Atenolol is a commonly used antihypertensive drug of class III BCS category. The objective of the present study is to enhance the permeability of atenolol by using a suitable technique which is economical and devoid of using any organic solvents. The nanocrystal technology by high pressure homogenization was chosen for this purpose, which is less expensive and simple method. In this technique, no organic solvent was used. The study was further aimed to characterize prepared nanocrystals in solid state by Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) patterns, particle size, zeta potential, % yield, and drug permeation study through isolated goat’s intestine. An in vivo study was carried out to determine the pharmacokinetic property in comparison to pure drug powder using rats as experimental animals. The formulation design was optimized by a 3(2) factorial design. In these designs, two factors, namely surfactant amount (X1) and speed of homogenizer (X2), were evaluated on three dependent variables, namely particle size (Y1), zeta potential (Y2), and production yield (Y3).
Part of the book: Nanocrystalline Materials