Fractional differential equations can describe the dynamics of several complex and nonlocal systems with memory. They arise in many scientific and engineering areas such as physics, chemistry, biology, biophysics, economics, control theory, signal and image processing, etc. Particularly, nonlinear systems describing different phenomena can be modeled with fractional derivatives. Chaotic behavior has also been reported in some fractional models. There exist theoretical results related to existence and uniqueness of solutions to initial and boundary value problems with fractional differential equations; for the nonlinear case, there are still few of them. In this work we will present a summary of the different definitions of fractional derivatives and show models where they appear, including simple nonlinear systems with chaos. Existing results on the solvability of classical fractional differential equations and numerical approaches are summarized. Finally, we propose a numerical scheme to approximate the solution to linear fractional initial value problems and boundary value problems.
Part of the book: Nonlinear Systems