Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\n
Throughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\n
We wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"7614",leadTitle:null,fullTitle:"Fourier Transforms - Century of Digitalization and Increasing Expectations",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",reviewType:"peer-reviewed",abstract:"The 21st century ushered in a new era of technology that has been reshaping everyday life, simplifying outdated processes, and even giving rise to entirely new business sectors. Today, contemporary users of products and services expect more and more personalized products and services that can meet their unique needs. In that sense, it is necessary to further develop existing methods, adapt them to new applications, or even discover new methods. This book provides a thorough review of some methods that have an increasing impact on humanity today and that can solve different types of problems even in specific industries. Upgrading with Fourier Transformation gives a different meaning to these methods that support the development of new technologies and have a good projected acceleration in the future.",isbn:"978-1-78984-204-3",printIsbn:"978-1-78984-203-6",pdfIsbn:"978-1-78985-340-7",doi:"10.5772/intechopen.77416",price:119,priceEur:129,priceUsd:155,slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",numberOfPages:160,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",publishedDate:"December 4th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",numberOfDownloads:7738,numberOfWosCitations:2,numberOfCrossrefCitations:4,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:12,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 19th 2018",dateEndSecondStepPublish:"November 6th 2018",dateEndThirdStepPublish:"January 5th 2019",dateEndFourthStepPublish:"March 26th 2019",dateEndFifthStepPublish:"May 25th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic",profilePictureURL:"https://mts.intechopen.com/storage/users/23261/images/system/23261.jpg",biography:"Dr. Goran Nikolić was born in Knez Selo (Niš, Serbia) on 1 November 1966. He received his B.Sc. degree in Chemistry (1990), M.Sc. degree in Organic Chemical Technology and Polymer Engineering (1996), and finally his PhD degree in Chemical Engineering (2002) from the University of Niš. Currently, he is a full professor at the same university, on Pharmaceutical-cosmetic engineering group of subjects at Faculty of Technology in Leskovac. His research activities are: quality control and stability of drugs, development of new pharmaceutical products (antianemic, antiseptic), pharmaceutical ingredients (synthesis and characterization), polynuclear and biocomplexes, surfactants. His competences are experience: in team work as a researcher, in project management, and managing of academic institution at different levels (vice dean, department chairman, head of chromatographic and spectrosopic laboratories, president of the quality assurance at the Faculty, and a member of the Committee for the improvement of the quality of the University). He is a member of the several national projects in the technological development area (granted by the Ministry of Science and Technological Development, Republic of Serbia), and member of numerous TEMPUS Joint European projects of sustainable technologies, environmental application and management courses (JPHES 2013, JPHES 2010, MCHEM 2010, IB-JEP 19020). He is a member of Serbian Chemical Society and Physicochemical Association of Serbia, and member of the Editorial Board of the journal Advanced Technologies. He has authored more than 300 scientific papers (in international and national scientific journals, on international conferences), numerous technological solutions for pharmaceutical industry, national monographies, international patents, university textbooks, invitation lecturers. He is the referee in numerous international and national journals, and editor of two international monographs on FTIR spectroscopy (InTech Open).",institutionString:"University of Niš",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"4",institution:{name:"University of Nis",institutionURL:null,country:{name:"Serbia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"195523",title:"MSc.",name:"Dragana",middleName:null,surname:"Marković-Nikolić",slug:"dragana-markovic-nikolic",fullName:"Dragana Marković-Nikolić",profilePictureURL:"https://mts.intechopen.com/storage/users/195523/images/system/195523.png",biography:"Dr. Dragana Z. Marković-Nikolić was born on 28 December 1982 in Leskovac (Serbia). She completed her studies at the Faculty of Technology in Leskovac, University of Niš (2007). She recived her PhD degree in Applied Chemistry from the University of Niš (2018). She was elected as a teaching assistant at the High Technologically Artistic Professional School in Leskovac (2011), where she is still working. She is intensively engaged in scientific research in the field of ecological engineering. She published her research results in numerous scientific journals and presented at scientific meetings. She is the author of several technological solutions for industry, practical textbooks and book chapters. As an expert associate (2016), she acquired practical knowledge and skills for the application of contemporary instrumental and analytical methods, as well as skills for scientific research in the field of ecological engineering. She participated in the realization of TEMPUS project titled \\Creation of University-Enterprise Cooperation for Education on Sustainable Technologies\\. She is a member of the Chemical Society of Serbia.",institutionString:"University of Niš",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1407",title:"Applied Mathematics",slug:"numerical-analysis-and-scientific-computing-applied-mathematics"}],chapters:[{id:"65719",title:"The Discrete Hankel Transform",doi:"10.5772/intechopen.84399",slug:"the-discrete-hankel-transform",totalDownloads:1219,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"The Hankel transform is an integral transform and is also known as the Fourier-Bessel transform. Until recently, there was no established discrete version of the transform that observed the same sort of relationship to its continuous counterpart as the discrete Fourier transform does to the continuous Fourier transform. Previous definitions of a discrete Hankel transform (DHT) only focused on methods to approximate the integrals of the continuous Hankel integral transform. Recently published work has remedied this and this chapter presents this theory. Specifically, this chapter presents a theory of a DHT that is shown to arise from a discretization scheme based on the theory of Fourier-Bessel expansions. The standard set of shift, modulation, multiplication, and convolution rules are shown. In addition to being a discrete transform in its own right, this DHT can approximate the continuous forward and inverse Hankel transform.",signatures:"Natalie Baddour",downloadPdfUrl:"/chapter/pdf-download/65719",previewPdfUrl:"/chapter/pdf-preview/65719",authors:[{id:"62384",title:"Dr.",name:"Natalie",surname:"Baddour",slug:"natalie-baddour",fullName:"Natalie Baddour"}],corrections:null},{id:"66912",title:"Fourier Transforms for Generalized Fredholm Equations",doi:"10.5772/intechopen.85993",slug:"fourier-transforms-for-generalized-fredholm-equations",totalDownloads:740,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"In this chapter we take the conventional Fredholm integral equations as a guideline to define a broad class of equations we name generalized Fredholm equations with a larger scope of applications. We show first that these new kind of equations are really vector-integral equations with the same properties but with redefined and also enlarged elements in its structure replacing the old traditional concepts like in the case of the source or inhomogeneous term with the generalized source useful for describing the electromagnetic wave propagation. Then we can apply a Fourier transform to the new equations in order to obtain matrix equations to both types, inhomogeneous and homogeneous generalized Fredholm equations. Meanwhile, we discover new properties of the field we can describe with this new technology, that is, mean; we recognize that the old concept of nuclear resonances is present in the new equations and reinterpreted as the brake of the confinement of the electromagnetic field. It is important to say that some segments involving mathematical details of our present work were published somewhere by us, as part of independent researches with different specific goals, and we recall them as a tool to give a sound support of the Fourier transforms.",signatures:"Juan Manuel Velazquez Arcos, Ricardo Teodoro Paez Hernandez, Alejandro Perez Ricardez and Jaime Granados Samaniego",downloadPdfUrl:"/chapter/pdf-download/66912",previewPdfUrl:"/chapter/pdf-preview/66912",authors:[{id:"96912",title:"Dr.",name:"Ricardo Teodoro",surname:"Paez Hernandez",slug:"ricardo-teodoro-paez-hernandez",fullName:"Ricardo Teodoro Paez Hernandez"},{id:"114776",title:"Dr.",name:"Juan Manuel",surname:"Velazquez Arcos",slug:"juan-manuel-velazquez-arcos",fullName:"Juan Manuel Velazquez Arcos"},{id:"179014",title:"MSc.",name:"Jaime",surname:"Granados Samaniego",slug:"jaime-granados-samaniego",fullName:"Jaime Granados Samaniego"},{id:"301091",title:"Dr.",name:"Alejandro",surname:"Perez Ricardez",slug:"alejandro-perez-ricardez",fullName:"Alejandro Perez Ricardez"}],corrections:null},{id:"66329",title:"The RR Interval Spectrum, the ECG Signal, and Aliasing",doi:"10.5772/intechopen.85327",slug:"the-rr-interval-spectrum-the-ecg-signal-and-aliasing",totalDownloads:960,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"We discuss the relationship between the RR interval spectral analysis and the spectral analysis of the corresponding ECG signal from which the RR intervals were evaluated. The ECG signal spectrum is bounded below the frequency fB by using an electronic filter and sampled at rate larger than 2fB, thus excluding aliasing from spectral analysis. A similar procedure cannot be applied to the RR interval spectral analysis, and in this case aliasing is possible. One of our main efforts in this chapter is devoted to the problem of how to detect aliasing in the heart rate spectral analysis. In order to get an insight, we performed an experiment with an adult man, in which the ECG signal was detected in a case where the breathing rate was larger than half the heart rate. A constant breathing rate for time intervals exceeding 5 minutes was monitored with good accuracy using a special breathing procedure. The results show distinctively a very sharp peak in the spectral analysis of the ECG signal, and corresponding (diffused) aliasing peaks in the RR interval spectral analysis. A new method of dealing with unevenly sampled data was developed, which has interesting anti-aliasing properties. There are indications that the VLF peaks of the RR spectrum are originated by aliasing. Some of the LF peaks may have the same property. The chapter is fully based on the preprint arXiv:physics/9911017, submitted on 11 Nov 1999, by authors A. Gersten, O. Gersten, A. Ronen, and Y. Cassuto.",signatures:"Alexander Gersten, Ori Gersten, Adi Ronen and Yair Cassuto",downloadPdfUrl:"/chapter/pdf-download/66329",previewPdfUrl:"/chapter/pdf-preview/66329",authors:[{id:"128591",title:"Prof.",name:"Alexander",surname:"Gersten",slug:"alexander-gersten",fullName:"Alexander Gersten"}],corrections:null},{id:"66464",title:"Directional Denoising Using Fourier Spectrum Cloning",doi:"10.5772/intechopen.85519",slug:"directional-denoising-using-fourier-spectrum-cloning",totalDownloads:961,totalCrossrefCites:1,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Fourier filtering for image denoising consists in masking parts of the Fourier spectrum of an image and using inverse Fourier transform of the masked image to obtain the denoised one. In cases of directional noise, this process can induce artifacts, mainly because of the spatial coherence that exists in the theoretical noise-free image. Moreover, it can lead to loss of low-frequency content that is important in applications such as fringe projection technique, which aims at measuring 3D elevations of a surface. A method based on the principle of Fourier spectrum cloning for the denoising of images is proposed in this chapter. This method improves the PSNR and the SSIM ratio in comparison with spectrum masking denoising. The method will be detailed first, and then examples of image denoising in two different applications will be presented.",signatures:"Laurent Navarro and Jérôme Molimard",downloadPdfUrl:"/chapter/pdf-download/66464",previewPdfUrl:"/chapter/pdf-preview/66464",authors:[{id:"53776",title:"Dr.",name:"Laurent",surname:"Navarro",slug:"laurent-navarro",fullName:"Laurent Navarro"},{id:"295452",title:"Prof.",name:"Jérôme",surname:"Molimard",slug:"jerome-molimard",fullName:"Jérôme Molimard"}],corrections:null},{id:"66652",title:"Analysis of Financial Time Series in Frequency Domain Using Neural Networks",doi:"10.5772/intechopen.85885",slug:"analysis-of-financial-time-series-in-frequency-domain-using-neural-networks",totalDownloads:1564,totalCrossrefCites:2,totalDimensionsCites:2,hasAltmetrics:0,abstract:"Developing new methods for forecasting of time series and application of existing techniques in different areas represents a permanent concern for both researchers and companies that are interested to gain competitive advantages. Financial market analysis is an important thing for investors who invest money on the market and want some kind of security in multiplying their investment. Between the existing techniques, artificial neural networks have proven to be very good in predicting financial market performance. In this chapter, for time series analysis and forecasting of specific values, nonlinear autoregressive exogenous (NARX) neural network is used. As an input to the network, both data in time domain and those in the frequency domain obtained using the Fourier transform are used. After the experiment was performed, the results were compared to determine the potentially best time series for predicting, as well as the convenience of the domain in which better results are obtained.",signatures:"Stefan Nikolić and Goran Nikolić",downloadPdfUrl:"/chapter/pdf-download/66652",previewPdfUrl:"/chapter/pdf-preview/66652",authors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"},{id:"280401",title:"B.Sc.",name:"Stefan",surname:"Nikolić",slug:"stefan-nikolic",fullName:"Stefan Nikolić"}],corrections:null},{id:"66006",title:"Fourier Transform in Ultrafast Spectroscopy",doi:"10.5772/intechopen.84897",slug:"fourier-transform-in-ultrafast-spectroscopy",totalDownloads:978,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Laser technology allows to generate femtoseconds-long pulses of light. These light pulses can be used to learn about the molecules with which they interact. Consequently, pulsed laser spectroscopy has become an important tool for investigating and characterizing electronic and nuclear structure of protein complexes. These spectroscopic techniques can either be performed in the time or frequency domain. Both the time and frequency domain are linked by Fourier Transform (FT) and thus, FT plays a central role in optical spectroscopy. Ultimately, FT is used to explain how light behaves. It is used to explain spectroscopic techniques and enables the development of new techniques. Finally, FT is used to process and analyze data. This chapter thus illustrates the centrality of FT in ultrafast optical spectroscopy.",signatures:"Adrien A.P. Chauvet",downloadPdfUrl:"/chapter/pdf-download/66006",previewPdfUrl:"/chapter/pdf-preview/66006",authors:[{id:"177016",title:"Dr.",name:"Adrien",surname:"Chauvet",slug:"adrien-chauvet",fullName:"Adrien Chauvet"}],corrections:null},{id:"69339",title:"Establishment of FTIR Database of Roselle Raw Material Originated From Western Coastline in Peninsular Malaysia",doi:"10.5772/intechopen.84837",slug:"establishment-of-ftir-database-of-roselle-raw-material-originated-from-western-coastline-in-peninsul",totalDownloads:501,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Herbs from different geographical regions may differ qualitatively and quantitatively, hence it is crucial to determine the active components of herbs from different regions and build a reference database. This study focused on the database establishment for the authentication of the raw material of roselle (Hibiscus sabdariffa) collected at seven selected locations of the western coastline in Peninsular Malaysia. The validation on the unknown sample at the end of the study is to verify the accuracy of the established database. The inter-material distance (IMD) was presented as the mean distance of each sphere created by each batch of data from different locations. They were clustered with different folders and discriminated by Soft independent modelling by class analogy (SIMCA) algorithm. All materials from seven farms achieved 100% separation rate. The average IMD of these seven locations was 9.04. The FTIR techniques established in this study can be used to distinguish the geographical origin of the selected H. sabdariffa farm samples.",signatures:"Choong Yew Keong, Nor Syaidatul Akmal Mohd Yousof, Jamia Azdina Jamal and Mohd Isa Wasiman",downloadPdfUrl:"/chapter/pdf-download/69339",previewPdfUrl:"/chapter/pdf-preview/69339",authors:[{id:"171079",title:"Dr.",name:"Yew Keong",surname:"Choong",slug:"yew-keong-choong",fullName:"Yew Keong Choong"}],corrections:null},{id:"67344",title:"Application of Fourier Analysis of Cerebral Glucose Metabolism in Color-Induced Long-Term Potentiation: A Novel Functional PET Spectroscopy (fPETS) Study in Mice",doi:"10.5772/intechopen.85641",slug:"application-of-fourier-analysis-of-cerebral-glucose-metabolism-in-color-induced-long-term-potentiati",totalDownloads:815,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Fourier time-series analysis could be used to segregate changes in the ventral and dorsal streams of the visual system in male and female mice. Color memory processes of long-term potentiation and long-term depression could be identified through spectral analysis. We used small animal positron emission tomography and magnetic resonance imaging (PET/MRI) to measure the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in the mouse brain during light stimulation with blue and yellow filters compared to darkness condition. The mean standardized uptake values (SUV) of [18F]FDG for each stimulus condition was analyzed using standard Fourier analysis software to derive spectral density estimates for each condition. Spectral peaks were identified as originating from the subcortical region (S-peak) by subcortical long-term potentiation (SLTP) or depression (SLTD), and originating from the cortical region (C-peak) by cortical long-term potentiation (CLTP) or depression (CLTD). Luminance opponency occurred at S-peak by SLTP in the dorsal stream in the left visual cortex in male mice. On the other hand, chromatic opponency occurred by wavelength-differencing at C-peak by CLTP in the cortico-subcortical pathways in the ventral stream in the left visual cortex in male mice. In contrast in female mice, during luminance processing, there was resonance phenomenon at C-peak in the ventral stream in the right visual cortex. Chromatic opponency occurred at S-peak by SLTP in the dorsal stream in the right visual cortex in female mice. Application of Fourier analysis improved spatial and temporal resolutions of conventional fPET/MRI methods. Computation of color processing as a conscious experience has wide range applications in neuroscience and artificial intelligence.",signatures:"Philip C. Njemanze, Mathias Kranz and Peter Brust",downloadPdfUrl:"/chapter/pdf-download/67344",previewPdfUrl:"/chapter/pdf-preview/67344",authors:[{id:"53753",title:"Prof.",name:"Peter",surname:"Brust",slug:"peter-brust",fullName:"Peter Brust"},{id:"278369",title:"M.D.",name:"Philip",surname:"Njemanze",slug:"philip-njemanze",fullName:"Philip Njemanze"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"1574",title:"Fourier Transforms",subtitle:"New Analytical Approaches and FTIR Strategies",isOpenForSubmission:!1,hash:"b6a622dfaac1697f3cfdbf08299f1206",slug:"fourier-transforms-new-analytical-approaches-and-ftir-strategies",bookSignature:"Goran Nikolic",coverURL:"https://cdn.intechopen.com/books/images_new/1574.jpg",editedByType:"Edited by",editors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"122",title:"Fourier Transforms",subtitle:"Approach to Scientific Principles",isOpenForSubmission:!1,hash:"53ed2d571e2cf7e9a4fcd81723c4eefd",slug:"fourier-transforms-approach-to-scientific-principles",bookSignature:"Goran Nikolic",coverURL:"https://cdn.intechopen.com/books/images_new/122.jpg",editedByType:"Edited by",editors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5411",title:"Fourier Transforms",subtitle:"High-tech Application and Current Trends",isOpenForSubmission:!1,hash:"5c45d1a91daef66093a42a82448a70f0",slug:"fourier-transforms-high-tech-application-and-current-trends",bookSignature:"Goran S. Nikolic, Milorad D. Cakic and Dragan J. Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5411.jpg",editedByType:"Edited by",editors:[{id:"23261",title:"Prof.",name:"Goran",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6138",title:"Time Series Analysis and Applications",subtitle:null,isOpenForSubmission:!1,hash:"d33ee38578b81585416062fea4979bbf",slug:"time-series-analysis-and-applications",bookSignature:"Nawaz Mohamudally",coverURL:"https://cdn.intechopen.com/books/images_new/6138.jpg",editedByType:"Edited by",editors:[{id:"119486",title:"Dr.",name:"Nawaz",surname:"Mohamudally",slug:"nawaz-mohamudally",fullName:"Nawaz Mohamudally"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9966",title:"Dynamic Data Assimilation",subtitle:"Beating the Uncertainties",isOpenForSubmission:!1,hash:"e7fde2a36354a2f5a4282fdf9c743380",slug:"dynamic-data-assimilation-beating-the-uncertainties",bookSignature:"Dinesh G. Harkut",coverURL:"https://cdn.intechopen.com/books/images_new/9966.jpg",editedByType:"Edited by",editors:[{id:"216122",title:"Dr.",name:"Dinesh G.",surname:"Harkut",slug:"dinesh-g.-harkut",fullName:"Dinesh G. Harkut"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6230",title:"Topics in Splines and Applications",subtitle:null,isOpenForSubmission:!1,hash:"93059c7907be129c419e4f9960b4e9c3",slug:"topics-in-splines-and-applications",bookSignature:"Young Kinh-Nhue Truong and Muhammad Sarfraz",coverURL:"https://cdn.intechopen.com/books/images_new/6230.jpg",editedByType:"Edited by",editors:[{id:"207517",title:"Dr.",name:"Young Kinh-Nhue",surname:"Truong",slug:"young-kinh-nhue-truong",fullName:"Young Kinh-Nhue Truong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10402",title:"MATLAB Applications in Engineering",subtitle:null,isOpenForSubmission:!1,hash:"52f37e72f4007a3248a3658dbaeb1172",slug:"matlab-applications-in-engineering",bookSignature:"Constantin Voloşencu",coverURL:"https://cdn.intechopen.com/books/images_new/10402.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9273",title:"Finite Element Methods and Their Applications",subtitle:null,isOpenForSubmission:!1,hash:"c47b5859ea7385f3c879918fd3b08a22",slug:"finite-element-methods-and-their-applications",bookSignature:"Mahboub Baccouch",coverURL:"https://cdn.intechopen.com/books/images_new/9273.jpg",editedByType:"Edited by",editors:[{id:"186635",title:"Prof.",name:"Mahboub",surname:"Baccouch",slug:"mahboub-baccouch",fullName:"Mahboub Baccouch"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9927",title:"Real Perspective of Fourier Transforms and Current Developments in Superconductivity",subtitle:null,isOpenForSubmission:!1,hash:"89f437eae592f8f3730b6c9ec8426e43",slug:"real-perspective-of-fourier-transforms-and-current-developments-in-superconductivity",bookSignature:"Juan Manuel Velazquez Arcos",coverURL:"https://cdn.intechopen.com/books/images_new/9927.jpg",editedByType:"Edited by",editors:[{id:"114776",title:"Dr.",name:"Juan Manuel",surname:"Velazquez Arcos",slug:"juan-manuel-velazquez-arcos",fullName:"Juan Manuel Velazquez Arcos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9237",title:"Theory of Complexity",subtitle:"Definitions, Models, and Applications",isOpenForSubmission:!1,hash:"70d2fce88be4f0c3bf7daeea322926e8",slug:"theory-of-complexity-definitions-models-and-applications",bookSignature:"Ricardo López-Ruiz",coverURL:"https://cdn.intechopen.com/books/images_new/9237.jpg",editedByType:"Edited by",editors:[{id:"9849",title:"Prof.",name:"Ricardo",surname:"López-Ruiz",slug:"ricardo-lopez-ruiz",fullName:"Ricardo López-Ruiz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12092",leadTitle:null,title:"Pancreatic Cancer",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"934ff1479446e52efd8d675a113fca63",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12092.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 2nd 2022",dateEndSecondStepPublish:"March 23rd 2022",dateEndThirdStepPublish:"May 22nd 2022",dateEndFourthStepPublish:"August 10th 2022",dateEndFifthStepPublish:"October 9th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"3 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"20986",title:"Pesticides Empty Containers (EPC) in the Area of Ouagadougou: Actors, Risks and Prospects of Secure Management",doi:"10.5772/16483",slug:"pesticides-empty-containers-epc-in-the-area-of-ouagadougou-actors-risks-and-prospects-of-secure-mana",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/20986.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/20986",previewPdfUrl:"/chapter/pdf-preview/20986",totalDownloads:2165,totalViews:99,totalCrossrefCites:0,totalDimensionsCites:0,totalAltmetricsMentions:0,impactScore:0,impactScorePercentile:43,impactScoreQuartile:2,hasAltmetrics:0,dateSubmitted:"October 12th 2010",dateReviewed:"March 17th 2011",datePrePublished:null,datePublished:"October 21st 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/20986",risUrl:"/chapter/ris/20986",book:{id:"176",slug:"pesticides-in-the-modern-world-trends-in-pesticides-analysis"},signatures:"Gomgnimbou P.K Alain and Ouédraogo W. Osée",authors:[{id:"25265",title:"MSc",name:"Alain P.K",middleName:null,surname:"Gomgnimbou",fullName:"Alain P.K Gomgnimbou",slug:"alain-p.k-gomgnimbou",email:"gpkalain@yahoo.fr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null},{id:"40407",title:"Prof.",name:"W. Osée",middleName:null,surname:"Ouedraogo",fullName:"W. Osée Ouedraogo",slug:"w.-osee-ouedraogo",email:"wendsomosee@yahoo.fr",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"176",type:"book",title:"Pesticides in the Modern World",subtitle:"Trends in Pesticides Analysis",fullTitle:"Pesticides in the Modern World - Trends in Pesticides Analysis",slug:"pesticides-in-the-modern-world-trends-in-pesticides-analysis",publishedDate:"October 21st 2011",bookSignature:"Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/176.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-437-5",pdfIsbn:"978-953-51-5154-8",reviewType:"peer-reviewed",numberOfWosCitations:87,isAvailableForWebshopOrdering:!0,editors:[{id:"6375",title:"Prof.",name:"Margarita",middleName:null,surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"368"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"20983",type:"chapter",title:"Identity, Physical and Chemical Properties of Pesticides",slug:"identity-physical-and-chemical-properties-of-pesticides",totalDownloads:31581,totalCrossrefCites:28,signatures:"Zacharia, James Tano",reviewType:"peer-reviewed",authors:[{id:"28551",title:"Dr.",name:"James T.",middleName:null,surname:"Zacharia",fullName:"James T. Zacharia",slug:"james-t.-zacharia"}]},{id:"20984",type:"chapter",title:"Thermodynamic Properties and Crystallization Behavior of Pesticide Imidacloprid",slug:"thermodynamic-properties-and-crystallization-behavior-of-pesticide-imidacloprid",totalDownloads:5747,totalCrossrefCites:0,signatures:"Zhou Cairong",reviewType:"peer-reviewed",authors:[{id:"29191",title:"Prof.",name:"Zhou",middleName:null,surname:"Cairong",fullName:"Zhou Cairong",slug:"zhou-cairong"}]},{id:"20985",type:"chapter",title:"Photolysis of Some Benzimidazole Based Pesticides",slug:"photolysis-of-some-benzimidazole-based-pesticides",totalDownloads:3231,totalCrossrefCites:0,signatures:"Yaser A. Yousef and Talal. S. Akasheh",reviewType:"peer-reviewed",authors:[{id:"43805",title:"Prof.",name:"Yaser",middleName:null,surname:"Yousef",fullName:"Yaser Yousef",slug:"yaser-yousef"},{id:"44577",title:"Prof.",name:"Talal",middleName:null,surname:"Akasheh",fullName:"Talal Akasheh",slug:"talal-akasheh"}]},{id:"20986",type:"chapter",title:"Pesticides Empty Containers (EPC) in the Area of Ouagadougou: Actors, Risks and Prospects of Secure Management",slug:"pesticides-empty-containers-epc-in-the-area-of-ouagadougou-actors-risks-and-prospects-of-secure-mana",totalDownloads:2165,totalCrossrefCites:0,signatures:"Gomgnimbou P.K Alain and Ouédraogo W. Osée",reviewType:"peer-reviewed",authors:[{id:"25265",title:"MSc",name:"Alain P.K",middleName:null,surname:"Gomgnimbou",fullName:"Alain P.K Gomgnimbou",slug:"alain-p.k-gomgnimbou"},{id:"40407",title:"Prof.",name:"W. Osée",middleName:null,surname:"Ouedraogo",fullName:"W. Osée Ouedraogo",slug:"w.-osee-ouedraogo"}]},{id:"20987",type:"chapter",title:"Electrochemical Detoxification of Obsolete Pesticides Stocks",slug:"electrochemical-detoxification-of-obsolete-pesticides-stocks",totalDownloads:2065,totalCrossrefCites:0,signatures:"R. Salghi, M. Errami, B. Hammouti and L. Bazzi",reviewType:"peer-reviewed",authors:[{id:"26852",title:"Dr.",name:"Belkheir",middleName:null,surname:"Hammouti",fullName:"Belkheir Hammouti",slug:"belkheir-hammouti"},{id:"37636",title:"Mr",name:"Rachid",middleName:null,surname:"Salghi",fullName:"Rachid Salghi",slug:"rachid-salghi"},{id:"37637",title:"Mr",name:"Mohamed",middleName:null,surname:"Errami",fullName:"Mohamed Errami",slug:"mohamed-errami"},{id:"37638",title:"Mr",name:"Lahcen",middleName:null,surname:"Bazzi",fullName:"Lahcen Bazzi",slug:"lahcen-bazzi"}]},{id:"20988",type:"chapter",title:"Advances in Analytical Methods for Organophosphorus Pesticide Detection",slug:"advances-in-analytical-methods-for-organophosphorus-pesticide-detection",totalDownloads:7681,totalCrossrefCites:0,signatures:"Tova A. Samuels and Sherine O. Obare",reviewType:"peer-reviewed",authors:[{id:"42954",title:"Prof.",name:"Sherine",middleName:null,surname:"Obare",fullName:"Sherine Obare",slug:"sherine-obare"},{id:"42972",title:"Ms.",name:"Tova A",middleName:null,surname:"Samuels",fullName:"Tova A Samuels",slug:"tova-a-samuels"}]},{id:"20989",type:"chapter",title:"Organophosphorus Pesticides Analysis",slug:"organophosphorus-pesticides-analysis",totalDownloads:9445,totalCrossrefCites:4,signatures:"Margarita Stoytcheva and Roumen Zlatev",reviewType:"peer-reviewed",authors:[{id:"6375",title:"Prof.",name:"Margarita",middleName:null,surname:"Stoytcheva",fullName:"Margarita Stoytcheva",slug:"margarita-stoytcheva"},{id:"42118",title:"Dr.",name:"Roumen",middleName:null,surname:"Zlatev",fullName:"Roumen Zlatev",slug:"roumen-zlatev"}]},{id:"20990",type:"chapter",title:"New Methodologies for Assessing the Presence and Ecological Effects of Pesticides in Doñana National Park (SW Spain)",slug:"new-methodologies-for-assessing-the-presence-and-ecological-effects-of-pesticides-in-don-ana-nationa",totalDownloads:2557,totalCrossrefCites:0,signatures:"Carmen Pueyo, José-Luis Gómez-Ariza, Miguel-Angel Bello-López, Rut Fernández-Torres, Nieves Abril, José Alhama, Tamara García-Barrera and Juan López-Barea",reviewType:"peer-reviewed",authors:[{id:"34535",title:"Prof.",name:"Juan",middleName:null,surname:"Lopez-Barea",fullName:"Juan Lopez-Barea",slug:"juan-lopez-barea"},{id:"34563",title:"Prof.",name:"Carmen",middleName:null,surname:"Pueyo",fullName:"Carmen Pueyo",slug:"carmen-pueyo"},{id:"34564",title:"Prof.",name:"José Luis",middleName:null,surname:"Gómez-Ariza",fullName:"José Luis Gómez-Ariza",slug:"jose-luis-gomez-ariza"},{id:"39335",title:"Dr.",name:"Miguel-Angel",middleName:null,surname:"Bello-Lopez",fullName:"Miguel-Angel Bello-Lopez",slug:"miguel-angel-bello-lopez"},{id:"39336",title:"Dr.",name:"Rut",middleName:null,surname:"Fernández-Torres",fullName:"Rut Fernández-Torres",slug:"rut-fernandez-torres"},{id:"39337",title:"Dr.",name:"Nieves",middleName:null,surname:"Abril",fullName:"Nieves Abril",slug:"nieves-abril"},{id:"39338",title:"Dr.",name:"Tamara",middleName:null,surname:"García-Barrera",fullName:"Tamara García-Barrera",slug:"tamara-garcia-barrera"},{id:"73331",title:"Prof.",name:"José",middleName:null,surname:"Alhama",fullName:"José Alhama",slug:"jose-alhama"}]},{id:"20991",type:"chapter",title:"Modern Sample Preparation Techniques for Pesticide Analysis",slug:"modern-sample-preparation-techniques-for-pesticide-analysis",totalDownloads:3851,totalCrossrefCites:0,signatures:"Lesego C. Mmualefe, Christopher Mpofu and Nelson Torto",reviewType:"peer-reviewed",authors:[{id:"25508",title:"Dr.",name:"Nelson",middleName:null,surname:"Torto",fullName:"Nelson Torto",slug:"nelson-torto"}]},{id:"20992",type:"chapter",title:"Modern Extraction Techniques for Pesticide Residues Determination in Plant and Soil Samples",slug:"modern-extraction-techniques-for-pesticide-residues-determination-in-plant-and-soil-samples",totalDownloads:10930,totalCrossrefCites:6,signatures:"Rada Ðurović and Tijana Ðorđević",reviewType:"peer-reviewed",authors:[{id:"27943",title:"Dr.",name:"Rada",middleName:null,surname:"Đurović",fullName:"Rada Đurović",slug:"rada-djurovic"},{id:"36892",title:"MSc",name:"Tijana",middleName:null,surname:"Đorđević",fullName:"Tijana Đorđević",slug:"tijana-djordjevic"}]},{id:"20993",type:"chapter",title:"Cloud Point Extraction of Pesticide Residues",slug:"cloud-point-extraction-of-pesticide-residues",totalDownloads:4241,totalCrossrefCites:2,signatures:"Hayati Filik and Sema Demirci Çekiç",reviewType:"peer-reviewed",authors:[{id:"25490",title:"Prof.",name:"Hayati",middleName:null,surname:"Filik",fullName:"Hayati Filik",slug:"hayati-filik"},{id:"38697",title:"Dr.",name:"Sema",middleName:null,surname:"Demirci Çekiç",fullName:"Sema Demirci Çekiç",slug:"sema-demirci-cekic"}]},{id:"20994",type:"chapter",title:"Determination of Pesticides in Complex Samples by One Dimensional (1D-), Two-Dimensional (2D-) and Multidimensional Chromatography",slug:"determination-of-pesticides-in-complex-samples-by-one-dimensional-1d-two-dimensional-2d-and-multidim",totalDownloads:2316,totalCrossrefCites:1,signatures:"Tomasz Tuzimski",reviewType:"peer-reviewed",authors:[{id:"25433",title:"Dr.",name:"Tomasz",middleName:null,surname:"Tuzimski",fullName:"Tomasz Tuzimski",slug:"tomasz-tuzimski"}]},{id:"20995",type:"chapter",title:"Recent Techniques Applied for Pesticides Identification and Determination in Natural Products and Its Impact to Human Health Risk",slug:"recent-techniques-applied-for-pesticides-identification-and-determination-in-natural-products-and-it",totalDownloads:5300,totalCrossrefCites:0,signatures:"Abd El-Moneim M.R. Afify",reviewType:"peer-reviewed",authors:[{id:"26179",title:"Prof.",name:"Abd El-Moneim",middleName:"M.R.",surname:"Afify",fullName:"Abd El-Moneim Afify",slug:"abd-el-moneim-afify"}]},{id:"20996",type:"chapter",title:"Pesticide Residues in Natural Products with Pharmaceutical Use: Occurrence, Analytical Advances and Perspectives",slug:"pesticide-residues-in-natural-products-with-pharmaceutical-use-occurrence-analytical-advances-and-pe",totalDownloads:8827,totalCrossrefCites:2,signatures:"Andrés Pérez-Parada, Marcos Colazzo, Natalia Besil, Eduardo Dellacassa, Verónica Cesio, Horacio Heinzen and Amadeo R. Fernández-Alba",reviewType:"peer-reviewed",authors:[{id:"13356",title:"Dr.",name:"Horacio",middleName:null,surname:"Heinzen",fullName:"Horacio Heinzen",slug:"horacio-heinzen"},{id:"15416",title:"Prof.",name:"Veronica",middleName:null,surname:"Cesio",fullName:"Veronica Cesio",slug:"veronica-cesio"},{id:"15427",title:"Prof.",name:"Amadeo",middleName:null,surname:"R.Fernandez-Alba",fullName:"Amadeo R.Fernandez-Alba",slug:"amadeo-r.fernandez-alba"},{id:"25282",title:"Mr",name:"Andrés",middleName:null,surname:"Pérez-Parada",fullName:"Andrés Pérez-Parada",slug:"andres-perez-parada"},{id:"33491",title:"Prof.",name:"Marcos",middleName:null,surname:"Colazzo",fullName:"Marcos Colazzo",slug:"marcos-colazzo"},{id:"33492",title:"Dr.",name:"Eduardo",middleName:null,surname:"Dellacassa",fullName:"Eduardo Dellacassa",slug:"eduardo-dellacassa"},{id:"81950",title:"Mrs.",name:"Natalia",middleName:null,surname:"Besil",fullName:"Natalia Besil",slug:"natalia-besil"}]},{id:"20997",type:"chapter",title:"Non-Targeted Analyses for Pesticides Using Deconvolution, Accurate Masses, and Databases – Screening and Confirmation",slug:"non-targeted-analyses-for-pesticides-using-deconvolution-accurate-masses-and-databases-screening-and",totalDownloads:3288,totalCrossrefCites:3,signatures:"Chin-Kai Meng, Mike Szelewski, Jerry Zweigenbaum, Peter Fürst and Eva Blanke",reviewType:"peer-reviewed",authors:[{id:"30998",title:"Dr.",name:"Chinkai",middleName:null,surname:"Meng",fullName:"Chinkai Meng",slug:"chinkai-meng"}]},{id:"20998",type:"chapter",title:"Applications of Hadamard Transform-Gas Chromatography/Mass Spectrometry (HT-GC/MS) to the Detection of Pesticides in Rice",slug:"applications-of-hadamard-transform-gas-chromatography-mass-spectrometry-ht-gc-ms-to-the-detection-of",totalDownloads:2566,totalCrossrefCites:0,signatures:"Cheng-Huang Lin and Chien-Hung Lin",reviewType:"peer-reviewed",authors:[{id:"27937",title:"Dr.",name:"Cheng-Huang",middleName:null,surname:"Lin",fullName:"Cheng-Huang Lin",slug:"cheng-huang-lin"}]},{id:"20999",type:"chapter",title:"Highlights of Mass Spectrometric Methodologies in Environmental Pollution",slug:"highlights-of-mass-spectrometric-methodologies-in-environmental-pollution",totalDownloads:3268,totalCrossrefCites:0,signatures:"Mohamed Attya, Brunella Cavaliere, Fabio Mazzotti, Antonio Tagarelli and Giovanni Sindona",reviewType:"peer-reviewed",authors:[{id:"31644",title:"Prof.",name:"Giovanni",middleName:null,surname:"Sindona",fullName:"Giovanni Sindona",slug:"giovanni-sindona"},{id:"38262",title:"Dr.",name:"Mohamed",middleName:null,surname:"Attya",fullName:"Mohamed Attya",slug:"mohamed-attya"},{id:"38263",title:"Dr.",name:"Brunella",middleName:null,surname:"Cavaliere",fullName:"Brunella Cavaliere",slug:"brunella-cavaliere"},{id:"38264",title:"Dr.",name:"Antonio",middleName:null,surname:"Tagarelli",fullName:"Antonio Tagarelli",slug:"antonio-tagarelli"},{id:"38265",title:"Dr.",name:"Fabio",middleName:null,surname:"Mazzotti",fullName:"Fabio Mazzotti",slug:"fabio-mazzotti"}]},{id:"21000",type:"chapter",title:"Chemically Modified Electrodes for Detection of Pesticides",slug:"chemically-modified-electrodes-for-detection-of-pesticides",totalDownloads:3703,totalCrossrefCites:2,signatures:"Ayanthi Navaratne and Namal Priyantha",reviewType:"peer-reviewed",authors:[{id:"27972",title:"Dr.",name:null,middleName:null,surname:"Priyantha",fullName:"Priyantha",slug:"priyantha"}]},{id:"21001",type:"chapter",title:"Voltammetric Analysis of Pesticides",slug:"voltammetric-analysis-of-pesticides",totalDownloads:5128,totalCrossrefCites:5,signatures:"Ignas Tonle K. and Emmanuel Ngameni",reviewType:"peer-reviewed",authors:[{id:"32036",title:"Prof.",name:"Ignas",middleName:null,surname:"Tonle Kenfack",fullName:"Ignas Tonle Kenfack",slug:"ignas-tonle-kenfack"},{id:"38253",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Ngameni",fullName:"Emmanuel Ngameni",slug:"emmanuel-ngameni"}]},{id:"21002",type:"chapter",title:"The Potential of Flow-Based Optosensing Devices for Pesticide Assessment",slug:"the-potential-of-flow-based-optosensing-devices-for-pesticide-assessment",totalDownloads:2100,totalCrossrefCites:1,signatures:"Maria Luisa Fernández-de Córdova and Pilar Ortega-Barrales",reviewType:"peer-reviewed",authors:[{id:"31055",title:"Dr.",name:"Mª Luisa",middleName:null,surname:"Fernández-de Córdova",fullName:"Mª Luisa Fernández-de Córdova",slug:"ma-luisa-fernandez-de-cordova"},{id:"47556",title:"Dr.",name:"Pilar",middleName:null,surname:"Ortega-Barrales",fullName:"Pilar Ortega-Barrales",slug:"pilar-ortega-barrales"}]}]},relatedBooks:[{type:"book",id:"493",title:"Pesticides",subtitle:"Formulations, Effects, Fate",isOpenForSubmission:!1,hash:"35f00fd282698d3ff83bd9759c5c7a9c",slug:"pesticides-formulations-effects-fate",bookSignature:"Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/493.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"13001",title:"Pesticides of Botanical Origin: a Promising Tool in Plant Protection",slug:"pesticides-of-botanical-origin-a-promising-tool-in-plant-protection",signatures:"Nikoletta G. Ntalli and Urania Menkissoglu-Spiroudi",authors:[{id:"15136",title:"Dr.",name:"Urania",middleName:null,surname:"Menkissoglu-Spiroudi",fullName:"Urania Menkissoglu-Spiroudi",slug:"urania-menkissoglu-spiroudi"},{id:"15906",title:"Dr.",name:"Nikoletta",middleName:null,surname:"Ntalli",fullName:"Nikoletta Ntalli",slug:"nikoletta-ntalli"}]},{id:"13002",title:"Baculovirus Biopesticides",slug:"baculovirus-biopesticides",signatures:"Boguslaw Szewczyk, Marlinda Lobo de Souza, Maria Elita Batista de Castro, Mauricio Lara Moscardi and Flavio Moscardi",authors:[{id:"14133",title:"Prof.",name:"Boguslaw",middleName:null,surname:"Szewczyk",fullName:"Boguslaw Szewczyk",slug:"boguslaw-szewczyk"}]},{id:"13003",title:"Acaricides - Biological Profiles, Effects and Uses in Modern Crop Protection",slug:"acaricides-biological-profiles-effects-and-uses-in-modern-crop-protection",signatures:"Dejan Marčić, Pantelija Perić and Slobodan Milenković",authors:[{id:"14001",title:"Dr.",name:"Dejan",middleName:null,surname:"Marčić",fullName:"Dejan Marčić",slug:"dejan-marcic"},{id:"16471",title:"Dr.",name:"Pantelija",middleName:null,surname:"Perić",fullName:"Pantelija Perić",slug:"pantelija-peric"},{id:"23873",title:"Dr.",name:"Slobodan",middleName:null,surname:"Milenković",fullName:"Slobodan Milenković",slug:"slobodan-milenkovic"}]},{id:"13004",title:"Formula Optimization Design of Pesticide Microemulsion",slug:"formula-optimization-design-of-pesticide-microemulsion",signatures:"Feng Zhao and Wu Yaqian",authors:[{id:"15081",title:"Dr.",name:"Feng",middleName:null,surname:"Zhao",fullName:"Feng Zhao",slug:"feng-zhao"}]},{id:"13005",title:"Pesticide Mixtures",slug:"pesticide-mixtures",signatures:"Raymond A. Cloyd",authors:[{id:"14208",title:"Dr.",name:"Raymond A.",middleName:null,surname:"Cloyd",fullName:"Raymond A. Cloyd",slug:"raymond-a.-cloyd"}]},{id:"13006",title:"Biodegradable Hydrogel as Delivery Vehicle for the Controlled Release of Pesticide",slug:"biodegradable-hydrogel-as-delivery-vehicle-for-the-controlled-release-of-pesticide",signatures:"Fauze Ahmad Aouada, Márcia Regina de Moura, Luiz Henrique Capparelli Mattoso",authors:[{id:"15743",title:"Dr.",name:"Fauze Ahmad",middleName:null,surname:"Aouada",fullName:"Fauze Ahmad Aouada",slug:"fauze-ahmad-aouada"},{id:"20240",title:"Dr.",name:"Luiz Henrique",middleName:null,surname:"Capparelli Mattoso",fullName:"Luiz Henrique Capparelli Mattoso",slug:"luiz-henrique-capparelli-mattoso"},{id:"24120",title:"Dr.",name:"Márcia",middleName:null,surname:"Moura",fullName:"Márcia Moura",slug:"marcia-moura"}]},{id:"13007",title:"Efficacious Considerations for the Design of Diffusion Controlled Pesticide Release Formulations",slug:"efficacious-considerations-for-the-design-of-diffusion-controlled-pesticide-release-formulations",signatures:"Steven A. Cryer",authors:[{id:"16116",title:"Dr.",name:"Steven",middleName:null,surname:"Cryer",fullName:"Steven Cryer",slug:"steven-cryer"}]},{id:"13008",title:"A New Technique for Safe Pesticide Spraying in Greenhouses",slug:"a-new-technique-for-safe-pesticide-spraying-in-greenhouses",signatures:"Guido Belforte, Gabriella Eula and Terenziano Raparelli",authors:[{id:"14069",title:"PhD.",name:"Gabriella",middleName:null,surname:"Eula",fullName:"Gabriella Eula",slug:"gabriella-eula"},{id:"14076",title:"Prof.",name:"Guido",middleName:null,surname:"Belforte",fullName:"Guido Belforte",slug:"guido-belforte"},{id:"14077",title:"Prof.",name:"Terenziano",middleName:null,surname:"Raparelli",fullName:"Terenziano Raparelli",slug:"terenziano-raparelli"}]},{id:"13009",title:"Distribution of Chemical and Microbial Pesticides through Drip Irrigation Systems",slug:"distribution-of-chemical-and-microbial-pesticides-through-drip-irrigation-systems",signatures:"Heping Zhu, Xiaochan Wang, Michael E. Reding and James C. Locke",authors:[{id:"15972",title:"Dr.",name:"Heping",middleName:null,surname:"Zhu",fullName:"Heping Zhu",slug:"heping-zhu"}]},{id:"13010",title:"International Food Safety Standards and the Use of Pesticides in Fresh Export Vegetable Production in Developing Countries: Implications for Farmer Health and the Environment",slug:"international-food-safety-standards-and-the-use-of-pesticides-in-fresh-export-vegetable-production-i",signatures:"Julius J. Okello and Scott M. Swinton",authors:[{id:"16576",title:"Dr.",name:"Julius",middleName:null,surname:"Juma Okello",fullName:"Julius Juma Okello",slug:"julius-juma-okello"},{id:"24171",title:"Prof.",name:"Scott M.",middleName:null,surname:"Swinton",fullName:"Scott M. Swinton",slug:"scott-m.-swinton"}]},{id:"13011",title:"Pesticide Residues in Agricultural Products of the Slovene Origin Found in 2001-2009",slug:"pesticide-residues-in-agricultural-products-of-the-slovene-origin-found-in-2001-2009",signatures:"Helena Baša Česnik, Špela Velikonja Bolta and Ana Gregorčič",authors:[{id:"15163",title:"Dr.",name:"Helena",middleName:null,surname:"Baša Česnik",fullName:"Helena Baša Česnik",slug:"helena-basa-cesnik"},{id:"15850",title:"Dr.",name:"Špela",middleName:null,surname:"Velikonja Bolta",fullName:"Špela Velikonja Bolta",slug:"spela-velikonja-bolta"},{id:"15851",title:"Dr.",name:"Ana",middleName:null,surname:"Gregorčič",fullName:"Ana Gregorčič",slug:"ana-gregorcic"}]},{id:"13012",title:"Pesticides in Agricultural Products: Analysis, Reduction, Prevention",slug:"pesticides-in-agricultural-products-analysis-reduction-prevention",signatures:"Mohammad Shokrzadeh and Seyed Soheil Saeedi Saravi",authors:[{id:"14680",title:"Dr.",name:"Seyed Soheil",middleName:null,surname:"Saeedi Saravi",fullName:"Seyed Soheil Saeedi Saravi",slug:"seyed-soheil-saeedi-saravi"},{id:"16766",title:"Dr.",name:"Mohammad",middleName:null,surname:"Shokrzadeh",fullName:"Mohammad Shokrzadeh",slug:"mohammad-shokrzadeh"}]},{id:"13013",title:"Pesticide Residues in Fruits and Vegetables",slug:"pesticide-residues-in-fruits-and-vegetables",signatures:"B. M. Keikotlhaile, and P. Spanoghe",authors:[{id:"14717",title:"Dr.",name:"Boitshepo",middleName:null,surname:"Keikotlhaile",fullName:"Boitshepo Keikotlhaile",slug:"boitshepo-keikotlhaile"}]},{id:"13014",title:"A Risk Assessment Study of Greek Population Dietary Chronic Exposure to Pesticide Residues in Fruits, Vegetables and Olive Oil",slug:"a-risk-assessment-study-of-greek-population-dietary-chronic-exposure-to-pesticide-residues-in-fruits",signatures:"Ioannis N. Tsakiris, Maria Toutoudaki, Manos Kokkinakis, Mitlianga Paraskevi, and Aristides M. Tsatsakis",authors:[{id:"16686",title:"Dr.",name:"Aristides",middleName:"Michael",surname:"Tsatsakis",fullName:"Aristides Tsatsakis",slug:"aristides-tsatsakis"},{id:"16689",title:"Dr.",name:"Ioannis",middleName:null,surname:"Tsakiris",fullName:"Ioannis Tsakiris",slug:"ioannis-tsakiris"},{id:"16690",title:"Dr.",name:"Paraskevi",middleName:null,surname:"Mitlianga",fullName:"Paraskevi Mitlianga",slug:"paraskevi-mitlianga"}]},{id:"13015",title:"Pesticides Surveillance on Surface Waters: Developing a Method for Watersheds Prioritization",slug:"pesticides-surveillance-on-surface-waters-developing-a-method-for-watersheds-prioritization",signatures:"Carolina Menezes and Léo Heller",authors:[null]},{id:"13016",title:"Herbicide Contamination of Freshwater Ecosystems: Impact on Microbial Communities",slug:"herbicide-contamination-of-freshwater-ecosystems-impact-on-microbial-communities",signatures:"Villeneuve A., Larroudé S. and Humbert J.F.",authors:[{id:"14709",title:"Dr.",name:"Jean-François",middleName:null,surname:"Humbert",fullName:"Jean-François Humbert",slug:"jean-francois-humbert"},{id:"14975",title:"Dr.",name:"Aurélie",middleName:null,surname:"Villeneuve",fullName:"Aurélie Villeneuve",slug:"aurelie-villeneuve"},{id:"14976",title:"Ms.",name:"Solène",middleName:null,surname:"Larroudé",fullName:"Solène Larroudé",slug:"solene-larroude"}]},{id:"13017",title:"Pesticides Reaching the Environment as a Consequence of Inappropriate Agricultural Practices in Argentina",slug:"pesticides-reaching-the-environment-as-a-consequence-of-inappropriate-agricultural-practices-in-arge",signatures:"Andrés H. Arias, Natalia S. Buzzi, Marcelo T. Pereira and Jorge E. Marcovecchio",authors:[{id:"14663",title:"Dr.",name:"Andres",middleName:"Hugo",surname:"Arias",fullName:"Andres Arias",slug:"andres-arias"},{id:"41468",title:"Dr.",name:"Natalia",middleName:null,surname:"Buzzi",fullName:"Natalia Buzzi",slug:"natalia-buzzi"},{id:"41469",title:"Dr.",name:"Marcelo Tomas",middleName:null,surname:"Pereira",fullName:"Marcelo Tomas Pereira",slug:"marcelo-tomas-pereira"},{id:"41470",title:"Prof.",name:"Jorge",middleName:"Eduardo",surname:"Marcovecchio",fullName:"Jorge Marcovecchio",slug:"jorge-marcovecchio"}]},{id:"13018",title:"Bioconcentration of Pesticides in Fish from Rivers and Lakes",slug:"bioconcentration-of-pesticides-in-fish-from-rivers-and-lakes",signatures:"Taizo Tsuda",authors:[{id:"15361",title:"Dr.",name:"Taizo",middleName:null,surname:"Tsuda",fullName:"Taizo Tsuda",slug:"taizo-tsuda"}]},{id:"13019",title:"Organochlorine Pesticides Residues for some Aquatic Systems in Albania",slug:"organochlorine-pesticides-residues-for-some-aquatic-systems-in-albania",signatures:"Aurel Nuro and Elda Marku",authors:[{id:"14427",title:"Dr.",name:"Aurel",middleName:null,surname:"Nuro",fullName:"Aurel Nuro",slug:"aurel-nuro"},{id:"16425",title:"Prof.",name:"Elda",middleName:null,surname:"Marku",fullName:"Elda Marku",slug:"elda-marku"}]},{id:"13020",title:"Distribution Characteristics of Organochlorine Pesticides in Soil and Groundwater of Different Irrigation Areas in Southeast Suburb of Beijing",slug:"distribution-characteristics-of-organochlorine-pesticides-in-soil-and-groundwater-of-different-irrig",signatures:"He Jiang-tao, Ma Wen-jie, Jin Ai-Fang and Wei Yong-Xia",authors:[{id:"15351",title:"Dr.",name:"Jiang-Tao",middleName:null,surname:"He",fullName:"Jiang-Tao He",slug:"jiang-tao-he"},{id:"16616",title:"Prof.",name:"Wen-Jie",middleName:null,surname:"Ma",fullName:"Wen-Jie Ma",slug:"wen-jie-ma"},{id:"16617",title:"Dr.",name:"Ai-Fang",middleName:null,surname:"Jin",fullName:"Ai-Fang Jin",slug:"ai-fang-jin"},{id:"16618",title:"Dr.",name:"Yong-Xia",middleName:null,surname:"Wei",fullName:"Yong-Xia Wei",slug:"yong-xia-wei"}]},{id:"13021",title:"Efficacy of Management Practices to Mitigate the Off-Site Movement and Ecological Risk of Pesticides Transported with Runoff from Agricultural and Turf Systems",slug:"efficacy-of-management-practices-to-mitigate-the-off-site-movement-and-ecological-risk-of-pesticides",signatures:"Pamela J. Rice, Brian P. Horgan, Cathleen J. Hapeman and Laura L. McConnell",authors:[{id:"16961",title:"Dr.",name:"Pamela J.",middleName:null,surname:"Rice",fullName:"Pamela J. Rice",slug:"pamela-j.-rice"},{id:"16963",title:"Dr.",name:"Brian P.",middleName:null,surname:"Horgan",fullName:"Brian P. Horgan",slug:"brian-p.-horgan"},{id:"16964",title:"Dr.",name:"Cathleen J.",middleName:null,surname:"Hapeman",fullName:"Cathleen J. Hapeman",slug:"cathleen-j.-hapeman"},{id:"16965",title:"Dr.",name:"Laura L.",middleName:null,surname:"McConnell",fullName:"Laura L. McConnell",slug:"laura-l.-mcconnell"}]},{id:"13557",title:"Endosulfan in China: Usage, Emissions, and Residues",slug:"endosulfan-in-china-usage-emissions-and-residues",signatures:"Hongliang Jia, Liyan Liu, Yeqing Sun and Yi-Fan Li",authors:[{id:"15603",title:"Dr.",name:"Yi-Fan",middleName:null,surname:"Li",fullName:"Yi-Fan Li",slug:"yi-fan-li"},{id:"16711",title:"Dr.",name:"Hongliang",middleName:null,surname:"Jia",fullName:"Hongliang Jia",slug:"hongliang-jia"}]},{id:"13022",title:"Hexachlorocyclohexanes in Arctic and Antarctic Marine Ecosystems",slug:"hexachlorocyclohexanes-in-arctic-and-antarctic-marine-ecosystems",signatures:"Alessandra Cincinelli, Tania Martellini and Simonetta Corsolini",authors:[{id:"16767",title:"Dr.",name:"Alessandra",middleName:null,surname:"Cincinelli",fullName:"Alessandra Cincinelli",slug:"alessandra-cincinelli"}]},{id:"13023",title:"Sublethal Effects of Pyrethroids on Insect Parasitoids: What We Need to Further Know",slug:"sublethal-effects-of-pyrethroids-on-insect-parasitoids-what-we-need-to-further-know",signatures:"Patrícia Garcia",authors:[{id:"15046",title:"Dr.",name:"Patrícia",middleName:null,surname:"Garcia",fullName:"Patrícia Garcia",slug:"patricia-garcia"}]},{id:"13024",title:"Pesticide Exposure and Health Related Issues in Male and Female Reproductive System",slug:"pesticide-exposure-and-health-related-issues-in-male-and-female-reproductive-system",signatures:"Stavros Sifakis, Mihalis Mparmpas, Offie P. Soldin and Aristides Tsatsakis",authors:[{id:"16686",title:"Dr.",name:"Aristides",middleName:"Michael",surname:"Tsatsakis",fullName:"Aristides Tsatsakis",slug:"aristides-tsatsakis"},{id:"22189",title:"MD",name:"Stavros",middleName:null,surname:"Sifakis",fullName:"Stavros Sifakis",slug:"stavros-sifakis"},{id:"22190",title:"Dr.",name:"Mihalis",middleName:null,surname:"Mparmpas",fullName:"Mihalis Mparmpas",slug:"mihalis-mparmpas"},{id:"22191",title:"Dr.",name:"Giannis",middleName:null,surname:"Heretis",fullName:"Giannis Heretis",slug:"giannis-heretis"}]},{id:"13025",title:"Organophosphorous Pesticides Exacerbate the Demographic Consequences of Intersexual Selection in Fish",slug:"organophosphorous-pesticides-exacerbate-the-demographic-consequences-of-intersexual-selection-in-fis",signatures:"Irene Barbosa-valero, Omar Arellano-Aguilar and Constantino Macías Garcia",authors:[{id:"17469",title:"Dr.",name:"Constantino",middleName:null,surname:"Macías Garcia",fullName:"Constantino Macías Garcia",slug:"constantino-macias-garcia"},{id:"17470",title:"Dr.",name:"Omar",middleName:null,surname:"Arellano-Aguilar",fullName:"Omar Arellano-Aguilar",slug:"omar-arellano-aguilar"},{id:"17471",title:"Prof.",name:"Irene",middleName:null,surname:"Barbosa-Valero",fullName:"Irene Barbosa-Valero",slug:"irene-barbosa-valero"}]},{id:"13026",title:"Pesticides in the Environment: Impacts and its Biodegradation as a Strategy for Residues Treatment",slug:"pesticides-in-the-environment-impacts-and-its-biodegradation-as-a-strategy-for-residues-treatment",signatures:"Ma. Laura Ortiz-Hernández, Enrique Sánchez-Salinas, Angeluz Olvera-Velona and Jorge Luis Folch-Mallol",authors:[{id:"15059",title:"Dr.",name:"Ma. Laura",middleName:null,surname:"Ortiz-Hernandez",fullName:"Ma. Laura Ortiz-Hernandez",slug:"ma.-laura-ortiz-hernandez"},{id:"16717",title:"Dr.",name:"Enrique",middleName:null,surname:"Sanchez-Salinas",fullName:"Enrique Sanchez-Salinas",slug:"enrique-sanchez-salinas"},{id:"16718",title:"Dr.",name:"Angeluz",middleName:null,surname:"Olvera-Velona",fullName:"Angeluz Olvera-Velona",slug:"angeluz-olvera-velona"},{id:"16719",title:"Dr.",name:"Jorge Luis",middleName:null,surname:"Folch.Mallol",fullName:"Jorge Luis Folch.Mallol",slug:"jorge-luis-folch.mallol"}]},{id:"13027",title:"Fate of Pesticide Residues on Raw Agricultural Crops after Postharvest Storage and Food Processing to Edible Portions",slug:"fate-of-pesticide-residues-on-raw-agricultural-crops-after-postharvest-storage-and-food-processing-t",signatures:"Elpiniki G. Amvrazi",authors:[{id:"14627",title:"Dr.",name:"Elpiniki",middleName:"G.",surname:"Amvrazi",fullName:"Elpiniki Amvrazi",slug:"elpiniki-amvrazi"}]},{id:"13028",title:"Analytical Methods for Performing Pesticide Degradation Studies in Environmental Samples",slug:"analytical-methods-for-performing-pesticide-degradation-studies-in-environmental-samples",signatures:"Zenilda L. Cardeal, Amauri G. Souza and Leiliane C.A. Amorim",authors:[{id:"16970",title:"Prof.",name:"Zenilda",middleName:"L.",surname:"Cardeal",fullName:"Zenilda Cardeal",slug:"zenilda-cardeal"},{id:"16984",title:"Dr.",name:"Leiliane",middleName:"C.A.",surname:"Amorim",fullName:"Leiliane Amorim",slug:"leiliane-amorim"},{id:"16985",title:"Prof.",name:"Amauri",middleName:null,surname:"Souza",fullName:"Amauri Souza",slug:"amauri-souza"}]},{id:"13029",title:"Micropollutant Degradation Mechanism",slug:"micropollutant-degradation-mechanism",signatures:"Brigita Tepuš, Irena Petrinić and Marjana Simonič",authors:[{id:"15110",title:"Dr.",name:"Irena",middleName:null,surname:"Petrinic",fullName:"Irena Petrinic",slug:"irena-petrinic"},{id:"15704",title:"Dr.",name:"Brigita",middleName:null,surname:"Tepuš",fullName:"Brigita Tepuš",slug:"brigita-tepus"},{id:"16583",title:"Dr.",name:"Marjana",middleName:null,surname:"Simonič",fullName:"Marjana Simonič",slug:"marjana-simonic"}]},{id:"13030",title:"Bacterial-Degradation of Pesticides Residue in Vegetables during Fermentation",slug:"bacterial-degradation-of-pesticides-residue-in-vegetables-during-fermentation",signatures:"Aslan Azizi",authors:[{id:"15701",title:"Dr.",name:"Aslan",middleName:null,surname:"Azizi",fullName:"Aslan Azizi",slug:"aslan-azizi"}]},{id:"13107",title:"Interpretation and Modelling of Environmental Behaviour of Diverse Pesticides by Revealing Photodecomposition Mechanisms",slug:"interpretation-and-modelling-of-environmental-behaviour-of-diverse-pesticides-by-revealing-photodeco",signatures:"Attila Kiss and Diána Virág",authors:[{id:"14950",title:"Dr.",name:"Attila",middleName:null,surname:"Kiss",fullName:"Attila Kiss",slug:"attila-kiss"},{id:"14973",title:"Dr.",name:"Diána",middleName:null,surname:"Virág",fullName:"Diána Virág",slug:"diana-virag"}]},{id:"13031",title:"Degradation of Organochlorine and Organophosphorus Pesticides by Photocatalysis: Chlorpiryfos and Endosulfan Case Study",slug:"degradation-of-organochlorine-and-organophosphorus-pesticides-by-photocatalysis-chlorpiryfos-and-end",signatures:"Rosalina González Forero",authors:[{id:"14241",title:"Dr.",name:"Rosalina",middleName:null,surname:"Gonzalez Forero",fullName:"Rosalina Gonzalez Forero",slug:"rosalina-gonzalez-forero"}]},{id:"13032",title:"Advanced Oxidation Processes (AOPs) for Removal of Pesticides from Aqueous Media",slug:"advanced-oxidation-processes-aops-for-removal-of-pesticides-from-aqueous-media",signatures:"Marco A. Quiroz, Erick R. Bandala and Carlos A. Martínez-Huitle",authors:[{id:"15324",title:"Dr.",name:"Marco Antonio",middleName:null,surname:"Quiroz Alfaro",fullName:"Marco Antonio Quiroz Alfaro",slug:"marco-antonio-quiroz-alfaro"},{id:"16897",title:"Dr.",name:"Erick Roberto",middleName:null,surname:"Bandala González",fullName:"Erick Roberto Bandala González",slug:"erick-roberto-bandala-gonzalez"},{id:"16898",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Martínez Huitle",fullName:"Carlos Alberto Martínez Huitle",slug:"carlos-alberto-martinez-huitle"}]},{id:"13033",title:"Low-Cost Sorbent for Removing Pesticides during Water Treatment",slug:"low-cost-sorbent-for-removing-pesticides-during-water-treatment",signatures:"Katarzyna Ignatowicz",authors:[{id:"15053",title:"Prof.",name:"Katarzyna",middleName:null,surname:"Ignatowicz",fullName:"Katarzyna Ignatowicz",slug:"katarzyna-ignatowicz"}]},{id:"13034",title:"Influence of the Activated Carbon Nature and the Aqueous Matrix on the Pesticides Adsorption",slug:"influence-of-the-activated-carbon-nature-and-the-aqueous-matrix-on-the-pesticides-adsorption",signatures:"Natividad Miguel, María P. Ormad, Rosa Mosteo, Jorge Rodríguez and José L. Ovelleiro",authors:[{id:"14648",title:"Dr.",name:"Natividad",middleName:null,surname:"Miguel",fullName:"Natividad Miguel",slug:"natividad-miguel"},{id:"14649",title:"Prof.",name:"María P.",middleName:null,surname:"Ormad",fullName:"María P. Ormad",slug:"maria-p.-ormad"},{id:"14650",title:"Dr.",name:"Rosa",middleName:null,surname:"Mosteo",fullName:"Rosa Mosteo",slug:"rosa-mosteo"},{id:"14651",title:"Prof.",name:"Jorge",middleName:null,surname:"Rodríguez",fullName:"Jorge Rodríguez",slug:"jorge-rodriguez"},{id:"14652",title:"Dr.",name:"José L.",middleName:null,surname:"Ovelleiro",fullName:"José L. Ovelleiro",slug:"jose-l.-ovelleiro"}]},{id:"13035",title:"Adsorption Properties of Sediments for Pesticides: Investigation with Supercritical Fluid Extraction and Gas Chromatograph Mass Spectrometry",slug:"adsorption-properties-of-sediments-for-pesticides-investigation-with-supercritical-fluid-extraction-",signatures:"Hiroaki Chikushi, Natsuko Yoshida and Kei Toda",authors:[{id:"14786",title:"Dr.",name:"Kei",middleName:null,surname:"Toda",fullName:"Kei Toda",slug:"kei-toda"},{id:"16534",title:"Dr.",name:"Hiroaki",middleName:null,surname:"Chikushi",fullName:"Hiroaki Chikushi",slug:"hiroaki-chikushi"}]},{id:"13036",title:"Sorption of Pesticides on Natural Geosorbents",slug:"sorption-of-pesticides-on-natural-geosorbents",signatures:"Jean-Pierre Gagné, Bruno Gouteux, Youssouf Djibril Soubaneh, and Jean-Rock Brindle",authors:[{id:"14741",title:"Dr.",name:"Jean-Pierre",middleName:null,surname:"Gagné",fullName:"Jean-Pierre Gagné",slug:"jean-pierre-gagne"},{id:"14761",title:"Dr.",name:"Jean-Rock",middleName:null,surname:"Brindle",fullName:"Jean-Rock Brindle",slug:"jean-rock-brindle"},{id:"16683",title:"Dr.",name:"Youssouf Djibril",middleName:null,surname:"Soubaneh",fullName:"Youssouf Djibril Soubaneh",slug:"youssouf-djibril-soubaneh"},{id:"16684",title:"Dr.",name:"Bruno",middleName:null,surname:"Gouteux",fullName:"Bruno Gouteux",slug:"bruno-gouteux"}]},{id:"13037",title:"Pesticides as a Waste Problem with Examples from Norway",slug:"pesticides-as-a-waste-problem-with-examples-from-norway",signatures:"Ketil Haarstad",authors:[{id:"16783",title:"Dr.",name:"Ketil",middleName:null,surname:"Haarstad",fullName:"Ketil Haarstad",slug:"ketil-haarstad"}]}]}],publishedBooks:[{type:"book",id:"492",title:"Pesticides",subtitle:"The Impacts of Pesticides Exposure",isOpenForSubmission:!1,hash:"1879242be09e94a3e79eb5fbd809e623",slug:"pesticides-the-impacts-of-pesticides-exposure",bookSignature:"Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/492.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5298",title:"Herbicides",subtitle:"Agronomic Crops and Weed Biology",isOpenForSubmission:!1,hash:"64ccebc6b029c1349c7d8e882a5341f2",slug:"herbicides-agronomic-crops-and-weed-biology",bookSignature:"Andrew Price, Jessica Kelton and Lina Sarunaite",coverURL:"https://cdn.intechopen.com/books/images_new/5298.jpg",editedByType:"Edited by",editors:[{id:"13747",title:"Dr.",name:"Andrew",surname:"Price",slug:"andrew-price",fullName:"Andrew Price"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"493",title:"Pesticides",subtitle:"Formulations, Effects, Fate",isOpenForSubmission:!1,hash:"35f00fd282698d3ff83bd9759c5c7a9c",slug:"pesticides-formulations-effects-fate",bookSignature:"Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/493.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"619",title:"Fungicides for Plant and Animal Diseases",subtitle:null,isOpenForSubmission:!1,hash:"197a68ef55ea6ab48097b8f492c741ad",slug:"fungicides-for-plant-and-animal-diseases",bookSignature:"D. Dhanasekaran, N. Thajuddin and A. Panneerselvam",coverURL:"https://cdn.intechopen.com/books/images_new/619.jpg",editedByType:"Edited by",editors:[{id:"48914",title:"Dr.",name:"Dharumadurai",surname:"Dhanasekaran",slug:"dharumadurai-dhanasekaran",fullName:"Dharumadurai Dhanasekaran"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"874",title:"Integrated Pest Management and Pest Control",subtitle:"Current and Future Tactics",isOpenForSubmission:!1,hash:"f9bb193803d54978099900e0645e2637",slug:"integrated-pest-management-and-pest-control-current-and-future-tactics",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/874.jpg",editedByType:"Edited by",editors:[{id:"14863",title:"Dr.",name:"Sonia",surname:"Soloneski",slug:"sonia-soloneski",fullName:"Sonia Soloneski"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],publishedBooksByAuthor:[{type:"book",id:"176",title:"Pesticides in the Modern World",subtitle:"Trends in Pesticides Analysis",isOpenForSubmission:!1,hash:"a90215ceb5e31eb3e1378a34ab04e555",slug:"pesticides-in-the-modern-world-trends-in-pesticides-analysis",bookSignature:"Margarita Stoytcheva",coverURL:"https://cdn.intechopen.com/books/images_new/176.jpg",editedByType:"Edited by",editors:[{id:"6375",title:"Prof.",name:"Margarita",surname:"Stoytcheva",slug:"margarita-stoytcheva",fullName:"Margarita Stoytcheva"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},onlineFirst:{chapter:{type:"chapter",id:"82197",title:"Molecular Mechanisms Involved in Insulin Resistance: Recent Updates and Future Challenges",doi:"10.5772/intechopen.104806",slug:"molecular-mechanisms-involved-in-insulin-resistance-recent-updates-and-future-challenges",body:'
1. Introduction
Following a meal, pancreatic β-cells produce insulin in response to increasing blood glucose and other metabolite levels for regulating systemic glucose homeostasis. Tissue insulin sensitivity, which characterizes the ability of a given concentration of insulin to correct blood glucose levels, is the driving force behind this homeostasis. Multiple processes in several organs are involved in this typically well-regulated homeostatic mechanism, including decreased glucose output from the liver (hepatic glucose output), increased glucose uptake into skeletal muscle and adipose tissue (where glucose is stored as glycogen), suppression of free fatty acid (FFA) release from adipocytes (suppression of lipolysis), and increased lipid accumulation in the liver and adipocytes. A sophisticated insulin-dependent signal transduction cascade controls these metabolic processes. Insulin resistance (IR) is defined as decreased insulin-stimulated glucose uptake into muscle and adipocytes and faulty insulin regulation of hepatic glucose production in patients with type 2 diabetes (T2D) and in many subjects affected by other conditions characterized by insulin resistance, such as obesity and polycystic ovary syndrome. The term insulin resistance was first coined to explain the considerable variability in the insulin dose necessary to lower high glucose levels in people with T2D, and then to characterize the magnitude of change in blood glucose level when a given amount of insulin and glucose was administered. The “defined quantity of insulin” is crucial because people with insulin resistance often have hyperinsulinemia, a condition in which insulin levels in the blood are higher than normal relative to the amount of blood glucose concentration under both fasting and fed conditions; this hyperinsulinemia compensates for IR in peripheral tissues to bring blood glucose levels back to normal [1].
When pancreas fails to supply excess insulin in humans with insulin resistance, a major defect in whole-body glucose homeostasis occurs, resulting in hyperglycemia and glucose intolerance (the latter including impaired fasting glucose and impaired glucose tolerance), which are the defining features of T2D. It is worth noting that, somewhat counterintuitively, patients with T2D frequently maintain “relative hyperinsulinemia” until the condition is at an advanced stage. IR is defined by insulin’s inability to induce glucose uptake into muscle and adipose cells due to a failure of the glucose transport mechanism mediated, at the molecular level, by glucose transporter type 4 (GLUT4) in those tissues. Furthermore, one of the hallmarks of IR is the inability to decrease hepatic glucose production, which is mostly due to a persistent increase in hepatic gluconeogenesis. IR has been linked to a variety of diseases. Indeed, IR represents a risk factor for various conditions, such as metabolic disorders (including T2D and obesity), heart disease, liver diseases (e.g., non-alcoholic fatty liver disease and non-alcoholic steatohepatitis), cancer, neurodegenerative diseases and frailty [2, 3, 4]. Despite the fact that IR is inextricably linked to T2D, an important factor involved in T2D pathophysiology is represented by the pancreas’ incapacity to function properly to compensate for the significant rise in blood glucose levels by secreting enough insulin to meet the increasing demand and help get blood glucose levels back to normal. IR is a key risk factor for T2D, yet it is not commonly recognized or treated in people without diabetes. The main reason for this phenomenon is that many people with insulin resistance do not have abnormal blood glucose levels. Therefore, diagnosis of IR is based on measuring insulin levels, which is not commonly done in clinical practice. Furthermore, only a small fraction of subjects with IR develop T2D, which is likely due to a propensity to β-cell failure in these subjects. There are no procedures to identify this susceptible subpopulation at this time. Individuals with IR are predisposed to significant disorders linked to T2D, including retinopathy, neuropathy and kidney disease, even if they do not have T2D [5]. In this chapter, the association between the early possible causes of IR is first discussed. Obesity is common in people with IR, but it is unclear whether concomitant hyperinsulinemia contributes to obesity development or whether it is a consequence of obesity-associated IR. We then look at how different metabolic tissues, such as muscle, adipose tissue, and the liver, communicate with one another. The mechanisms of impaired insulin signaling and the role of abnormal GLUT4 trafficking in the development of IR are also discussed. Extracellular factors that may contribute to IR are postulated. This discussion is then followed by a discussion of various intracellular molecular factors that contribute to IR. These factors have been considered as involved in processes that lead to IR. There are several ways for determining insulin action. Many laboratories have lately resorted to employing surrogate markers of insulin sensitivity and IR [6]. The “traditional” definition of IR is a condition in which blood glucose levels are abnormally high and insulin concentration needed to maintain glucose homeostasis is greater than predicted [7, 8].
2. Pathway to insulin resistance
Despite years of research, there is still a lot of uncertainty about the causative and temporal link between obesity, hyperinsulinemia, and IR. The proximal and distal parts of the insulin signaling system, which governs metabolism, can be arbitrarily partitioned. The classical components—which comprise the insulin receptor, insulin receptor substrate (IRS) proteins, phosphoinositide 3-kinase (PI3K) and AKT-constitute the proximal segment of the insulin signaling system. A common trait of the proximal components is their sparseness, which means that just a little part of each element is necessary to elicit a physiological signal. This guarantees signal amplification across the network. The proximal portion is also susceptible to very complex feedforward and feedback control, and is incorporated into a broader network that is dynamically regulated by combinatorial signaling inputs. The AKT substrates that are intimately related to the many physiological activities of insulin and are typically specialized to a particular cell type are referred to as the “distal segment” of the insulin signaling pathway. The distal elements are generally phosphorylated, which is a common trait. Insulin signaling begins with the hormone binding to its surface receptor, followed by activation of the receptor tyrosine kinase and tyrosine phosphorylation. IRS proteins are phosphorylated, causing them to create a signaling complex, which contains proteins with Src homology domains such as PI3K. As a result, phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3 or PIP3] is produced. Serine/threonine (Ser/Thr) protein kinases like PDK1 and AKT, for example, are recruited to the inner leaflet of the plasma membrane. AKT is phosphorylated by PDK1 at one of its phosphorylation sites. Partially phosphorylated AKT activates mTORC2, while phosphorylation of AKT specifically at Ser473 results in complete AKT activation. Thus, AKT is a critical node in the insulin signaling pathway. AKT performs a variety of biological roles and is involved in the majority, if not all, of physiological metabolic processes. The Rab GTPase-Activating Protein (GAP) is an AKT substrate, which activates TBC1D4 (TBC1 Domain Family Member 4), a protein that regulates GLUT4 trafficking within the plasma membrane. The activation of glucose transport by insulin is the key mechanism that is disrupted in insulin-resistant muscle and fat cells. The GLUT4 is a facilitative glucose transporter, which is found in skeletal muscle, heart, adipocytes, and insulin-responsive neurons; it regulates muscle/fat glucose transfer. Unlike other transporters (like GLUT1), GLUT4 has a set of specific trafficking cues that let it migrate from endosomes and the trans-Golgi network (TGN) to a special intracellular population of vesicles known as “GLUT4 storage vesicles” (GSVs) [9, 10, 11]. GSVs act as a distinct controlled exocytic compartment that distributes GLUT4 to the cell surface in response to insulin and serves as a storage depot assuring low rates of glucose absorption in the fasting state. Although exercise increases GLUT4 translocation in muscle cells, it does so through a different mechanism than that regulated by insulin. AKT plays a critical role in the insulin-regulated GLUT4 translocation [12, 13]. These characteristics typically coexist, and there is strong evidence that each can cause the other two branches of the triad to emerge: obesity, hyperinsulinemia, and IR are caused by overnutrition in humans and animals; in humans, IR and obesity may also be caused by continuous insulin administration or by genetic factors; in addition, IR in humans may be caused by pharmacological interventions resulting in hyperinsulinemia [14, 15].
3. The trio-axis of obesity-hyperinsulinemia-insulin resistance
Obesity and IR are two topics that come up frequently. The long period during which obesity, IR and hyperinsulinemia develop, makes the determination of causative links between these conditions (which usually coexist in most persons with T2D at the time of diagnosis) particularly difficult. Obesity is common in people with IR, although it is unclear whether simultaneous hyperinsulinemia plays a role in obesity development or it is predominantly a result of obesity-dependent IR [16]. The study of first-degree relatives of people with T2D who only show some of these traits has shown to be one of the most effective strategies for addressing some unanswered questions in humans. As a result, a trait seen in relatives is more likely to appear early in the course of the disease. It has been found that these subjects can have considerable IR in skeletal muscle and liver (and possibly fat), along with modest hyperinsulinemia, even if they are not obese or glucose-intolerant [15, 17, 18]. Individuals who are lean and glucose-tolerant but exhibit IR have been identified in larger cross-sectional studies [19]. In these instances, obesity is unlikely to be the primary cause of tissue IR. However, the term “obesity” is defined differently depending on race and genetic background, and it should therefore used with caution. Body mass index may be more important in determining the risk of IR. Body weight, in general, and visceral fat (but not subcutaneous fat), in particular, should be considered for evaluation [20].
First-degree relatives of people with T2D had greater levels of circulating FFAs and intramuscular lipids than healthy control subjects [21], suggesting that intramyocellular lipid content represents an early abnormality in the pathogenesis of insulin resistance and that it may contribute to the impaired glucose uptake in skeletal muscle of insulin-resistant subjects to a greater extent than overall adiposity. This is in line with severe IR observed in patients with lipodystrophy syndromes, which are a heterogeneous group of diseases characterized by selective absence of adipose tissue, loss of functional adipocytes, ectopic steatosis, and severe dyslipidemia and IR [22, 23]. On the other hand, individuals with moderate or severe obesity can be “metabolically healthy” [24]. While it appears acceptable, based on this research, to conclude that obesity is not a risk factor essential for the development of IR, it is vital to highlight that the majority of subjects with IR are obese. As we will discuss later in the text, the amount and location of adiposity required to create IR varies greatly between subjects.
4. Insulin resistance and hyperinsulinemia
Defining the temporal link between hyperinsulinemia and IR is difficult since, as far as we know, IR does not exist in the absence of hyperinsulinemia in humans, and vice versa. Hyperinsulinemia can produce obesity and IR in humans, as evidenced by trials in which insulin is administered to induce hyperinsulinemia in otherwise healthy individuals or as it occurs naturally in people with insulinomas [25, 26]. Transgenic expression of multiple copies of the normal insulin gene causes hyperinsulinemia in mice, resulting in IR and glucose intolerance [27]. Inhibition of insulin secretion has also been shown to improve insulin sensitivity and to decrease body weight in rodents [28, 29, 30]. In mice, deletion of one copy of the insulin gene resulted in a reduction of the Western diet-induced hyperinsulinemia and in an improvement of insulin sensitivity [31]. Overall, the hypotheses that hyperinsulinemia causes IR and promotes obesity, or that IR associated with obesity causes hyperinsulinemia, both remain acceptable for the initial events involved in T2D pathophysiology. In actuality, IR and hyperinsulinemia coexist and lead to T2D in almost all cases [32]. Several data suggest a concept in which hyperinsulinemia is responsible for, or at least partly contributes to, many of the negative effects of IR; this implies that IR is a state in which many of the insulin actions are preserved, a condition known as “selective IR” [33, 34, 35]. This was first observed in the liver, where increased insulin levels are unable to decrease hepatic glucose output in people with T2D, although lipogenesis (a canonical insulin action in the liver) remains elevated [36, 37]. One explanation for this selectivity is that insulin signaling pathway in the liver splits into two arms, with IR affecting only the arm regulating hepatic gluconeogenesis but not the arm regulating lipid metabolism. Hepatic de novo lipogenesis is essentially a cell-autonomous phenomenon, whereas cell-nonautonomous suppression of hepatic glucose production by insulin depends upon the insulin-mediated decrease of adipocyte lipolysis and circulating FFAs [38]. There has also been evidence of selective IR in muscle and adipose tissue. Those insulin-regulated activities which are not affected by IR—such as lipogenesis, protein synthesis, or transcriptional control mediated by FOXO proteins—are hyperactivated in the context of hyperinsulinemia and are likely to worsen IR or its consequences [33, 34, 39, 40].
5. Heterogeneity in the development of insulin resistance and progression of metabolic disease and T2D
T2D patients are divided into different phenotypic clusters based on their symptoms and clinical features. Individuals in one of these groups share phenotypic traits. As a result, performing a comprehensive analysis of these groups will be of great importance in clinical settings. Phenotype data analysis and combination of phenotype data with genetic data are essential to gain a better understanding of the variability in the development and presentation of IR in humans [10, 11, 41].
6. Tissue-specific progression to insulin resistance
The appearance of IR occurs in various tissues in a specific order. The development of IR in several tissues—including skeletal muscle, liver, and adipose tissue—is a hallmark of fully developed T2D in humans [18, 19, 39, 40, 42]. Evidence shows a hierarchical progression of IR in skeletal muscle, liver and adipose tissue, whereby IR develops in one tissue and then spreads to other tissues via systemic circulating components. For example, IR in the liver and adipose tissue appears to occur prior to IR in muscle in C57Bl/6 mice fed a high-fat diet [43, 44, 45, 46]. An equivalent pattern in humans is unlikely, since first-degree relatives of persons with T2D who are in the early stages of the disease already have IR in both muscle and liver (and possibly fat) [47]. Since insulin sensitivity in humans is often measured as whole-body glucose consumption (to which adipose tissue contributes only to a small extent), the temporal development of IR in adipose tissue in humans is less obvious. Interestingly, multiple investigations show that insulin modulates hepatic glucose production via reducing adipocyte lipolysis in a non-cell-autonomous manner [45]. Given these findings, it is reasonable to believe that adipose tissue IR is a precursor to metabolic disease and T2D. However, there is a clear distinction between insulin action on the liver and insulin action on muscle: even in people with T2D, the defect in insulin sensitivity in the liver can be almost completely overcome by sufficiently high levels of insulin, whereas muscle (and fat) insulin sensitivity defects persist at higher insulin concentrations [40, 48, 49]. This indicates that the processes that cause IR in muscle and liver are distinct.
Tissue-specific insulin receptor gene knockouts in mice have provided persuasive evidence that IR in a particular tissue can at least spread to other organs. Experimenting with a specific deficiency in insulin action in muscle, fat, or liver has resulted in the spread of IR to other tissues in a number of cases [50]. However, depending on the tissue that is first targeted and/or in which a specific gene deletion occurs, the mechanism of inter-tissue communication varies. The deletion of GLUT4, which is essential for glucose uptake in adipose tissue and skeletal muscle, is one of the best examples of this inter-tissue communication. In mice, deletion of GLUT4 resulted in IR not only in the tissue from which the transporter was removed, but also in all metabolic tissues, including the liver. Surprisingly, normalization of blood glucose levels reverses IR in the liver and adipose tissue in muscle-specific Glut4 gene-knockout mice. This shows that glucotoxicity generated IR in this animal model, which is not the case in many other IR models, including the Western diet-fed C57BL/6J mice, which do not show considerable hyperglycemia [48, 49, 50, 51]. As a result, while these animal studies have been useful in uncovering mechanisms of IR in specific tissues, their clinical applicability is less evident because complete deletion of a gene preferentially in one tissue does not occur in humans. Nonetheless, these experiments have provided persuasive evidence that metabolic or signaling changes in one tissue can have systemic effects by influencing insulin activity in other organs, a phenomenon that has been well-validated by clinical findings [50, 51].
7. Impaired insulin signaling in insulin resistance
Over the past 40 years, much research has resulted in a precise understanding of the insulin signaling system, which mediates the insulin’s physiological activities. One popular theory is that IR is caused by a defect in one or more of these signaling components. Another viewpoint is that IR is only caused by a shift in metabolic flux. For example, since the 1960s fatty acids have been proven to impede cells’ ability to utilize carbohydrate by allosterically modifying crucial rate-limiting steps in carbohydrate metabolic pathways. Several pieces of evidence, however, refute this claim. IR can be seen in cells or tissues long after the animal tissues have been removed, implying that changes that contribute to IR are long-lasting and cannot be explained by the acute action of a systemic factor. Fatty acids decrease the insulin-dependent translocation of GLUT4 to the plasma membrane and limit glucose uptake, there is no indication that this inhibition is caused by an allosteric change of GLUT4. Finally, IR can persist even after significant changes in dietary intake and after changes in metabolic state induced by pharmacological interventions. Thus, based on this information, it is reasonable to believe that IR is caused by an alteration in insulin signaling, although the exact location of the defect in the insulin signaling pathway remains unknown. Many essential components of the insulin signaling system have been identified. These components are divided into two parts: (i) the proximal part, which represents the core canonical signaling pathway, which includes the insulin receptor, IRS, PI3K and AKT; and (ii) the distal part, which includes TBC1D4, GSK3 (glycogen synthase kinase-3) and PDE3B (phosphodiesterase 3B). IR has been linked to defects in proximal insulin signaling system, that are associated with cellular stress. Many of the intracellular stressors discussed in the next sections activate a variety of intracellular Ser/Thr kinases, including novel PKCs (protein kinase C), JNK (c-Jun amino-terminal kinase), mTOR (mammalian target of rapamycin)and S6 kinase, which phosphorylate either the insulin receptor or the insulin receptor-related protein (INSRR). This could be a negative-feedback route that inhibits insulin signaling, according to the theory. However, as it will be discussed later, mounting evidence suggests that proximal insulin signaling system is unaffected in IR, implying that IR is caused by abnormalities in distal components of the insulin signaling network [52, 53, 54].
8. Insulin resistance and insulin signaling at the proximal level
The current focus on proximal insulin signaling abnormalities as a cause of IR stems from research into rare, monogenic severe types of IR that were discovered to be caused by mutations in the insulin receptor gene or by the development of insulin receptor blocking antibodies. Because of the superficial parallels between these rare conditions and T2D, it is reasonable to conclude that both diseases are caused by abnormalities in insulin receptor function, with the degree of receptor failure varying only slightly. Despite early enthusiasm for this theory, subsequent research found that IR in most forms of T2D was caused by neither impaired insulin receptor activity nor changes in the expression or quantity of insulin receptors. Insulin-binding experiments in rat adipocytes found that only 2.4% of total insulin receptors are required for a full biological response, implying that metabolic cells like muscle, fat and liver cells have an abundance of insulin receptors; this finding became known as the “spare insulin receptor” hypothesis. Insulin-mediated glucose uptake is reduced in insulin-resistant skeletal muscle cells and adipocytes. Since a slight decrease in the number of insulin receptors could only diminish insulin sensitivity and not the maximal insulin response [54, 55, 56, 57, 58]. While some studies contradict the “spare insulin receptor” hypothesis, recent genetic studies in mice support the idea that insulin signaling is preserved when the number of insulin receptors is reduced: mice with heterozygous loss of the insulin receptor had normal glucose and insulin tolerance and no impairment in AKT signaling in muscle or adipose tissue [59, 60, 61, 62].
The concept of spare insulin receptors shifted focus to a “postreceptor defect”, which is represented by defects in signaling downstream intermediates of the insulin receptor as the cause of IR [57, 58, 63]. Loss-of-function mutations in a number of signaling genes—including TBC1D4, AKT2, and IRS1 in humans—have been linked to severe forms of IR and T2D; moreover, cancer treatments that block PI3K or AKT have been linked to IR and T2D in humans. IR is caused in mice by targeted deletion of these genes. In addition, IR results in reduction of skeletal muscle AKT phosphorylation in response to insulin stimulation [34, 64, 65].
Given evidence of “spareness” for IRS, PI3K and AKT, the possibility that abnormalities in proximal insulin signaling might be responsible for IR has to be questioned, in the same way that the “spare receptor” theory has to be questioned. Homozygous deletion of AKT2, the most prevalent AKT gene isoform, resulted in a 90% reduction in insulin-stimulated AKT phosphorylation, but with no discernible defect in phosphorylation of the AKT substrate, or protein synthesis in response to insulin. In this situation, there was a tiny quantity of AKT1 expression that was not influenced by the gene deletion and was enough to deliver a completely functional message as response to insulin [66, 67]. Similarly, whereas AKT2 accounts for 85% of total AKT in the liver, its ablation does not result in significant glucose intolerance because the remaining AKT1 compensates for this defect [68]. The insulin dose-response curve in adipocytes, where the curve for AKT phosphorylation is “shifted to the right” compared to that for AKT substrate phosphorylation or insulin action, indicates that partial phosphorylation of AKT is sufficient for maximal biological responses, providing additional evidence for “spareness” in proximal insulin signaling network. At “normal” insulin concentrations, phosphorylation of AKT substrates requires only 1% of the entire AKT pool to be activated [69, 70, 71]. Furthermore, AKT phosphorylation is reduced in muscle from T2D patients, while downstream substrate phosphorylation is unaffected. Importantly, studies in animals fed a Western diet have indicated that IR begins before any detectable insulin signaling defect. Only 42 days of Western diet feeding resulted in reduced insulin-stimulated AKT phosphorylation, but TBC1D4 phosphorylation remained normal. As a result, minor changes in phosphorylation of proximal insulin signaling components may result in insulin sensitivity, but they are unlikely to result in a reduction in the maximal physiologic response [53].
Thus, how can the predominance of abnormalities in proximal insulin signaling components observed in diverse IR models, such as lower AKT phosphorylation, be reconciled? It is possible that these defects are a result of defective glucose metabolism rather than the cause. This could be a direct effect secondary to compensatory hyperinsulinemia, a typical hallmark of IR (since persistent hyperinsulinemia can lead to degradation of proximal insulin signaling components); alternatively, it may be a cell-autonomous effect due to a reduction in AKT phosphorylation as a result of defective glycolysis. Many studies used insulin-stimulated AKT phosphorylation in mice (sometimes in response to a maximal, pharmacological dosage of insulin) as an indicator of insulin sensitivity [72, 73, 74, 75].
However, under physiological settings such as the response to a meal (with minimal insulin release), AKT phosphorylation is barely detectable, due to the non-linearity between AKT phosphorylation and phosphorylation of its substrates. As a result, when evaluating the physiological importance of insulin signaling, it is critical to look at the phosphorylation of a variety of AKT substrates to determine if there is a major deficiency in “AKT activity” in vivo. These findings suggest that a minor impairment in proximal insulin signaling network is unlikely to account for the significant reduction in insulin-stimulated glucose uptake observed in patients with T2D. Furthermore, these findings underline that lower AKT2 phosphorylation should not be used as a direct marker or even as a proxy measure of IR [71].
Negative feedback loops originating from Ser/Thr kinases that phosphorylate and limit the action of IRS proteins have also been proposed as a cause of IR. This theory is refuted by a number of studies. Since Platelet-derived growth factor (PDGF) by-passes these proteins to activate glucose uptake, mice bred to overexpress PDGF receptor (PDGFR) in muscle presented an ideal model to explore whether deficiencies in insulin receptor or IRS were implicated in experimental IR. In these mice, PDGF treatment resulted in increased glucose uptake in muscle [76]. Notably, when PDGFR transgenic rats were fed a Western diet, muscle glucose uptake in response to PDGF was decreased to the same degree as insulin-mediated uptake. This refutes a role for inhibitory Ser/Thr phosphorylation of the insulin receptor or IRS as a cause of IR, indicating that the deficiency in glucose uptake or IR does not involve the insulin receptor or IRS [8, 53, 54, 77, 78].
Furthermore, in mice, targeted mutation of one of the major putative inhibitory sites in IRS1 (Ser307), deletion of potential mediators of IR, such as PKC (which is reported to phosphorylate insulin receptor), and pharmacological blockade of key negative feedback pathways, such as mTOR (which is activated by insulin signaling and inhibits signaling by phosphorylating IRS through a negative feedback mechanism) [78, 79, 80, 81].
Finally, investigations in humans with IR or T2D revealed that insulin-stimulated muscle glucose uptake is reduced by 50–100% even at maximum insulin dosages [82, 83, 84, 85], with no change or reduction in AKT phosphorylation [86, 87, 88]. Only a few of these studies addressed the mechanism of AKT substrate phosphorylation in depth, and those that did found no deficiency or poorly linked with IR. These findings support the theory that the proximal insulin signaling network in human tissues has enough “spareness” to overcome even a moderate deficiency in AKT phosphorylation [87, 88, 89], and that lowered AKT phosphorylation is adequate to ensure a normal signal transduction. As previously stated, faulty proximal insulin signaling is most likely a result of IR rather than a cause of IR [90].
9. GLUT4 and insulin resistance
Insulin stimulates the transfer of intracellular GLUT4 storage vesicles to the cell surface, resulting in glucose uptake in skeletal muscle cells and adipocytes (Figure 1) [91, 92, 93, 94]. Insulin-dependent GLUT4 translocation has been linked to IR in both skeletal muscle and adipose tissue. This decrease in GLUT4 availability at the plasma membrane causes a reduced glucose uptake, which can lead to other IR-related consequences like reduced AKT phosphorylation, protein synthesis defects, and increased lipolysis [72, 95, 96]. GLUT4 does not show spareness, unlike proximal insulin signaling components such as IRS1 and AKT. The fact that heterozygous GLUT4 gene-knockout mice acquire metabolic disease exemplifies this concept [97].
Figure 1.
Translocation of glucose transporter type 4 (GLUT4) from GLUT4 storage vesicles (GSVs) to the plasma membrane of normal adipocytes and skeletal muscle cells (a). This process is altered in conditions characterized by insulin resistance (b).
However, while GLUT4 levels are lowered by 50% in human adipose tissue from patients with T2D, such levels remain unaltered in skeletal muscle, implying that GLUT4 levels cannot explain IR development in skeletal muscle [98]. Despite normal GLUT4 levels, insulin-stimulated GLUT4 translocation to the cell surface in skeletal muscle is faulty in both individuals with T2D [92] and in several rodent models of IR [99, 100]. Importantly, while exercise-modulated GLUT4 translocation to the cell surface is unaffected [101], the impairment in muscle GLUT4 trafficking in T2D is insulin signaling-specific. Insulin and exercise both cause GLUT4 translocation to the cell surface from discrete intracellular compartments [102].
The ultimate defect that defines IR is the impaired GLUT4 translocation to the plasma membrane. However, it is unknown how the numerous potential intracellular IR mediators mentioned later affect GLUT4 trafficking. Three options are discussed here. First, GLUT4 translocation requires that GLUT4 is localized in the appropriate intracellular compartment, the so-called GLUT4 storage vesicles (GSVs); GLUT4 targeting to GLUT4 GSVs has been hypothesized to be altered in IR [91, 100]. However, whereas this would likely result in GLUT4 degradation, GLUT4 levels in skeletal muscle from patients with IR remain unaffected. Second, given the importance of protein phosphorylation in insulin action [101, 102, 103, 104], it is possible that the defect is caused by a distal component of the insulin-regulated phosphorylation network such as TBC1D4, which regulates GLUT4 trafficking, although there is no convincing evidence for defective TBC1D4 phosphorylation in IR [105]. TBC1D4 is unlikely to be the only AKT target causing GLUT4 translocation, as cells lacking TBC1D4 still have some insulin-sensitive glucose transport [106]. Recent phosphoproteomics studies have revealed the existence of a wide range of insulin-responsive phosphoproteins in metabolic cells, allowing for the identification of insulin signaling targets in the distal part of the insulin signaling pathway that may be involved in the development of IR [104]. Indeed, IR is associated with massive alterations in the architecture of the entire insulin signaling pathway, according to examination of muscle cells from T2D patients [107]. Finally, a direct alteration of GLUT4 or a defect in a yet undiscovered protein that interacts with GLUT4 could cause the abnormalities in GLUT4 trafficking. This could include carbonylation and oxidation-induced inactivation of GLUT4, which have been observed in humans as a response to short-term overnutrition [108]. Protein carbonylation is linked to H2O2 production, lipid peroxidation and IR, suggesting a link between such molecular processes and the development of IR [109].
10. Adipose tissue and insulin resistance
While IR is regularly seen in lean first-degree relatives of patients with T2D, it is also found in many lean “healthy” individuals, suggesting that IR is more common than previously thought. In this regard, dietary habits, physical activity level and genetics are important factors that can significantly contribute to IR. Adipose tissue makes a significant contribution to the development of IR. Limitations in peripheral adipose tissue storage capacity and expansion in response to over nutrition (as it occurs in overweight and obesity) lead to increased circulating lipids, subsequent lipid accumulation in non-adipose tissues (ectopic lipid in liver, skeletal muscle, heart, and pancreas) and development of lipid-induced IR and metabolic derangements [110, 111]. Because of this, and since there is a clear link between IR and increased adipose tissue mass, we will discuss the role of adipose tissue mass and lipotoxicity as significant drivers of IR, as well as the emerging mechanisms by which adipocytes contribute to systemic IR.
10.1 Adipose tissue dysfunction
IR in adipocytes could be the first step in the progression of adipose tissue dysfunction, similar to IR in muscle and liver. In adipocytes from first-degree relatives of patients with T2D, there is a low expression of markers of insulin sensitivity such as GLUT4 and adiponectin (a crucial systemic insulin-sensitizing adipokine produced by adipose tissue), supporting this theory [112]. Furthermore, adipocyte hypertrophy (increase in adipocyte size) appears to precede T2D onset in Pima Indians, a group of Native Americans with a high incidence of IR and T2D [113]. Additionally, mouse models with adipose-specific IR also have IR in their muscle and liver. Notably, IR in the muscle of adipose-specific Glut4 gene-knockout mice was only present in vivo but not when muscles were isolated and assessed in vitro, implying a role for systemic factors (which did not include circulating FFAs or inflammatory cytokines) in the progression of IR from adipose tissue-specific pathology [114, 115].
Human genetic research has also suggested that adipose tissue plays a significant role in IR. Studies in identical twins or first-degree relatives of T2D patients have shown that inheritance has a substantial influence in IR and T2D [116]. More than 250 genetic loci have been linked to T2D so far, however they only account for 25% of T2D heritability [117]. While these investigations have generally discovered genes linked to beta-cell function and insulin secretion, deeper analysis of phenotypes more closely aligned with IR have begun to uncover genetic drivers of IR in other organs. Surprisingly, several of these drivers are involved in the function of adipose tissue [118]. Although subclinical lipodystrophy is a rare cause of severe IR, it has been suggested that milder forms of lipodystrophy are responsible for IR in general, supporting a model in which excessive lipid spillover into circulation is a proximal, mechanistic cause of altered insulin action. Specifically, when the individual’s capacity to store lipids in adipose tissue has been exceeded, lipid spillover into circulation leads to elevated plasma FFAs and triglyceride levels, which result in increased ectopic storage of these molecules in non-adipose tissues—such as liver and skeletal muscle—and subsequent metabolic derangements via lipotoxicity (lipid-induced toxicity). Surprisingly, genes in the insulin signaling system linked to IR (IRS1 and GRB14) are also linked to familial partial lipodystrophy [119].
PPARG (Peroxisome Proliferator-Activated Receptor Gamma, a master positive regulator of adipogenesis) and CCDC92, DNAH10, and L3MBTL3 (regulators of adipocyte differentiation) were among the 53 loci discovered in a study employing an integrated genomic approach to find genes related to IR. Thiazolidinediones are insulin-sensitizing peroxisome proliferator-activated receptor gamma agonists that are used in the treatment of T2D and act by promoting adipogenesis and adipose tissue growth (through cell size and cell number increase or adipocyte hypertrophy and hyperplasia) [119]. The availability of additional lipid storage induced by thiazolidinediones may therefore promote insulin sensitivity by alleviating lipotoxicity [120]. These drugs also improve insulin sensitivity in first-degree relatives of T2D patients, implying that adipose tissue hypertrophy and “unhealthy” lipid storage are critical regulators of insulin action and contributors to IR [121].
Adipose tissue’s primary function is to store fat and release it into circulation when needed, and it has the unique capacity to expand in response to nutrient overload. Lipids can be released into the bloodstream when the adipocyte capacity to store lipids has been exceeded [39]. There is compelling evidence that the accumulation of excess lipids in non-adipose tissues (e.g., skeletal muscle and liver), known as lipotoxicity (a.k.a. lipid-induced toxicity), plays a role in the development of muscle and liver IR [122]. As a result, studies aimed at understanding the cause and magnitude of increased circulating lipid levels in IR are now being pursued. Furthermore, intracellular lipid accumulation in cells and tissues—including pancreatic beta cells and liver—has been linked to the onset of cellular dysfunctions, such as secretory abnormalities and inflammation (Figure 2). Elevated circulating FFA levels have been linked to IR, and this has been proposed as a possible cause of lipotoxicity [123].
Figure 2.
Excessive adipocyte lipid storage in response to overnutrition, resulting in adipocyte hypertrophy, inflammation and increased release of free fatty acids (FFAs) into circulation, leading to ectopic fat accumulation, lipotoxicity and development of insulin resistance in non-adipose tissues, such as liver and skeletal muscle.
In humans and animals, lipid infusion causes muscle IR and enhanced hepatic gluconeogenesis, the latter attributable to changes in metabolic fluxes rather than to fat accumulation [123, 124, 125]. Furthermore, animals with increased circulating FFA levels due to increased lipolysis develop muscle and hepatic IR, whereas obese mice with reduced fat cell lipolysis are protected from glucose intolerance [126]. It is worth noting that, as discussed elsewhere [127], circulating FFA levels in patients with IR or T2D usually are not elevated. However, there are several confounders in this measurement, including the wide range of FFA levels in healthy adults and the fact that fasting FFAs are typically assessed rather than the more relevant postprandial FFAs. Nonetheless, there is strong evidence that serum FFA levels are elevated in first-degree relatives of patients with T2D [127, 128], implying that this elevation represents an early stage of the disease. It is unclear if the rise in circulating FFA levels is related to defects in insulin-mediated regulation of lipolysis, to alterations in fat storage capacity, or to an increase in adipose tissue mass without defects in lipolysis. Lipolysis per gram of adipose tissue mass is considerably lower in obese subjects, suggesting that enlargement of adipose tissue mass is the principal driver of abnormal FFA homeostasis [129].
Adipose tissue can grow in size by either hypertrophy, which involves the enlargement of existing adipocytes, or hyperplasia, which involves the generation of new fat cells from preadipocytes via adipogenesis, resulting in an increase in the number of tiny adipocytes [130]. Subcutaneous adipose tissue is more expandable than visceral adipose tissue in humans, whereas the opposite is true in C57BL/6J male mice [131]. Female mice, interestingly, show expandability of both adipose tissue depots in response to Western diet feeding, suggesting that sex hormones and other sex-dependent elements play a role in this process [131, 132]. Pathological adipose tissue expandability under situations of overnutrition, particularly adipose tissue hypertrophy, has got a lot of attention as a likely cause of IR. Indeed, first-degree relatives of patients with T2D have greater amounts of hypertrophic adipose tissue, implying that changes in cell size—presumably due to defective adipogenesis—represent an early event in the pathophysiology of T2D. Hypertrophic large adipocytes are linked to poor metabolic outcomes when compared to hyperplastic adipocytes [39, 133], which have been shown to confer metabolic health in obesity [134, 135, 136]. More importantly, hypertrophic adipocytes may contribute to an increase in circulating FFA levels due to their reduced FFA storage capacity. Reduced preadipocyte differentiation, diminished de novo lipogenesis or FFA uptake in hypertrophic adipocytes, and/or reduced adipose tissue expandability due to physical limits on expanding cell size may all contribute to decreased lipid storage capacity by the hypertrophic adipose tissue. Furthermore, adipogenesis abnormalities may result in decreased generation of beige adipocytes, thereby contributing to higher circulating FFA levels; indeed, beige adipocytes differentiate from a subpopulation of progenitors resident in white adipose tissue and have the ability to promote FFA oxidation through thermogenesis [137, 138].
10.2 Circulatory factors released from adipocytes
Adipose tissue secretes a number of factors (termed “adipokines”) into the bloodstream that regulate energy metabolism. These factors include cytokines, hormones, extracellular matrix proteins, as well as growth and vasoactive factors. The type of adipose tissue expansion has been demonstrated to impact the secretion of certain of these factors under IR conditions. Since the discovery of leptin as the first adipokine [139], a growing list of adipose tissue-secreted factors implicated in IR has been discovered, with roles in IR that are either protective or causative [20, 140].
Leptin, for example, regulates whole-body energy metabolism by acting on feeding centers in the brain to suppress food intake and increase energy expenditure; leptin deficiency causes obesity, hyperinsulinemia, IR and impaired glucose homeostasis [141]. Adiponectin, another well-known adipokine secreted from adipocytes, has been linked to regulation of cell insulin sensitivity. In humans, circulating adiponectin levels are favorably linked with whole-body insulin sensitivity; additionally, physical training increases circulating adiponectin levels and the expression of its receptors in muscle, which may mediate the improvement of IR in response to exercise [142]. Surprisingly, small and subcutaneous adipocytes release more adiponectin than visceral or large adipocytes [143]. Anti-atherogenic, anti-inflammatory, and insulin-sensitizing effects of adiponectin have also been discovered [144]. It is worth mentioning, however, that while adiponectin’s positive benefits in rats are outstanding, the role of this adipokine in humans is less obvious, and Mendelian randomization studies on adiponectin’s relationship with metabolic disease in humans have generated inconsistent results [145, 146].
Adipocytes release a variety of substances, including metabolites like lipids and extracellular vesicles that contain proteins and microRNAs. Branched fatty acid esters of hydroxy fatty acids (FAHFAs) are a unique class of lipids synthesized in adipocytes that have been shown to increase insulin sensitivity and reduce inflammation; accordingly, individuals with IR have lower circulating FAHFA levels [147]. As a result, further research into this metabolite class is necessary. Adipocytes, for example, release tiny lipid-encapsulated extracellular vesicles into the bloodstream. These vesicles may alter metabolic processes in other target tissues, such as the liver, according to increasing evidence based on mouse studies. MicroRNAs represent one of the components found in extracellular vesicles that have been linked to this mechanism. While investigations on microRNAs are intriguing, many fundamental aspects about the mechanism of their controlled secretion and their tissue targeting and entry into target cells remain unknown [148, 149].
Many circulating factors are also produced by other adipose tissue-resident cells, such as immune or vascular cells, rather than by adipocytes themselves (the so-called “stromal vascular fraction” of adipose tissue). Some of these adipokines, such as tumor necrosis factor (TNF), resistin or vascular endothelial growth factor (VEGF), are important regulators of tissue homeostasis and may be secreted as a result of adipose tissue enlargement during the development of obesity [150]. Nonetheless, inflammatory cytokines have been widely suggested as possible IR-inducing adipokines, and several of these factors have significant proinflammatory activities [151, 152, 153].
11. Inflammation and insulin resistance
It is now well recognized that cells of both innate and adaptive immunity, notably macrophages, infiltrate hypertrophic adipose tissue in most obesity models, and that this is accompanied by a loss of immunosuppressive regulatory T cells in visceral fat depots [154]. When macrophages in adipose tissue are activated in response to overnutrition, they polarize towards a proinflammatory phenotype and release cytokines that may trigger IR in all metabolic tissues [155]. Diet-induced obesity in mice and humans is unmistakably linked to elevated levels of systemic inflammatory markers, including C-reactive protein (CRP) and enhanced immune cell infiltration of adipose tissue and other organs [156]. In addition, inflammatory cytokines, such as TNF, can elicit IR in metabolic tissues when infused in humans [157]. Although macrophage infiltration into hypertrophic adipose tissue is well documented, the role of inflammation in IR is convoluted and controversial; for example, inflammatory markers are not elevated in first-degree relatives of T2D patients [158]. Furthermore, in Western diet-fed mice, tissue IR occurs before the adipose tissue infiltration by a considerable number of immune cells, and genetic or pharmacological anti-inflammatory methods do not prevent the development of Western diet-induced IR [159, 160]. The administration of a neutralizing antibody against interleukin-1 (IL-1), a proinflammatory cytokine implicated in IR, to approximately 4000 patients with T2D and almost 5000 subjects with prediabetes resulted in a significant decrease in CRP levels, as well as in a modest positive effect on cardiovascular outcomes, but without reducing the frequency of new-onset T2D or increasing fasting glucose levels [161, 162, 163].
Overall, evidence suggests that adipose tissue infiltration by macrophages is unlikely to be the major cause of IR. Macrophage infiltration into the growing adipose tissue may affect its function in addition to systemic inflammation, but the exact impact of this infiltration is unknown [164]. Anti-inflammatory macrophages (M2), on the other hand, have been shown to promote angiogenesis and preadipocyte differentiation, which aids adipose tissue expansion [165, 166]. The diversity of cytokines, their concentrations, and the timing of their release into the tissue are likely to have a considerable impact on the final biological response, contributing to the observed inconsistent results. The ability of genetically induced adipocyte IR to elicit adipose tissue inflammation adds to the growing body of evidence that inflammation may be a consequence rather than a cause of IR. Hyperinsulinemia has been shown to induce adipose tissue inflammation, implying that the latter is a late event in the IR pathophysiology [30].
12. Intracellular mediators and insulin resistance
Many extrinsic stimuli and genetic alterations can antagonize insulin action in vitro and in vivo, and their investigation has led to the identification of a series of molecules as putative intracellular mediators of IR. In the sections that follow, we will look at the role of a few intracellular components that have got a lot of attention as drivers of IR. It is worth noting that mechanisms of action of these components are not well-established yet, and further research is needed to better understand their role in IR development.
12.1 Accumulation of ceramides
Ceramides have been implicated as IR mediators by a large body of research. Ceramides are essential precursors of most of the complex sphingolipids localized in lipid bilayers, including sphingosine, sphingomyelins, and glucosylceramides. Ceramides accumulate in muscle, liver and adipose tissue of subjects with IR, according to human and animal studies [167, 168, 169, 170]. In insulin-resistant tissues, the levels of 16- or 18-carbon chain-length ceramides are raised, whereas the levels of other chain-length ceramides are not consistently changed [171, 172]. Indeed, in adipose tissue from obese subjects, the level of ceramide synthase isoform 6 (CERS6), which synthesizes C16 ceramide, is raised [171]. Surprisingly, the presence of a double bond in the ceramide backbone promotes IR, as ablation of the enzyme responsible for its formation (dihydroceramide desaturase 1) abrogates IR [173]. While it is unclear how specific extrinsic mediators of IR cause increased intracellular ceramide levels, it is possible that excess FFAs serve as a crucial substrates for ceramide biosynthesis [174, 175, 176].
Another theory connects intracellular ceramide to levels of circulating adiponectin. Ceramidase activity is found on adiponectin receptors, and lower adiponectin levels in IR may lead to decreased ceramidase activity and, consequently, to higher ceramide levels [177, 178]. AMP-activated protein kinase (AMPK), a major metabolic sensor that regulates mitochondrial biogenesis and metabolism, is activated by adiponectin, potentially regulating ceramide via increased mitochondrial lipid oxidation [179]. By using small-molecule inhibitors or genetic deletion of ceramide-producing enzymes to neutralize ceramide accumulation in metabolic organs, researchers were able to reverse or prevent IR induced by the Western diet in C57BL/6 mice with diet-induced obesity [122]. The relationship between ceramide and decreased insulin action is not univocal, as it is for many possible intracellular mediators of IR. In fact, ceramide suppresses AKT activity, although IR is unlikely to be caused by defects in AKT, which is a proximal arm of insulin signaling (as it has previously been mentioned). Ceramide could be part of a wider, IR-related stress mechanism that leads to mitochondrial dysfunction and to the production of reactive oxygen species (ROS). Ceramide has also been connected to the release of pro-inflammatory cytokines, which have been involved in IR, as it has previously been described [180, 181].
12.2 Accumulation of diacylglycerol (DAG)
Another popular theory for the cause of IR is the accumulation of diacylglycerols (DAGs) in muscle, adipocytes and liver, as a result of elevated serum FFA levels [182, 183]. Protein kinase C (PKC) is recruited to the plasma membrane by DAGs, where it phosphorylates and inhibits insulin receptor kinase activity. While it is quite plausible that DAG levels are elevated in insulin-resistant tissues, a scenario in which DAG-dependent phosphorylation of the insulin receptor is the major cause of IR raises a number of questions. Given the “spareness” of the insulin receptor and proximal signaling intermediates, it is doubtful that IR is caused solely by abnormalities in these components, at least in muscle. In contrast to other insulin-responsive proteins, the stoichiometry of insulin receptor phosphorylation at the region implicated in DAG-mediated IR is low and not detectable by conventional phosphopeptide analysis [79, 104, 184]. PKC deletion in the liver had little effect on whole-body insulin sensitivity in mice, indicating against PKC being a key target of DAG-induced IR in that tissue [79, 104], although this has since been challenged by studies in rats showing that acute knockdown of PKC in the liver protected animals from IR. However, antisense oligonucleotides were delivered systemically, which could target PKC expression in other organs. While technical differences between these studies and others have been suggested as a reason for the discrepancies observed [183], there appears to be enough disagreement about the role of the DAG-PKC-insulin receptor pathway in IR to warrant further investigation and, in particular, validation by multiple independent laboratories [185].
12.3 Mitochondrial dysfunction and reactive oxygen species (ROS)
IR has been linked to a decrease in mitochondrial function. Mitochondrial dysfunction is a term that has been used to describe a variety of mitochondrial phenotypes, including decreased respiratory capacity and ATP production, decreased number of mitochondria, accumulated mitochondrial damage due to defects in mitophagy, and altered mitochondrial morphology caused by changes in mitochondrial fission-fusion dynamics. Many of these alterations are also linked to an increase in mitochondrial ROS generation, which has long been linked to IR [186, 187, 188].
It is not unexpected that IR is linked to higher levels of reactive oxygen species (ROS). This is due to the fact that IR is frequently accompanied by a positive energy balance, which leads to an excess of reducing equivalents (NADH and FADH2). This determines a reductive stress on the mitochondrial respiratory electron transport chain, which invariably results in the formation of free electrons and, as a result, in an increased production of various forms of ROS [189]. Furthermore, enhanced ROS production has been found in response to a variety of extracellular stressors linked to IR, including inflammation [190]. Superoxide, H2O2, reactive nitrogen andoxidized lipids accumulate in insulin-resistant cells or tissues, and a mitochondria-targeted small molecule transiently produced mitochondrial ROS in muscle and adipocytes, causing IR. As a result, attempts to reduce ROS levels have been proven to reverse or prevent IR in mice [191, 192, 193, 194].
Reduced levels of coenzyme Q (CoQ) have recently been linked to IR in humans [44]. In mitochondria, CoQ is a key component of the electron transport chain, transferring electrons from complex I or II to complex III. Furthermore, unlike complex I, CoQ receives electrons directly from the electron-transferring flavoprotein, and this is unrelated to proton pumping or mitochondrial membrane potential, relying only on the availability of oxidized CoQ. Reduced CoQ accumulates, causing reductive stress in complex I, complex II and other dehydrogenases that feed electrons into the CoQ pool, resulting in increased ROS production [195]. As a result, lowering the total CoQ pool [44] will most likely lower the ROS production threshold at a given energy demand-supply ratio. It is also worth noting that FFA oxidation produces far more ROS than carbohydrate oxidation [195]. This is because the electron-transferring flavoprotein feeds a higher proportion of reducing equivalents straight into the CoQ pool during FFA oxidation. Therefore, as lipid metabolism increases, the supply of reducing equivalents outnumbers the demand, lowering the ratio of oxidized to reduced CoQ. This is likely worsened when total CoQ levels are low, as seen in IR [44], resulting in reductive stress and increased ROS production. The mechanism that regulates CoQ levels in IR is unknown. Intriguingly, statins, which are commonly used as cholesterol-lowering drugs, have been linked to IR in humans [196], with the possibility that this relationship is related to the statin-induced reductions in CoQ biosynthesis [44]. Unfortunately, given the low bioavailability of CoQ , oral supplements, which are frequently recommended as an antioxidant strategy, are unlikely to be successful in replenishing the mitochondrial CoQ pool in patients with IR or even in individuals who take statins. Other hazardous intermediates can be generated, in addition to ROS, as a result of mitochondrial respiration abnormalities. Acylcarnitine is an example of incompletely oxidized lipids produced by lipid overload. Acylcarnitine has been reported to accumulate in IR, indicating a deficiency in or an overabundance of the mitochondrial oxidative ability. In this regard, it has been postulated that lipid-induced mitochondrial stress mediates IR, although the exact mechanisms remain elusive [197].
12.4 Insulin resistance associated with stress pathway
Many of the pathways involved in IR pathophysiology, such as those involving ceramides, DAGs or ROS, are now being linked as part of what we call an “intracellular IR stress pathway”, according to new evidence. Ceramide, for example, promotes mitochondrial fission and ROS production [198, 199]. In subjects with IR, the quantity of mitochondrial ceramide is higher, and enzymes involved in ceramide biosynthesis have been found in mitochondria [185, 200, 201, 202, 203]. Ceramide is involved in apoptosis triggered by mitochondria in some cells, including insulin-producing pancreatic beta cells, but not in other metabolic tissues [204, 205, 206]. Ceramide also contributes to endoplasmic reticulum stress, which frequently co-occurs with mitochondrial stress and has been proposed as a driver of IR, where endoplasmic reticulum stress causes JNK activation, which, as previously described, affects the insulin signaling pathway via inhibitory IRS1 Ser/Thr phosphorylation [204, 205, 206]. Ceramide also induces PKC, a DAG-regulated kinase, to translocate to mitochondria, activating it and causing mitochondrial damage through an unknown mechanism [207]. Ceramides and DAGs are also biochemically connected; sphingomyelin synthase, for example, converts ceramide to DAG. Finally, in rats, reducing mitochondrial ROS levels with mitochondria-targeted catalase improved insulin sensitivity while lowering muscle DAG levels [208]. The potential connection of many of these suspected IR-causing elements into a dynamic network should help to resolve some of the current debates on this topic.
12.5 Signals from the mitochondria
Despite the interest in mitochondrial dysfunction in IR, it is unclear how intramitochondrial signals, like ceramide or ROS, may cause changes in insulin action, such as impaired GLUT4 translocation, which occurs mostly in the cytosol. The mitochondrial permeability transition pore (mPTP), a multiprotein complex located in the inner mitochondrial membrane, is a promising candidate for “inside-out” mitochondrial signaling because it opens under conditions of mitochondrial stress—most notably involving mitochondrial ROS—to allow molecules to be transported from mitochondria to the cytoplasm [209]. In L6 myotubes, inhibiting mPTP prevented ceramide- or palmitate-induced IR, and mice with defective mPTP opening were protected from diet-induced IR in skeletal muscle [210]. Although at least a part of the impact is attributable to its anti-obesogenic effect, deletion of mPTP in the liver has been shown to protect mice from liver steatosis and IR [211].
13. Conclusions and perspectives
The rising frequency of IR, as well as its crucial involvement in a variety of diseases, demands a greater understanding of the processes behind IR pathogenesis and how they interact with genetics and various surroundings, notably dietary factors. We have attempted to offer an overview of the main mechanisms hypothesized to contribute to IR in this chapter, highlighting both supportive and non-confirmatory evidence when appropriate. Many of the molecules and processes studied as causative in IR, in our opinion, function in series as a connected pathway or a loop rather than acting independently. Unfortunately, there has been a recent trend to describe IR as a dysfunction of insulin signaling, regardless of whether a simultaneous examination of insulin action on glucose metabolism has identified a defect in the latter process. We feel that this method has produced significant problems in the field, and we wish to send a message that simple, unitary errors in proximal insulin signaling are unlikely to be a major cause of IR. Rather, IR develops as a result of a variety of challenges that disrupt cellular homeostasis, resulting in cellular stress that can have a variety of deleterious consequences on insulin signal sensing and transmission.
The difficulty in translating findings from model organisms to humans, particularly in terms of differentiating IR causation from the multiplicity of effects, is a key roadblock in investigating the underpinnings of IR. By discovering causal genetic variants, human genetics holds a lot of promise for tackling this problem. However, genetics can only explain a portion of the pathophysiology of IR. Environmental variables play a crucial role in determining susceptibility to IR development and interact with genetics. Furthermore, the heterogeneity of metabolic diseases like T2D demands detailed phenotyping. Focusing on phenotypes that has better track with IR has proven difficult to achieve in the large cohorts. It is required to identify genetic polymorphisms that only explain a small proportion of disease in the human population. Despite these limitations, a number of genetic loci linked to human IR have been discovered, leading to a renewed focus on adipose tissue enlargement as a critical aspect of IR. However, since IR is a systemic condition, we expect future investigations to discover variations in genes governing multiple cellular processes throughout organs as linked to IR pathophysiology.
A more systematic approach involving large-scale omics to analyze the molecular landscape rather than relying on individual components as causal would be required to gain a better understanding of IR. Moreover, while knockout mice have been critical in characterizing the biochemistry of insulin action, they have also sparked numerous debates. One reason for this is that gene deletions typically result in adaptive processes that are difficult to define and may have limited physiological value, as indicated in a recent study with muscle-specific Akt gene-knockout mice [58]. In animals with both insulin and insulin-like growth factor 1 (IGF-1) receptors removed in muscle, similar adaptation mechanisms have been reported [212].
The ultimate goal of understanding mechanisms behind IR is to develop new, effective anti-IR therapeutic strategies. One key point to consider in this endeavor is whether such therapies would be beneficial if the initial insult—nutritional overload—persists. While IR is typically considered abnormal, as it is linked to a variety of disease outcomes, it is also a prevalent component of many normal physiological states, such as starvation, pregnancy, and hibernation. IR is believed to play a protective or adaptive role in such conditions, supporting survival by saving glucose for the brain and other vital tissues and organs or for the fetus during pregnancy. It is possible that IR has a similar function in metabolic disease. Since the primary metabolic tissues are frequently exposed to potentially harmful quantities of nutrients, IR could be a protective mechanism that helps to prevent tissue nutrition overload [190]. However, this comes at a price, namely concomitant hyperinsulinemia, which is the most serious pathophysiological consequence of IR. Insulin-sensitizing drugs may thus act as a “circuit breaker”, reducing hunger, inflammation and IR by suppressing hyperinsulinemia. As a result, we believe there is still a strong need to describe the molecular characteristics that drive IR in order to identify appropriate targets that can break the IR vicious cycle.
Acknowledgments
The authors are also thankful to Guru Nanak Dev University (Amritsar, Punjab, India) for providing various facilities to carry out the present work.
Conflict of interest
The authors declare no conflict of interest.
\n',keywords:"insulin, insulin receptor, insulin resistance, glucose uptake, glucose metabolism",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/82197.pdf",chapterXML:"https://mts.intechopen.com/source/xml/82197.xml",downloadPdfUrl:"/chapter/pdf-download/82197",previewPdfUrl:"/chapter/pdf-preview/82197",totalDownloads:7,totalViews:0,totalCrossrefCites:0,dateSubmitted:"December 13th 2021",dateReviewed:"April 4th 2022",datePrePublished:"June 11th 2022",datePublished:null,dateFinished:"June 11th 2022",readingETA:"0",abstract:"Insulin resistance (IR) is a condition in which insulin-mediated regulation of glucose metabolism in body tissues (primarily liver, adipose tissue and skeletal muscle) becomes disrupted. IR is a characteristic marker of type 2 diabetes and cardiovascular diseases. IR is generally associated with metabolic abnormalities, including hyperinsulinemia, impaired glucose homeostasis, hyperlipidemia and obesity. IR can arise from pathological, genetic and environmental factors or from a combination of these factors. Studies conducted in recent decades showcase the important role of adipose tissue in the development of IR via release of lipids and different circulating factors. These extracellular factors influence the intracellular levels of intermediates including ceramide and various lipids that influence the cell responsiveness to insulin. These intermediates are suggested to promote IR via inhibition of one or more components of insulin signaling pathway (e.g., insulin receptor, insulin receptor substrate proteins). This chapter will shed light on various molecular mechanisms and factors contributing to IR, which will help the researchers to design potential therapeutic strategies and interventions for efficiently managing IR and its related disorders.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/82197",risUrl:"/chapter/ris/82197",signatures:"Atamjit Singh, Nikhita Ghai and PreetMohinder Singh Bedi",book:{id:"11261",type:"book",title:"Insulin Resistance - Evolving Concepts and Treatment Strategies",subtitle:null,fullTitle:"Insulin Resistance - Evolving Concepts and Treatment Strategies",slug:null,publishedDate:null,bookSignature:"Dr. Marco Infante",coverURL:"https://cdn.intechopen.com/books/images_new/11261.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-502-7",printIsbn:"978-1-80355-501-0",pdfIsbn:"978-1-80355-503-4",isAvailableForWebshopOrdering:!0,editors:[{id:"409412",title:"Dr.",name:"Marco",middleName:null,surname:"Infante",slug:"marco-infante",fullName:"Marco Infante"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Pathway to insulin resistance",level:"1"},{id:"sec_3",title:"3. The trio-axis of obesity-hyperinsulinemia-insulin resistance",level:"1"},{id:"sec_4",title:"4. Insulin resistance and hyperinsulinemia",level:"1"},{id:"sec_5",title:"5. Heterogeneity in the development of insulin resistance and progression of metabolic disease and T2D",level:"1"},{id:"sec_6",title:"6. Tissue-specific progression to insulin resistance",level:"1"},{id:"sec_7",title:"7. Impaired insulin signaling in insulin resistance",level:"1"},{id:"sec_8",title:"8. Insulin resistance and insulin signaling at the proximal level",level:"1"},{id:"sec_9",title:"9. GLUT4 and insulin resistance",level:"1"},{id:"sec_10",title:"10. Adipose tissue and insulin resistance",level:"1"},{id:"sec_10_2",title:"10.1 Adipose tissue dysfunction",level:"2"},{id:"sec_11_2",title:"10.2 Circulatory factors released from adipocytes",level:"2"},{id:"sec_13",title:"11. Inflammation and insulin resistance",level:"1"},{id:"sec_14",title:"12. Intracellular mediators and insulin resistance",level:"1"},{id:"sec_14_2",title:"12.1 Accumulation of ceramides",level:"2"},{id:"sec_15_2",title:"12.2 Accumulation of diacylglycerol (DAG)",level:"2"},{id:"sec_16_2",title:"12.3 Mitochondrial dysfunction and reactive oxygen species (ROS)",level:"2"},{id:"sec_17_2",title:"12.4 Insulin resistance associated with stress pathway",level:"2"},{id:"sec_18_2",title:"12.5 Signals from the mitochondria",level:"2"},{id:"sec_20",title:"13. Conclusions and perspectives",level:"1"},{id:"sec_21",title:"Acknowledgments",level:"1"},{id:"sec_24",title:"Conflict of interest",level:"1"}],chapterReferences:[{id:"B1",body:'Himsworth HP. Diabetes mellitus: Its differentiation into insulin-sensitive and insulin-insensitive types. 1936. International Journal of Epidemiology. 2013;42:1594-1598'},{id:"B2",body:'Jee SH, Kim HJ, Lee J. Obesity, insulin resistance and cancer risk. Yonsei Medical Journal. 2005;46(4):449-455'},{id:"B3",body:'Suzanne M. Insulin resistance and neurodegeneration: Progress towards the development of new therapeutics for Alzheimer’s disease. Drugs. 2017;77(1):47-65'},{id:"B4",body:'Pérez-Tasigchana RF, León-Muñoz LM, Lopez-Garcia E, Gutierrez-Fisac JL, Laclaustra M, Rodríguez-Artalejo F, et al. Metabolic syndrome and insulin resistance are associated with frailty in older adults: A prospective cohort study. Age and Ageing. 2017;46(5):807-812'},{id:"B5",body:'Chawla A, Chawla R, Jaggi S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian Journal of Endocrinology and Metabolism. 2016;20(4):546'},{id:"B6",body:'Singh B, Saxena A. Surrogate markers of insulin resistance: A review. World Journal of Diabetes. 2010;1(2):36'},{id:"B7",body:'Philipson LH. Harnessing heterogeneity in type 2 diabetes mellitus. Nature Reviews. Endocrinology. 2020;16:79-80'},{id:"B8",body:'Ahlqvist E et al. Novel subgroups of adult-onset diabetes and their association with outcomes: A data-driven cluster analysis of six variables. The Lancet Diabetes and Endocrinology. 2018;6:361-369'},{id:"B9",body:'James DE, Strube M, Mueckler M. Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature. 1989;338:83-87'},{id:"B10",body:'Birnbaum MJ. Identification of a novel gene encoding an insulin-responsive glucose transporter protein. Cell. 1989;57:305-315'},{id:"B11",body:'Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature Reviews. Molecular Cell Biology. 2002;3:267-277'},{id:"B12",body:'Tunduguru R, Thurmond DC. Promoting glucose transporter-4 vesicle trafficking along cytoskeletal tracks: PAK-Ing them out. Frontiers in Endocrinology. 2017;20:329'},{id:"B13",body:'Yeh JI, Gulve EA, Rameh L, Birnbaum MJ. The effects of wortmannin on rat skeletal muscle. Dissociation of signaling pathways for insulin- and contraction-activated hexose transport. The Journal of Biological Chemistry. 1995;270:2107-2111'},{id:"B14",body:'Clemmensen C et al. Gut-brain cross-talk in metabolic control. Cell. 2017;168:758-774'},{id:"B15",body:'Rizza RA, Mandarino LJ, Genest J, Baker BA, Gerich JE. Production of insulin resistance by hyperinsulinaemia in man. Diabetologia. 1985;28:70-75'},{id:"B16",body:'Erion KA, Corkey BE. Hyperinsulinemia: A cause of obesity? Current Obesity Reports. 2017;6:178-186'},{id:"B17",body:'Lillioja S et al. Insulin resistance and insulin secretory dysfunction as precursors of non-insulin-dependent diabetes mellitus. Prospective studies of Pima Indians. The New England Journal of Medicine. 1993;329:1988-1992'},{id:"B18",body:'Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first-degree relatives of patients with non-insulindependent diabetes mellitus. The Journal of Clinical Investigation. 1992;89:782-788'},{id:"B19",body:'Hollenbeck C, Reaven GM. Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance. The Journal of Clinical Endocrinology and Metabolism. 1987;64:1169-1173'},{id:"B20",body:'Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nature Reviews. Molecular Cell Biology. 2019;20:242-258'},{id:"B21",body:'Jacob S et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999;48:1113-1119'},{id:"B22",body:'Lim K, Haider A, Adams C, Sleigh A, Savage D. Lipodystrophy: A paradigm for understanding the consequences of ‘overloading’ adipose tissue. Physiological Reviews. 2020;101:907-993'},{id:"B23",body:'Akinci B, Sahinoz M, Oral E. In: Feingold KR, Anawalt B, Boyce A, et al., editors. Lipodystrophy Syndromes: Presentation and Treatment. South Dartmouth (MA): MDText.com, Inc.; 2000'},{id:"B24",body:'Blüher M. Metabolically healthy obesity. Endocrine Reviews. 2020;41:405-420'},{id:"B25",body:'Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An early indicator of metabolic dysfunction. Journal of the Endocrine Society. 2019;3(9):1727-1747'},{id:"B26",body:'Pontiroli AE, Alberetto M, Capra F, Pozza G. The glucose clamp technique for the study of patients with hypoglycemia: Insulin resistance as a feature of insulinoma. Journal of Endocrinological Investigation. 1990;13:241-245'},{id:"B27",body:'Marbán SL, Roth J. Transgenic hyperinsulinemia: A mouse model of insulin resistance and glucose intolerance without obesity. In: Shafrir E, editor. Lessons from Animal Diabetes VI: 75th Anniversary of the Insulin Discovery. Boston, MA: Birkhäuser; 1996. pp. 201-224'},{id:"B28",body:'Gray SL, Donald C, Jetha A, Covey SD, Kieffer TJ. Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic beta-cell leptinsignaling. Endocrinology. 2010;151:4178-4186'},{id:"B29",body:'Alemzadeh R, Slonim AE, Zdanowicz MM, Maturo J. Modification of insulin resistance by diazoxide in obese Zucker rats. Endocrinology. 1993;133:705-712'},{id:"B30",body:'Pedersen DJ et al. A major role of insulin in promoting obesity-associated adipose tissue inflammation. Molecular Metabolism. 2015;4:507-518'},{id:"B31",body:'Templeman NM et al. Reduced circulating insulin enhances insulin sensitivity in old mice and extends lifespan. Cell Reports. 2017;20:451-463'},{id:"B32",body:'Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nature Medicine. 2017;23:804-814'},{id:"B33",body:'Tan S-X et al. Selective insulin resistance in adipocytes. The Journal of Biological Chemistry. 2015;290:11337-11348'},{id:"B34",body:'Tonks KT et al. Impaired Akt phosphorylation in insulin-resistant human muscle is accompanied by selective and heterogeneous downstream defects. Diabetologia. 2013;56:875-885'},{id:"B35",body:'Brown MS, Goldstein JL. Selective versus total insulin resistance: A pathogenic paradox. Cell Metabolism. 2008;7:95-96'},{id:"B36",body:'Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiological Reviews. 1995;75:47-76'},{id:"B37",body:'Hellerstein MK, Schwarz JM, Neese RA. Regulation of hepatic de novo lipogenesis in humans. Annual Review of Nutrition. 1996;16:523-557'},{id:"B38",body:'Titchenell PM et al. Direct hepatocyte insulin signaling is required for lipogenesis but is dispensable for the suppression of glucose production. Cell Metabolism. 2016;23:1154-1166'},{id:"B39",body:'Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiological Reviews. 2018;98:1911-1941'},{id:"B40",body:'Kolterman OG, Insel J, Saekow M, Olefsky JM. Mechanisms of insulin resistance in human obesity: Evidence for receptor and postreceptor defects. The Journal of Clinical Investigation. 1980;65:1272-1284'},{id:"B41",body:'Anjana RM, Pradeepa R, Unnikrishnan R, Tiwaskar M, Aravind SR, Saboo B, et al. New and unique clusters of type 2 diabetes identified in Indians. The Journal of the Association of Physicians of India. 2021;69(2):58-61'},{id:"B42",body:'Jia Q , Morgan-Bathke ME, Jensen MD. Adipose tissue macrophage burden, systemic inflammation, and insulin resistance. American Journal of Physiology. Endocrinology and Metabolism. 2020;319:E254-E264'},{id:"B43",body:'Turner N et al. Distinct patterns of tissue-specific lipid accumulation during the induction of insulin resistance in mice by high-fat feeding. Diabetologia. 2013;56:1638-1648'},{id:"B44",body:'Fazakerley DJ et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. eLife. 2018;7:e32111'},{id:"B45",body:'Perry RJ et al. Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell. 2015;160:745-758'},{id:"B46",body:'Van der Heijden RA, Sheedfar F, Morrison MC, Hommelberg PP, Kor D, Kloosterhuis NJ, et al. High-fat diet induced obesity primes inflammation in adipose tissue prior to liver in C57BL/6j mice. Aging (Albany NY). 2015;7(4):256'},{id:"B47",body:'Ali O. Genetics of type 2 diabetes. World Journal of Diabetes. 2013;4(4):114'},{id:"B48",body:'Minokoshi Y, Kahn CR, Kahn BB. Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. The Journal of Biological Chemistry. 2003;278:33609-33612'},{id:"B49",body:'Kim JK et al. Glucose toxicity and the development of diabetes in mice with muscle-specific inactivation of GLUT4. The Journal of Clinical Investigation. 2001;108:153-160'},{id:"B50",body:'Gancheva S, Jelenik T, Álvarez-Hernández E, Roden M. Interorgan metabolic crosstalk in human insulin resistance. Physiological Reviews. 2018;98:1371-1415'},{id:"B51",body:'Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: The emerging roles of myokines. Endocrine Reviews. 2020;41:594-609'},{id:"B52",body:'Burchfield JG et al. High dietary fat and sucrose results in an extensive and time-dependent deterioration in health of multiple physiological systems in mice. The Journal of Biological Chemistry. 2018;293:5731-5745'},{id:"B53",body:'Hoehn KL et al. IRS1-independent defects define major nodes of insulin resistance. Cell Metabolism. 2008;7:421-433'},{id:"B54",body:'Copps KD, White MF. Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012;55:2565-2582'},{id:"B55",body:'Kahn CR et al. The syndromes of insulin resistance and acanthosisnigricans. Insulin-receptor disorders in man. The New England Journal of Medicine. 1976;294:739-745'},{id:"B56",body:'Kono T, Barham FW. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells. The Journal of Biological Chemistry. 1971;246:6210-6216'},{id:"B57",body:'Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: A necessary distinction. Metabolism. 1978;27:1893-1902'},{id:"B58",body:'Olefsky JM, Kolterman OG, Scarlett JA. Insulin action and resistance in obesity and noninsulindependent type II diabetes mellitus. The American Journal of Physiology. 1982;243:E15-E30'},{id:"B59",body:'Camps M et al. Evidence for the lack of spare high-affinity insulin receptors in skeletal muscle. The Biochemical Journal. 1992;285:993-999'},{id:"B60",body:'Gumà A et al. Effect of benzyl succinate on insulin receptor function and insulin action in skeletal muscle: Further evidence for a lack of spare high-affinity insulin receptors. Molecular and Cellular Endocrinology. 1993;91:29-33'},{id:"B61",body:'Fehlmann M, Morin O, Kitabgi P, Freychet P. Insulin and glucagon receptors of isolated rat hepatocytes: Comparison between hormone binding and amino acid transport stimulation. Endocrinology. 1981;109:253-261'},{id:"B62",body:'Merry TL et al. Impairment of insulin signalling in peripheral tissue fails to extend murine lifespan. Aging Cell. 2017;16:761-772'},{id:"B63",body:'Czech MP. Cellular basis of insulin insensitivity in large rat adipocytes. The Journal of Clinical Investigation. 1976;57:1523-1532'},{id:"B64",body:'Melvin A, O’Rahilly S, Savage DB. Genetic syndromes of severe insulin resistance. Current Opinion in Genetics & Development. 2018;50:60-67'},{id:"B65",body:'Crouthamel M-C et al. Mechanism and management of AKT inhibitor-induced hyperglycemia. Clinical Cancer Research. 2009;15:217-225'},{id:"B66",body:'Nandi A, Kitamura Y, Kahn CR, Accili D. Mouse models of insulin resistance. Physiological Reviews. 2004;84:623-647'},{id:"B67",body:'Jaiswal N et al. The role of skeletal muscle Akt in the regulation of muscle mass and glucose homeostasis. Molecular Metabolism. 2019;28:1-13'},{id:"B68",body:'Lu M et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Medicine. 2012;18:388-395'},{id:"B69",body:'Tan S-X et al. Amplification and demultiplexing in insulin-regulated Akt protein kinase pathway in adipocytes. The Journal of Biological Chemistry. 2012;287:6128-6138'},{id:"B70",body:'Ng Y et al. Cluster analysis of insulin action in adipocytes reveals a key role for Akt at the plasma membrane. The Journal of Biological Chemistry. 2010;285:2245-2257'},{id:"B71",body:'Larance M et al. Global phosphoproteomics identifies a major role for AKT and 14-3-3 in regulating EDC3. Molecular & Cellular Proteomics. 2010;9:682-694'},{id:"B72",body:'Trefely S et al. Kinome screen identifies PFKFB3 and glucose metabolism as important regulators of the insulin/insulin-like growth factor (IGF)-1 signaling pathway. The Journal of Biological Chemistry. 2015;290:25834-25846'},{id:"B73",body:'Ricort JM, Tanti JF, Van Obberghen E, Le Marchand-Brustel Y. Alterations in insulin signalling pathway induced by prolonged insulin treatment of 3T3-L1 adipocytes. Diabetologia. 1995;38:1148-1156'},{id:"B74",body:'Kurowski TG et al. Hyperglycemia inhibits insulin activation of Akt/protein kinase B but not phosphatidylinositol 3-kinase in rat skeletal muscle. Diabetes. 1999;48:658-663'},{id:"B75",body:'Oku A et al. Inhibitory effect of hyperglycemia on insulin-induced Akt/protein kinase B activation in skeletal muscle. American Journal of Physiology. Endocrinology and Metabolism. 2001;280:E816-E824'},{id:"B76",body:'Yuasa T et al. Platelet-derived growth factor stimulates glucose transport in skeletal muscles of transgenic mice specifically expressing platelet-derived growth factor receptor in the muscle, but it does not affect blood glucose levels. Diabetes. 2004;53:2776-2786'},{id:"B77",body:'Draznin B. Molecular mechanisms of insulin resistance: Serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: The two sides of a coin. Diabetes. 2006;55:2392-2397'},{id:"B78",body:'Copps KD et al. Irs1 serine 307 promotes insulin sensitivity in mice. Cell Metabolism. 2010;11:84-92'},{id:"B79",body:'Brandon AE et al. Protein kinase C epsilon deletion in adipose tissue, but not in liver, improves glucose tolerance. Cell Metabolism. 2019;29:183-191.e7'},{id:"B80",body:'Deblon N et al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. British Journal of Pharmacology. 2012;165:2325-2340'},{id:"B81",body:'Lamming DW et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science. 2012;335:1638-1643'},{id:"B82",body:'Friedman JE, Caro JF, Pories WJ, Azevedo JL Jr, Dohm GL. Glucose metabolism in incubated human muscle: Effect of obesity and non-insulin-dependent diabetes mellitus. Metabolism. 1994;43:1047-1054'},{id:"B83",body:'Shulman GI et al. Quantitation of muscle glycogen synthesis in normal subjects and subjects with noninsulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. The New England Journal of Medicine. 1990;322:223-228'},{id:"B84",body:'Baron AD, Laakso M, Brechtel G, Edelman SV. Reduced capacity and affinity of skeletal muscle for insulin-mediated glucose uptake in noninsulindependent diabetic subjects. Effects of insulin therapy. The Journal of Clinical Investigation. 1991;87:1186-1194'},{id:"B85",body:'Friedman JE et al. Restoration of insulin responsiveness in skeletal muscle of morbidly obese patients after weight loss. Effect on muscle glucose transport and glucose transporter GLUT4. The Journal of Clinical Investigation. 1992;89:701-705'},{id:"B86",body:'Meyer MM, Levin K, Grimmsmann T, BeckNielsen H, Klein HH. Insulin signalling in skeletal muscle of subjects with or without type II-diabetes and first degree relatives of patients with the disease. Diabetologia. 2002;45:813-822'},{id:"B87",body:'Kim YB, Nikoulina SE, Ciaraldi TP, Henry RR, Kahn BB. Normal insulin-dependent activation of Akt/protein kinase B, with diminished activation of phosphoinositide 3-kinase, in muscle in type 2 diabetes. The Journal of Clinical Investigation. 1999;104:733-741'},{id:"B88",body:'Ramos PA et al. Insulin-stimulated muscle glucose uptake and insulin signaling in lean and obese humans. The Journal of Clinical Endocrinology and Metabolism. 2020;106:e1631-e1646'},{id:"B89",body:'Vind BF et al. Impaired insulin-induced site-specific phosphorylation of TBC1 domain family, member 4 (TBC1D4) in skeletal muscle of type 2 diabetes patients is restored by endurance exercise-training. Diabetologia. 2011;54:157-167'},{id:"B90",body:'Caro JF et al. Insulin receptor kinase in human skeletal muscle from obese subjects with and without noninsulin dependent diabetes. The Journal of Clinical Investigation. 1987;79:1330-1337'},{id:"B91",body:'Garvey WT, Maianu L, Zhu JH, Hancock JA, Golichowski AM. Multiple defects in the adipocyte glucose transport system cause cellular insulin resistance in gestational diabetes. Heterogeneity in the number and a novel abnormality in subcellular localization of GLUT4 glucose transporters. Diabetes. 1993;42:1773-1785'},{id:"B92",body:'Ryder JW et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes. 2000;49:647-654'},{id:"B93",body:'Garvey WT et al. Evidence for defects in the trafficking and translocation of GLUT4 glucose transporters in skeletal muscle as a cause of human insulin resistance. The Journal of Clinical Investigation. 1998;101:2377-2386'},{id:"B94",body:'Gumà A, Zierath JR, Wallberg-Henriksson H, Klip A. Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. The American Journal of Physiology. 1995;268:E613-E622'},{id:"B95",body:'Dills WL Jr, McDonough GM, Kingsley PB. Glucose-stimulated protein synthesis in rat testis slices: Substrate specificity and effects of insulin and substrate analogs. Biology of Reproduction. 1981;25:466-474'},{id:"B96",body:'Chlouverakis C. The action of glucose on lipolysis. Metabolism. 1967;16:469-472'},{id:"B97",body:'Li J, Houseknecht KL, Stenbit AE, Katz EB, Charron MJ. Reduced glucose uptake precedes insulin signaling defects in adipocytes from heterozygous GLUT4 knockout mice. The FASEB Journal. 2000;14:1117-1125'},{id:"B98",body:'Shepherd PR, Kahn BB. Glucose transporters and insulin action—Implications for insulin resistance and diabetes mellitus. The New England Journal of Medicine. 1999;341:248-257'},{id:"B99",body:'Etgen GJ Jr et al. Exercise training reverses insulin resistance in muscle by enhanced recruitment of GLUT-4 to the cell surface. The American Journal of Physiology. 1997;272:E864-E869'},{id:"B100",body:'Klip A et al. Recruitment of GLUT-4 glucose transporters by insulin in diabetic rat skeletal muscle. Biochemical and Biophysical Research Communications. 1990;172:728-736'},{id:"B101",body:'Kennedy JW et al. Acute exercise induces GLUT4 translocation in skeletal muscle of normal human subjects and subjects with type 2 diabetes. Diabetes. 1999;48:1192-1197'},{id:"B102",body:'Ploug T, van Deurs B, Ai H, Cushman SW, Ralston E. Analysis of GLUT4 distribution in whole skeletal muscle fibers: Identification of distinct storage compartments that are recruited by insulin andmuscle contractions. The Journal of Cell Biology. 1998;142:1429-1446'},{id:"B103",body:'Stöckli J et al. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes. 2015;64:1914-1922'},{id:"B104",body:'Humphrey SJ et al. Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2. Cell Metabolism. 2013;17:1009-1020'},{id:"B105",body:'Kjøbsted R et al. Intact regulation of the AMPK signaling network in response to exercise and insulin in skeletal muscle of male patients with type 2 diabetes: Illumination of AMPK activation in recovery from exercise. Diabetes. 2016;65:1219-1230'},{id:"B106",body:'Eguez L et al. Full intracellular retention of GLUT4 requires AS160 RabGTPase activating protein. Cell Metabolism. 2005;2:263-272'},{id:"B107",body:'Batista TM et al. A cell-autonomous signature of dysregulated protein phosphorylation underlies muscle insulin resistance in type 2 diabetes. Cell Metabolism. 2020;32:844-859.e5'},{id:"B108",body:'Boden G et al. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men. Science Translational Medicine. 2015;7:304re7'},{id:"B109",body:'Hauck AK, Huang Y, Hertzel AV, Bernlohr DA. Adipose oxidative stress and protein carbonylation. The Journal of Biological Chemistry. 2019;294:1083-1088'},{id:"B110",body:'Snel M, Jonker JT, Schoones J, Lamb H, de Roos A, Pijl H, et al. Ectopic fat and insulin resistance: Pathophysiology and effect of diet and lifestyle interventions. International Journal of Endocrinology. 2012;983814:1-18'},{id:"B111",body:'Samuel VT, Petersen KF, Shulman GI. Lipid-induced insulin resistance: Unravelling the mechanism. The Lancet. 2010;375(9733):2267-2277'},{id:"B112",body:'Hammarstedt A, Graham TE, Kahn BB. Adipose tissue dysregulation and reduced insulin sensitivity in non-obese individuals with enlarged abdominal adipose cells. Diabetology and Metabolic Syndrome. 2012;4:42'},{id:"B113",body:'Weyer C, Foley JE, Bogardus C, Tataranni PA, Pratley RE. Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia. 2000;43:1498-1506'},{id:"B114",body:'Abel ED et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature. 2001;409:729-733'},{id:"B115",body:'Vazirani RP et al. Disruption of adipose Rab10-dependent insulin signaling causes hepatic insulin resistance. Diabetes. 2016;65:1577-1589'},{id:"B116",body:'Poulsen P et al. Heritability of insulin secretion, peripheral and hepatic insulin action, and intracellular glucose partitioning in young and old Danish twins. Diabetes. 2005;54:275-283'},{id:"B117",body:'Flannick J et al. Exome sequencing of 20,791 cases of type 2 diabetes and 24,440 controls. Nature. 2019;570:71-76'},{id:"B118",body:'Dimas AS et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes. 2014;63:2158-2171'},{id:"B119",body:'Lotta LA et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nature Genetics. 2017;49:17-26'},{id:"B120",body:'MacKellar J, Cushman SW, Periwal V. Differential effects of thiazolidinediones on adipocyte growth and recruitment in Zucker fatty rats. PLoS One. 2009;4(12):e8196'},{id:"B121",body:'Levin K, Hother-Nielsen O, Henriksen JE, Beck-Nielsen H. Effects of troglitazone in young first-degree relatives of patients with type 2 diabetes. Diabetes Care. 2004;27:148-154'},{id:"B122",body:'Chaurasia B, Summers SA. Ceramides in metabolism: Key lipotoxic players. Annual Review of Physiology. 2021;83:303-330'},{id:"B123",body:'Boden G. Free fatty acids (FFA), a link between obesity and insulin resistance. Frontiers in Bioscience. 1998;3:d169-d175'},{id:"B124",body:'Pereira S et al. Resveratrol prevents insulin resistance caused by short-term elevation of free fatty acids in vivo. Applied Physiology, Nutrition, and Metabolism. 2015;40:1129-1136'},{id:"B125",body:'Felber JP, Vannotti A. Effects of fat infusion on glucose tolerance and insulin plasma levels. Medicina Experimentalis. International Journal of Experimental Medicine. 1964;10:153-156'},{id:"B126",body:'Wang L et al. Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nature Communications. 2020;11:2995'},{id:"B127",body:'Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: Time for a reevaluation. Diabetes. 2011;60:2441-2449'},{id:"B128",body:'Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study. Diabetes. 1997;46:1001-1009'},{id:"B129",body:'McQuaid SE et al. Downregulation of adipose tissue fatty acid trafficking in obesity: A driver for ectopic fat deposition? Diabetes. 2011;60:47-55'},{id:"B130",body:'Jeffery E, Church CD, Holtrup B, Colman L, Rodeheffer MS. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nature Cell Biology. 2015;17:376-385'},{id:"B131",body:'Jeffery E et al. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metabolism. 2016;24:142-150'},{id:"B132",body:'Arner P, Arner E, Hammarstedt A, Smith U. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS One. 2011;6:e18284'},{id:"B133",body:'Ye J. Regulation of PPARgamma function by TNF-alpha. Biochemical and Biophysical Research Communications. 2008;374:405-408'},{id:"B134",body:'Shao M et al. De novo adipocyte differentiation from Pdgfrβ preadipocytes protects against pathologic visceral adipose expansion in obesity. Nature Communications. 2018;9:890'},{id:"B135",body:'Kim J-Y et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. The Journal of Clinical Investigation. 2007;117:2621-2637'},{id:"B136",body:'Shepherd PR et al. Adipose cell hyperplasia and enhanced glucose disposal in transgenic mice overexpressing GLUT4 selectively in adipose tissue. The Journal of Biological Chemistry. 1993;268:22243-22246'},{id:"B137",body:'Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Advances in Experimental Medicine and Biology. 2017;960:161-196'},{id:"B138",body:'Czech MP. Mechanisms of insulin resistance related to white, beige, and brown adipocytes. Molecular Metabolism. 2020;34:27-42'},{id:"B139",body:'Zhang Y et al. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425-432'},{id:"B140",body:'Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. The Journal of Clinical Investigation. 2019;129:3990-4000'},{id:"B141",body:'Friedman JM. Leptin and the endocrine control of energy balance. Nature Metabolism. 2019;1:754-764'},{id:"B142",body:'Blüher M et al. Circulating adiponectin and expression of adiponectin receptors in human skeletal muscle: Associations with metabolic parameters and insulin resistance and regulation by physical training. The Journal of Clinical Endocrinology and Metabolism. 2006;91:2310-2316'},{id:"B143",body:'Meyer LK, Ciaraldi TP, Henry RR, Wittgrove AC, Phillips SA. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocytes. 2013;2:217-226'},{id:"B144",body:'Yamauchi T et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Medicine. 2007;13:332-339'},{id:"B145",body:'Chen Z et al. Effects of adiponectin on T2DM and glucose homeostasis: A mendelian randomization study. Diabetes, Metabolic Syndrome and Obesity. 2020;13:1771-1784'},{id:"B146",body:'Ortega Moreno L et al. Evidence of a causal relationship between high serum adiponectin levels and increased cardiovascular mortality rate in patients with type 2 diabetes. Cardiovascular Diabetology. 2016;15:17'},{id:"B147",body:'Yore MM et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and antiinflammatory effects. Cell. 2014;159:318-332'},{id:"B148",body:'Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell Metabolism. 2019;30(4):656-673'},{id:"B149",body:'Agbu P, Carthew RW. MicroRNA-mediated regulation of glucose and lipid metabolism. Nature Reviews. Molecular Cell Biology. 2021;22:425-438'},{id:"B150",body:'Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. The Journal of Clinical Investigation. 2017;127:74-82'},{id:"B151",body:'Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860-867'},{id:"B152",body:'Kammoun HL, Kraakman MJ, Febbraio MA. Adipose tissue inflammation in glucose metabolism. Reviews in Endocrine & Metabolic Disorders. 2014;15:31-44'},{id:"B153",body:'McNelis JC, Olefsky JM. Macrophages, immunity, and metabolic disease. Immunity. 2014;41:36-48'},{id:"B154",body:'Mathis D. Immunological goings-on in visceral adipose tissue. Cell Metabolism. 2013;17:851-859'},{id:"B155",body:'Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542:177-185'},{id:"B156",body:'Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circulation Research. 2020;126:1549-1564'},{id:"B157",body:'Krogh-Madsen R, Plomgaard P, Møller K, Mittendorfer B, Pedersen BK. Influence of TNF-alpha and IL-6 infusions on insulin sensitivity and expression of IL-18 in humans. American Journal of Physiology. Endocrinology and Metabolism. 2006;291:E108-E114'},{id:"B158",body:'Kriketos AD et al. Inflammation, insulin resistance, and adiposity: A study of first-degree relatives of type 2 diabetic subjects. Diabetes Care. 2004;27:2033-2040'},{id:"B159",body:'Shimobayashi M et al. Insulin resistance causes inflammation in adipose tissue. The Journal of Clinical Investigation. 2018;128:1538-1550'},{id:"B160",body:'Lee YS et al. Inflammation is necessary for long-term but not short-term high-fat diet-induced insulin resistance. Diabetes. 2011;60:2474-2483'},{id:"B161",body:'Rafiq S et al. Gene variants influencing measures of inflammation or predisposing to autoimmune and inflammatory diseases are not associated with the risk of type 2 diabetes. Diabetologia. 2008;51:2205-2213'},{id:"B162",body:'Everett BM et al. Anti-inflammatory therapy with canakinumab for the prevention and management of diabetes. Journal of the American College of Cardiology. 2018;71:2392-2401'},{id:"B163",body:'Ridker PM et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine. 2017;377:1119-1131'},{id:"B164",body:'Smith U, Li Q , Rydén M, Spalding KL. Cellular senescence and its role in white adipose tissue. International Journal of Obesity. 2021;45:934-943'},{id:"B165",body:'WernstedtAsterholm I et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metabolism. 2014;20:103-118'},{id:"B166",body:'Cox AR, Chernis N, Masschelin PM, Hartig SM. Immune cells gate white adipose tissue expansion. Endocrinology. 2019;160:1645-1658'},{id:"B167",body:'Chaurasia B, Summers SA. Ceramides—lipotoxic inducers of metabolic disorders. Trends in Endocrinology and Metabolism. 2015;26:538-550'},{id:"B168",body:'Luukkonen PK et al. Hepatic ceramides dissociate steatosis and insulin resistance in patients with non-alcoholic fatty liver disease. Journal of Hepatology. 2016;64:1167-1175'},{id:"B169",body:'Kolak M et al. Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes. 2007;56:1960-1968'},{id:"B170",body:'Coen PM et al. Reduced skeletal muscle oxidative capacity and elevated ceramide but not diacylglycerol content in severe obesity. Obesity. 2013;21:2362-2371'},{id:"B171",body:'Turpin SM et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metabolism. 2014;20:678-686'},{id:"B172",body:'Stöckli J et al. Metabolomic analysis of insulin resistance across different mouse strains and diets. The Journal of Biological Chemistry. 2017;292:19135-19145'},{id:"B173",body:'Siddique MM et al. Ablation of dihydroceramide desaturase 1, a therapeutic target for the treatment of metabolic diseases, simultaneously stimulates anabolic and catabolic signaling. Molecular and Cellular Biology. 2013;33(11):2353-2369'},{id:"B174",body:'Raichur S et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metabolism. 2014;20:687-695'},{id:"B175",body:'Chaurasia B et al. Targeting a ceramide double bond improves insulin resistance and hepatic steatosis. Science. 2019;365:386-392'},{id:"B176",body:'Chavez JA et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. The Journal of Biological Chemistry. 2003;278:10297-10303'},{id:"B177",body:'Villa NY et al. Sphingolipids function as downstream effectors of a fungal PAQR. Molecular Pharmacology. 2009;75:866-875'},{id:"B178",body:'Mente A et al. Causal relationship between adiponectin and metabolic traits: A Mendelian randomization study in a multiethnic population. PLoS One. 2013;8:e66808'},{id:"B179",body:'Nawrocki AR et al. Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. The Journal of Biological Chemistry. 2006;281:2654-2660'},{id:"B180",body:'Cazzolli R, Carpenter L, Biden TJ, Schmitz-Peiffer C. A role for protein phosphatase 2A-like activity, but not atypical protein kinase Czeta, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes. 2001;50:2210-2218'},{id:"B181",body:'Fox TE et al. Ceramide recruits and activates protein kinase C zeta (PKC zeta) within structured membrane microdomains. The Journal of Biological Chemistry. 2007;282:12450-12457'},{id:"B182",body:'Lyu K et al. A membrane-bound diacylglycerol species induces PKCε-mediated hepatic insulin resistance. Cell Metabolism. 2020;32:654-664.e5'},{id:"B183",body:'Lyu K et al. Short-term overnutrition induces white adipose tissue insulin resistance through sn-1,2- diacylglycerol/PKCε/insulin receptor Thr1160 phosphorylation. JCI Insight. 2021;6:e139946'},{id:"B184",body:'Gassaway BM et al. PKCε contributes to lipid-induced insulin resistance through cross talk with p70S6K and through previously unknown regulators of insulin signaling. Proceedings of the National Academy of Sciences of the United States of America. 2018;115:E8996-E9005'},{id:"B185",body:'Perreault L et al. Intracellular localization of diacylglycerols and sphingolipids influences insulin sensitivity and mitochondrial function in human skeletal muscle. JCI Insight. 2018;3:e96805'},{id:"B186",body:'Gonzalez-Franquesa A, Patti M-E. Insulin resistance and mitochondrial dysfunction. Advances in Experimental Medicine and Biology. 2017;982:465-520'},{id:"B187",body:'Sangwung P, Petersen KF, Shulman GI, Knowles JW. Mitochondrial dysfunction, insulin resistance, and potential genetic implications. Endocrinology. 2020;161:bqaa017'},{id:"B188",body:'Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature. 2006;440:944-948'},{id:"B189",body:'Fisher-Wellman KH, Neufer PD. Linking mitochondrial bioenergetics to insulin resistance via redox biology. Trends in Endocrinology and Metabolism. 2012;23:142-153'},{id:"B190",body:'Hoehn KL et al. Insulin resistance is a cellular antioxidant defense mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:17787-17792'},{id:"B191",body:'Anderson EJ et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. The Journal of Clinical Investigation. 2009;119:573-581'},{id:"B192",body:'Ingram KH et al. Skeletal muscle lipid peroxidation and insulin resistance in humans. Journal of Clinical Endocrinology and Metabolism. 2012;97:E1182-E1186'},{id:"B193",body:'Duplain H et al. Stimulation of peroxynitrite catalysis improves insulin sensitivity in high fat diet-fed mice. The Journal of Physiology. 2008;586:4011-4016'},{id:"B194",body:'Fazakerley DJ et al. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation. The Journal of Biological Chemistry. 2018;293:7315-7328'},{id:"B195",body:'Boveris A, Oshino N, Chance B. The cellular production of hydrogen peroxide. The Biochemical Journal. 1972;128:617-630'},{id:"B196",body:'Rees-Milton KJ et al. Statin use is associated with insulin resistance in participants of the Canadian multicentre osteoporosis study. Journal of the Endocrine Society. 2020;4:bvaa057'},{id:"B197",body:'Koves TR et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metabolism. 2008;7:45-56'},{id:"B198",body:'Di Paola M, Cocco T, Lorusso M. Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 2000;39:6660-6668'},{id:"B199",body:'Smith ME et al. Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. The Biochemical Journal. 2013;456:427-439'},{id:"B200",body:'Novgorodov SA et al. Novel pathway of ceramide production in mitochondria: Thioesterase and neutral ceramidase produce ceramide from sphingosine and acyl-CoA. The Journal of Biological Chemistry. 2011;286:25352-25362'},{id:"B201",body:'vonHaefen C et al. Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002;21:4009-4019'},{id:"B202",body:'Ye R, Onodera T, Scherer PE. Lipotoxicity and cell maintenance in obesity and type 2 diabetes. Journal of the Endocrine Society. 2019;3:617-631'},{id:"B203",body:'Turpin SM et al. Examination of ‘lipotoxicity’ in skeletal muscle of high-fat fed 0. The Journal of Physiology. 2009;587:1593-1605'},{id:"B204",body:'Kim Y-R et al. Hepatic triglyceride accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Experimental & Molecular Medicine. 2019;51:1-16'},{id:"B205",body:'Boslem E et al. A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. The Biochemical Journal. 2011;435:267-276'},{id:"B206",body:'Flamment M, Hajduch E, Ferré P, Foufelle F. New insights into ER stress-induced insulin resistance. Trends in Endocrinology and Metabolism. 2012;23:381-390'},{id:"B207",body:'Sumitomo M et al. Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. The Journal of Clinical Investigation. 2002;109:827-836'},{id:"B208",body:'Lee H-Y et al. Mitochondrial-targeted catalase protects against high-fat diet-induced muscle insulin resistance by decreasing intramuscular lipid accumulation. Diabetes. 2017;66:2072-2081'},{id:"B209",body:'Riojas-Hernández A et al. Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker fa/fa rats with type 2 diabetes. Life Sciences. 2015;141:32-43'},{id:"B210",body:'Taddeo EP et al. Opening of the mitochondrial permeability transition pore links mitochondrial dysfunction to insulin resistance in skeletal muscle. Molecular Metabolism. 2014;3:124-134'},{id:"B211",body:'Cho J et al. Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance. Nature Communications. 2017;8:14477'},{id:"B212",body:'O’Neill BT et al. Differential role of insulin/IGF-1 receptor signaling in muscle growth and glucose homeostasis. Cell Reports. 2015;11:1220-1235'}],footnotes:[],contributors:[{corresp:null,contributorFullName:"Atamjit Singh",address:null,affiliation:'
Department of Pharmaceutical Sciences, Guru Nanak Dev University, India
Department of Pharmaceutical Sciences, Guru Nanak Dev University, India
Drug and Pollution Testing Lab, Guru Nanak Dev University, India
'}],corrections:null},book:{id:"11261",type:"book",title:"Insulin Resistance - Evolving Concepts and Treatment Strategies",subtitle:null,fullTitle:"Insulin Resistance - Evolving Concepts and Treatment Strategies",slug:null,publishedDate:null,bookSignature:"Dr. Marco Infante",coverURL:"https://cdn.intechopen.com/books/images_new/11261.jpg",licenceType:"CC BY 3.0",editedByType:null,isbn:"978-1-80355-502-7",printIsbn:"978-1-80355-501-0",pdfIsbn:"978-1-80355-503-4",isAvailableForWebshopOrdering:!0,editors:[{id:"409412",title:"Dr.",name:"Marco",middleName:null,surname:"Infante",slug:"marco-infante",fullName:"Marco Infante"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"298629",title:"Dr.",name:"Randa",middleName:null,surname:"Khemiri",email:"randa.khemiri@gmail.com",fullName:"Randa Khemiri",slug:"randa-khemiri",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"2",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{id:"67657",title:"Fast Motion Estimation’s Configuration Using Diamond Pattern and ECU, CFM, and ESD Modes for Reducing HEVC Computational Complexity",slug:"fast-motion-estimation-s-configuration-using-diamond-pattern-and-ecu-cfm-and-esd-modes-for-reducing-",abstract:"The high performance of the high efficiency video coding (HEVC) video standard makes it more suitable for high-definition resolutions. Nevertheless, this encoding performance is coupled with a tremendous encoding complexity compared to the earlier H264 video codec. The HEVC complexity is mainly a return to the motion estimation (ME) module that represents the important part of encoding time which makes several researches turn around the optimization of this module. Some works are interested in hardware solutions exploiting the parallel processing of FPGA, GPU, or other multicore architectures, and other works are focused on software optimizations by inducing fast mode decision algorithms. In this context, this article proposes a fast HEVC encoder configuration to speed up the encoding process. The fast configuration uses different options such as the early skip detection (ESD), the early CU termination (ECU), and the coded block flag (CBF) fast method (CFM) modes. Regarding the algorithm of ME, the diamond search (DS) is used in the encoding process through several video resolutions. A time saving around 46.75% is obtained with an acceptable distortion in terms of video quality and bitrate compared to the reference test model HM.16.2. Our contribution is compared to other works for better evaluation.",signatures:"Randa Khemiri, Nejmeddine Bahri, Fatma Belghith, Soulef Bouaafia, Fatma Elzahra Sayadi, Mohamed Atri and Nouri Masmoudi",authors:[{id:"298629",title:"Dr.",name:"Randa",surname:"Khemiri",fullName:"Randa Khemiri",slug:"randa-khemiri",email:"randa.khemiri@gmail.com"},{id:"304368",title:"Dr.",name:"Nejmeddine",surname:"Bahri",fullName:"Nejmeddine Bahri",slug:"nejmeddine-bahri",email:"nejmeddine.bahri@gmail.com"},{id:"304387",title:"Prof.",name:"Mohamed",surname:"Atri",fullName:"Mohamed Atri",slug:"mohamed-atri",email:"mohamed.atri@fsm.rnu.tn"},{id:"304388",title:"Dr.",name:"Fatma",surname:"Belghith",fullName:"Fatma Belghith",slug:"fatma-belghith",email:"fatmabelghithenis@gmail.com"},{id:"304390",title:"Dr.",name:"Soulef",surname:"Bouaafia",fullName:"Soulef Bouaafia",slug:"soulef-bouaafia",email:"soulefbouaafia@gmail.com"},{id:"304391",title:"Dr.",name:"Fatma Ezahra",surname:"Sayadi",fullName:"Fatma Ezahra Sayadi",slug:"fatma-ezahra-sayadi",email:"sayadi_fatma@yahoo.fr"},{id:"304392",title:"Prof.",name:"Nouri",surname:"Masmoudi",fullName:"Nouri Masmoudi",slug:"nouri-masmoudi",email:"masmoudi123@gmail.com"}],book:{id:"9239",title:"Digital Imaging",slug:"digital-imaging",productType:{id:"1",title:"Edited Volume"}}},{id:"78265",title:"Performance Analysis of OpenCL and CUDA Programming Models for the High Efficiency Video Coding",slug:"performance-analysis-of-opencl-and-cuda-programming-models-for-the-high-efficiency-video-coding",abstract:"In Motion estimation (ME), the block matching algorithms have a great potential of parallelism. This process of the best match is performed by computing the similarity for each block position inside the search area, using a similarity metric, such as Sum of Absolute Differences (SAD). It is used in the various steps of motion estimation algorithms. Moreover, it can be parallelized using Graphics Processing Unit (GPU) since the computation algorithm of each block pixels is similar, thus offering better results. In this work a fixed OpenCL code was performed firstly on several architectures as CPU and GPU, secondly a parallel GPU-implementation was proposed with CUDA and OpenCL for the SAD process using block of sizes from 4x4 to 64x64. A comparative study established between execution time on GPU on the same video sequence. The experimental results indicated that GPU OpenCL execution time was better than that of CUDA times with performance ratio that reached the double.",signatures:"Randa Khemiri, Soulef Bouaafia, Asma Bahba, Maha Nasr and Fatma Ezahra Sayadi",authors:[{id:"298629",title:"Dr.",name:"Randa",surname:"Khemiri",fullName:"Randa Khemiri",slug:"randa-khemiri",email:"randa.khemiri@gmail.com"},{id:"304390",title:"Dr.",name:"Soulef",surname:"Bouaafia",fullName:"Soulef Bouaafia",slug:"soulef-bouaafia",email:"soulefbouaafia@gmail.com"},{id:"304391",title:"Dr.",name:"Fatma Ezahra",surname:"Sayadi",fullName:"Fatma Ezahra Sayadi",slug:"fatma-ezahra-sayadi",email:"sayadi_fatma@yahoo.fr"},{id:"426631",title:"Dr.",name:"Asma",surname:"Bahba",fullName:"Asma Bahba",slug:"asma-bahba",email:"assoum.bahba@gmail.com"},{id:"426633",title:"Dr.",name:"Maha",surname:"Nasr",fullName:"Maha Nasr",slug:"maha-nasr",email:"nasr.maha@ymail.com"}],book:{id:"10991",title:"Digital Image Processing Applications",slug:"digital-image-processing-applications",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"51029",title:"Dr.",name:"Pedro Antonio",surname:"Marquez Aguilar",slug:"pedro-antonio-marquez-aguilar",fullName:"Pedro Antonio Marquez Aguilar",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"299407",title:"Dr.",name:"Alonso",surname:"Saldaña Heredia",slug:"alonso-saldana-heredia",fullName:"Alonso Saldaña Heredia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"299409",title:"Dr.",name:"Álvaro",surname:"Zamudio Lara",slug:"alvaro-zamudio-lara",fullName:"Álvaro Zamudio Lara",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"299556",title:"Dr.",name:"Touhami",surname:"Tahenni",slug:"touhami-tahenni",fullName:"Touhami Tahenni",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"304368",title:"Dr.",name:"Nejmeddine",surname:"Bahri",slug:"nejmeddine-bahri",fullName:"Nejmeddine Bahri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"304387",title:"Prof.",name:"Mohamed",surname:"Atri",slug:"mohamed-atri",fullName:"Mohamed Atri",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Monastir",institutionURL:null,country:{name:"Tunisia"}}},{id:"304388",title:"Dr.",name:"Fatma",surname:"Belghith",slug:"fatma-belghith",fullName:"Fatma Belghith",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}},{id:"304390",title:"Dr.",name:"Soulef",surname:"Bouaafia",slug:"soulef-bouaafia",fullName:"Soulef Bouaafia",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Monastir",institutionURL:null,country:{name:"Tunisia"}}},{id:"304391",title:"Dr.",name:"Fatma Ezahra",surname:"Sayadi",slug:"fatma-ezahra-sayadi",fullName:"Fatma Ezahra Sayadi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Monastir",institutionURL:null,country:{name:"Tunisia"}}},{id:"304392",title:"Prof.",name:"Nouri",surname:"Masmoudi",slug:"nouri-masmoudi",fullName:"Nouri Masmoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Sfax",institutionURL:null,country:{name:"Tunisia"}}}]},generic:{page:{slug:"open-access-funding-funders-list",title:"List of Funders by Country",intro:"
If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).
\n\n
IMPORTANT: You must be a member or grantee of the listed funders in order to apply for their Open Access publication funds. Do not attempt to contact the funders if this is not the case.
",metaTitle:"List of Funders by Country",metaDescription:"If your research is financed through any of the below-mentioned funders, please consult their Open Access policies or grant ‘terms and conditions’ to explore ways to cover your publication costs (also accessible by clicking on the link in their title).",metaKeywords:null,canonicalURL:"/page/open-access-funding-funders-list",contentRaw:'[{"type":"htmlEditorComponent","content":"
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
UK Research and Innovation (former Research Councils UK (RCUK) - including AHRC, BBSRC, ESRC, EPSRC, MRC, NERC, STFC.) Processing charges for books/book chapters can be covered through RCUK block grants which are allocated to most universities in the UK, which then handle the OA publication funding requests. It is at the discretion of the university whether it will approve the request.)
Wellcome Trust (Funding available only to Wellcome-funded researchers/grantees)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"396",title:"Dr.",name:"Vedran",middleName:null,surname:"Kordic",slug:"vedran-kordic",fullName:"Vedran Kordic",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/396/images/7281_n.png",biography:"After obtaining his Master's degree in Mechanical Engineering he continued his education at the Vienna University of Technology where he obtained his PhD degree in 2004. He worked as a researcher at the Automation and Control Institute, Faculty of Electrical Engineering, Vienna University of Technology until 2008. His studies in robotics lead him not only to a PhD degree but also inspired him to co-found and build the International Journal of Advanced Robotic Systems - world's first Open Access journal in the field of robotics.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"441",title:"Ph.D.",name:"Jaekyu",middleName:null,surname:"Park",slug:"jaekyu-park",fullName:"Jaekyu Park",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/441/images/1881_n.jpg",biography:null,institutionString:null,institution:{name:"LG Corporation (South Korea)",country:{name:"Korea, South"}}},{id:"465",title:"Dr",name:"Christian",middleName:null,surname:"Martens",slug:"christian-martens",fullName:"Christian Martens",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"479",title:"Dr.",name:"Valentina",middleName:null,surname:"Colla",slug:"valentina-colla",fullName:"Valentina Colla",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/479/images/358_n.jpg",biography:null,institutionString:null,institution:{name:"Sant'Anna School of Advanced Studies",country:{name:"Italy"}}},{id:"494",title:"PhD",name:"Loris",middleName:null,surname:"Nanni",slug:"loris-nanni",fullName:"Loris Nanni",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/494/images/system/494.jpg",biography:"Loris Nanni received his Master Degree cum laude on June-2002 from the University of Bologna, and the April 26th 2006 he received his Ph.D. in Computer Engineering at DEIS, University of Bologna. On September, 29th 2006 he has won a post PhD fellowship from the university of Bologna (from October 2006 to October 2008), at the competitive examination he was ranked first in the industrial engineering area. He extensively served as referee for several international journals. He is author/coauthor of more than 100 research papers. He has been involved in some projects supported by MURST and European Community. His research interests include pattern recognition, bioinformatics, and biometric systems (fingerprint classification and recognition, signature verification, face recognition).",institutionString:null,institution:null},{id:"496",title:"Dr.",name:"Carlos",middleName:null,surname:"Leon",slug:"carlos-leon",fullName:"Carlos Leon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Seville",country:{name:"Spain"}}},{id:"512",title:"Dr.",name:"Dayang",middleName:null,surname:"Jawawi",slug:"dayang-jawawi",fullName:"Dayang Jawawi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"528",title:"Dr.",name:"Kresimir",middleName:null,surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/528/images/system/528.jpg",biography:"K. Delac received his B.Sc.E.E. degree in 2003 and is currentlypursuing a Ph.D. degree at the University of Zagreb, Faculty of Electrical Engineering andComputing. His current research interests are digital image analysis, pattern recognition andbiometrics.",institutionString:null,institution:{name:"University of Zagreb",country:{name:"Croatia"}}},{id:"557",title:"Dr.",name:"Andon",middleName:"Venelinov",surname:"Topalov",slug:"andon-topalov",fullName:"Andon Topalov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/557/images/1927_n.jpg",biography:"Dr. Andon V. Topalov received the MSc degree in Control Engineering from the Faculty of Information Systems, Technologies, and Automation at Moscow State University of Civil Engineering (MGGU) in 1979. He then received his PhD degree in Control Engineering from the Department of Automation and Remote Control at Moscow State Mining University (MGSU), Moscow, in 1984. From 1985 to 1986, he was a Research Fellow in the Research Institute for Electronic Equipment, ZZU AD, Plovdiv, Bulgaria. In 1986, he joined the Department of Control Systems, Technical University of Sofia at the Plovdiv campus, where he is presently a Full Professor. He has held long-term visiting Professor/Scholar positions at various institutions in South Korea, Turkey, Mexico, Greece, Belgium, UK, and Germany. And he has coauthored one book and authored or coauthored more than 80 research papers in conference proceedings and journals. His current research interests are in the fields of intelligent control and robotics.",institutionString:null,institution:{name:"Technical University of Sofia",country:{name:"Bulgaria"}}},{id:"585",title:"Prof.",name:"Munir",middleName:null,surname:"Merdan",slug:"munir-merdan",fullName:"Munir Merdan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/585/images/system/585.jpg",biography:"Munir Merdan received the M.Sc. degree in mechanical engineering from the Technical University of Sarajevo, Bosnia and Herzegovina, in 2001, and the Ph.D. degree in electrical engineering from the Vienna University of Technology, Vienna, Austria, in 2009.Since 2005, he has been at the Automation and Control Institute, Vienna University of Technology, where he is currently a Senior Researcher. His research interests include the application of agent technology for achieving agile control in the manufacturing environment.",institutionString:null,institution:null},{id:"605",title:"Prof",name:"Dil",middleName:null,surname:"Hussain",slug:"dil-hussain",fullName:"Dil Hussain",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/605/images/system/605.jpg",biography:"Dr. Dil Muhammad Akbar Hussain is a professor of Electronics Engineering & Computer Science at the Department of Energy Technology, Aalborg University Denmark. Professor Akbar has a Master degree in Digital Electronics from Govt. College University, Lahore Pakistan and a P-hD degree in Control Engineering from the School of Engineering and Applied Sciences, University of Sussex United Kingdom. Aalborg University has Two Satellite Campuses, one in Copenhagen (Aalborg University Copenhagen) and the other in Esbjerg (Aalborg University Esbjerg).\n· He is a member of prestigious IEEE (Institute of Electrical and Electronics Engineers), and IAENG (International Association of Engineers) organizations. \n· He is the chief Editor of the Journal of Software Engineering.\n· He is the member of the Editorial Board of International Journal of Computer Science and Software Technology (IJCSST) and International Journal of Computer Engineering and Information Technology. \n· He is also the Editor of Communication in Computer and Information Science CCIS-20 by Springer.\n· Reviewer For Many Conferences\nHe is the lead person in making collaboration agreements between Aalborg University and many universities of Pakistan, for which the MOU’s (Memorandum of Understanding) have been signed.\nProfessor Akbar is working in Academia since 1990, he started his career as a Lab demonstrator/TA at the University of Sussex. After finishing his P. hD degree in 1992, he served in the Industry as a Scientific Officer and continued his academic career as a visiting scholar for a number of educational institutions. In 1996 he joined National University of Science & Technology Pakistan (NUST) as an Associate Professor; NUST is one of the top few universities in Pakistan. In 1999 he joined an International Company Lineo Inc, Canada as Manager Compiler Group, where he headed the group for developing Compiler Tool Chain and Porting of Operating Systems for the BLACKfin processor. The processor development was a joint venture by Intel and Analog Devices. In 2002 Lineo Inc., was taken over by another company, so he joined Aalborg University Denmark as an Assistant Professor.\nProfessor Akbar has truly a multi-disciplined career and he continued his legacy and making progress in many areas of his interests both in teaching and research. He has contributed in stochastic estimation of control area especially, in the Multiple Target Tracking and Interactive Multiple Model (IMM) research, Ball & Beam Control Problem, Robotics, Levitation Control. He has contributed in developing Algorithms for Fingerprint Matching, Computer Vision and Face Recognition. He has been supervising Pattern Recognition, Formal Languages and Distributed Processing projects for several years. He has reviewed many books on Management, Computer Science. Currently, he is an active and permanent reviewer for many international conferences and symposia and the program committee member for many international conferences.\nIn teaching he has taught the core computer science subjects like, Digital Design, Real Time Embedded System Programming, Operating Systems, Software Engineering, Data Structures, Databases, Compiler Construction. In the Engineering side, Digital Signal Processing, Computer Architecture, Electronics Devices, Digital Filtering and Engineering Management.\nApart from his Academic Interest and activities he loves sport especially, Cricket, Football, Snooker and Squash. He plays cricket for Esbjerg city in the second division team as an opener wicket keeper batsman. He is a very good player of squash but has not played squash since his arrival in Denmark.",institutionString:null,institution:null},{id:"611",title:"Prof.",name:"T",middleName:null,surname:"Nagarajan",slug:"t-nagarajan",fullName:"T Nagarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universiti Teknologi Petronas",country:{name:"Malaysia"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6675},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2459},{group:"region",caption:"Asia",value:4,count:12718},{group:"region",caption:"Australia and Oceania",value:5,count:1017},{group:"region",caption:"Europe",value:6,count:17720}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"14"},books:[{type:"book",id:"11124",title:"Next-Generation Textiles",subtitle:null,isOpenForSubmission:!0,hash:"093f9e26bb829b8d414d13626aea1086",slug:null,bookSignature:"Dr. Hassan Ibrahim",coverURL:"https://cdn.intechopen.com/books/images_new/11124.jpg",editedByType:null,editors:[{id:"90645",title:"Dr.",name:"Hassan",surname:"Ibrahim",slug:"hassan-ibrahim",fullName:"Hassan Ibrahim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11467",title:"Bismuth-Based Nanostructured Materials",subtitle:null,isOpenForSubmission:!0,hash:"951c872d9d90e13cfe7d97c0af91845e",slug:null,bookSignature:"Dr. William Wilson Anku",coverURL:"https://cdn.intechopen.com/books/images_new/11467.jpg",editedByType:null,editors:[{id:"196465",title:"Dr.",name:"William Wilson",surname:"Anku",slug:"william-wilson-anku",fullName:"William Wilson Anku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11483",title:"Magnetic Materials - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"9df995499c9e30ad3bc64368cde49ef4",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/11483.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11485",title:"Wetting and Wettability - Fundamental and Applied Aspects",subtitle:null,isOpenForSubmission:!0,hash:"54b954378e0840f2317b2e94e6c467d6",slug:null,bookSignature:"Dr. Volodymyr Shatokha",coverURL:"https://cdn.intechopen.com/books/images_new/11485.jpg",editedByType:null,editors:[{id:"111000",title:"Dr.",name:"Volodymyr",surname:"Shatokha",slug:"volodymyr-shatokha",fullName:"Volodymyr Shatokha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11758",title:"Glass-Ceramics - Recent Advances, New Perspectives and Applications",subtitle:null,isOpenForSubmission:!0,hash:"e03ff7760e0aaea457f259ab63153846",slug:null,bookSignature:" Uday M. Basheer",coverURL:"https://cdn.intechopen.com/books/images_new/11758.jpg",editedByType:null,editors:[{id:"182041",title:null,name:"Uday",surname:"Basheer",slug:"uday-basheer",fullName:"Uday Basheer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11759",title:"Copper - From the Mineral to the Final Application",subtitle:null,isOpenForSubmission:!0,hash:"afea7aef1cb09fc3a1a5d619152d02a6",slug:null,bookSignature:"Dr. Daniel Fernández González and Dr. Luis Felipe Verdeja González",coverURL:"https://cdn.intechopen.com/books/images_new/11759.jpg",editedByType:null,editors:[{id:"211395",title:"Dr.",name:"Daniel",surname:"Fernández González",slug:"daniel-fernandez-gonzalez",fullName:"Daniel Fernández González"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11760",title:"Applications and Use of Diamond",subtitle:null,isOpenForSubmission:!0,hash:"2edcf9a24450d8655e756e1080defe32",slug:null,bookSignature:"Mr. Evgeniy Lipatov",coverURL:"https://cdn.intechopen.com/books/images_new/11760.jpg",editedByType:null,editors:[{id:"21254",title:"Mr.",name:"Evgeniy",surname:"Lipatov",slug:"evgeniy-lipatov",fullName:"Evgeniy Lipatov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11761",title:"New Advances in Powder Technology",subtitle:null,isOpenForSubmission:!0,hash:"bd8063ae11e4fdd8626f5a095012c628",slug:null,bookSignature:"Dr. Shashanka Rajendrachari and Dr. Baris Avar",coverURL:"https://cdn.intechopen.com/books/images_new/11761.jpg",editedByType:null,editors:[{id:"246025",title:"Dr.",name:"Shashanka",surname:"Rajendrachari",slug:"shashanka-rajendrachari",fullName:"Shashanka Rajendrachari"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11762",title:"Characteristics and Applications of Boron",subtitle:null,isOpenForSubmission:!0,hash:"611776f7f3cc9951a8956d2e3d535a8e",slug:null,bookSignature:"Associate Prof. Chatchawal Wongchoosuk",coverURL:"https://cdn.intechopen.com/books/images_new/11762.jpg",editedByType:null,editors:[{id:"34521",title:"Associate Prof.",name:"Chatchawal",surname:"Wongchoosuk",slug:"chatchawal-wongchoosuk",fullName:"Chatchawal Wongchoosuk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11764",title:"Electrodeposition - Modern Methods and Recent Advances",subtitle:null,isOpenForSubmission:!0,hash:"dd7b08197c3dcfef54b5e636795a67f7",slug:null,bookSignature:"Prof. Keith J. Stine",coverURL:"https://cdn.intechopen.com/books/images_new/11764.jpg",editedByType:null,editors:[{id:"192643",title:"Prof.",name:"Keith J.",surname:"Stine",slug:"keith-j.-stine",fullName:"Keith J. Stine"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11765",title:"Pyrometallurgy - New Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"b0ed96047d5aadd003e16ab2884bb2f6",slug:null,bookSignature:"Dr. Swamini Chopra",coverURL:"https://cdn.intechopen.com/books/images_new/11765.jpg",editedByType:null,editors:[{id:"325912",title:"Dr.",name:"Swamini",surname:"Chopra",slug:"swamini-chopra",fullName:"Swamini Chopra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11766",title:"Cast Iron - Production, Properties, Characterization, and Casting Defects Analysis",subtitle:null,isOpenForSubmission:!0,hash:"821766a37d38da743321864be6b2334a",slug:null,bookSignature:"Prof. Thoguluva Raghavan Vijayaram",coverURL:"https://cdn.intechopen.com/books/images_new/11766.jpg",editedByType:null,editors:[{id:"139338",title:"Prof.",name:"Thoguluva",surname:"Vijayaram",slug:"thoguluva-vijayaram",fullName:"Thoguluva Vijayaram"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:34},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4431},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"651",title:"Mineralogy",slug:"geology-and-geophysics-mineralogy",parent:{id:"104",title:"Geology and Geophysics",slug:"geology-and-geophysics"},numberOfBooks:3,numberOfSeries:0,numberOfAuthorsAndEditors:57,numberOfWosCitations:38,numberOfCrossrefCitations:27,numberOfDimensionsCitations:58,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"651",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9247",title:"Mineralogy",subtitle:"Significance and Applications",isOpenForSubmission:!1,hash:"5149699e666cbb61c220646173769f18",slug:"mineralogy-significance-and-applications",bookSignature:"Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/9247.jpg",editedByType:"Edited by",editors:[{id:"58570",title:"Prof.",name:"Ali",middleName:"Ismail",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7315",title:"Minerals",subtitle:null,isOpenForSubmission:!1,hash:"f0d5c2a9a5f37e6effcb8486c661d217",slug:"minerals",bookSignature:"Khalid S. Essa",coverURL:"https://cdn.intechopen.com/books/images_new/7315.jpg",editedByType:"Edited by",editors:[{id:"102766",title:"Prof.",name:"Khalid S.",middleName:null,surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1600",title:"An Introduction to the Study of Mineralogy",subtitle:null,isOpenForSubmission:!1,hash:"df1bb075087aab55f47ec589f48eafde",slug:"an-introduction-to-the-study-of-mineralogy",bookSignature:"Cumhur Aydinalp",coverURL:"https://cdn.intechopen.com/books/images_new/1600.jpg",editedByType:"Edited by",editors:[{id:"98959",title:"Prof.",name:"Cumhur",middleName:"---",surname:"Aydinalp",slug:"cumhur-aydinalp",fullName:"Cumhur Aydinalp"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"27433",doi:"10.5772/36256",title:"Pathways for Quantitative Analysis by X-Ray Diffraction",slug:"pathways-for-quantitative-analysis-by-x-ray-diffraction",totalDownloads:8742,totalCrossrefCites:4,totalDimensionsCites:15,abstract:null,book:{id:"1600",slug:"an-introduction-to-the-study-of-mineralogy",title:"An Introduction to the Study of Mineralogy",fullTitle:"An Introduction to the Study of Mineralogy"},signatures:"J.D. Martín-Ramos, J.L. Díaz-Hernández, A. Cambeses, J.H. Scarrow and A. López-Galindo",authors:[{id:"107663",title:"Dr.",name:"José Luis",middleName:null,surname:"Díaz-Hernández",slug:"jose-luis-diaz-hernandez",fullName:"José Luis Díaz-Hernández"},{id:"137385",title:"Dr.",name:"José Daniel",middleName:null,surname:"Martín.Ramos",slug:"jose-daniel-martin.ramos",fullName:"José Daniel Martín.Ramos"},{id:"137386",title:"Dr.",name:"Jane H.",middleName:null,surname:"Scarrow",slug:"jane-h.-scarrow",fullName:"Jane H. Scarrow"},{id:"137517",title:"Mrs.",name:"Aitor",middleName:null,surname:"Cambeses-Torres",slug:"aitor-cambeses-torres",fullName:"Aitor Cambeses-Torres"},{id:"137518",title:"Dr.",name:"Alberto",middleName:null,surname:"López-Galindo",slug:"alberto-lopez-galindo",fullName:"Alberto López-Galindo"}]},{id:"63713",doi:"10.5772/intechopen.79111",title:"Inversion of Amplitude from the 2-D Analytic Signal of Self-Potential Anomalies",slug:"inversion-of-amplitude-from-the-2-d-analytic-signal-of-self-potential-anomalies",totalDownloads:1095,totalCrossrefCites:5,totalDimensionsCites:9,abstract:"In the present study, analytic signal amplitude (ASA) or total gradient (TG) inversion of self-potential anomalies has been carried out using very fast simulated annealing (VFSA) global optimization technique. The results of VFSA optimization demonstrate the application and efficacy of the proposed method for idealized synthetic hypothetical models and real single and multiple geological structures. The model parameters deciphered here are the amplitude coefficient (k), horizontal location (x0), depth of the body (z), and shape (q). Inversion of the model parameter suggests that constraining the horizontal location and the shape factor offers the most reliable results. Investigation of convergence rate, histogram, and cross-plot examination suggest that the interpretation method developed for the self-potential anomalies is stable and the model parameters are within the estimated ambiguity. Inversion of synthetic noise-free and noise-corrupted data for single structures and multiple structures in addition to real field information exhibits the viability of the method. The model parameters estimated by the present technique were in good agreement with the real parameters. The method has been used to invert two field examples (Sulleymonkoy anomaly, Ergani, Turkey, Senneterre area of Quebec, Canada) with application of subsurface mineralized bodies. This technique can be very much helpful for mineral or ore bodies investigation of idealized geobodies buried within the shallow and deeper subsurface.",book:{id:"7315",slug:"minerals",title:"Minerals",fullTitle:"Minerals"},signatures:"Arkoprovo Biswas",authors:[{id:"250390",title:"Dr.",name:"Arkoprovo",middleName:null,surname:"Biswas",slug:"arkoprovo-biswas",fullName:"Arkoprovo Biswas"}]},{id:"71052",doi:"10.5772/intechopen.90880",title:"Enhanced Humidity Sensing Response in Eu3+-Doped Iron-Rich CuFe2O4: A Detailed Study of Structural, Microstructural, Sensing, and Dielectric Properties",slug:"enhanced-humidity-sensing-response-in-eu-sup-3-sup-doped-iron-rich-cufe-sub-2-sub-o-sub-4-sub-a-deta",totalDownloads:596,totalCrossrefCites:7,totalDimensionsCites:7,abstract:"The CuFe(2−x)EuxO4 (where x = 0.00, 0.01, 0.02, 0.03) nanoparticles are synthesized by solution combustion method. The influence of Eu3+ on the structural, morphological, dielectrical, and humidity sensing study is recorded. The XRD pattern peaks of the as-prepared CuFe(2−x)EuxO4 (where x = 0.00, 0.01, 0.02, 0.03) nanoparticle confirm the polycrystalline spinel cubic structure with a small amount of CuO impurity phase at 38.87° and 48.96°. Surface morphology of the samples was studied by scanning electron microscope (SEM) images of the nanoparticles, and their respective average grain size was estimated using Image software. Chemical composition of all prepared samples was analyzed by EDS spectra. The dielectric parameters of AC conductivity, electric modulus, and impedance of the samples were measured over a range of frequencies from 0.1 KHz to 1 MHz at room temperature. Europium-doped copper ferrite samples showed good humidity sensing response, response and recover times, and stability over a %RH range of 11–91%. These types of samples are very useful for sensor application, battery applications, electronic applications, and automotive applications.",book:{id:"9247",slug:"mineralogy-significance-and-applications",title:"Mineralogy",fullTitle:"Mineralogy - Significance and Applications"},signatures:"I.C. Sathisha, K. Manjunatha, V. Jagadeesha Angadi, B. Chethan, Y.T. Ravikiran, Vinayaka K. Pattar, S.O. Manjunatha and Shidaling Matteppanavar",authors:[{id:"266255",title:"Dr.",name:"Veerabhadrappa",middleName:null,surname:"Jagadeesha Angadi",slug:"veerabhadrappa-jagadeesha-angadi",fullName:"Veerabhadrappa Jagadeesha Angadi"},{id:"321561",title:"Dr.",name:"I.C.",middleName:null,surname:"Sathisha",slug:"i.c.-sathisha",fullName:"I.C. Sathisha"},{id:"321562",title:"Dr.",name:"K.",middleName:null,surname:"Manjunatha",slug:"k.-manjunatha",fullName:"K. Manjunatha"},{id:"321564",title:"Dr.",name:"B.",middleName:null,surname:"Chethan",slug:"b.-chethan",fullName:"B. Chethan"},{id:"321565",title:"Dr.",name:"Y.T.",middleName:null,surname:"Ravikiran",slug:"y.t.-ravikiran",fullName:"Y.T. Ravikiran"},{id:"321566",title:"Dr.",name:"Vinayaka K.",middleName:null,surname:"Pattar",slug:"vinayaka-k.-pattar",fullName:"Vinayaka K. Pattar"},{id:"321567",title:"Dr.",name:"S.O.",middleName:null,surname:"Manjunatha",slug:"s.o.-manjunatha",fullName:"S.O. Manjunatha"},{id:"321568",title:"Dr.",name:"Shidaling",middleName:null,surname:"Matteppanavar",slug:"shidaling-matteppanavar",fullName:"Shidaling Matteppanavar"}]},{id:"27435",doi:"10.5772/34861",title:"A Review of Pathological Biomineral Analysis Techniques and Classification Schemes",slug:"a-review-of-pathological-biomineral-analysis-techniques-and-classification-schemes",totalDownloads:4303,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1600",slug:"an-introduction-to-the-study-of-mineralogy",title:"An Introduction to the Study of Mineralogy",fullTitle:"An Introduction to the Study of Mineralogy"},signatures:"Maria Luigia Giannossi and Vito Summa",authors:[{id:"101919",title:"PhD.",name:"Maria Luigia",middleName:null,surname:"Giannossi",slug:"maria-luigia-giannossi",fullName:"Maria Luigia Giannossi"},{id:"108348",title:"Dr.",name:"Vito",middleName:null,surname:"Summa",slug:"vito-summa",fullName:"Vito Summa"}]},{id:"68162",doi:"10.5772/intechopen.87260",title:"A Review of the Role of Natural Clay Minerals as Effective Adsorbents and an Alternative Source of Minerals",slug:"a-review-of-the-role-of-natural-clay-minerals-as-effective-adsorbents-and-an-alternative-source-of-m",totalDownloads:992,totalCrossrefCites:2,totalDimensionsCites:5,abstract:"The minerals with unique properties such as natural clay minerals (NCMs) have promising approach in environmental and industrial sphere. In fact, under some specific conditions the NCMs could be used either as effective adsorbent material or alternative source of minerals. This chapter presents an outline of a general review of factors that affect the application ability of NCMs and a descriptive analysis of NH4+ and REE adsorption behavior and extraction of rare earth elements (REE) by an ion-exchange with NH4+ ions onto NCMs. Clays and NCMs both effectively remove various contaminants from aqueous solution and serve as alternative sources of minerals, as extensively discussed in this chapter. This review compiles thorough literature of current research and highlights the key findings of adsorption (NH4+ and REE) that use different NCMs as adsorbents or alternative sources of minerals (i.e., REE). The review confirmed that NCMs excellently remove different cations pollutants and have significant potential as alternative source of REE. However, modification and further development of NCMs applications for getting the best adsorption and the best extraction of REE onto NCMs, which would enhance pollution control and leaching system is still needed.",book:{id:"7315",slug:"minerals",title:"Minerals",fullTitle:"Minerals"},signatures:"Aref Alshameri, Xinghu Wei, Hailong Wang, Yang Fuguo, Xin Chen, Hongping He, Chunjie Yan and Feng Xu",authors:[{id:"172947",title:"Prof.",name:"Xin",middleName:null,surname:"Chen",slug:"xin-chen",fullName:"Xin Chen"},{id:"250327",title:"Dr.",name:"Aref",middleName:null,surname:"Alshameri",slug:"aref-alshameri",fullName:"Aref Alshameri"},{id:"306625",title:"Dr.",name:"Aref",middleName:null,surname:"Alshameri",slug:"aref-alshameri",fullName:"Aref Alshameri"},{id:"306656",title:"Prof.",name:"Fuguo",middleName:null,surname:"Yang",slug:"fuguo-yang",fullName:"Fuguo Yang"},{id:"306658",title:"Dr.",name:"Wei",middleName:null,surname:"Xinghu",slug:"wei-xinghu",fullName:"Wei Xinghu"},{id:"306660",title:"Prof.",name:"Wang",middleName:null,surname:"Hailong",slug:"wang-hailong",fullName:"Wang Hailong"},{id:"306664",title:"Prof.",name:"Yan",middleName:null,surname:"Chunjie",slug:"yan-chunjie",fullName:"Yan Chunjie"},{id:"306665",title:"Dr.",name:"Xu",middleName:null,surname:"Feng",slug:"xu-feng",fullName:"Xu Feng"},{id:"306671",title:"Prof.",name:"He",middleName:null,surname:"Hongping",slug:"he-hongping",fullName:"He Hongping"}]}],mostDownloadedChaptersLast30Days:[{id:"71052",title:"Enhanced Humidity Sensing Response in Eu3+-Doped Iron-Rich CuFe2O4: A Detailed Study of Structural, Microstructural, Sensing, and Dielectric Properties",slug:"enhanced-humidity-sensing-response-in-eu-sup-3-sup-doped-iron-rich-cufe-sub-2-sub-o-sub-4-sub-a-deta",totalDownloads:596,totalCrossrefCites:7,totalDimensionsCites:7,abstract:"The CuFe(2−x)EuxO4 (where x = 0.00, 0.01, 0.02, 0.03) nanoparticles are synthesized by solution combustion method. The influence of Eu3+ on the structural, morphological, dielectrical, and humidity sensing study is recorded. The XRD pattern peaks of the as-prepared CuFe(2−x)EuxO4 (where x = 0.00, 0.01, 0.02, 0.03) nanoparticle confirm the polycrystalline spinel cubic structure with a small amount of CuO impurity phase at 38.87° and 48.96°. Surface morphology of the samples was studied by scanning electron microscope (SEM) images of the nanoparticles, and their respective average grain size was estimated using Image software. Chemical composition of all prepared samples was analyzed by EDS spectra. The dielectric parameters of AC conductivity, electric modulus, and impedance of the samples were measured over a range of frequencies from 0.1 KHz to 1 MHz at room temperature. Europium-doped copper ferrite samples showed good humidity sensing response, response and recover times, and stability over a %RH range of 11–91%. These types of samples are very useful for sensor application, battery applications, electronic applications, and automotive applications.",book:{id:"9247",slug:"mineralogy-significance-and-applications",title:"Mineralogy",fullTitle:"Mineralogy - Significance and Applications"},signatures:"I.C. Sathisha, K. Manjunatha, V. Jagadeesha Angadi, B. Chethan, Y.T. Ravikiran, Vinayaka K. Pattar, S.O. Manjunatha and Shidaling Matteppanavar",authors:[{id:"266255",title:"Dr.",name:"Veerabhadrappa",middleName:null,surname:"Jagadeesha Angadi",slug:"veerabhadrappa-jagadeesha-angadi",fullName:"Veerabhadrappa Jagadeesha Angadi"},{id:"321561",title:"Dr.",name:"I.C.",middleName:null,surname:"Sathisha",slug:"i.c.-sathisha",fullName:"I.C. Sathisha"},{id:"321562",title:"Dr.",name:"K.",middleName:null,surname:"Manjunatha",slug:"k.-manjunatha",fullName:"K. Manjunatha"},{id:"321564",title:"Dr.",name:"B.",middleName:null,surname:"Chethan",slug:"b.-chethan",fullName:"B. Chethan"},{id:"321565",title:"Dr.",name:"Y.T.",middleName:null,surname:"Ravikiran",slug:"y.t.-ravikiran",fullName:"Y.T. Ravikiran"},{id:"321566",title:"Dr.",name:"Vinayaka K.",middleName:null,surname:"Pattar",slug:"vinayaka-k.-pattar",fullName:"Vinayaka K. Pattar"},{id:"321567",title:"Dr.",name:"S.O.",middleName:null,surname:"Manjunatha",slug:"s.o.-manjunatha",fullName:"S.O. Manjunatha"},{id:"321568",title:"Dr.",name:"Shidaling",middleName:null,surname:"Matteppanavar",slug:"shidaling-matteppanavar",fullName:"Shidaling Matteppanavar"}]},{id:"65826",title:"Introductory Chapter: Mineral Exploration from the Point of View of Geophysicists",slug:"introductory-chapter-mineral-exploration-from-the-point-of-view-of-geophysicists",totalDownloads:1635,totalCrossrefCites:3,totalDimensionsCites:3,abstract:null,book:{id:"7315",slug:"minerals",title:"Minerals",fullTitle:"Minerals"},signatures:"Khalid S. Essa and Marc Munschy",authors:[{id:"102766",title:"Prof.",name:"Khalid S.",middleName:null,surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"},{id:"292929",title:"Prof.",name:"Marc",middleName:null,surname:"Munschy",slug:"marc-munschy",fullName:"Marc Munschy"}]},{id:"69811",title:"Chemical Synthesis and Characterization of Luminescent Iron Oxide Nanoparticles and Their Biomedical Applications",slug:"chemical-synthesis-and-characterization-of-luminescent-iron-oxide-nanoparticles-and-their-biomedical",totalDownloads:564,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The syntheses and characterizations of biocompatible luminescent magnetic iron oxide nanoparticles has drawn particular attention as diagnostic and drug delivery tools for treatment of cancer and many other diseases. This chapter focuses on the chemical synthetic methods, magnetic and luminescent properties, including the biomedical applications of iron oxide nanomaterials and luminescent magnetic iron oxide-based nanocomposite materials. The influences of functionalizing with short ligands such as dopamine and L-cysteine on the magnetic properties of synthesized nanoparticles are described. The chapter contains some data on necessary reagents and protocols for bioconjugation aimed at cell culture and step by step the MTT assays used to evaluate cytotoxicity are also presented. In the final section of the chapter, we focus on the biomedical applications specifically for diagnosis and treatment of breast cancer treatment. This chapter also investigates the application of various characterization techniques for analysis of the structural, optical and magnetic properties of the iron oxide nanoparticles and as their nanocomposites.",book:{id:"9247",slug:"mineralogy-significance-and-applications",title:"Mineralogy",fullTitle:"Mineralogy - Significance and Applications"},signatures:"Martin Onani, Leandre Brandt and Zuraan Paulsen",authors:[{id:"258023",title:"Dr.",name:"Martin",middleName:null,surname:"Onani",slug:"martin-onani",fullName:"Martin Onani"},{id:"302723",title:"Dr.",name:"Leandré Bianca",middleName:null,surname:"Brandt",slug:"leandre-bianca-brandt",fullName:"Leandré Bianca Brandt"},{id:"302725",title:"MSc.",name:"Zuraan",middleName:null,surname:"Paulsen",slug:"zuraan-paulsen",fullName:"Zuraan Paulsen"}]},{id:"27429",title:"An Introduction to Mineralogy",slug:"an-introduction-to-mineralogy",totalDownloads:6621,totalCrossrefCites:0,totalDimensionsCites:0,abstract:null,book:{id:"1600",slug:"an-introduction-to-the-study-of-mineralogy",title:"An Introduction to the Study of Mineralogy",fullTitle:"An Introduction to the Study of Mineralogy"},signatures:"Cumhur Aydinalp",authors:[{id:"98959",title:"Prof.",name:"Cumhur",middleName:"---",surname:"Aydinalp",slug:"cumhur-aydinalp",fullName:"Cumhur Aydinalp"}]},{id:"27435",title:"A Review of Pathological Biomineral Analysis Techniques and Classification Schemes",slug:"a-review-of-pathological-biomineral-analysis-techniques-and-classification-schemes",totalDownloads:4303,totalCrossrefCites:1,totalDimensionsCites:6,abstract:null,book:{id:"1600",slug:"an-introduction-to-the-study-of-mineralogy",title:"An Introduction to the Study of Mineralogy",fullTitle:"An Introduction to the Study of Mineralogy"},signatures:"Maria Luigia Giannossi and Vito Summa",authors:[{id:"101919",title:"PhD.",name:"Maria Luigia",middleName:null,surname:"Giannossi",slug:"maria-luigia-giannossi",fullName:"Maria Luigia Giannossi"},{id:"108348",title:"Dr.",name:"Vito",middleName:null,surname:"Summa",slug:"vito-summa",fullName:"Vito Summa"}]}],onlineFirstChaptersFilter:{topicId:"651",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81626",title:"Use of Natural Safiot Clay for the Removal of Chemical Substances from Aqueous Solutions by Adsorption: A Combined Experimental and Theoretical Study",slug:"use-of-natural-safiot-clay-for-the-removal-of-chemical-substances-from-aqueous-solutions-by-adsorpti",totalDownloads:24,totalDimensionsCites:0,doi:"10.5772/intechopen.101605",abstract:"The main objective of this work was to investigate the potential of Natural Safiot Clay (NSC), as an adsorbent for the removal of two cationic dyes such as Basic Blue 9 (BB9) and Basic Yellow 28 (BY28) from single and binary systems in aqueous solutions. For this, the effects of three factors controlling the adsorption process, such as initial dye concentration, adsorbent dose, and initial pH on the adsorption extent, were investigated and examined. The natural safiot clay was characterized using the following technique: energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), DRX, and Fourier transform infrared (FT-IR) and pH of the point of zero charge (pHZPC). Energy-dispersive X-ray spectroscopy results indicate high percentages of Silica and Alumina. FT-IR spectrum identified kaolinite as the major mineral phase in the presence of quartz, calcite, and dolomite. The quantum theoretical study confirms the experimental results, through the study of the global and local reactivity and the electrophilicity power of the dyes. The electrophilicity power of dyes affects the removal efficiency. The theoretical study proves that BB9 (ω = 6.178) is more electrophilic than BY28 (ω = 2.480) and more interactions with surface sites. The results of the molecular dynamics simulation indicate that the dyes are adsorbed parallel to the surface of natural Safi clay (kaolinite), implying the strong interaction with the kaolinite atoms. All the results of quantum chemistry calculations and simulations of molecular dynamics are in perfect agreement with the results of the experimental study.",book:{id:"11137",title:"Mineralogy",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg"},signatures:"Aziz El Kassimi, Mohammadine El Haddad, Rachid Laamari, Mamoune El Himri, Youness Achour and Hicham Yazid"},{id:"80866",title:"Normative Mineralogy Especially for Shales, Slates, and Phyllites",slug:"normative-mineralogy-especially-for-shales-slates-and-phyllites",totalDownloads:44,totalDimensionsCites:0,doi:"10.5772/intechopen.102346",abstract:"First, an insight into normative mineralogy and the most important methods for calculating the standard or norm minerals, such as the CIPW norm, is given. This is followed by a more detailed explanation of “slatenorm” and “slatecalculation” for low and very low metamorphic rocks, such as phyllites, slates, and shales. They are particularly suitable for fine-grained rocks where the mineral content is difficult to determine. They enable the determination of a virtual mineral inventory from full chemical analysis, including the values of carbon dioxide (CO2), carbon (C), and sulfur (S). The determined norm or standard minerals include the minerals—feldspars, carbonates, micas, hydro-micas, chlorites, ore minerals, and quartz. The advantages of slatenorm and slatecalculation compared to other methods for calculating normal minerals of sedimentary rocks are discussed.",book:{id:"11137",title:"Mineralogy",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg"},signatures:"Hans Wolfgang Wagner"},{id:"80770",title:"Mg-Ilmenite from Kimberlites, Its Origin",slug:"mg-ilmenite-from-kimberlites-its-origin",totalDownloads:57,totalDimensionsCites:0,doi:"10.5772/intechopen.102676",abstract:"The main regularities of the saturation of kimberlite rocks with the accessory mineral Mg-ilmenite (Ilm), the peculiarities of the distribution of Ilm compositions in individual pipes, in different clusters of pipes, in diamondiferous kimberlite fields, are considered as the example of studies carried out within the Yakutian kimberlite province (Siberian Craton). Interpretation of different crystallization trends in MgO-Cr2O3 coordinates (conventionally named “Haggerty’s parabola”, “Steplike”, “Hockey stick”, as well as the peculiarities of heterogeneity of individual zonal and polygranular Ilm macrocrysts made it possible to propose a three-stage model of crystallization Ilm: (1) Mg-Cr poor ilmenite crystallizing from a primitive asthenospheric melt; (2) Continuing crystallization in the lithospheric contaminated melt by MgO and Cr2O3; (3) Ilmenite subsequently underwent sub-solidus recrystallization in the presence of an evolved kimberlite melt under increasing oxygen fugacity (ƒO2) conditions.",book:{id:"11137",title:"Mineralogy",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg"},signatures:"Sergey I. Kostrovitsky"},{id:"80553",title:"Investigation of Accessory Minerals from the Blatná Granodiorite Suite, Bohemian Massif, Czech Republic",slug:"investigation-of-accessory-minerals-from-the-blatn-granodiorite-suite-bohemian-massif-czech-republic",totalDownloads:48,totalDimensionsCites:0,doi:"10.5772/intechopen.102628",abstract:"The Central Bohemian magmatic complex belongs to the Central European Variscan belt. The granitic rocks of this plutonic complex are formed by several suites of granites, granodiorites, and tonalites, together with small bodies of gabbros, gabbro diorites, and diorites. The granodiorites of the Blatná suite are high-K, calc-alkaline to shoshonitic, and metaluminous to slightly peraluminous granitic rocks. Compared to the common I-type granites, granodiorites of the Blatná suite are enriched in Mg (1.0–3.4 wt.% MgO), Ba (838–2560 ppm), Sr. (257–506 ppm), and Zr (81–236 ppm). For granodiorites of the Blatná suite is assemblage of apatite, zircon, titanite, and allanite significant. Zircon contains low Hf concentrations (1.1–1.7 wt.% HfO2). The composition of titanite ranges from 83 to 92 mol.% titanite end-member. Allanite is relatively Al-poor and displays Feox. ratio 0.2–0.5.",book:{id:"11137",title:"Mineralogy",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg"},signatures:"Miloš René"},{id:"80423",title:"Minerals as Prebiotic Catalysts for Chemical Evolution towards the Origin of Life",slug:"minerals-as-prebiotic-catalysts-for-chemical-evolution-towards-the-origin-of-life",totalDownloads:106,totalDimensionsCites:0,doi:"10.5772/intechopen.102389",abstract:"A transition from geochemistry to biochemistry has been considered as a necessary step towards the emergence of primordial life. Nevertheless, how did this transition occur is still elusive. The chemistry underlying this transition is likely not a single event, but involves many levels of creation and reconstruction, finally reaching the molecular, structural, and functional buildup of complexity. Among them, one apparent question is: how the biochemical catalytic system emerged from the mineral-based geochemical system? Inspired by the metal–ligand structures in metalloenzymes, many researchers have proposed that transition metal sulfide minerals could have served as structural analogs of metalloenzymes for catalyzing prebiotic redox conversions. This assumption has been tested and verified to some extent by several studies, which focused on using Earth-abundant transition metal sulfides as catalysts for multi-electron C and N conversions. The progress in this field will be introduced, with a focus on the CO2 fixation and ammonia synthesis from nitrate/nitrite reduction and N2 reduction. Recently developed methods for screening effective mineral catalysts were also reviewed.",book:{id:"11137",title:"Mineralogy",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg"},signatures:"Yamei Li"},{id:"80338",title:"Ionic Conductivity of Strontium Fluoroapatites Co-doped with Lanthanides",slug:"ionic-conductivity-of-strontium-fluoroapatites-co-doped-with-lanthanides",totalDownloads:54,totalDimensionsCites:0,doi:"10.5772/intechopen.102410",abstract:"Britholites derivatives of apatite’s that contain lanthanium and neodymium in the serial compounds Sr8La2−xNdx(PO4)4(SiO4)2F2 with 0 ≤ x ≤ 2 were subject of the present investigation. The solid state reaction was the route of preparing these materials. Several techniques were employed for the analysis and characterization of the synthesized powders. The chemical analysis results indicated that molar ratio Sr+La+NdP+Si was of about 1.67 value of a stoichiometric powder. The X-ray diffraction data showed single-phase apatites crystallizing in hexagonal structure with P63/m space group were successively obtained. Moreover, the substitution of lanthanium by neodymium in strontium phosphosilicated fluorapatite was total. This was confirmed by the a and c lattice parameters contraction when (x) varies coherently to the sizes of the two cations. The infrared spectroscopy and the 31P NMR (MAS) exhibited the characteristic bands of phosphosilicated fluorapatite. The pressureless sintering of the material achieved a maximum of 89% relative density. The sintered specimens indicated that the Nd content as well as the heating temperature affected the ionic conduction of the materials and the maximum was 1.73 × 10−6 S cm−1 obtained at 1052 K for x = 2.",book:{id:"11137",title:"Mineralogy",coverURL:"https://cdn.intechopen.com/books/images_new/11137.jpg"},signatures:"Khouloud Kthiri, Mohammed Mehnaoui, Samira Jebahi, Khaled Boughzala and Mustapha Hidouri"}],onlineFirstChaptersTotal:10},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:8,limit:8,total:0},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"11",title:"Biochemistry",doi:"10.5772/intechopen.72877",issn:"2632-0983",scope:"Biochemistry, the study of chemical transformations occurring within living organisms, impacts all areas of life sciences, from molecular crystallography and genetics to ecology, medicine, and population biology. Biochemistry examines macromolecules - proteins, nucleic acids, carbohydrates, and lipids – and their building blocks, structures, functions, and interactions. Much of biochemistry is devoted to enzymes, proteins that catalyze chemical reactions, enzyme structures, mechanisms of action and their roles within cells. Biochemistry also studies small signaling molecules, coenzymes, inhibitors, vitamins, and hormones, which play roles in life processes. Biochemical experimentation, besides coopting classical chemistry methods, e.g., chromatography, adopted new techniques, e.g., X-ray diffraction, electron microscopy, NMR, radioisotopes, and developed sophisticated microbial genetic tools, e.g., auxotroph mutants and their revertants, fermentation, etc. More recently, biochemistry embraced the ‘big data’ omics systems. Initial biochemical studies have been exclusively analytic: dissecting, purifying, and examining individual components of a biological system; in the apt words of Efraim Racker (1913 –1991), “Don’t waste clean thinking on dirty enzymes.” Today, however, biochemistry is becoming more agglomerative and comprehensive, setting out to integrate and describe entirely particular biological systems. The ‘big data’ metabolomics can define the complement of small molecules, e.g., in a soil or biofilm sample; proteomics can distinguish all the comprising proteins, e.g., serum; metagenomics can identify all the genes in a complex environment, e.g., the bovine rumen. This Biochemistry Series will address the current research on biomolecules and the emerging trends with great promise.",coverUrl:"https://cdn.intechopen.com/series/covers/11.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:32,editor:{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:4,paginationItems:[{id:"14",title:"Cell and Molecular Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",isOpenForSubmission:!0,editor:{id:"165627",title:"Dr.",name:"Rosa María",middleName:null,surname:"Martínez-Espinosa",slug:"rosa-maria-martinez-espinosa",fullName:"Rosa María Martínez-Espinosa",profilePictureURL:"https://mts.intechopen.com/storage/users/165627/images/system/165627.jpeg",biography:"Dr. Rosa María Martínez-Espinosa has been a Spanish Full Professor since 2020 (Biochemistry and Molecular Biology) and is currently Vice-President of International Relations and Cooperation development and leader of the research group 'Applied Biochemistry” (University of Alicante, Spain). Other positions she has held at the university include Vice-Dean of Master Programs, Vice-Dean of the Degree in Biology and Vice-Dean for Mobility and Enterprise and Engagement at the Faculty of Science (University of Alicante). She received her Bachelor in Biology in 1998 (University of Alicante) and her PhD in 2003 (Biochemistry, University of Alicante). She undertook post-doctoral research at the University of East Anglia (Norwich, U.K. 2004-2005; 2007-2008).\nHer multidisciplinary research focuses on investigating archaea and their potential applications in biotechnology. She has an H-index of 21. She has authored one patent and has published more than 70 indexed papers and around 60 book chapters.\nShe has contributed to more than 150 national and international meetings during the last 15 years. Her research interests include archaea metabolism, enzymes purification and characterization, gene regulation, carotenoids and bioplastics production, antioxidant\ncompounds, waste water treatments, and brines bioremediation.\nRosa María’s other roles include editorial board member for several journals related\nto biochemistry, reviewer for more than 60 journals (biochemistry, molecular biology, biotechnology, chemistry and microbiology) and president of several organizing committees in international meetings related to the N-cycle or respiratory processes.",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}},editorTwo:null,editorThree:null},{id:"15",title:"Chemical Biology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",isOpenForSubmission:!0,editor:{id:"441442",title:"Dr.",name:"Şükrü",middleName:null,surname:"Beydemir",slug:"sukru-beydemir",fullName:"Şükrü Beydemir",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00003GsUoIQAV/Profile_Picture_1634557147521",biography:"Dr. Şükrü Beydemir obtained a BSc in Chemistry in 1995 from Yüzüncü Yıl University, MSc in Biochemistry in 1998, and PhD in Biochemistry in 2002 from Atatürk University, Turkey. He performed post-doctoral studies at Max-Planck Institute, Germany, and University of Florence, Italy in addition to making several scientific visits abroad. He currently works as a Full Professor of Biochemistry in the Faculty of Pharmacy, Anadolu University, Turkey. Dr. Beydemir has published over a hundred scientific papers spanning protein biochemistry, enzymology and medicinal chemistry, reviews, book chapters and presented several conferences to scientists worldwide. He has received numerous publication awards from various international scientific councils. He serves in the Editorial Board of several international journals. Dr. Beydemir is also Rector of Bilecik Şeyh Edebali University, Turkey.",institutionString:null,institution:{name:"Anadolu University",institutionURL:null,country:{name:"Turkey"}}},editorTwo:{id:"13652",title:"Prof.",name:"Deniz",middleName:null,surname:"Ekinci",slug:"deniz-ekinci",fullName:"Deniz Ekinci",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYLT1QAO/Profile_Picture_1634557223079",biography:"Dr. Deniz Ekinci obtained a BSc in Chemistry in 2004, MSc in Biochemistry in 2006, and PhD in Biochemistry in 2009 from Atatürk University, Turkey. He studied at Stetson University, USA, in 2007-2008 and at the Max Planck Institute of Molecular Cell Biology and Genetics, Germany, in 2009-2010. Dr. Ekinci currently works as a Full Professor of Biochemistry in the Faculty of Agriculture and is the Head of the Enzyme and Microbial Biotechnology Division, Ondokuz Mayıs University, Turkey. He is a member of the Turkish Biochemical Society, American Chemical Society, and German Genetics society. Dr. Ekinci published around ninety scientific papers, reviews and book chapters, and presented several conferences to scientists. He has received numerous publication awards from several scientific councils. Dr. Ekinci serves as the Editor in Chief of four international books and is involved in the Editorial Board of several international journals.",institutionString:null,institution:{name:"Ondokuz Mayıs University",institutionURL:null,country:{name:"Turkey"}}},editorThree:null},{id:"17",title:"Metabolism",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",isOpenForSubmission:!0,editor:{id:"138626",title:"Dr.",name:"Yannis",middleName:null,surname:"Karamanos",slug:"yannis-karamanos",fullName:"Yannis Karamanos",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002g6Jv2QAE/Profile_Picture_1629356660984",biography:"Yannis Karamanos, born in Greece in 1953, completed his pre-graduate studies at the Université Pierre et Marie Curie, Paris, then his Masters and Doctoral degree at the Université de Lille (1983). He was associate professor at the University of Limoges (1987) before becoming full professor of biochemistry at the Université d’Artois (1996). He worked on the structure-function relationships of glycoconjugates and his main project was the investigations on the biological roles of the de-N-glycosylation enzymes (Endo-N-acetyl-β-D-glucosaminidase and peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidase). From 2002 he contributes to the understanding of the Blood-brain barrier functioning using proteomics approaches. He has published more than 70 papers. His teaching areas are energy metabolism and regulation, integration and organ specialization and metabolic adaptation.",institutionString:null,institution:{name:"Artois University",institutionURL:null,country:{name:"France"}}},editorTwo:null,editorThree:null},{id:"18",title:"Proteomics",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",isOpenForSubmission:!0,editor:{id:"200689",title:"Prof.",name:"Paolo",middleName:null,surname:"Iadarola",slug:"paolo-iadarola",fullName:"Paolo Iadarola",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSCl8QAG/Profile_Picture_1623568118342",biography:"Paolo Iadarola graduated with a degree in Chemistry from the University of Pavia (Italy) in July 1972. He then worked as an Assistant Professor at the Faculty of Science of the same University until 1984. In 1985, Prof. Iadarola became Associate Professor at the Department of Biology and Biotechnologies of the University of Pavia and retired in October 2017. Since then, he has been working as an Adjunct Professor in the same Department at the University of Pavia. His research activity during the first years was primarily focused on the purification and structural characterization of enzymes from animal and plant sources. During this period, Prof. Iadarola familiarized himself with the conventional techniques used in column chromatography, spectrophotometry, manual Edman degradation, and electrophoresis). Since 1995, he has been working on: i) the determination in biological fluids (serum, urine, bronchoalveolar lavage, sputum) of proteolytic activities involved in the degradation processes of connective tissue matrix, and ii) on the identification of biological markers of lung diseases. In this context, he has developed and validated new methodologies (e.g., Capillary Electrophoresis coupled to Laser-Induced Fluorescence, CE-LIF) whose application enabled him to determine both the amounts of biochemical markers (Desmosines) in urine/serum of patients affected by Chronic Obstructive Pulmonary Disease (COPD) and the activity of proteolytic enzymes (Human Neutrophil Elastase, Cathepsin G, Pseudomonas aeruginosa elastase) in sputa of these patients. More recently, Prof. Iadarola was involved in developing techniques such as two-dimensional electrophoresis coupled to liquid chromatography/mass spectrometry (2DE-LC/MS) for the proteomic analysis of biological fluids aimed at the identification of potential biomarkers of different lung diseases. He is the author of about 150 publications (According to Scopus: H-Index: 23; Total citations: 1568- According to WOS: H-Index: 20; Total Citations: 1296) of peer-reviewed international journals. He is a Consultant Reviewer for several journals, including the Journal of Chromatography A, Journal of Chromatography B, Plos ONE, Proteomes, International Journal of Molecular Science, Biotech, Electrophoresis, and others. He is also Associate Editor of Biotech.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorTwo:{id:"201414",title:"Dr.",name:"Simona",middleName:null,surname:"Viglio",slug:"simona-viglio",fullName:"Simona Viglio",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRKDHQA4/Profile_Picture_1630402531487",biography:"Simona Viglio is an Associate Professor of Biochemistry at the Department of Molecular Medicine at the University of Pavia. She has been working since 1995 on the determination of proteolytic enzymes involved in the degradation process of connective tissue matrix and on the identification of biological markers of lung diseases. She gained considerable experience in developing and validating new methodologies whose applications allowed her to determine both the amount of biomarkers (Desmosine and Isodesmosine) in the urine of patients affected by COPD, and the activity of proteolytic enzymes (HNE, Cathepsin G, Pseudomonas aeruginosa elastase) in the sputa of these patients. Simona Viglio was also involved in research dealing with the supplementation of amino acids in patients with brain injury and chronic heart failure. She is presently engaged in the development of 2-DE and LC-MS techniques for the study of proteomics in biological fluids. The aim of this research is the identification of potential biomarkers of lung diseases. She is an author of about 90 publications (According to Scopus: H-Index: 23; According to WOS: H-Index: 20) on peer-reviewed journals, a member of the “Società Italiana di Biochimica e Biologia Molecolare,“ and a Consultant Reviewer for International Journal of Molecular Science, Journal of Chromatography A, COPD, Plos ONE and Nutritional Neuroscience.",institutionString:null,institution:{name:"University of Pavia",institutionURL:null,country:{name:"Italy"}}},editorThree:null}]},overviewPageOFChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},overviewPagePublishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science\nand Technology from the Department of Chemistry, National\nUniversity of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013.\nShe relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the\nNational Institute of Fundamental Studies from April 2013 to\nOctober 2016. She was a senior lecturer on a temporary basis at the Department of\nFood Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is\ncurrently Deputy Principal of the Australian College of Business and Technology –\nKandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI)",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:3,paginationItems:[{id:"11601",title:"Econometrics - Recent Advances and Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11601.jpg",hash:"bc8ab49e2cf436c217a49ca8c12a22eb",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 13th 2022",isOpenForSubmission:!0,editors:[{id:"452331",title:"Dr.",name:"Brian",surname:"Sloboda",slug:"brian-sloboda",fullName:"Brian Sloboda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12141",title:"Leadership - Advancing Great Leadership Practices and Good Leaders",coverURL:"https://cdn.intechopen.com/books/images_new/12141.jpg",hash:"85f77453916f1d80d80d88ee4fd2f2d1",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"July 1st 2022",isOpenForSubmission:!0,editors:[{id:"420133",title:"Dr.",name:"Joseph",surname:"Crawford",slug:"joseph-crawford",fullName:"Joseph Crawford"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"12139",title:"Global Market and Trade",coverURL:"https://cdn.intechopen.com/books/images_new/12139.jpg",hash:"fa34af07c3a9657fa670404202f8cba5",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 21st 2022",isOpenForSubmission:!0,editors:[{id:"243649",title:"Dr.Ing.",name:"Ireneusz",surname:"Miciuła",slug:"ireneusz-miciula",fullName:"Ireneusz Miciuła"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:36,paginationItems:[{id:"82195",title:"Endoplasmic Reticulum: A Hub in Lipid Homeostasis",doi:"10.5772/intechopen.105450",signatures:"Raúl Ventura and María Isabel Hernández-Alvarez",slug:"endoplasmic-reticulum-a-hub-in-lipid-homeostasis",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82409",title:"Purinergic Signaling in Covid-19 Disease",doi:"10.5772/intechopen.105008",signatures:"Hailian Shen",slug:"purinergic-signaling-in-covid-19-disease",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82374",title:"The Potential of the Purinergic System as a Therapeutic Target of Natural Compounds in Cutaneous Melanoma",doi:"10.5772/intechopen.105457",signatures:"Gilnei Bruno da Silva, Daiane Manica, Marcelo Moreno and Margarete Dulce Bagatini",slug:"the-potential-of-the-purinergic-system-as-a-therapeutic-target-of-natural-compounds-in-cutaneous-mel",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82103",title:"The Role of Endoplasmic Reticulum Stress and Its Regulation in the Progression of Neurological and Infectious Diseases",doi:"10.5772/intechopen.105543",signatures:"Mary Dover, Michael Kishek, Miranda Eddins, Naneeta Desar, Ketema Paul and Milan Fiala",slug:"the-role-of-endoplasmic-reticulum-stress-and-its-regulation-in-the-progression-of-neurological-and-i",totalDownloads:6,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Endoplasmic Reticulum",coverURL:"https://cdn.intechopen.com/books/images_new/11674.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82212",title:"Protein Prenylation and Their Applications",doi:"10.5772/intechopen.104700",signatures:"Khemchand R. Surana, Ritesh B. Pawar, Ritesh A. Khairnar and Sunil K. Mahajan",slug:"protein-prenylation-and-their-applications",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Modifications of Biomolecules",coverURL:"https://cdn.intechopen.com/books/images_new/11098.jpg",subseries:null}},{id:"80954",title:"Ion Channels and Neurodegenerative Disease Aging Related",doi:"10.5772/intechopen.103074",signatures:"Marika Cordaro, Salvatore Cuzzocrea and Rosanna Di Paola",slug:"ion-channels-and-neurodegenerative-disease-aging-related",totalDownloads:7,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"82096",title:"An Important Component of Tumor Progression: Fatty Acids",doi:"10.5772/intechopen.105087",signatures:"Jin Wang, Qifei Wang and Guangzhen Wu",slug:"an-important-component-of-tumor-progression-fatty-acids",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Fatty Acids - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11669.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"82029",title:"Synthesis, Characterization and Antimicrobial Properties of Novel Benzimidazole Amide Derivatives Bearing Thiophene Moiety",doi:"10.5772/intechopen.104908",signatures:"Vinayak Adimule, Pravin Kendrekar and Sheetal Batakurki",slug:"synthesis-characterization-and-antimicrobial-properties-of-novel-benzimidazole-amide-derivatives-bea",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Benzimidazole",coverURL:"https://cdn.intechopen.com/books/images_new/10840.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:15,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:16,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},subseriesFiltersForOFChapters:[{caption:"Proteomics",value:18,count:1,group:"subseries"},{caption:"Chemical Biology",value:15,count:5,group:"subseries"},{caption:"Metabolism",value:17,count:13,group:"subseries"},{caption:"Cell and Molecular Biology",value:14,count:15,group:"subseries"}],publishedBooks:{paginationCount:32,paginationItems:[{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",slug:"starch-evolution-and-recent-advances",publishedDate:"June 28th 2022",editedByType:"Edited by",bookSignature:"Martins Ochubiojo Emeje",hash:"f197f6062c1574a9a90e50a369271bcf",volumeInSeries:33,fullTitle:"Starch - Evolution and Recent Advances",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje",profilePictureURL:"https://mts.intechopen.com/storage/users/94311/images/system/94311.jpeg",institutionString:"National Institute for Pharmaceutical Research and Development",institution:{name:"National Institute for Pharmaceutical Research and Development",institutionURL:null,country:{name:"Nigeria"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",slug:"essential-oils-advances-in-extractions-and-biological-applications",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",hash:"742e6cae3a35686f975edc8d7f9afa94",volumeInSeries:32,fullTitle:"Essential Oils - Advances in Extractions and Biological Applications",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/195290/images/system/195290.png",institutionString:"Museu Paraense Emílio Goeldi",institution:{name:"Museu Paraense Emílio Goeldi",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",slug:"protein-detection",publishedDate:"June 23rd 2022",editedByType:"Edited by",bookSignature:"Yusuf Tutar and Lütfi Tutar",hash:"2f1c0e4e0207fc45c936e7d22a5369c4",volumeInSeries:31,fullTitle:"Protein Detection",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar",profilePictureURL:"https://mts.intechopen.com/storage/users/158492/images/system/158492.jpeg",institutionString:"University of Health Sciences",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10797",title:"Cell Culture",subtitle:"Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",slug:"cell-culture-advanced-technology-and-applications-in-medical-and-life-sciences",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Xianquan Zhan",hash:"2c628f4757f9639a4450728d839a7842",volumeInSeries:30,fullTitle:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",editors:[{id:"223233",title:"Prof.",name:"Xianquan",middleName:null,surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan",profilePictureURL:"https://mts.intechopen.com/storage/users/223233/images/system/223233.png",institutionString:"Shandong First Medical University",institution:{name:"Affiliated Hospital of Shandong Academy of Medical Sciences",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",slug:"hydrolases",publishedDate:"June 15th 2022",editedByType:"Edited by",bookSignature:"Sajjad Haider, Adnan Haider and Angel Catalá",hash:"4e868cde273d65a7ff54b1817d640629",volumeInSeries:29,fullTitle:"Hydrolases",editors:[{id:"110708",title:"Dr.",name:"Sajjad",middleName:null,surname:"Haider",slug:"sajjad-haider",fullName:"Sajjad Haider",profilePictureURL:"https://mts.intechopen.com/storage/users/110708/images/system/110708.png",institutionString:"King Saud University",institution:{name:"King Saud University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",slug:"reactive-oxygen-species",publishedDate:"April 28th 2022",editedByType:"Edited by",bookSignature:"Rizwan Ahmad",hash:"176adcf090fdd1f93cb8ce3146e79ca1",volumeInSeries:28,fullTitle:"Reactive Oxygen Species",editors:[{id:"40482",title:null,name:"Rizwan",middleName:null,surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad",profilePictureURL:"https://mts.intechopen.com/storage/users/40482/images/system/40482.jpeg",institutionString:"Imam Abdulrahman Bin Faisal University",institution:{name:"Imam Abdulrahman Bin Faisal University",institutionURL:null,country:{name:"Saudi Arabia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9008",title:"Vitamin K",subtitle:"Recent Topics on the Biology and Chemistry",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",slug:"vitamin-k-recent-topics-on-the-biology-and-chemistry",publishedDate:"March 23rd 2022",editedByType:"Edited by",bookSignature:"Hiroyuki Kagechika and Hitoshi Shirakawa",hash:"8b43add5389ba85743e0a9491e4b9943",volumeInSeries:27,fullTitle:"Vitamin K - Recent Topics on the Biology and Chemistry",editors:[{id:"180528",title:"Dr.",name:"Hiroyuki",middleName:null,surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika",profilePictureURL:"https://mts.intechopen.com/storage/users/180528/images/system/180528.jpg",institutionString:"Tokyo Medical and Dental University",institution:{name:"Tokyo Medical and Dental University",institutionURL:null,country:{name:"Japan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:"Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",slug:"phenolic-compounds-chemistry-synthesis-diversity-non-conventional-industrial-pharmaceutical-and-therapeutic-applications",publishedDate:"February 23rd 2022",editedByType:"Edited by",bookSignature:"Farid A. Badria",hash:"339199f254d2987ef3167eef74fb8a38",volumeInSeries:26,fullTitle:"Phenolic Compounds - Chemistry, Synthesis, Diversity, Non-Conventional Industrial, Pharmaceutical and Therapeutic Applications",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria",profilePictureURL:"https://mts.intechopen.com/storage/users/41865/images/system/41865.jpg",institutionString:"Mansoura University",institution:{name:"Mansoura University",institutionURL:null,country:{name:"Egypt"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9659",title:"Fibroblasts",subtitle:"Advances in Inflammation, Autoimmunity and Cancer",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",slug:"fibroblasts-advances-in-inflammation-autoimmunity-and-cancer",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Mojca Frank Bertoncelj and Katja Lakota",hash:"926fa6446f6befbd363fc74971a56de2",volumeInSeries:25,fullTitle:"Fibroblasts - Advances in Inflammation, Autoimmunity and Cancer",editors:[{id:"328755",title:"Ph.D.",name:"Mojca",middleName:null,surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj",profilePictureURL:"https://mts.intechopen.com/storage/users/328755/images/system/328755.jpg",institutionString:"BioMed X Institute",institution:{name:"University Hospital of Zurich",institutionURL:null,country:{name:"Switzerland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8977",title:"Protein Kinases",subtitle:"Promising Targets for Anticancer Drug Research",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",slug:"protein-kinases-promising-targets-for-anticancer-drug-research",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"Rajesh Kumar Singh",hash:"6d200cc031706a565b554fdb1c478901",volumeInSeries:24,fullTitle:"Protein Kinases - Promising Targets for Anticancer Drug Research",editors:[{id:"329385",title:"Dr.",name:"Rajesh K.",middleName:"Kumar",surname:"Singh",slug:"rajesh-k.-singh",fullName:"Rajesh K. Singh",profilePictureURL:"https://mts.intechopen.com/storage/users/329385/images/system/329385.png",institutionString:"Punjab Technical University",institution:{name:"Punjab Technical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8018",title:"Extracellular Matrix",subtitle:"Developments and Therapeutics",coverURL:"https://cdn.intechopen.com/books/images_new/8018.jpg",slug:"extracellular-matrix-developments-and-therapeutics",publishedDate:"October 27th 2021",editedByType:"Edited by",bookSignature:"Rama Sashank Madhurapantula, Joseph Orgel P.R.O. and Zvi Loewy",hash:"c85e82851e80b40282ff9be99ddf2046",volumeInSeries:23,fullTitle:"Extracellular Matrix - Developments and Therapeutics",editors:[{id:"212416",title:"Dr.",name:"Rama Sashank",middleName:null,surname:"Madhurapantula",slug:"rama-sashank-madhurapantula",fullName:"Rama Sashank Madhurapantula",profilePictureURL:"https://mts.intechopen.com/storage/users/212416/images/system/212416.jpg",institutionString:"Illinois Institute of Technology",institution:{name:"Illinois Institute of Technology",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9759",title:"Vitamin E in Health and Disease",subtitle:"Interactions, Diseases and Health Aspects",coverURL:"https://cdn.intechopen.com/books/images_new/9759.jpg",slug:"vitamin-e-in-health-and-disease-interactions-diseases-and-health-aspects",publishedDate:"October 6th 2021",editedByType:"Edited by",bookSignature:"Pınar Erkekoglu and Júlia Scherer Santos",hash:"6c3ddcc13626110de289b57f2516ac8f",volumeInSeries:22,fullTitle:"Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoğlu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoğlu",profilePictureURL:"https://mts.intechopen.com/storage/users/109978/images/system/109978.jpg",institutionString:"Hacettepe University",institution:{name:"Hacettepe University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Proteomics",value:18,count:4},{group:"subseries",caption:"Metabolism",value:17,count:6},{group:"subseries",caption:"Cell and Molecular Biology",value:14,count:9},{group:"subseries",caption:"Chemical Biology",value:15,count:13}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:8},{group:"publicationYear",caption:"2021",value:2021,count:7},{group:"publicationYear",caption:"2020",value:2020,count:12},{group:"publicationYear",caption:"2019",value:2019,count:3},{group:"publicationYear",caption:"2018",value:2018,count:2}],authors:{paginationCount:301,paginationItems:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",biography:"Professor Nima Rezaei obtained an MD from Tehran University of Medical Sciences, Iran. He also obtained an MSc in Molecular and Genetic Medicine, and a Ph.D. in Clinical Immunology and Human Genetics from the University of Sheffield, UK. He also completed a short-term fellowship in Pediatric Clinical Immunology and Bone Marrow Transplantation at Newcastle General Hospital, England. Dr. Rezaei is a Full Professor of Immunology and Vice Dean of International Affairs and Research, at the School of Medicine, Tehran University of Medical Sciences, and the co-founder and head of the Research Center for Immunodeficiencies. He is also the founding president of the Universal Scientific Education and Research Network (USERN). Dr. Rezaei has directed more than 100 research projects and has designed and participated in several international collaborative projects. He is an editor, editorial assistant, or editorial board member of more than forty international journals. He has edited more than 50 international books, presented more than 500 lectures/posters in congresses/meetings, and published more than 1,100 scientific papers in international journals.",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",country:{name:"Iran"}}},{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",biography:"Dr. Jean Engohang-Ndong was born and raised in Gabon. After obtaining his Associate Degree of Science at the University of Science and Technology of Masuku, Gabon, he continued his education in France where he obtained his BS, MS, and Ph.D. in Medical Microbiology. He worked as a post-doctoral fellow at the Public Health Research Institute (PHRI), Newark, NJ for four years before accepting a three-year faculty position at Brigham Young University-Hawaii. Dr. Engohang-Ndong is a tenured faculty member with the academic rank of Full Professor at Kent State University, Ohio, where he teaches a wide range of biological science courses and pursues his research in medical and environmental microbiology. Recently, he expanded his research interest to epidemiology and biostatistics of chronic diseases in Gabon.",institutionString:"Kent State University",institution:{name:"Kent State University",country:{name:"United States of America"}}},{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",biography:"Emmanuel Drouet, PharmD, is a Professor of Virology at the Faculty of Pharmacy, the University Grenoble-Alpes, France. As a head scientist at the Institute of Structural Biology in Grenoble, Dr. Drouet’s research investigates persisting viruses in humans (RNA and DNA viruses) and the balance with our host immune system. He focuses on these viruses’ effects on humans (both their impact on pathology and their symbiotic relationships in humans). He has an excellent track record in the herpesvirus field, and his group is engaged in clinical research in the field of Epstein-Barr virus diseases. He is the editor of the online Encyclopedia of Environment and he coordinates the Universal Health Coverage education program for the BioHealth Computing Schools of the European Institute of Science.",institutionString:null,institution:{name:"Grenoble Alpes University",country:{name:"France"}}},{id:"131400",title:"Prof.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/131400/images/system/131400.png",biography:"Dr. Rodriguez-Morales is an expert in tropical and emerging diseases, particularly zoonotic and vector-borne diseases (especially arboviral diseases). He is the president of the Travel Medicine Committee of the Pan-American Infectious Diseases Association (API), as well as the president of the Colombian Association of Infectious Diseases (ACIN). He is a member of the Committee on Tropical Medicine, Zoonoses, and Travel Medicine of ACIN. He is a vice-president of the Latin American Society for Travel Medicine (SLAMVI) and a Member of the Council of the International Society for Infectious Diseases (ISID). Since 2014, he has been recognized as a Senior Researcher, at the Ministry of Science of Colombia. He is a professor at the Faculty of Medicine of the Fundacion Universitaria Autonoma de las Americas, in Pereira, Risaralda, Colombia. He is an External Professor, Master in Research on Tropical Medicine and International Health, Universitat de Barcelona, Spain. He is also a professor at the Master in Clinical Epidemiology and Biostatistics, Universidad Científica del Sur, Lima, Peru. In 2021 he has been awarded the “Raul Isturiz Award” Medal of the API. Also, in 2021, he was awarded with the “Jose Felix Patiño” Asclepius Staff Medal of the Colombian Medical College, due to his scientific contributions to COVID-19 during the pandemic. He is currently the Editor in Chief of the journal Travel Medicine and Infectious Diseases. His Scopus H index is 47 (Google Scholar H index, 68).",institutionString:"Institución Universitaria Visión de las Américas, Colombia",institution:null},{id:"332819",title:"Dr.",name:"Chukwudi Michael",middleName:"Michael",surname:"Egbuche",slug:"chukwudi-michael-egbuche",fullName:"Chukwudi Michael Egbuche",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/332819/images/14624_n.jpg",biography:"I an Dr. Chukwudi Michael Egbuche. I am a Senior Lecturer in the Department of Parasitology and Entomology, Nnamdi Azikiwe University, Awka.",institutionString:null,institution:{name:"Nnamdi Azikiwe University",country:{name:"Nigeria"}}},{id:"284232",title:"Mr.",name:"Nikunj",middleName:"U",surname:"Tandel",slug:"nikunj-tandel",fullName:"Nikunj Tandel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/284232/images/8275_n.jpg",biography:'Mr. Nikunj Tandel has completed his Master\'s degree in Biotechnology from VIT University, India in the year of 2012. He is having 8 years of research experience especially in the field of malaria epidemiology, immunology, and nanoparticle-based drug delivery system against the infectious diseases, autoimmune disorders and cancer. He has worked for the NIH funded-International Center of Excellence in Malaria Research project "Center for the study of complex malaria in India (CSCMi)" in collaboration with New York University. The preliminary objectives of the study are to understand and develop the evidence-based tools and interventions for the control and prevention of malaria in different sites of the INDIA. Alongside, with the help of next-generation genomics study, the team has studied the antimalarial drug resistance in India. Further, he has extended his research in the development of Humanized mice for the study of liver-stage malaria and identification of molecular marker(s) for the Artemisinin resistance. At present, his research focuses on understanding the role of B cells in the activation of CD8+ T cells in malaria. Received the CSIR-SRF (Senior Research Fellow) award-2018, FIMSA (Federation of Immunological Societies of Asia-Oceania) Travel Bursary award to attend the IUIS-IIS-FIMSA Immunology course-2019',institutionString:"Nirma University",institution:{name:"Nirma University",country:{name:"India"}}},{id:"334383",title:"Ph.D.",name:"Simone",middleName:"Ulrich",surname:"Ulrich Picoli",slug:"simone-ulrich-picoli",fullName:"Simone Ulrich Picoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/334383/images/15919_n.jpg",biography:"Graduated in Pharmacy from Universidade Luterana do Brasil (1999), Master in Agricultural and Environmental Microbiology from Federal University of Rio Grande do Sul (2002), Specialization in Clinical Microbiology from Universidade de São Paulo, USP (2007) and PhD in Sciences in Gastroenterology and Hepatology (2012). She is currently an Adjunct Professor at Feevale University in Medicine and Biomedicine courses and a permanent professor of the Academic Master\\'s Degree in Virology. She has experience in the field of Microbiology, with an emphasis on Bacteriology, working mainly on the following topics: bacteriophages, bacterial resistance, clinical microbiology and food microbiology.",institutionString:null,institution:{name:"Universidade Feevale",country:{name:"Brazil"}}},{id:"229220",title:"Dr.",name:"Amjad",middleName:"Islam",surname:"Aqib",slug:"amjad-aqib",fullName:"Amjad Aqib",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229220/images/system/229220.png",biography:"Dr. Amjad Islam Aqib obtained a DVM and MSc (Hons) from University of Agriculture Faisalabad (UAF), Pakistan, and a PhD from the University of Veterinary and Animal Sciences Lahore, Pakistan. Dr. Aqib joined the Department of Clinical Medicine and Surgery at UAF for one year as an assistant professor where he developed a research laboratory designated for pathogenic bacteria. Since 2018, he has been Assistant Professor/Officer in-charge, Department of Medicine, Manager Research Operations and Development-ORIC, and President One Health Club at Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan. He has nearly 100 publications to his credit. His research interests include epidemiological patterns and molecular analysis of antimicrobial resistance and modulation and vaccine development against animal pathogens of public health concern.",institutionString:"Cholistan University of Veterinary and Animal Sciences",institution:null},{id:"62900",title:"Prof.",name:"Fethi",middleName:null,surname:"Derbel",slug:"fethi-derbel",fullName:"Fethi Derbel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62900/images/system/62900.jpeg",biography:"Professor Fethi Derbel was born in 1960 in Tunisia. He received his medical degree from the Sousse Faculty of Medicine at Sousse, University of Sousse, Tunisia. He completed his surgical residency in General Surgery at the University Hospital Farhat Hached of Sousse and was a member of the Unit of Liver Transplantation in the University of Rennes, France. He then worked in the Department of Surgery at the Sahloul University Hospital in Sousse. Professor Derbel is presently working at the Clinique les Oliviers, Sousse, Tunisia. His hospital activities are mostly concerned with laparoscopic, colorectal, pancreatic, hepatobiliary, and gastric surgery. He is also very interested in hernia surgery and performs ventral hernia repairs and inguinal hernia repairs. He has been a member of the GREPA and Tunisian Hernia Society (THS). During his residency, he managed patients suffering from diabetic foot, and he was very interested in this pathology. For this reason, he decided to coordinate a book project dealing with the diabetic foot. Professor Derbel has published many articles in journals and collaborates intensively with IntechOpen Access Publisher as an editor.",institutionString:"Clinique les Oliviers",institution:null},{id:"300144",title:"Dr.",name:"Meriem",middleName:null,surname:"Braiki",slug:"meriem-braiki",fullName:"Meriem Braiki",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/300144/images/system/300144.jpg",biography:"Dr. Meriem Braiki is a specialist in pediatric surgeon from Tunisia. She was born in 1985. She received her medical degree from the University of Medicine at Sousse, Tunisia. She achieved her surgical residency training periods in Pediatric Surgery departments at University Hospitals in Monastir, Tunis and France.\r\nShe is currently working at the Pediatric surgery department, Sidi Bouzid Hospital, Tunisia. Her hospital activities are mostly concerned with laparoscopic, parietal, urological and digestive surgery. She has published several articles in diffrent journals.",institutionString:"Sidi Bouzid Regional Hospital",institution:null},{id:"229481",title:"Dr.",name:"Erika M.",middleName:"Martins",surname:"de Carvalho",slug:"erika-m.-de-carvalho",fullName:"Erika M. de Carvalho",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/229481/images/6397_n.jpg",biography:null,institutionString:null,institution:{name:"Oswaldo Cruz Foundation",country:{name:"Brazil"}}},{id:"186537",title:"Prof.",name:"Tonay",middleName:null,surname:"Inceboz",slug:"tonay-inceboz",fullName:"Tonay Inceboz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/186537/images/system/186537.jfif",biography:"I was graduated from Ege University of Medical Faculty (Turkey) in 1988 and completed his Med. PhD degree in Medical Parasitology at the same university. I became an Associate Professor in 2008 and Professor in 2014. I am currently working as a Professor at the Department of Medical Parasitology at Dokuz Eylul University, Izmir, Turkey.\n\nI have given many lectures, presentations in different academic meetings. I have more than 60 articles in peer-reviewed journals, 18 book chapters, 1 book editorship.\n\nMy research interests are Echinococcus granulosus, Echinococcus multilocularis (diagnosis, life cycle, in vitro and in vivo cultivation), and Trichomonas vaginalis (diagnosis, PCR, and in vitro cultivation).",institutionString:"Dokuz Eylül University",institution:{name:"Dokuz Eylül University",country:{name:"Turkey"}}},{id:"71812",title:"Prof.",name:"Hanem Fathy",middleName:"Fathy",surname:"Khater",slug:"hanem-fathy-khater",fullName:"Hanem Fathy Khater",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/71812/images/1167_n.jpg",biography:"Prof. Khater is a Professor of Parasitology at Benha University, Egypt. She studied for her doctoral degree, at the Department of Entomology, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, USA. She has completed her Ph.D. degrees in Parasitology in Egypt, from where she got the award for “the best scientific Ph.D. dissertation”. She worked at the School of Biological Sciences, Bristol, England, the UK in controlling insects of medical and veterinary importance as a grant from Newton Mosharafa, the British Council. Her research is focused on searching of pesticides against mosquitoes, house flies, lice, green bottle fly, camel nasal botfly, soft and hard ticks, mites, and the diamondback moth as well as control of several parasites using safe and natural materials to avoid drug resistances and environmental contamination.",institutionString:null,institution:{name:"Banha University",country:{name:"Egypt"}}},{id:"99780",title:"Prof.",name:"Omolade",middleName:"Olayinka",surname:"Okwa",slug:"omolade-okwa",fullName:"Omolade Okwa",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/99780/images/system/99780.jpg",biography:"Omolade Olayinka Okwa is presently a Professor of Parasitology at Lagos State University, Nigeria. She has a PhD in Parasitology (1997), an MSc in Cellular Parasitology (1992), and a BSc (Hons) Zoology (1990) all from the University of Ibadan, Nigeria. She teaches parasitology at the undergraduate and postgraduate levels. She was a recipient of a Commonwealth fellowship supported by British Council tenable at the Centre for Entomology and Parasitology (CAEP), Keele University, United Kingdom between 2004 and 2005. She was awarded an Honorary Visiting Research Fellow at the same university from 2005 to 2007. \nShe has been an external examiner to the Department of Veterinary Microbiology and Parasitology, University of Ibadan, MSc programme between 2010 and 2012. She is a member of the Nigerian Society of Experimental Biology (NISEB), Parasitology and Public Health Society of Nigeria (PPSN), Science Association of Nigeria (SAN), Zoological Society of Nigeria (ZSN), and is Vice Chairperson of the Organisation of Women in Science (OWSG), LASU chapter. She served as Head of Department of Zoology and Environmental Biology, Lagos State University from 2007 to 2010 and 2014 to 2016. She is a reviewer for several local and international journals such as Unilag Journal of Science, Libyan Journal of Medicine, Journal of Medicine and Medical Sciences, and Annual Research and Review in Science. \nShe has authored 45 scientific research publications in local and international journals, 8 scientific reviews, 4 books, and 3 book chapters, which includes the books “Malaria Parasites” and “Malaria” which are IntechOpen access publications.",institutionString:"Lagos State University",institution:{name:"Lagos State University",country:{name:"Nigeria"}}},{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/273100/images/system/273100.jpeg",biography:"Dr. Vijay Bhaskar Reddy Gayam is currently practicing as an internist at Interfaith Medical Center in Brooklyn, New York, USA. He is also a Clinical Assistant Professor at the SUNY Downstate University Hospital and Adjunct Professor of Medicine at the American University of Antigua. He is a holder of an M.B.B.S. degree bestowed to him by Osmania Medical College and received his M.D. at Interfaith Medical Center. His career goals thus far have heavily focused on direct patient care, medical education, and clinical research. He currently serves in two leadership capacities; Assistant Program Director of Medicine at Interfaith Medical Center and as a Councilor for the American\r\nFederation for Medical Research. As a true academician and researcher, he has more than 50 papers indexed in international peer-reviewed journals. He has also presented numerous papers in multiple national and international scientific conferences. His areas of research interest include general internal medicine, gastroenterology and hepatology. He serves as an editor, editorial board member and reviewer for multiple international journals. His research on Hepatitis C has been very successful and has led to multiple research awards, including the 'Equity in Prevention and Treatment Award” from the New York Department of Health Viral Hepatitis Symposium (2018) and the 'Presidential Poster Award” awarded to him by the American College of Gastroenterology (2018). He was also awarded 'Outstanding Clinician in General Medicine” by Venus International Foundation for his extensive research expertise and services, perform over and above the standard expected in the advancement of healthcare, patient safety and quality of care.",institutionString:"Interfaith Medical Center",institution:{name:"Interfaith Medical Center",country:{name:"United States of America"}}},{id:"93517",title:"Dr.",name:"Clement",middleName:"Adebajo",surname:"Meseko",slug:"clement-meseko",fullName:"Clement Meseko",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/93517/images/system/93517.jpg",biography:"Dr. Clement Meseko obtained DVM and PhD degree in Veterinary Medicine and Virology respectively. He has worked for over 20 years in both private and public sectors including the academia, contributing to knowledge and control of infectious disease. Through the application of epidemiological skill, classical and molecular virological skills, he investigates viruses of economic and public health importance for the mitigation of the negative impact on people, animal and the environment in the context of Onehealth. \r\nDr. Meseko’s field experience on animal and zoonotic diseases and pathogen dynamics at the human-animal interface over the years shaped his carrier in research and scientific inquiries. He has been part of the investigation of Highly Pathogenic Avian Influenza incursions in sub Saharan Africa and monitors swine Influenza (Pandemic influenza Virus) agro-ecology and potential for interspecies transmission. He has authored and reviewed a number of journal articles and book chapters.",institutionString:"National Veterinary Research Institute",institution:{name:"National Veterinary Research Institute",country:{name:"Nigeria"}}},{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",country:{name:"India"}}},{id:"94928",title:"Dr.",name:"Takuo",middleName:null,surname:"Mizukami",slug:"takuo-mizukami",fullName:"Takuo Mizukami",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/94928/images/6402_n.jpg",biography:null,institutionString:null,institution:{name:"National Institute of Infectious Diseases",country:{name:"Japan"}}},{id:"233433",title:"Dr.",name:"Yulia",middleName:null,surname:"Desheva",slug:"yulia-desheva",fullName:"Yulia Desheva",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/233433/images/system/233433.png",biography:"Dr. Yulia Desheva is a leading researcher at the Institute of Experimental Medicine, St. Petersburg, Russia. She is a professor in the Stomatology Faculty, St. Petersburg State University. She has expertise in the development and evaluation of a wide range of live mucosal vaccines against influenza and bacterial complications. Her research interests include immunity against influenza and COVID-19 and the development of immunization schemes for high-risk individuals.",institutionString:'Federal State Budgetary Scientific Institution "Institute of Experimental Medicine"',institution:null},{id:"238958",title:"Mr.",name:"Atamjit",middleName:null,surname:"Singh",slug:"atamjit-singh",fullName:"Atamjit Singh",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/238958/images/6575_n.jpg",biography:null,institutionString:null,institution:null},{id:"333753",title:"Dr.",name:"Rais",middleName:null,surname:"Ahmed",slug:"rais-ahmed",fullName:"Rais Ahmed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/333753/images/20168_n.jpg",biography:null,institutionString:null,institution:null},{id:"252058",title:"M.Sc.",name:"Juan",middleName:null,surname:"Sulca",slug:"juan-sulca",fullName:"Juan Sulca",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252058/images/12834_n.jpg",biography:null,institutionString:null,institution:null},{id:"191392",title:"Dr.",name:"Marimuthu",middleName:null,surname:"Govindarajan",slug:"marimuthu-govindarajan",fullName:"Marimuthu Govindarajan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/191392/images/5828_n.jpg",biography:"Dr. M. Govindarajan completed his BSc degree in Zoology at Government Arts College (Autonomous), Kumbakonam, and MSc, MPhil, and PhD degrees at Annamalai University, Annamalai Nagar, Tamil Nadu, India. He is serving as an assistant professor at the Department of Zoology, Annamalai University. His research interests include isolation, identification, and characterization of biologically active molecules from plants and microbes. He has identified more than 20 pure compounds with high mosquitocidal activity and also conducted high-quality research on photochemistry and nanosynthesis. He has published more than 150 studies in journals with impact factor and 2 books in Lambert Academic Publishing, Germany. He serves as an editorial board member in various national and international scientific journals.",institutionString:null,institution:null},{id:"274660",title:"Dr.",name:"Damodar",middleName:null,surname:"Paudel",slug:"damodar-paudel",fullName:"Damodar Paudel",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274660/images/8176_n.jpg",biography:"I am DrDamodar Paudel,currently working as consultant Physician in Nepal police Hospital.",institutionString:null,institution:null},{id:"241562",title:"Dr.",name:"Melvin",middleName:null,surname:"Sanicas",slug:"melvin-sanicas",fullName:"Melvin Sanicas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241562/images/6699_n.jpg",biography:null,institutionString:null,institution:null},{id:"337446",title:"Dr.",name:"Maria",middleName:null,surname:"Zavala-Colon",slug:"maria-zavala-colon",fullName:"Maria Zavala-Colon",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Puerto Rico, Medical Sciences Campus",country:{name:"United States of America"}}},{id:"338856",title:"Mrs.",name:"Nur Alvira",middleName:null,surname:"Pascawati",slug:"nur-alvira-pascawati",fullName:"Nur Alvira Pascawati",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universitas Respati Yogyakarta",country:{name:"Indonesia"}}},{id:"441116",title:"Dr.",name:"Jovanka M.",middleName:null,surname:"Voyich",slug:"jovanka-m.-voyich",fullName:"Jovanka M. Voyich",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Montana State University",country:{name:"United States of America"}}},{id:"330412",title:"Dr.",name:"Muhammad",middleName:null,surname:"Farhab",slug:"muhammad-farhab",fullName:"Muhammad Farhab",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Agriculture Faisalabad",country:{name:"Pakistan"}}},{id:"349495",title:"Dr.",name:"Muhammad",middleName:null,surname:"Ijaz",slug:"muhammad-ijaz",fullName:"Muhammad Ijaz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Veterinary and Animal Sciences",country:{name:"Pakistan"}}}]}},subseries:{item:{id:"20",type:"subseries",title:"Animal Nutrition",keywords:"Sustainable Animal Diets, Carbon Footprint, Meta Analyses",scope:"An essential part of animal production is nutrition. Animals need to receive a properly balanced diet. One of the new challenges we are now faced with is sustainable animal diets (STAND) that involve the 3 P’s (People, Planet, and Profitability). We must develop animal feed that does not compete with human food, use antibiotics, and explore new growth promoters options, such as plant extracts or compounds that promote feed efficiency (e.g., monensin, oils, enzymes, probiotics). These new feed options must also be environmentally friendly, reducing the Carbon footprint, CH4, N, and P emissions to the environment, with an adequate formulation of nutrients.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11416,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null,series:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517"},editorialBoard:[{id:"175762",title:"Dr.",name:"Alfredo J.",middleName:null,surname:"Escribano",slug:"alfredo-j.-escribano",fullName:"Alfredo J. Escribano",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGnzQAG/Profile_Picture_1633076636544",institutionString:"Consultant and Independent Researcher in Industry Sector, Spain",institution:null},{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}},{id:"216995",title:"Prof.",name:"Figen",middleName:null,surname:"Kırkpınar",slug:"figen-kirkpinar",fullName:"Figen Kırkpınar",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRMzxQAG/Profile_Picture_1625722918145",institutionString:null,institution:{name:"Ege University",institutionURL:null,country:{name:"Turkey"}}}]},onlineFirstChapters:{paginationCount:2,paginationItems:[{id:"82392",title:"Nanomaterials as Novel Biomarkers for Cancer Nanotheranostics: State of the Art",doi:"10.5772/intechopen.105700",signatures:"Hao Yu, Zhihai Han, Cunrong Chen and Leisheng Zhang",slug:"nanomaterials-as-novel-biomarkers-for-cancer-nanotheranostics-state-of-the-art",totalDownloads:21,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}},{id:"81778",title:"Influence of Mechanical Properties of Biomaterials on the Reconstruction of Biomedical Parts via Additive Manufacturing Techniques: An Overview",doi:"10.5772/intechopen.104465",signatures:"Babatunde Olamide Omiyale, Akeem Abiodun Rasheed, Robinson Omoboyode Akinnusi and Temitope Olumide Olugbade",slug:"influence-of-mechanical-properties-of-biomaterials-on-the-reconstruction-of-biomedical-parts-via-add",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11405.jpg",subseries:{id:"9",title:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"14",title:"Cell and Molecular Biology",scope:"The Cell and Molecular Biology topic within the IntechOpen Biochemistry Series aims to rapidly publish contributions on all aspects of cell and molecular biology, including aspects related to biochemical and genetic research (not only in humans but all living beings). We encourage the submission of manuscripts that provide novel and mechanistic insights that report significant advances in the fields. Topics include, but are not limited to: Advanced techniques of cellular and molecular biology (Molecular methodologies, imaging techniques, and bioinformatics); Biological activities at the molecular level; Biological processes of cell functions, cell division, senescence, maintenance, and cell death; Biomolecules interactions; Cancer; Cell biology; Chemical biology; Computational biology; Cytochemistry; Developmental biology; Disease mechanisms and therapeutics; DNA, and RNA metabolism; Gene functions, genetics, and genomics; Genetics; Immunology; Medical microbiology; Molecular biology; Molecular genetics; Molecular processes of cell and organelle dynamics; Neuroscience; Protein biosynthesis, degradation, and functions; Regulation of molecular interactions in a cell; Signalling networks and system biology; Structural biology; Virology and microbiology.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/14.jpg",keywords:"Omics (Transcriptomics; Proteomics; Metabolomics), Molecular Biology, Cell Biology, Signal Transduction and Regulation, Cell Growth and Differentiation, Apoptosis, Necroptosis, Ferroptosis, Autophagy, Cell Cycle, Macromolecules and Complexes, Gene Expression"},{id:"15",title:"Chemical Biology",scope:"Chemical biology spans the fields of chemistry and biology involving the application of biological and chemical molecules and techniques. In recent years, the application of chemistry to biological molecules has gained significant interest in medicinal and pharmacological studies. This topic will be devoted to understanding the interplay between biomolecules and chemical compounds, their structure and function, and their potential applications in related fields. Being a part of the biochemistry discipline, the ideas and concepts that have emerged from Chemical Biology have affected other related areas. This topic will closely deal with all emerging trends in this discipline.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/15.jpg",keywords:"Phenolic Compounds, Essential Oils, Modification of Biomolecules, Glycobiology, Combinatorial Chemistry, Therapeutic peptides, Enzyme Inhibitors"},{id:"17",title:"Metabolism",scope:"Metabolism is frequently defined in biochemistry textbooks as the overall process that allows living systems to acquire and use the free energy they need for their vital functions or the chemical processes that occur within a living organism to maintain life. Behind these definitions are hidden all the aspects of normal and pathological functioning of all processes that the topic ‘Metabolism’ will cover within the Biochemistry Series. Thus all studies on metabolism will be considered for publication.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/17.jpg",keywords:"Biomolecules Metabolism, Energy Metabolism, Metabolic Pathways, Key Metabolic Enzymes, Metabolic Adaptation"},{id:"18",title:"Proteomics",scope:"With the recognition that the human genome cannot provide answers to the etiology of a disorder, changes in the proteins expressed by a genome became a focus in research. Thus proteomics, an area of research that detects all protein forms expressed in an organism, including splice isoforms and post-translational modifications, is more suitable than genomics for a comprehensive understanding of the biochemical processes that govern life. The most common proteomics applications are currently in the clinical field for the identification, in a variety of biological matrices, of biomarkers for diagnosis and therapeutic intervention of disorders. From the comparison of proteomic profiles of control and disease or different physiological states, which may emerge, changes in protein expression can provide new insights into the roles played by some proteins in human pathologies. Understanding how proteins function and interact with each other is another goal of proteomics that makes this approach even more intriguing. Specialized technology and expertise are required to assess the proteome of any biological sample. Currently, proteomics relies mainly on mass spectrometry (MS) combined with electrophoretic (1 or 2-DE-MS) and/or chromatographic techniques (LC-MS/MS). MS is an excellent tool that has gained popularity in proteomics because of its ability to gather a complex body of information such as cataloging protein expression, identifying protein modification sites, and defining protein interactions. The Proteomics topic aims to attract contributions on all aspects of MS-based proteomics that, by pushing the boundaries of MS capabilities, may address biological problems that have not been resolved yet.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/18.jpg",keywords:"Mono- and Two-Dimensional Gel Electrophoresis (1-and 2-DE), Liquid Chromatography (LC), Mass Spectrometry/Tandem Mass Spectrometry (MS; MS/MS), Proteins"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/298629",hash:"",query:{},params:{id:"298629"},fullPath:"/profiles/298629",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()