Innovation results from interactions between different sources of knowledge, where these sources aggregate into groups interacting within (intra) and between (inter) groups. Interaction among groups for innovation generation is defined as the process by which an innovation is communicated through certain channels over time among members of a social system. Apart from the discussion about knowledge management within organizations and the discussion about social network analysis of organizations on the topic of innovation and talks about various trade-offs between strength of ties and bridging ties between different organizational groups, within the topic of open source software (OSS) development researchers have used social network theories to investigate OSS phenomenon including communication among developers. It is already known that OSS groups are more networked than the most organizational communities; In OSS network, programmers can join, participate and leave a project at any time, and in fact developers can collaborate not only within the same project but also among different projects or teams. One distinguished feature of the open source software (OSS) development model is the cooperation and collaboration among the members, which will cause various social networks to emerge. In this chapter, the existing gap in the literature with regard to the analysis of cluster or group structure as an input and cluster or group innovation as an output will be addressed, where the focus is on “impact of network cluster structure on cluster innovation and growth” by Behfar et al., that is, how intra- and inter-cluster coupling, structural holes and tie strength impact cluster innovation and growth, and “knowledge management in OSS communities: relationship between dense and sparse network structures.” by Behfar et al., that is, knowledge transfer in dense network (inside groups) impacts on knowledge transfer in sparse network (between groups).
Part of the book: Harnessing Knowledge, Innovation and Competence in Engineering of Mission Critical Systems