Spanish Royal Society of Chemistry.",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null},{id:"40",title:"Ecosystems and Biodiversity",coverUrl:"https://cdn.intechopen.com/series_topics/covers/40.jpg",isOpenForSubmission:!0,editor:{id:"209149",title:"Prof.",name:"Salustiano",middleName:null,surname:"Mato",slug:"salustiano-mato",fullName:"Salustiano Mato",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRLREQA4/Profile_Picture_2022-03-31T10:23:50.png",biography:"Salustiano Mato de la Iglesia (Santiago de Compostela, 1960) is a doctor in biology from the University of Santiago and a Professor of zoology at the Department of Ecology and Animal Biology at the University of Vigo. He has developed his research activity in the fields of fauna and soil ecology, and in the treatment of organic waste, having been the founder and principal investigator of the Environmental Biotechnology Group of the University of Vigo.\r\nHis research activity in the field of Environmental Biotechnology has been focused on the development of novel organic waste treatment systems through composting. The result of this line of work are three invention patents and various scientific and technical publications in prestigious international journals.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorTwo:{id:"60498",title:"Prof.",name:"Josefina",middleName:null,surname:"Garrido",slug:"josefina-garrido",fullName:"Josefina Garrido",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRj1VQAS/Profile_Picture_2022-03-31T10:06:51.jpg",biography:"Josefina Garrido González (Paradela de Abeleda, Ourense 1959), is a doctor in biology from the University of León and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. She has focused her research activity on the taxonomy, fauna and ecology of aquatic beetles, in addition to other lines of research such as the conservation of biodiversity in freshwater ecosystems; conservation of protected areas (Red Natura 2000) and assessment of the effectiveness of wetlands as priority areas for the conservation of aquatic invertebrates; studies of water quality in freshwater ecosystems through biological indicators and physicochemical parameters; surveillance and research of vector arthropods and invasive alien species.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}},editorThree:{id:"464288",title:"Dr.",name:"Francisco",middleName:null,surname:"Ramil",slug:"francisco-ramil",fullName:"Francisco Ramil",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003RI7lHQAT/Profile_Picture_2022-03-31T10:15:35.png",biography:"Fran Ramil Blanco (Porto de Espasante, A Coruña, 1960), is a doctor in biology from the University of Santiago de Compostela and a Professor of Zoology at the Department of Ecology and Animal Biology at the University of Vigo. His research activity is linked to the taxonomy, fauna and ecology of marine benthic invertebrates and especially the Cnidarian group. Since 2004, he has been part of the EcoAfrik project, aimed at the study, protection and conservation of biodiversity and benthic habitats in West Africa. He also participated in the study of vulnerable marine ecosystems associated with seamounts in the South Atlantic and is involved in training young African researchers in the field of marine research.",institutionString:null,institution:{name:"University of Vigo",institutionURL:null,country:{name:"Spain"}}}},{id:"41",title:"Water Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/41.jpg",isOpenForSubmission:!0,editor:{id:"349630",title:"Dr.",name:"Yizi",middleName:null,surname:"Shang",slug:"yizi-shang",fullName:"Yizi Shang",profilePictureURL:"https://mts.intechopen.com/storage/users/349630/images/system/349630.jpg",biography:"Prof. Dr. Yizi Shang is a pioneering researcher in hydrology and water resources who has devoted his research career to promoting the conservation and protection of water resources for sustainable development. He is presently associate editor of Water International (official journal of the International Water Resources Association). He was also invited to serve as an associate editor for special issues of the Journal of the American Water Resources Association. He has served as an editorial member for international journals such as Hydrology, Journal of Ecology & Natural Resources, and Hydro Science & Marine Engineering, among others. He has chaired or acted as a technical committee member for twenty-five international forums (conferences). Dr. Shang graduated from Tsinghua University, China, in 2010 with a Ph.D. in Engineering. Prior to that, he worked as a research fellow at Harvard University from 2008 to 2009. Dr. Shang serves as a senior research engineer at the China Institute of Water Resources and Hydropower Research (IWHR) and was awarded as a distinguished researcher at National Taiwan University in 2017.",institutionString:"China Institute of Water Resources and Hydropower Research",institution:{name:"China Institute of Water Resources and Hydropower Research",institutionURL:null,country:{name:"China"}}},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:3,paginationItems:[{id:"82362",title:"Studies on the Short-Term Effects of the Cease of Pesticides Use on Vineyard Microbiome",doi:"10.5772/intechopen.105706",signatures:"Simona Ghiță, Mihaela Hnatiuc, Aurora Ranca, Victoria Artem and Mădălina-Andreea Ciocan",slug:"studies-on-the-short-term-effects-of-the-cease-of-pesticides-use-on-vineyard-microbiome",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"82297",title:"The Climate Change-Agriculture Nexus in Drylands of Ethiopia",doi:"10.5772/intechopen.103905",signatures:"Zenebe Mekonnen",slug:"the-climate-change-agriculture-nexus-in-drylands-of-ethiopia",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}},{id:"81999",title:"Climate Change, Rural Livelihoods, and Human Well-Being: Experiences from Kenya",doi:"10.5772/intechopen.104965",signatures:"André J. Pelser and Rujeko Samanthia Chimukuche",slug:"climate-change-rural-livelihoods-and-human-well-being-experiences-from-kenya",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Vegetation Dynamics, Changing Ecosystems and Human Responsibility",coverURL:"https://cdn.intechopen.com/books/images_new/11663.jpg",subseries:{id:"40",title:"Ecosystems and Biodiversity"}}}]},overviewPagePublishedBooks:{paginationCount:1,paginationItems:[{type:"book",id:"10843",title:"Persistent Organic Pollutants (POPs)",subtitle:"Monitoring, Impact and Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10843.jpg",slug:"persistent-organic-pollutants-pops-monitoring-impact-and-treatment",publishedDate:"April 13th 2022",editedByType:"Edited by",bookSignature:"Mohamed Nageeb Rashed",hash:"f5b1589f0a990b6114fef2dadc735dd9",volumeInSeries:1,fullTitle:"Persistent Organic Pollutants (POPs) - Monitoring, Impact and Treatment",editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",biography:"Prof. Mohamed Nageeb Rashed is Professor of Analytical and Environmental Chemistry and former vice-dean for environmental affairs, Faculty of Science, Aswan University, Egypt. He received his Ph.D. in Environmental Analytical Chemistry from Assiut University, Egypt, in 1989. His research interest is in analytical and environmental chemistry with special emphasis on: (1) monitoring and assessing biological trace elements and toxic metals in human blood, urine, water, crops, vegetables, and medicinal plants; (2) relationships between environmental heavy metals and human diseases; (3) uses of biological indicators for monitoring water pollution; (4) environmental chemistry of lakes, rivers, and well water; (5) water and wastewater treatment by adsorption and photocatalysis techniques; (6) soil and water pollution monitoring, control, and treatment; and (7) advanced oxidation treatment. Prof. Rashed has supervised several MSc and Ph.D. theses in the field of analytical and environmental chemistry. He served as an examiner for several Ph.D. theses in analytical chemistry in India, Kazakhstan, and Botswana. He has published about ninety scientific papers in peer-reviewed international journals and several papers in national and international conferences. He participated as an invited speaker at thirty international conferences. Prof. Rashed is the editor-in-chief and an editorial board member for several international journals in the fields of chemistry and environment. He is a member of several national and international societies. He received the Egyptian State Award for Environmental Research in 2001 and the Aswan University Merit Award for Basic Science in 2020. Prof. Rashed was recognized in Stanford University’s list of the World’s Top 2% Scientists in 2020 and 2021.",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:2,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:8,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{},publishedBooks:{paginationCount:4,paginationItems:[{type:"book",id:"9528",title:"Current Topics and Emerging Issues in Malaria Elimination",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9528.jpg",slug:"current-topics-and-emerging-issues-in-malaria-elimination",publishedDate:"July 21st 2021",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"7f178329cc42e691efe226b32f14e2ea",volumeInSeries:8,fullTitle:"Current Topics and Emerging Issues in Malaria Elimination",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7981",title:"Overview on Echinococcosis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7981.jpg",slug:"overview-on-echinococcosis",publishedDate:"April 22nd 2020",editedByType:"Edited by",bookSignature:"Fethi Derbel and Meriem Braiki",hash:"24dee9209f3fd6b7cd28f042da0076f0",volumeInSeries:6,fullTitle:"Overview on Echinococcosis",editors:[{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",institutionString:"Clinique les Oliviers",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7839",title:"Malaria",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7839.jpg",slug:"malaria",publishedDate:"December 11th 2019",editedByType:"Edited by",bookSignature:"Fyson H. Kasenga",hash:"91cde4582ead884cb0f355a19b67cd56",volumeInSeries:4,fullTitle:"Malaria",editors:[{id:"86725",title:"Dr.",name:"Fyson",middleName:"Hanania",surname:"Kasenga",slug:"fyson-kasenga",fullName:"Fyson Kasenga",profilePictureURL:"https://mts.intechopen.com/storage/users/86725/images/system/86725.jpg",institutionString:"Malawi Adventist University",institution:{name:"Malawi Adventist University",institutionURL:null,country:{name:"Malawi"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",slug:"current-topics-in-neglected-tropical-diseases",publishedDate:"December 4th 2019",editedByType:"Edited by",bookSignature:"Alfonso J. Rodriguez-Morales",hash:"61c627da05b2ace83056d11357bdf361",volumeInSeries:3,fullTitle:"Current Topics in Neglected Tropical Diseases",editors:[{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}}]},submityourwork:{pteSeriesList:[],lsSeriesList:[],hsSeriesList:[],sshSeriesList:[],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"22",title:"Business, Management and Economics",doi:"10.5772/intechopen.100359",issn:"2753-894X",scope:"
\r\n\tThis series will provide a comprehensive overview of recent research trends in business and management, economics, and marketing. Topics will include asset liability management, financial consequences of the financial crisis and covid-19, financial accounting, mergers and acquisitions, management accounting, SMEs, financial markets, corporate finance and governance, managerial technology and innovation, resource management and sustainable development, social entrepreneurship, corporate responsibility, ethics and accountability, microeconomics, labour economics, macroeconomics, public economics, financial economics, econometrics, direct marketing, creative marketing, internet marketing, market planning and forecasting, brand management, market segmentation and targeting and other topics under business and management. This book series will focus on various aspects of business and management whose in-depth understanding is critical for business and company management to function effectively during this uncertain time of financial crisis, Covid-19 pandemic, and military activity in Europe.
",coverUrl:"https://cdn.intechopen.com/series/covers/22.jpg",latestPublicationDate:"June 27th, 2022",hasOnlineFirst:!0,numberOfOpenTopics:3,numberOfPublishedChapters:19,numberOfPublishedBooks:1,editor:{id:"356540",title:"Prof.",name:"Taufiq",middleName:null,surname:"Choudhry",fullName:"Taufiq Choudhry",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000036X2hvQAC/Profile_Picture_2022-03-14T08:58:03.jpg",biography:"Prof. Choudhry holds a BSc degree in Economics from the University of Iowa, as well as a Masters and Ph.D. in Applied Economics from Clemson University, USA. In January 2006, he became a Professor of Finance at the University of Southampton Business School. He was previously a Professor of Finance at the University of Bradford Management School. He has over 80 articles published in international finance and economics journals. His research interests and specialties include financial econometrics, financial economics, international economics and finance, housing markets, financial markets, among others.",institutionString:null,institution:{name:"University of Southampton",institutionURL:null,country:{name:"United Kingdom"}}},subseries:[{id:"86",title:"Business and Management",keywords:"Demographic shifts, Innovation, Technology, Next-gen leaders, Worldwide environmental issues and clean technology, Uncertainty and political risks, Radical adjacency, Emergence of new business ecosystem type, Emergence of different leader and leader values types, Universal connector, Elastic enterprise, Business platform, Supply chain complexity",scope:"\r\n\tThe topic on Economics is designed to disseminate knowledge around broad global economic issues. Original submissions will be accepted in English for applied and theoretical articles, case studies and reviews about the specific challenges and opportunities faced by the economies and markets around the world. The authors are encouraged to apply rigorous economic analysis with significant policy implications for developed and developing countries. Examples of subjects of interest will include, but are not limited to globalization, economic integration, growth and development, international trade, environmental development, country specific comparative analysis, technical innovation and knowledge management, political economy analysis, and banking and financial markets.
",annualVolume:11971,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/87.jpg",editor:{id:"327730",title:"Prof.",name:"Jaime",middleName:null,surname:"Ortiz",fullName:"Jaime Ortiz",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002zaOKZQA2/Profile_Picture_1642145584421",institutionString:null,institution:{name:"University of Houston",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"104262",title:"Dr.",name:"Chee-Heong",middleName:null,surname:"Quah",fullName:"Chee-Heong Quah",profilePictureURL:"https://mts.intechopen.com/storage/users/104262/images/system/104262.jpg",institutionString:null,institution:{name:"University of Malaya",institutionURL:null,country:{name:"Malaysia"}}},{id:"236659",title:"Prof.",name:"Monica Violeta",middleName:null,surname:"Achim",fullName:"Monica Violeta Achim",profilePictureURL:"https://mts.intechopen.com/storage/users/236659/images/system/236659.jpg",institutionString:null,institution:{name:"Babeș-Bolyai University",institutionURL:null,country:{name:"Romania"}}},{id:"202039",title:"Dr.",name:"Nahanga",middleName:null,surname:"Verter",fullName:"Nahanga Verter",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCwtQAG/Profile_Picture_1643101901237",institutionString:null,institution:{name:"Mendel University Brno",institutionURL:null,country:{name:"Czech Republic"}}},{id:"107745",title:"Emeritus Prof.",name:"Panagiotis E.",middleName:null,surname:"Petrakis",fullName:"Panagiotis E. Petrakis",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRzzaQAC/Profile_Picture_1644221136992",institutionString:null,institution:{name:"National and Kapodistrian University of Athens",institutionURL:null,country:{name:"Greece"}}},{id:"196259",title:"Dr.",name:"Ryan Merlin",middleName:null,surname:"Yonk",fullName:"Ryan Merlin Yonk",profilePictureURL:"https://mts.intechopen.com/storage/users/196259/images/system/196259.jpg",institutionString:null,institution:{name:"American Institute for Economic Research",institutionURL:null,country:{name:"United States of America"}}}]},{id:"88",title:"Marketing",keywords:"Consumer trends, Consumer needs, Media, Pricing, Distribution, Branding, Innovation, Neuromarketing",scope:"