Intraoperative Data for Spinal versus Genera; Anesthesia Groups
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"1436",leadTitle:null,fullTitle:"Applications of Immunocytochemistry",title:"Applications of Immunocytochemistry",subtitle:null,reviewType:"peer-reviewed",abstract:"Immunocytochemistry is classically defined as a procedure to detect antigens in cellular contexts using antibodies. However, over the years many aspects of this procedure have evolved within a plethora of experimental setups. There are different ways to prepare a given specimen, different kinds of antibodies to apply, different techniques for imaging, and different methods of analyzing the data. In this book, various ways of performing each individual step of immunocytochemistry in different cellular contexts are exemplified and discussed. Applications of Immunocytochemistry offers technical and background information on different steps of immunocytochemistry and presents the application of this technique and its adaptations in cell lines, neural tissue, pancreatic tissue, sputum cells, sperm cells, preimplantation embryo, arabidopsis, fish gonads, and Leishmania.",isbn:null,printIsbn:"978-953-51-0229-8",pdfIsbn:"978-953-51-5235-4",doi:"10.5772/1896",price:139,priceEur:155,priceUsd:179,slug:"applications-of-immunocytochemistry",numberOfPages:332,isOpenForSubmission:!1,isInWos:1,hash:"ebd0373d5312e8911e528f4d6f6a1905",bookSignature:"Hesam Dehghani",publishedDate:"March 9th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1436.jpg",numberOfDownloads:45227,numberOfWosCitations:30,numberOfCrossrefCitations:14,numberOfDimensionsCitations:30,hasAltmetrics:0,numberOfTotalCitations:74,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 12th 2011",dateEndSecondStepPublish:"May 10th 2011",dateEndThirdStepPublish:"September 14th 2011",dateEndFourthStepPublish:"October 14th 2011",dateEndFifthStepPublish:"February 13th 2012",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,editors:[{id:"94972",title:"Dr.",name:"Hesam",middleName:null,surname:"Dehghani",slug:"hesam-dehghani",fullName:"Hesam Dehghani",profilePictureURL:"https://mts.intechopen.com/storage/users/94972/images/1261_n.jpg",biography:"Dr. Hesam Dehghani is an associate professor in the Department of Basic Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. He received his D.V.M. degree from Tehran University, and his Ph.D. in developmental biology from University of Guelph, Canada. He has spent two postdoctoral fellowships; on molecular biology of nucleocytoplasmic trafficking in the University of Guelph, and on nuclear organization of transcription in embryonic and stem cells in the Sickkids Research Institute (University of Toronto). He has taught courses at all levels from organ physiology to advanced biology of eukaryotic cells. He has also mentored many students on research projects. For the past 10 years, his research has been focused on the nuclear organization of pluripotency.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Ferdowsi University of Mashhad",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"402",title:"Immunocytochemistry",slug:"immunology-immunocytochemistry"}],chapters:[{id:"30336",title:"Immunostaining of Voltage-Gated Ion Channels in Cell Lines and Neurons – Key Concepts and Potential Pitfalls",doi:"10.5772/34817",slug:"immunostaining-of-cell-lines-and-neurons-key-concepts-and-potential-pitfalls",totalDownloads:3002,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Elke Bocksteins, Andrew J. Shepherd, Durga P. Mohapatra and Dirk J. Snyders",downloadPdfUrl:"/chapter/pdf-download/30336",previewPdfUrl:"/chapter/pdf-preview/30336",authors:[{id:"101746",title:"Prof.",name:"Dirk",surname:"Snyders",slug:"dirk-snyders",fullName:"Dirk Snyders"},{id:"102138",title:"Dr.",name:"Elke",surname:"Bocksteins",slug:"elke-bocksteins",fullName:"Elke Bocksteins"},{id:"102139",title:"Dr.",name:"Andrew",surname:"Shepherd",slug:"andrew-shepherd",fullName:"Andrew Shepherd"},{id:"102140",title:"Prof.",name:"Durga",surname:"Mohapatra",slug:"durga-mohapatra",fullName:"Durga Mohapatra"}],corrections:null},{id:"30337",title:"Optimizing Multiple Immunostaining of Neural Tissue",doi:"10.5772/34588",slug:"optimizing-multiple-immunostaining-of-neural-tissue",totalDownloads:7955,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Araceli Diez-Fraile, Nico Van Hecke, Christopher J. Guérin and Katharina D’Herde",downloadPdfUrl:"/chapter/pdf-download/30337",previewPdfUrl:"/chapter/pdf-preview/30337",authors:[{id:"100799",title:"Prof.",name:"Katharina",surname:"DHerde",slug:"katharina-dherde",fullName:"Katharina DHerde"},{id:"119044",title:"Dr.",name:"Araceli",surname:"Diez-Fraile",slug:"araceli-diez-fraile",fullName:"Araceli Diez-Fraile"},{id:"119045",title:"Dr.",name:"Christopher J.",surname:"Guérin",slug:"christopher-j.-guerin",fullName:"Christopher J. Guérin"},{id:"119046",title:"MSc.",name:"Nico",surname:"Van Hecke",slug:"nico-van-hecke",fullName:"Nico Van Hecke"}],corrections:null},{id:"30338",title:"Immunohistochemical Correlation of Novel Biomarkers with Neurodegeneration in Rat Models of Brain Injury",doi:"10.5772/34184",slug:"immunohistochemical-correlation-of-novel-biomarkers-with-neurodegeneration-in-rat-models-of-tbi",totalDownloads:3048,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Shyam Gajavelli, Amade Bregy, Markus Spurlock, Daniel Diaz, Stephen Burks, Christine Bomberger, Carlos J. Bidot, Shoji Yokobori, Julio Diaz, Jose Sanchez-Chavez and Ross Bullock",downloadPdfUrl:"/chapter/pdf-download/30338",previewPdfUrl:"/chapter/pdf-preview/30338",authors:[{id:"51451",title:"Dr.",name:"Carlos",surname:"Bidot",slug:"carlos-bidot",fullName:"Carlos Bidot"},{id:"99081",title:"Dr.",name:"Shyam",surname:"Gajavelli",slug:"shyam-gajavelli",fullName:"Shyam Gajavelli"},{id:"103984",title:"Prof.",name:"Ross",surname:"Bullock",slug:"ross-bullock",fullName:"Ross Bullock"},{id:"104001",title:"Dr.",name:"Shoji",surname:"Yokobori",slug:"shoji-yokobori",fullName:"Shoji Yokobori"},{id:"104002",title:"BSc.",name:"Daniel",surname:"Diaz",slug:"daniel-diaz",fullName:"Daniel Diaz"},{id:"104003",title:"BSc.",name:"Markus",surname:"Spurlock",slug:"markus-spurlock",fullName:"Markus Spurlock"},{id:"104004",title:"Dr.",name:"Amade",surname:"Bregy",slug:"amade-bregy",fullName:"Amade Bregy"},{id:"104005",title:"BSc.",name:"Stephen",surname:"Burks",slug:"stephen-burks",fullName:"Stephen Burks"},{id:"104006",title:"Dr.",name:"Jose",surname:"Sanchez-Chavez",slug:"jose-sanchez-chavez",fullName:"Jose Sanchez-Chavez"},{id:"130277",title:"BSc.",name:"Christine",surname:"Bomberger",slug:"christine-bomberger",fullName:"Christine Bomberger"}],corrections:null},{id:"30339",title:"Immunoelectron Microscopy: A Reliable Tool for the Analysis of Cellular Processes",doi:"10.5772/33108",slug:"immunoelectron-microscopy-a-reliable-tool-for-the-analysis-of-biological-processes",totalDownloads:7032,totalCrossrefCites:5,totalDimensionsCites:9,signatures:"Ana L. De Paul, Jorge H. Mukdsi, Juan P. Petiti, Silvina Gutiérrez, Amado A. Quintar, Cristina A. Maldonado and Alicia I. Torres",downloadPdfUrl:"/chapter/pdf-download/30339",previewPdfUrl:"/chapter/pdf-preview/30339",authors:[{id:"94062",title:"Dr.",name:"Ana",surname:"De Paul",slug:"ana-de-paul",fullName:"Ana De Paul"},{id:"107542",title:"Dr.",name:"Jorge",surname:"Mukdsi",slug:"jorge-mukdsi",fullName:"Jorge Mukdsi"},{id:"107544",title:"Dr.",name:"Juan Pablo",surname:"Petiti",slug:"juan-pablo-petiti",fullName:"Juan Pablo Petiti"},{id:"107545",title:"Dr.",name:"Silvina",surname:"Gutiérrez",slug:"silvina-gutierrez",fullName:"Silvina Gutiérrez"},{id:"107546",title:"Dr.",name:"Amado",surname:"Quintar",slug:"amado-quintar",fullName:"Amado Quintar"},{id:"107548",title:"Dr.",name:"Cristina",surname:"Maldonado",slug:"cristina-maldonado",fullName:"Cristina Maldonado"},{id:"107551",title:"Dr.",name:"Alicia",surname:"Torres",slug:"alicia-torres",fullName:"Alicia Torres"}],corrections:null},{id:"30340",title:"Immunocytochemistry of Cytoskeleton Proteins",doi:"10.5772/32625",slug:"immunocytochemistry-of-cytoskeleton-proteins",totalDownloads:4628,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Arzu Karabay, Şirin Korulu and Ayşegül Yıldız Ünal",downloadPdfUrl:"/chapter/pdf-download/30340",previewPdfUrl:"/chapter/pdf-preview/30340",authors:[{id:"92160",title:"Prof.",name:"Arzu",surname:"Karabay",slug:"arzu-karabay",fullName:"Arzu Karabay"},{id:"101233",title:"MSc.",name:"Ayşegül",surname:"Yıldız Ünal",slug:"aysegul-yildiz-unal",fullName:"Ayşegül Yıldız Ünal"},{id:"101235",title:"MSc.",name:"Şirin",surname:"Korulu",slug:"sirin-korulu",fullName:"Şirin Korulu"}],corrections:null},{id:"30341",title:"Immunocytochemical Approaches to the Identification of Membrane Topology of the Na+/Cl--Dependent Neurotransmitter Transporters",doi:"10.5772/34514",slug:"immunocytochemical-approaches-to-the-identification-of-membrane-topology-of-the-na-cl-dependent-neur",totalDownloads:1801,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Chiharu Sogawa, Norio Sogawa and Shigeo Kitayama",downloadPdfUrl:"/chapter/pdf-download/30341",previewPdfUrl:"/chapter/pdf-preview/30341",authors:[{id:"100521",title:"Prof.",name:"Shigeo",surname:"Kitayama",slug:"shigeo-kitayama",fullName:"Shigeo Kitayama"},{id:"124175",title:"Dr.",name:"Chiharu",surname:"Sogawa",slug:"chiharu-sogawa",fullName:"Chiharu Sogawa"},{id:"124176",title:"Dr.",name:"Norio",surname:"Sogawa",slug:"norio-sogawa",fullName:"Norio Sogawa"}],corrections:null},{id:"30342",title:"Immunocytochemical Tools Reveal a New Research Field Between the Boundaries of Immunology and Reproductive Biology in Teleosts",doi:"10.5772/35231",slug:"immunocytochemistry-tools-reveal-a-new-research-field-between-the-boundaries-of-immunology-and-repro",totalDownloads:1735,totalCrossrefCites:0,totalDimensionsCites:3,signatures:"Alfonsa García-Ayala and Elena Chaves-Pozo",downloadPdfUrl:"/chapter/pdf-download/30342",previewPdfUrl:"/chapter/pdf-preview/30342",authors:[{id:"68013",title:"Prof.",name:"Alfonsa",surname:"Garcia-Ayala",slug:"alfonsa-garcia-ayala",fullName:"Alfonsa Garcia-Ayala"},{id:"68015",title:"Dr.",name:"Elena",surname:"Chaves-Pozo",slug:"elena-chaves-pozo",fullName:"Elena Chaves-Pozo"}],corrections:null},{id:"30343",title:"Immunocytochemistry in Early Mammalian Embryos",doi:"10.5772/37391",slug:"immunocytochemistry-in-early-mammalian-embryos",totalDownloads:2856,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Hesam Dehghani",downloadPdfUrl:"/chapter/pdf-download/30343",previewPdfUrl:"/chapter/pdf-preview/30343",authors:[{id:"94972",title:"Dr.",name:"Hesam",surname:"Dehghani",slug:"hesam-dehghani",fullName:"Hesam Dehghani"}],corrections:null},{id:"30344",title:"Spermiomics: A New Term Describing the Global Survey of the Overall Sperm Function by the Combined Utilization of Immunocytochemistry, Metabolomics, Proteomics and Other Classical Analytical Techniques",doi:"10.5772/34432",slug:"spermiomics-a-global-survey-of-the-overall-sperm-function",totalDownloads:1694,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Joan E. Rodríguez-Gil",downloadPdfUrl:"/chapter/pdf-download/30344",previewPdfUrl:"/chapter/pdf-preview/30344",authors:[{id:"100115",title:"Dr.",name:"Joan E.",surname:"Rodríguez-Gil",slug:"joan-e.-rodriguez-gil",fullName:"Joan E. Rodríguez-Gil"}],corrections:null},{id:"30345",title:"The Plasticity of Pancreatic Stellate Cells Could Be Involved in the Control of the Mechanisms that Govern the Neogenesis Process in the Pancreas Gland",doi:"10.5772/34189",slug:"the-plasticity-of-pancreatic-stellate-cells-could-be-involved-directly-or-indirectly-in-the-control-",totalDownloads:2169,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Eugenia Mato, Maria Lucas, Silvia Barceló and Anna Novials",downloadPdfUrl:"/chapter/pdf-download/30345",previewPdfUrl:"/chapter/pdf-preview/30345",authors:[{id:"99097",title:"Dr.",name:"Eugenia",surname:"Mato",slug:"eugenia-mato",fullName:"Eugenia Mato"},{id:"103592",title:"Dr.",name:"Anna",surname:"Novials",slug:"anna-novials",fullName:"Anna Novials"},{id:"103593",title:"Dr.",name:"Maria",surname:"Lucas",slug:"maria-lucas",fullName:"Maria Lucas"},{id:"103594",title:"Dr.",name:"Silvia",surname:"Barceló",slug:"silvia-barcelo",fullName:"Silvia Barceló"}],corrections:null},{id:"30346",title:"Application of Immunocytochemistry to Sputum Cells to Investigate Molecular Mechanisms of Airway Inflammation",doi:"10.5772/34058",slug:"application-of-immunocytochemistry-to-sputum-cells-to-investigate-molecular-mechanisms-of-airway-inf",totalDownloads:2373,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kittipong Maneechotesuwan and Adisak Wongkajornsilp",downloadPdfUrl:"/chapter/pdf-download/30346",previewPdfUrl:"/chapter/pdf-preview/30346",authors:[{id:"98492",title:"Prof.",name:"Kittipong",surname:"Maneechotesuwan",slug:"kittipong-maneechotesuwan",fullName:"Kittipong Maneechotesuwan"},{id:"102340",title:"Dr.",name:"Adisak",surname:"Wongkajornsilp",slug:"adisak-wongkajornsilp",fullName:"Adisak Wongkajornsilp"}],corrections:null},{id:"30347",title:"The Schwann Cell-Axon Link in Normal Condition or Neuro-Degenerative Diseases: An Immunocytochemical Approach",doi:"10.5772/35306",slug:"the-schwann-cell-axon-link-in-normal-condition-or-neuro-degenerative-diseases-an-immunocytochemical-",totalDownloads:2222,totalCrossrefCites:2,totalDimensionsCites:2,signatures:"Alejandra Kun, Gonzalo Rosso, Lucía Canclini, Mariana Bresque, Carlos Romeo, Karina Cal, Aldo Calliari, Alicia Hanuz, José Roberto Sotelo-Silveira and José Roberto Sotelo",downloadPdfUrl:"/chapter/pdf-download/30347",previewPdfUrl:"/chapter/pdf-preview/30347",authors:[{id:"103825",title:"Prof.",name:"José Roberto",surname:"Sotelo",slug:"jose-roberto-sotelo",fullName:"José Roberto Sotelo"}],corrections:null},{id:"30348",title:"Immunocytochemistry of Proteases in the Study of Leishmania Physiology and Host-Parasite Interaction",doi:"10.5772/32954",slug:"immunocytochemistry-of-proteases-in-the-study-of-leishmania-physiology-and-host-parasite-interaction",totalDownloads:2693,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Raquel Elisa da Silva-López",downloadPdfUrl:"/chapter/pdf-download/30348",previewPdfUrl:"/chapter/pdf-preview/30348",authors:[{id:"93345",title:"Dr.",name:"Raquel",surname:"Silva-López",slug:"raquel-silva-landatildeandsup3pez",fullName:"Raquel Silva-López"}],corrections:null},{id:"30349",title:"Immuno-Glyco-Imaging in Plant Cells: Localization of Cell Wall Carbohydrate Epitopes and Their Biosynthesizing Enzymes",doi:"10.5772/35313",slug:"immuno-glyco-imaging-in-plant-cells-localization-of-cell-wall-carbohydrate-epitopes",totalDownloads:2020,totalCrossrefCites:1,totalDimensionsCites:5,signatures:"Marie-Laure Follet-Gueye, Mollet Jean-Claude, Vicré-Gibouin Maïté, Bernard Sophie, Chevalier Laurence, Plancot Barbara, Dardelle Flavien, Ramdani Yasmina, Coimbra Silvia and Driouich Azeddine",downloadPdfUrl:"/chapter/pdf-download/30349",previewPdfUrl:"/chapter/pdf-preview/30349",authors:[{id:"84449",title:"Prof.",name:"Sílvia",surname:"Coimbra",slug:"silvia-coimbra",fullName:"Sílvia Coimbra"},{id:"93814",title:"Prof.",name:"Azeddine",surname:"Driouich",slug:"azeddine-driouich",fullName:"Azeddine Driouich"},{id:"104856",title:"Dr.",name:"Marie-Laure",surname:"Follet-Gueye",slug:"marie-laure-follet-gueye",fullName:"Marie-Laure Follet-Gueye"},{id:"104857",title:"Dr.",name:"Sophie",surname:"Bernard",slug:"sophie-bernard",fullName:"Sophie Bernard"},{id:"104858",title:"Dr.",name:"Yasmina",surname:"Ramdani",slug:"yasmina-ramdani",fullName:"Yasmina Ramdani"},{id:"104859",title:"Dr.",name:"Maite",surname:"Vicre",slug:"maite-vicre",fullName:"Maite Vicre"},{id:"104860",title:"Dr.",name:"Jean-Claude",surname:"Mollet",slug:"jean-claude-mollet",fullName:"Jean-Claude Mollet"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"9589",leadTitle:null,title:"Depigmentation as a Disease or Therapeutic Goal",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tDepigmentation disorders may be congenital or acquired. Congenital diseases of depigmentation include oculocutaneous albinism, piebaldism, Waardenburg syndrome, tuberous sclerosis, nevus depigmentosus and cutaneous mosaicism. Acquired diseases of depigmentation include vitiligo, hypomelanosis secondary to cutaneous inflammation, infectious hypomelanosis, chemical or pharmacologic hypomelanosis, hypomelanosis from physical agents, and miscellaneous. Vitiligo is a very common acquired depigmentation disorder where melanocytes that produce melanin pigment of the skin are destroyed. It can occur systematically and affect whole body or locally/segmentally affecting parts of the body. For the treatment of vitiligo, various medical, surgical and photo therapies are in use, and several emerging new treatments are under investigation.
\r\n\r\n\tThese disorders can profoundly affect patient's quality of life. To improve facial blemishes, many people resort to laser treatments, chemical peels and cosmetics, thus markets for depigmenting lasers and cosmeceuticals are also increasing rapidly. This book aims to cover topics in diseases of depigmentation and therapeutic depigmentation.
",isbn:"978-1-83969-012-9",printIsbn:"978-1-83969-011-2",pdfIsbn:"978-1-83969-013-6",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"3e1efdb1fc8c403c402da09b242496c6",bookSignature:"Dr. Tae-Heung Kim",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9589.jpg",keywords:"Congenital Depigmentation, Albinism, Piebaldism, Dyschromatosis Hereditaria, Vitiligo, Pathogenesis, Phototherapy, Excimer Laser, Excimer Light, Surgical Treatments, Postinflammatory Hypopigmentation, Pityriasis Alba",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 9th 2020",dateEndSecondStepPublish:"November 23rd 2020",dateEndThirdStepPublish:"January 22nd 2021",dateEndFourthStepPublish:"April 12th 2021",dateEndFifthStepPublish:"June 11th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Kim graduated from and acquired a doctoral degree (Ph.D.) at Seoul National University College of Medicine. He is an active member of many international and domestic societies and a former President of the Korean Society for Vitiligo.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",middleName:null,surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim",profilePictureURL:"https://mts.intechopen.com/storage/users/121353/images/system/121353.png",biography:"Dr. Tae-Heung Kim graduated from and acquired a doctoral degree (PhD) at Seoul National University College of Medicine. He completed an internship and dermatology residency at Seoul National University Hospital.\r\nHe moved to the Department of Dermatology, Gyeongsang National University, and was then promoted to Professor and Chairman of Dermatology.\r\nIn 1996, he did a research sabbatical for two years at the Department of Immunology, University of Texas MD Anderson Cancer Center.\r\nIn 2003, he started private practice as Director of the White-Line Skin Clinic and Research Center, Changwon, Kyungnam.\r\nHe is an active member of many international and domestic societies, and was the President of the Korean Society for Vitiligo (2016–2018).",institutionString:"White-Line Skin Clinic & Research Center",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"1",institution:null}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"184402",firstName:"Romina",lastName:"Rovan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/184402/images/4747_n.jpg",email:"romina.r@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7145",title:"Depigmentation",subtitle:null,isOpenForSubmission:!1,hash:"a17d6aad0e8ef52b617569b590d1443a",slug:"depigmentation",bookSignature:"Tae-Heung Kim",coverURL:"https://cdn.intechopen.com/books/images_new/7145.jpg",editedByType:"Edited by",editors:[{id:"121353",title:"Dr.",name:"Tae-Heung",surname:"Kim",slug:"tae-heung-kim",fullName:"Tae-Heung Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"47182",title:"Spinal Anesthesia for Lower Level Spine Surgery",doi:"10.5772/58752",slug:"spinal-anesthesia-for-lower-level-spine-surgery",body:'Lumbar discectomy is the most commonly performed spinal operation in the United States with more than half a million procedures performed annually. In addition, spinal anesthesia for surgical analgesia in these procedures has been established as an accepted technique for many years. With the refinement in surgical technique for lumbar discectomy, that has now made the procedure relatively non-invasive, spinal anesthesia plays an even more important role.
The original laminectomy and discectomy was performed by Mixter and Barr in 1934 [1]. Most surgeons perform a modified microdiscectomy originally described by Williams [2]. With the use of high-powered microscopes, the anatomy is better visualized and incisions are much smaller with less tissue and bone disruption. There are alterations to the standard microdiscectomy including laser disc removal, endoscopic discectomy and intradiscal electrothermal treatment. However, the microdiscectomy remains the procedure with the highest success rate. Lumbar laminectomy or discectomy is performed with the patient in the prone or lateral decubitus position. A midline paramedian incision is created and the lumbodorsal fascia is incised. Periosteal dissection exposes the laminae that are removed as necessary to provide access to the thecal sac and nerve roots. The nerve roots are retraced medially to expose the posterior longitudinal ligament that covers the intervertebral discs. The discectomy is performed by incising the ligament and removing disc material with a forceps. The laminar resection can also be extended to provide canal decompression in cases of spinal stenosis.
It is important to note that the lumbar spine has the largest vertebral bodies and bears the greatest weight. The center of gravity of the body is approximately 1 cm behind the sacral promontory that, in turn, places the entire weight of the body directly on L4-5 and L5-S1. With aging, the discs tend to become less fluid and more fibrocartilagenous, with little difference between nucleus and annulus. The discs are subject to pathologic changes that may lead to herniation of the nucleus pulposus and cause compression of the neural elements.
Subsequent removal of the disc or lamina with the assistance of loops or microscopes typically has a surgical duration of approximately two hours. As such, this has made spinal anesthesia an attractive choice for the anesthetic technique in these patients. This chapter will review the evidence supporting the utilization of this technique as well as the possible risks associated with neuraxial anesthesia and prone positioning.
Briefly, once a decision has been made to proceed with spinal anesthesia several items must be performed in order to have a successful outcome. Knowing the level of surgical anesthesia required is extremely important since this will determine whether the patient can comfortably undergo the procedure and avoid the hemodynamic consequences of surgical stimulation. Of course, it is also essential that the area of coverage will provide relief from painful stimuli as well.
Anesthesia levels for lumbar surgery can be easily achieved with hyperbaric or isobaric local anesthetics. Typically, for L1-L5 surgery a dermatomal sensory level of at least T6-T8 will be required. Though this is higher than the level of the operative site, the higher level will allow for the surgery to take place and, depending on the local anesthetic selected, allow for a slow regression of surgical anesthesia coverage. In most instances, the patient is placed in the full prone position. The prone knee chest position and the horizontal side position have also been used. These positions are of importance since the spread of local anesthetic may be different depending on this position and also the baricity of the local anesthetic solution. After placing the spinal, the patient should be positioned supine with the level allowed to set before final positioning is achieved.
Bupivacaine appears to be the agent of choice since it provides adequate duration of coverage in comparison to other agents such as lidocaine. If lidocaine is selected, it is conceivable that regression of sensory coverage could occur shortly after positioning and draping of the patient. In addition, some practitioners will also select additives to the local anesthetic though the risk/benefits of these will be discussed later. A variety of agents have been used in lumbar surgery, all with varying degrees of success including opioids, epinephrine, phenylephrine, neostigmine and clonidine. Final selection of any and all additives will depend on the clinical situation and the physical status of the patient.
In most instances, the patient will have the spinal anesthetic placed prior to prone positioning. Usually the patient will be administered 400-600 ml of a balanced salt solution to expand intravascular volume prior to spinal placement. The preference for placement of the spinal block for many practitioners is to place the patient in the seated position. The seated position allows for better delineation of the overall spinal anatomy and helps to ascertain the midline, especially in larger individuals. In some instances, the patient can be placed in the lateral decubitus position for spinal placement. The back is prepped and draped in a sterile fashion and the best interspace, either L2-3, 3-4 or 4-5, is identified and 2-4 ml of 2% lidocaine is injected to anesthetize the area where the spinal needle will be inserted. Most practitioners will use a 24g or 25g pencil-point spinal needle placed through an introducer and advanced until free flow of CSF is observed from the hub of the needle. The spinal anesthetic can also be accomplished with the use of a 22 gauge Quincke needle. Once subarachnoid placement is confirmed, either 2-3 ml of 0.5% plain bupivacaine or 1.5-2 ml of 0.75% hyperbaric bupivacaine is injected into the subarachnoid space. The patient is returned to the supine position, and once a T8-10 level is obtained, the patient is rolled into the prone position and either placed on chest rolls, a Wilson or Andrews frame and allowed to self position their upper body for comfort.
There has been some controversy over the preferred baricity of the local anesthetic for spinal anesthesia in lumbar surgery. Jellish, et al, [3] in their prospective study effectively utilized hyperbaric bupivacaine 0.75% with dextrose 8.5% to achieve levels of T6-T10. The study patients were required to stay supine after placement of the local anesthetic for approximately 10 minutes to fix the spinal level. Fixation of a hyperbaric spinal is required since typically the patients are placed in prone position. This is of particular importance given the fact that there are times when the head-down position is transiently performed as the patient is positioned on a frame or in knee-chest position.
If a hyperbaric solution is selected and adequate time for fixation has not been performed, the solution could track cephalad and lead to a higher level than what is required. This is also accentuated since the frame and/or knee-chest position required for the surgery eliminates the lordotic curves of the spine. The fixation of a hyperbaric spinal occurs when the solution is taken up by the spinal tissue and blood, especially the dextrose solution. This results in a change in solution from hyperbaric to isobaric and subsequent positioning has little to no effect [4].
Baricity of the spinal anesthetic has also been shown to affect both the quality of the anesthetic and the level of the block. Isobaric procaine/tetracaine spinal anesthesia has the same success profile with minimal complication compared to general anesthesia for spine surgery [5]. If the sensory level is adequate and ventilation is not impaired by a high block, spinal anesthesia provides good surgical conditions for spine surgery. Subjective dyspnea associated with a high spinal level may be accentuated with the patient in the prone position. Some clinicians believe isobaric spinal anesthetics could be the best choice because the dense low thoracic block may be routinely achieved with minimal hemodynamic consequences. Also, the effect of the isobaric agent is not affected by other factors like gravity or prolonged position. As such, patients that are placed in the knee chest position can be turned prone immediately after placement of the spinal as opposed to wait times of 10 minutes or longer for the block to set with a hyperbaric technique.
Plain isobaric bupivacaine was compared to hyperbaric bupivacaine to determine quality of block and cephalad spread in patients undergoing spinal surgery [6]. A 3 mL solution of isobaric 0.5% bupivacaine was administered to one group and 2ml of 0.75% bupivacaine was administered to the second group. All injections were performed within 5 seconds with the needle bevel facing cephalad. After turning supine for 10 minutes, the patients were turned prone to begin surgery. Time of onset for sensory and motor block was more rapid with hyperbaric bupivacaine. In addition, the final level achieved was higher with hyperbaric bupivacaine, compared to isobaric solution. Maximum heart rate change was similar in both groups but maximum blood pressure change was greater with the hyperbaric solution and this required a greater need for blood pressure and heart rate treatments. The dependent movement of hyperbaric solutions, and the level of the block achieved was always several denervations higher than the equivalent dose of isobaric solution. Even though sensory block is higher with hyperbaric local anesthetics, sympathetic block could be even higher. This explains the alteration in blood pressure observed with hyperbaric spinal anesthesia that is accentuated by turning prone. Thus, when using hyperbaric bupivacaine, meticulous determination of block level must be made before positioning the patient to avoid hypotension and bradycardia.
More breakthrough pain during spinal surgery has been noted with hyperbaric bupivacaine solutions compared to isobaric. This is thought to be due to the superiority of plain bupivacaine in suppressing slow conducting repetitive stimuli that is characteristic of low back pain [7].
Rung and colleagues [8] have suggested the utilization of isobaric bupivacaine 0.5% for providing adequate anesthesia. The group felt that the isobaric nature of the medication would help avoid the issues regarding positioning and unwanted rises in anesthetic levels. In addition, they also felt that the utilization of isobaric agents would speed the procedure since the patient could first be placed in prone position and then have the anesthetic administered. This would decrease the amount of time required for preparation and speed the onset of surgery.
Another study examined the use of 15 mg of 0.5% plain bupivacaine injected at the L2-3 interspace and either placing the patient in the prone knee chest position before placement of the spinal or after spinal placement positioning the patient supine and allowing the spinal level to be obtained before positioning prone. [9] The mean drop in systolic blood pressure was 30 mmHg in prepositioned patients compared to 13 mmHg with spinal placed before positioning. More ephedrine was needed when the spinal was placed post positioning to maintain blood pressure compared to the patients who had the block placed in the horizontal side position. This same knee chest group of patients also needed more atropine or glycopyrrolate to maintain heart rate. The investigators believed that placing the spinal block in the lateral horizontal position and allowing the patient to lie supine for 20 minutes produced less hypotension and bradycardia when compared to patients who had the block placed in the prone knee chest position because these patients had more time to accommodate for vasodilation of the lower limbs. The controversy over the ideal baricity has not been settled and either agent may be appropriate for the procedure.
Typically during the insertion of the spinal anesthetic a pencil-point needle such as a Whitacre is used versus the standard cutting Quincke type. Obviously this is utilized to avoid undue trauma to the dura via the cutting needle and causing a potential dural tear that could interfere with surgery (cerebral spinal fluid (CSF) in the field) as well as lead to postdural puncture headaches. In addition, other studies suggest that the pencil-point needles lead to a local inflammatory response that help with rapid dural closure [10].
The appropriate level of needle insertion will obviously be determined by the procedure and what disc is affected. There have been concerns about the utilization of spinal anesthesia in patients with pre-existing spinal disease; however in a report by Hebl et al., [11] it was felt that the history of spinal surgery did not increase the risk of technical complications or block success, but did make placement potentially more difficult. The group felt that midline or lateral approach may be especially difficult if there were bone grafting or posterior fusions since success would only occur if the block was performed at areas that were unfused.
Prone (for isobaric only), sitting or lateral approaches for spinal anesthesia insertion have all been described, however is must be kept in mind that ultimately the spinal should be placed above the level of any lumbar stenosis (and below the level of the cord) since very tight stenotic lesions may affect spread of local anesthetic [12].
Currently procaine, lidocaine, mepivacaine, tetracaine, ropivacaine, levobupivacaine, bupivacaine are all approved in the US for intrathecal use. As mentioned previously, bupivacaine is typically the choice of agent due to its duration of action. Ropivacaine and L-bupivacaine (S-enantiomer of bupivacaine) have a less cardiotoxic profile compared to bupivacaine; however, the overall volume utilized in spinal anesthesia is so small that this is of little concern. Tetracaine, which is an ester-based local anesthetic may also be utilized and may be in prepared in isobaric, hypobaric or hyperbaric solutions. Typically, because fixation for tetracaine takes a long time, it is not routinely utilized.
Lidocaine has a long history of safe use, but its association with transient neurologic symptoms (TNS) would make it a potentially poor choice for lumbar spine surgery. TNS, initially described in 1993[13] presents with the onset of back and leg pain post-procedure. It has been associated with positioning and can be found with all local anesthetics, but has been reported most frequently with lidocaine. Still there is no definitive proof that the local anesthetics are the source for TNS and some studies have strongly encouraged the discontinuation of this term to avoid linking the previous clinical symptoms with the use of lidocaine [14].
It is well known that determinants for level of spinal analgesia depend on the dosage administered as well as the baricity [15]. The total dose of bupivacaine administered is very important since the concentration of the medication changes after mixing with the CSF and the change in concentration has on the quality or level of the spinal anesthesia [16]. In addition, other studies have determined that there is non-homogenous spread of local anesthetics in the CSF [4]. Typically there is an epicenter of local anesthetic concentration and subsequent spread away from the site with decreasing levels of local. The decreased concentration at these sites leads to a variation in uptake of the anesthetic in the level of the cord.
As with most spinal anesthetics, there may be the desire to place additives to enhance the quality of the block utilized for lumbar surgery. Opioids, vasoconstrictors, alpha-2 agonists and neostigmine [17] have all been described and each has associated risk and benefits. Opioids tend to work synergistically with local anesthetics and are known to enhance the quality of the block. However, these agents are also associated with urinary retention (a controversy that will be discussed later). Concern regarding the addition of vasopressors and spinal blood flow is unfounded and their overall mechanism of action is unclear and inconsistent depending on the agent chosen [18].
Clonidine, an alpha-2 agonist, has been utilized frequently in spinal surgery. It is known to block the motor and sensory affects associated with tetracaine, but sensory affects are much longer. The proposed mechanism is related to the vasoconstrictive properties and the antinociception associated with adrenergic stimulation and activation of the descending noradrenergic pathways [18, 19]. Other investigators noted that patients who underwent spinal surgery and received 150mg of clonidine epidurally displayed lower postanesthesia care unit pain scores and less demand for analgesics as well as improved postoperative hemodynamics [20]. These results were confirmed in a study by Farmery and Wilson-MacDonald who found that utilization of an epidural catheter with clonidine after spinal surgery (under general anesthesia) led to profound and prolonged postoperative pain relief along with a reduction in postoperative nausea and vomiting [21]. The use of clonidine will be discussed further in the section regarding pain control.
Some of the benefits of performing spinal anesthesia for lumbar surgery include a perceived decrease in blood loss, lower rates of thromboembolism, less hypertension or tachycardia, and better postoperative pain control. In addition, during spinal anesthesia, the patient is only mildly sedated with a benzodiazepine or propofol. This allows for a more reliably assessment of potential positioning issues that will be discussed later.
It has been observed that there is a perception of less surgical blood loss associated with cases performed under spinal anesthesia. Preload is markedly reduced during spinal anesthesia and there is a resultant drop in mean arterial pressure (MAP). This reduction will produce a decrease in vertebral interosseous pressure during neuraxial anesthesia which may lead to reduced blood pressure within the bone itself, considered the main source of bleeding during posterior lumbar spine surgery [22]. The mechanism in which spinal anesthesia may reduce blood loss may possibly be related to the fact that spinal anesthesia leads to a marked reduction in the high venous pressure that occurs in response to sympathetic activity provoked by pain produced by tissue damage during surgery [23]. On the contrary, inhalational anesthesia does not totally block these sensory signals but these signals are effectively inhibited with spinal anesthesia.
Spinal anesthesia permits spontaneous ventilation during surgery that in the prone position results in lower intrathoracic pressure compared with general anesthesia using positive pressure ventilation. The avoidance of positive pressure ventilation results in less distension of the epidural veins and a reduction in intrathoracic pressure. This reduction produces a better blood return through the vena cava and less blood flow and distention of the venous plexus for better surgical exposure [24]. The diminished blood loss observed during spinal anesthesia can facilitate removal of the disc or vertebral body and result in less surgical time observed because of reduced time to affect hemostasis.
It is also worth reviewing the hemodynamic effects of spinal anesthesia since they play a significant role in the reduction of blood loss. Spinal anesthetics are known to produce a sympathetic denervation that is more profound as the level of anesthesia progresses. When a partial sympathetectomy occurs, as is routine with a well-controlled spinal, the area of tissue above the level of sympathetic denervation displays a reflex increase in sympathetic tone. This helps to compensate for the peripheral vasodilation that subsequently occurs. Arterial and arteriole beds are affected but do not maximally vasodilate due to the maintenance of autonomous tone. Thus, it is common to see a mild decrease in total peripheral vascular resistance of approximately 15-18% assuming cardiac output is maintained [4].The venous circulation, however, is profoundly affected and since, in spine surgery, the extremities lie below the level of the heart, there is a significant amount of pooling of the blood in the dependent capacitance vessels. If normovolemia is not maintained then a significant decrease in cardiac output is seen.
There have been numerous studies comparing spinal with general anesthesia, and in most instances there has been minimal intraoperative hemodynamic differences between the two techniques. In many of the comparisons, total anesthesia times were shorter with the use of spinal as compared to general anesthesia (GA) [3, 25, 26]. (Table 1) In all of these studies it was noted that mean arterial pressure and heart rate were lower in patients receiving spinal anesthesia. The incidence of bradycardia was lower in spinal anesthesia as well as the incidence of tachycardia. The observation that spinal anesthesia maintains hemodynamic stability with little effect on heart rate was noted in a recent study by Attari, et al [27]. In this study 72 patients underwent spine surgery with half assigned to general anesthesia and the other to spinal anesthesia. Statistically significant reductions in MAP and heart rate changes were noted in the spinal group. In addition there was enhanced surgeon satisfaction as well as a reduction in postoperative pain. These results were supported in another study which compared sixty patients undergoing lumbar disk surgery [28]. This group noted like Attari, that there were less episodes of tachycardia, hypertension and better postoperative pain with less nausea/vomiting in patients undergoing spinal. However, in their study, they found that surgeon satisfaction was greater in the general anesthesia group.
\n\t\t\t | \n\t\t\t\tSpinal\n\t\t\t | \n\t\t\t\n\t\t\t\tGeneral\n\t\t\t | \n\t\t
Total anesthesia time (min) | \n\t\t\t106.6±3.2 | \n\t\t\t131.0±4.3*\n\t\t\t | \n\t\t
Surgical time (min) | \n\t\t\t67.1±2.8 | \n\t\t\t81.5±3.6*\n\t\t\t | \n\t\t
Blood loss (mL) | \n\t\t\t133±13 | \n\t\t\t221±32*\n\t\t\t | \n\t\t
Intravenous fluids (mL) | \n\t\t\t1329±60 | \n\t\t\t1478±79 | \n\t\t
Bradycardia | \n\t\t\t14.0% | \n\t\t\t22.9% | \n\t\t
Hypertension | \n\t\t\t3.3% | \n\t\t\t26.2%*\n\t\t\t | \n\t\t
Tachycardia | \n\t\t\t14.8% | \n\t\t\t21.3% | \n\t\t
Hypotension | \n\t\t\t54.1% | \n\t\t\t57.4% | \n\t\t
Ephedrine required | \n\t\t\t36.1% | \n\t\t\t22.9% | \n\t\t
Intraoperative Data for Spinal versus Genera; Anesthesia Groups
Numeric dara expressed as mean ± SEM
Bradycardia and hypotension=decreases in heart rate (HR) and mean arterial pressure (MAP) to less than 80% of baseline values; tachycardia and hypertension=HR and MAP greater than 120% of baseline values.
*P<0.05 versus spinal anesthesia group.
Jellish et al. Spinal vs General Anesthesia for Spinal Surgery. Anesth Analg 1996;83:559-64
Another recent comparative study also found the incidence of tachycardia to be higher with general anesthesia [29]. They found the incidence of bradycardia to be similar, as well as intravenous fluids and operative times. They did note a higher incidence of hypotension with spinal anesthesia compared to the other studies. This may reflect the importance of the fluid preload prior to the placement of the spinal block which was not used in that study.
Patients undergoing lumbar procedures under spinal anesthesia seemed to have similar or better hemodynamic variables than patients having the procedure under general anesthesia. Less intraoperative hypertension is noted and less tachycardia is observed with spinal anesthesia. Tetzloff, et al. [30]. using power spectral heart rate data which included low frequency, high frequency and the ratios of low/high frequency demonstrated that with spinal dermatomal levels below T8, the prone position resulted in a significant increase in heart rate with spinal anesthesia and a significant decrease in blood pressure with general anesthesia. Low frequency and low frequency/high frequency ratios were unchanged in the spinal anesthesia group. The preservation of low frequency heart rate variation may reflect better presentation of cardiac sympathetic activity with spinal anesthesia. Low thoracic levels of spinal anesthesia preserve the sympathetic efferent signals to the myocardium more than general anesthesia. Placing a patient in the prone position may reduce venous return and preload which is better tolerated with a spinal anesthetic.
Given the fact that many of the patients presenting for spinal surgery may have co-morbidities such as coronary artery disease, one may be concerned regarding the presence of hypotension. It has been noted that the decrease in MAP results in a significant decrease in coronary blood flow. One investigator found that there was a 48% decrease in myocardial oxygen supply during spinal anesthesia but there was also a 53% decrease in myocardial oxygen requirements [31]. There are three reasons for the decrease in myocardial oxygen requirement that include the reduction in afterload, preload and heart rate. Heart rate reduction is related to both the vagal predominance that occurs after sympathetectomy as well as the decrease in right atrial pressures and pressures in the great veins (via intrinsic chronotropic stretch receptors) which leads to bradycardia [4].
Improving postoperative analgesia in spine surgery patients is also a challenge. Though many of the patients who receive spinal anesthesia for their spine procedure have reduced pain scores and analgesia requirements in the immediate postoperative period, their analgesic requirements are similar to general anesthesia patients 24 hours after surgery. Several studies comparing the two anesthetics demonstrated that patients who had spinal anesthesia had lower pain scores and analgesic requirements [3, 25, 29]. In many of the studies the lower pain scores may result from two different mechanisms. Patients who received spinal anesthesia had much lower initial pain scores than general anesthesia patients. There may be a preemptive effect in which spinal anesthesia attenuates pain by inhibiting afferent nociceptive pathways [32]. Also, since sensory recovery will lag behind motor recovery after spinal block, the patients receiving neuroaxial anesthesia likely had residual blockade even though motor function had returned.
Pain after spine procedures is a combination of musculoskeletal, usually derived from surgical trauma and neuropathy that is radiating and burning in nature and is secondary to the nerve compression or injury that required the laminectomy or discectomy. This type of pain responds poorly to opioids but has been shown to be relieved with the administration of epidural clonidine [33].
Sympathetic hyperactivity is reduced from the administration of epidural clonidine through three mechanisms. It may inhibit nociceptor neurotransmitter release in the dorsal horn and sympathetic outflow in the spinal cord intermediolateral column. In addition, it may inhibit norepinephrine release from sympathetic terminals in the periphery. Clonidine may also be absorbed into the systemic circulation where it reaches alpha 2 adrenoreceptors of the dorsal horn and provides analgesia by increasing the antinoceptive threshold of the spinal cord which activates the descending noradrenergic pathway to inhibit small diameter afferent induced substance P release [19].
The addition of epidural clonidine to spinal anesthetics for spine surgery has been found to reduce pain in patients receiving rescue analgesics to increase the time to the first rescue dose of analgesics for pain. Clonidine prolongs sensory and motor block associated with intrathecal bupivacaine [34]. Patients who received epidural clonidine along with their spinal anesthetic required their first analgesia dose 3.7 hours after surgery [20]. Another study showed that by using a small dose combination of epidural morphine and clonidine for postoperative analgesia after lumbar disc surgery reduced pain with movement after surgery[35]. These patients experienced a frequent incidence of difficult micturition not observed when epidural clonidine was administered without added opioids.
The infiltration of local anesthetics into the surgical wound has also been noted to prolong postoperative analgesia after lumbar spine surgery. The infiltration of 0.375% bupivacaine subcutaneously has been noted to produce an analgesic effect which lasted approximately 13 hours [36]. With the use of newer local anesthetics that have a timed release, this type of analgesia could be even more prolonged [37].
The success rate of the spinal anesthetic in patients with spinal pathology is also a consideration. Some practitioners have noted ineffective spread or patchy block with spinal anesthesia after previous spine surgery. There are a number of problems that could affect the spread of the local anesthetic including altered anatomy which may make placement of the spinal more difficult. Insertion of a spinal needle through the site of a fusion may be complicated by scar tissue and bone graft material. Intradural scarring commonly referred to as arachnoiditis, characterized by an inflammation of the pia arachnoid membrane surrounding the spinal cord may alter the anatomy of the subarachnoid space and limit the spread of local anesthetics [38]. Most investigators have noted a high success rate of spinal anesthesia after previous spinal surgery with failure rates of less than 1% [26].
Finally, spinal anesthesia for lumbar spine surgery also decreases the incidence of lower extremity thromboembolic complications [39]. The most likely explanation is the modulation of the hypercoagulable state that occurs after surgery. Neuraxial anesthesia with local anesthetics has been shown to enhance fibrinolytic activity, reduce antithrombin III activity to normal levels and attenuate increases in postoperative platelet activity [40].
Many studies have noted a reduced incidence in postoperative nausea and vomiting. The increased need for narcotic analgesics in patients receiving GA may be a contributing factor to the higher amount of emetic symptoms with GA. In addition, anesthetic factors such as the use of N2O (nitrous oxide) or the administration of certain pungent inhalational anesthetics could produce more nausea after surgery. The incidence of nausea and vomiting has also been demonstrated to be less with low level T-8 or bolus spinal anesthesia compared to GA because of improved gastric emptying.
Hemodynamics in the PACU have been noted to be better with spinal anesthesia compared to GA. Both heart rate and blood pressure have been noted to be higher in GA patients upon admit to PACU. (Figure 1) This may be due to the increased sympathetic activity during emergence from anesthesia and possibly undertreated pain with opioids or other analgesics prior to emergence. Patients who had spinal anesthesia were much less hypertensive throughout their recovery room stay.
Heart rate (HR) and mean arterial pressure (MAP) values at admission (admit) and at 10, 20 and 30 min after adimission to the postanesthesia care unit (PACU). Intergroup differences in HR (A) were noted at PACU admission but did not persist through 20-min time point. Intergroup differences in MAP (B) were also observed at PACU admission and were still present 30 min after admission. *Significant difference compared to spinal group at a P<0.001 level.
Complications associated with spinal anesthesia for lumbar surgery have been relatively rare. There have been no reports of post-dural puncture headache even when a dural tear occurred during surgery [9].A possible explanation is that surgery near the spinal cord elicits inflammatory responses that help seal any small puncture site. In addition, the presence of small amounts of post-procedural blood may serve to seal the site similar to applying a blood patch. Other complications associated with spinal anesthesia may play a role in these lumbar cases and will be discussed further.
In general, spinal anesthesia has a long history of safety. In the widely quoted study by Dripps and Vandam, properly performed spinal anesthesia is safe. A study which reviewed over 10,000 spinal anesthetics failed to find any major neurologic sequelae [41]. However, in a retrospective study by Hebl et al, [11], one of the major findings was that the patient population with pre-existing spinal stenosis or disk disease had an increased risk of worsening pre-existing deficits or development of new deficits after neuraxial blockade. In addition, those patients with multiple neurologic diagnoses have even higher risk. It was noted that the frequency of persistent postoperative neurologic deficits was approximately 1.1% (95% CI 0.5-2%) with prior epidemiological investigations being somewhere between 1:1000 to 1:10,000.
The group went on to propose that the neurological problems seen may have been the result of a “double-crush” phenomenon [42].In double-crush syndrome there is a pre-existing lesion (proximal) and distal to the lesion there is another compression that renders the nerve vulnerable to further injury. Neuraxial anesthesia may add insult by the additive effects of neural ischemia and local anesthetic toxicity. In spinal anesthesia, local anesthetic toxicity resulting from maldistribution and high concentrations is well known. This toxicity has resulted in cauda equina syndrome seen with microcatheters utilized for continuous spinal anesthesia [43]. Though these studies are worrisome, there have yet to be reports of neurological complications from spinal anesthesia used for lumbar spine surgery.
Though it has been mentioned previously that there is less observed bradycardia during spinal anesthesia for spine surgery, there still exists the concern for profound bradyarrhythmias and cardiac arrest. In a review of studies about cardiac arrest during spinal anesthesia, investigators found an overall incidence of 0.07% (7 for every 10,000 patients) [44]. More than half were in patients under the age of thirty and this may explain the paucity of events during lumbar surgery with an older patient population. The mechanism proposed is a result of the blockade of sympathetic efferents that leads to bradyarrhythmias via vagal predominance. The presence of vagal mediated bradycardia and decreased venous return from venodilation combines to cause further issues. It is well known that right atrial pressures are decreased in low spinals (36%) and high spinals (up to %53) [45]. This decrease in preload elicits reflexes that cause severe bradycardia [46]:
Pacemaker stretch → decrease venous return → decrease atrial stretch → decrease heart rate
Firing of low pressure baroreceptors in the right atrium
Bezold-Jarisch reflex
The Bezold-Jarisch reflex (BJR) is triggered by the stimulation of intracardiac mechanoreceptors that subsequently lead to bradycardia, hypotension and vasodilation [47]. According to Mackey [46] and Kinsella [48], the mechanoreceptors associated with BJR are usually triggered by distention, but when there is a decrease in venous return (as seen with prone position and spinal anesthesia), along with an increase in inotropic state (compensatory response to decreased preload), the walls of the ventricle may deform and trigger the mechanoreceptors similar to what is seen during distention. This results in a paradoxical vasodepressor response. This vasodepressor response along with the pre-existing bradycardia may lead to cardiac arrest. It is interesting to note that the BJR is also triggered by spinal anesthesia via 5-HT3 receptors in the vagal nerve endings. The 5-HT3 trigger can be abolished by the administration of ondansetron, an antagonist to 5-HT3.
Risk factors identified by Pollard [44] that are associated with cardiac arrest include the following:
Baseline heart rate <60
ASA status I
Use of beta blocking drugs
Sensory level above T6
Age <50 years
Prolonged PR interval
Recommendations include the maintenance of preload whenever possible, followed by a step-wise escalation of pharmacological intervention starting with atropine (0.4-0.6 mg), then ephedrine (25-50 mg) and finally, if still not responsive, epinephrine (0.2-0.3 mg) intravenously.
Urinary retention has also been associated with spinal anesthesia. However, in several studies the incidence of urinary retention was not different with spinal or general anesthesia. In most situations when spinal anesthesia is associated with urinary retention, opioids were added to the local anesthetic [49]. Subarachnoid opioids clearly increase the incidence of urinary retention, as well as respiratory depression, drowsiness and pruritis. We tend not to utilize opioids as part of the spinal anesthetic.
Positioning related neurologic injury has also been noted to occur more frequently during spinal surgery in the prone positioned patient [50].The most prevalent is injury to the brachial plexus. Injury to the brachial plexus is attributed to its long and superficial course in the axilla and its attachment to two firm points of fixation, the vertebrae proximally and the axillary fascia distally in the arm. The plexus also passes directly beneath the clavicle and above the first rib (Figure 2). This close proximity to freely moving bony structures makes this nerve bundle prone to stretching and compression from arm malposition. Brachial plexus injury occurs most frequently when the patient is in the prone position, especially when the arms are adducted more than 90°. In this position traction on the plexus and compression between the clavicle and first rib is responsible for the neurologic deficit. If patients are placed in the lateral decubitus position, they may be subject to brachial plexus injury from compression when the dependent arm and shoulder are positioned between the thorax and the table.
Possible areas of injury to the brachial plexus: (A) neck rotation away from arm may cause stretch and compression between clavicle and first rib; (B) injury to plexus at humeral head; (C) compression or ulnar nerve in cubital tunnel.
The eyes and ears are also of concern in prone positioned patients. Pressure on the globe or hypotension, with venous congestion, could result in increased intraocular pressure and possible blindness related to ischemic injury to the optic nerves. There have been reports of increased extraocular pressure resulting from using a cushion or horseshoe head-rest to position the face [51, 52].In addition, ECG monitoring wires or oral gastric tubes, if present, could migrate under the head during prone positioning. The face could lie directly on these objects causing pressure induced ischemia to the face or eyes. These problems are avoided with the use of spinal anesthesia. The patient may be only mildly sedated and using their upper body can help to self-position with their head on a pillow or cushion. If abnormal positioning occurs, the patient will feel discomfort and alert the practitioner to the problems. They can also move their arms and head to avoid prolonged abnormal or awkward position that could produce injury.
A spinal anesthetic with an awake or sedated patient who is spontaneously breathing may not be ideal for all spine surgeries. Prone positioning on different positioning systems can affect cardiac output with the possibility of a significant decrease in stroke volume and cardiac index in conjunction with the development of increased vascular and pulmonary resistance [53] (Figure 3). Patients with normal cardiac status can usually tolerate these changes. However, patients with compromised cardiac status might not be able to tolerate supine to prone positioning, especially with decreased sympathetic tone. A large drop in blood pressure or cardiac output could affect consciousness and spontaneous breathing.
Description of the five different positioning systems used in this study. The type of body support each positioner provides and lower extremity position in relation to the heart are also described.
In addition, surgeries that may last more than 2-3 hours may not be conducive for spinal anesthesia. The tolerance for prone positioning on a frame in an awake or mildly sedated patient is approximately 2 hours. Patients become restless and tend to begin to adjust position in order to relieve the strain of maintaining one position for a prolonged period of time. A cooperative surgeon who can perform the procedure in a reasonable amount of time is imperative.
We also believe one to two level laminectomies or discectomies are ideal for this technique. Larger laminectomies for multi-level fusions would be too prolonged to be well tolerated in the spontaneously breathing sedated patient. Body habitus must also be considered in selecting the appropriate patient for spinal anesthesia for spine surgery. Large, obese patients with protuberant abdomens may not tolerate prone positioning well, especially if breathing spontaneously. Their ability to breathe against the restrictive effects of a large abdomen, especially if not adequately decompressed by the positioning system, could cause the patient undue anxiety and intolerance because of the inability to adequately deep breath.
Spinal anesthesia is an appropriate technique for lumbar spine procedures of two to three hours duration. An appropriate patient and cooperative surgeon will also facilitate the use of this anesthetic technique. The ability of the patient to self-position and guard against position related injury is of major benefit. A better postoperative experience with less pain, nausea and hemodynamic stability make this technique superior to general anesthesia for overall patient satisfaction and reduced morbidity. Short term pain control is definitely improved with spinal anesthesia and new and improved methods for providing longer term analgesia may make this anesthetic technique even more beneficial, especially if contemplating same day discharge and reduced hospital stay.
Due to the vital role of water for humanity, it is necessary to improve and maintain its quality. Environmental and global changes especially industrial wastes and domestic and agricultural activities are the main water pollution source. Worldwide, several water resources even underground water resources are contaminated, and they are not a suitable quality for drinking. Because of the rising living standards, growing world population, unconscious water consumption, and urbanization lead to increasing water supply costs. In most cases, as it contains different and large number of pollutants, wastewater lead to ecosystem hazards for being released around without being processed. So a few decades later, the world could face a major problem with freshwater supply [1]. In the past, very little financial resources have been allocated for wastewater because water supply received more priority than wastewater treatment (WWT). But, because of the increasing rapid population growth and trends in urbanization, WWT plays an important role in human life. Recently, because of the impact of sewage contamination of groundwater, rivers, and lakes, the growing awareness of wastewater treatment is now receiving greater attention from researchers and environmentalists. Research study results revealed that WWT, which is managed appropriately, has a large share in the growing economy when water resources treatment and supply are done in an appropriate manner [2, 3]. Safe, reliable, and sustainable treated WWT strategies have a vital role because of several challenges including adoption of low-cost WWT technologies. To prevent the spread of diseases, WWT systems are crucial, and they should have high levels of hygienic standards for reuse in agricultural and other areas. Lack of WWT can lead to environmental pollution, and it may cause a hazardous effect for the health of humans. To improve global health and to prevent spread of disease, reliable collection and treatment of wastewater are very important. Wastewater treatment and their reuse need innovative and appropriate technologies. Recently, WWT technologies including electrochemical technologies have regained their importance worldwide. In some cases, the electrochemical mechanism for metal recovery is very simple. These technologies have reached comparably with other technologies in terms of cost and efficiency [4]. Economic issues besides environmental and social aspects must be considered when choosing the most appropriate WWT method [5, 6]. All scientists and environmentalists desire widespread recognition of the need to implement more sustainable WWT techniques. Wastewater treatment technologies follow two main approaches: first is the development of a single indicator integrating different criteria and second is the development of a set of multidisciplinary indicators [7, 8]. When large volumes of treated wastewater contain low concentrations of chemical constituent discharge-receiving water body, it may still lead to water quality problem. Discharges from industrial activities have been identified as one of the major sources of aquatic pollution in industrialized countries. After 1990, to remove toxic pollutants in wastewater, scientists focused on persistent organic pollutants including PCBs, PAHs, and especially heavy metals due to destructive effects [9, 10]. People’s anxieties also increase because of pollutions caused by heavy metals. Pollutions caused by heavy metals spread into the aqueous systems from many industries such as metal plating and smelters, eluents from plastics, mining, and textile industries [11]. Toxic heavy metals including mercury and chromium are discharged to the environment, and unfortunately they cannot biodegrade in nature [12, 13]. Heavy metals can be traveled through the food chain via bioaccumulation, the increase of heavy metals in human body causes some major diseases like brain, pancreas, and heart diseases, and they can lead to wide spread capillary damage and gastrointestinal irritation besides possibly necrotic changes in some tissue [14]. Even at low concentrations, heavy metals can cause serious toxic and harmful effects on the organism and the environment. The World Health Organization (WHO) limited heavy metal concentrations. Such as in drinking water, maximum acceptable limit of copper concentration is offered as 1.5 mg L−1, when the limit concentrations of metals containing hazardous waste are different [15, 16]. Ion exchange, extraction, membrane filtration, and chemical precipitation especially adsorption techniques have been applied to remove heavy metals; on the other hand, generally adsorption technique is one of the most chosen method because of its simplicity, nontoxicity, cost-effectiveness, and local availability to remove toxic heavy metals from aqueous medium [12, 17, 18, 19]. In addition, heavy metal removal from different samples by natural adsorbents using adsorption is in the most appropriate technique, and the use of natural adsorbents has been the preferred choice for many researchers [20, 21]. In large number of studies, activated carbon, carbon nanotubes, clays, nanosized metal oxides, zeolites, and various biosorbents were used. However, statistical and optimization research using RSM with CCD or Box-Behnken design about heavy metal removal under various physicochemical parameters is restricted and very rare. Although numerous studies are in literature about heavy metal removal sorption using different materials, there are very little studies with the application of WWT using methodological approach. Classical and conventional methods cannot depict all factor combinations, which affect the experiment. At the same time, these methods take a lot of time to experiment for the determination of the optimum levels. Limitations can be eliminated using a statistical experimental design, which is optimizing all the effecting parameters collectively. In order for modeling of process parameters, RSM that contains a small number of experiments is widely used in various processes especially in adsorption [22]. Experimental design technique is a suitable tool for developing, improving, and optimizing process and multifactor experiments. It researches the common relationship between various factors for the most favorable conditions of the process, which helps to determine the interactions among optimized parameters [22, 23]. The primary target of RSM is to detect the optimum operational conditions for the system or to detect a region that compensates the operating specifications. The aim of this study was to present heavy metal removal from wastewater using RSM as a statistical technique. After discussion of wastewater treatment techniques as detail, several heavy metal removal methods from industrial wastewater will be presented.
There are two aims of wastewater treatment: firstly to purify wastewater without harming the public health and/or causing other nuisance and secondly to gain energy, nutrients, water, and other valuable resources from wastewater during purification steps.
Contaminated waters contain (Figure 1) various pollutants such as nutrients, various chemical compounds, and numerous pathogenic microorganisms besides toxic compounds. Inorganic solids, organic solids, and pathogenic microorganisms along with metals constitute a significant part of wastewater. While inorganic solids include salt, sediment, soil, and especially metals, organic solids contain food wastes, paper, and another household waste material. During WWT step, the removal of primarily organic particles especially suspended solids is vital prior to discharge to the environment. The proteins, lipids and carbohydrates are biodegradable components of wastewater. Biodegradable components contain carbon, and they can be converted to carbon dioxide. If these biodegradable organics are not removed from the wastewater, oxygen demand will exert in the receiving watercourse. Biochemical oxygen demand (BOD) or chemical oxygen demand (COD) is typical measures of organic matter. BOD is the most widely used parameter to quantify organic pollution of water. BOD is the measurement of the dissolved oxygen that is used by microbes in the chemical oxidation of organic matter.
Typical wastewater composition.
It is important to understand the nature of water pollutants because wastewaters contain a large number of pollutants; however, toxicity is observed when the acceptable limits are exceeded. Wastewater contents depend on industrial, agricultural, and municipal wastewater. There are various water pollutants in nature, and they can be categorized as microbiological, radioactive, particulate, organic, and inorganic chemical contaminants. Harmful microbes such as viruses, fungi, bacteria, algae, plankton, and other microorganisms are basic components of bio-pollution in the water. These microorganisms may be responsible for various diseases. Organic toxic pollutants include many insecticides such as dichlorodiphenyltrichloroethane, herbicides, and other pollutants were manufactured for use in various industries. However, heavy metals are the most common inorganic water pollutants. Microbiological, radioactive, particulate, organic, and inorganic chemical water contaminants remain either in suspended, colloidal, or in solvated form.
Because of the increasing population and rapid pollution of water resources, WWT and reuse are an important issue. The efficient use of existing water resources and treatment of polluted water resources with affordable and cheap technologies have been the focus of scientists. WWTs are needed for three reasons; these are water source reduction, WWT, and recycling. Recently, during purification step, while primary treatment includes preliminary physical and chemical purification processes, secondary treatment depends on biochemical decomposition of organic solids to inorganic or stable organic solids. Finally, after the third step called tertiary treatment processes, wastewater is converted into good-quality water, and it can be used for drinking or medicinal supplies. At the end of this step, almost all of the pollutants (up to 99%) can be removed from water. To producing good-quality and safe water, all these three processes should be combined together. Otherwise, it will not be possible to obtain safe water from the wastewater. Many advanced methods and techniques have been used for the recycle of safe water from wastewater, but economic and effective water treatment is still a serious problem. Treatment of wastewater and recycling technologies have been classified (Figure 2), and it is carried out in three stages. They are:
Primary treatment methods
Secondary treatment methods
Tertiary treatment methods
Wastewater treatment and recycling methods.
These methods are briefly described below.
In order to remove organic matter and suspended solids from wastewater by means of physical operations, for example, sedimentation and gravity separation, they are done in primary treatment stage. Preliminary treatment, which is described as preparation for secondary treatment, is in fact intended to produce a liquid waste suitable for biological treatment.
Screening separation method is used to remove solid wastes from wastewater. It is the process where suspended and floating materials including wood, paper, kitchen refuse, pieces of cloth, cork, hair, fibers, and fecal solids are removed from wastewater. In a WWT, screening is generally used as the first operation step. For this purpose, various size screens are used, and their size is selected as per the requirement. Finer particles such as sand and small pebbles can be eliminated by using screening separation method.
About 0.1–0.5 mm pore size is used in filtration separation method, water is passed through a medium having fine pores, and the filtration process is completed. Various membranes and filters, for example, cartridges, can frequently be used to remove suspended solids, greases, oils, and bacteria from the wastewater. The main purpose of filtration separation method is to separate the small solids and remove oil (they can be reduced up to 99%). Filtered water is used for many purposes such as ion exchange, adsorption, or membrane separation processes. In pharmaceutical and biotechnological industries, to the production of pure water, filtration separation method has become the main focus as promising separation tool for WWT. The used membrane has a key role due to selectivity, low fouling, and performance stability for long-term operation in the filtration separation method. Because of these advantages, this method and its performance are becoming more and more important. In addition, it is one of the important enrichment techniques for trace heavy metal ions along with simplicity and rapidity of the procedure. For all these reasons, many scientists have focused on this subject to develop and use alternative and effective membranes [24, 25].
This method is provided for separating components of a fluid or solid particles, but it is used especially for suspend solid from wastewater. Various types of centrifugal machines have been used to remove suspended noncolloidal solids in the centrifugal separation method. To separate solids from wastewater, centrifugal devices with various sizes are used. Density of suspended solids is the most important parameter when separating solid materials by centrifugation. In addition, oils and greases can be reduced and separated during application of centrifugal separation method.
Sedimentation and gravity separation method are based on the removal of suspended solids, grits, and silts from aqueous media. Suspended solid materials settle down to the bottom of the tank under the influence of gravity; this event may vary depending on solid size and density. Some chemicals can sometimes be added to accelerate sedimentation process. Although this method can reduce suspended solids only up to 60%, purification of wastes is a very useful separation application. Water treatment in this technique can be used in many areas such as water for membrane filtration processes and ion exchange method. It is generally applied out prior to conventional treatment.
Coagulation processes are a particularly effective cleaning method for containing oil-in-water emulsions such as sea, lakes, and rivers besides most industrial wastes contain especially oil or petroleum. After sedimentation and gravity separation method, if there are non-settleable solids in wastewater, this is called processing coagulation with the addition of certain chemicals to precipitate these non-settleable solids and non-precipitating deposits. There are some natural coagulants such as aluminum salts, iron materials, alum, starch, and activated silica and also some polymers that can be used as coagulants. In this process, the most important controlling factors are contact time, temperature, and pH. In addition, during biological treatment processes, to remove microbes and any organics in the water, some certain coagulants can be added. Coagulation processes play an important role in recycling and removing pollutants from wastewater.
In order to remove suspended solid including oils, greases, biological solids, and other solids from wastewater, flotation separation method is used. In these processes, suspended solids are removed by adhering them with either air or gas. Various chemicals like alum and activated silica are used to successfully apply the flotation process to wastewater because they help flotation separation method. For paper and refinery industries, flotation separation method is an effective method for WWT because suspended solids that oil and grease is can easily be removed (up to 75–99%) by these processes. Recently, to separate mixed plastic is too difficult using gravity separation; therefore, for WWT and recycling purposes, plastic flotation method has been used as effectively [26].
Secondary treatment techniques have been used to remove soluble and insoluble pollutants from wastewater as biological. The main objective of this process is to convert the organic and inorganic solids into fluorinated residues that are finely divided and dissolved in the wastewater and to remove of soluble and colloidal organics and suspended solids besides reducing BOD and COD through biological process. When water has a high microbe concentration like bacterial and fungal strains, secondary treatment techniques should be selected for treatment because organic matter is converted into other products via these microbes; besides, they detoxify toxic inorganic matter. After this process is applied to wastewater, toxic organic and inorganic substances can be removed [27].
In biological treatment processes, organic matter can be biodegradable by aerobic and facultative bacteria. Aerobic processes depend on temperature, the oxygen amount and availability of oxygen, and the biological activities of the bacteria. If bacterial growth is accelerated by adding some chemicals to the medium, the organic pollutant oxidation rate as biological will also be increased. Aerobic treatment techniques are the most effective method for removing suspended, volatile, and dissolved organics, nitrates, and phosphates besides BOD and COD. Because of the production of a huge amount of biosolids, aerobic treatment techniques have a big disadvantage; however, the biodegradable organic amount can be reduced substantially (up to 90%) using this method.
Anaerobic decomposition, called putrefaction, occurs when free dissolved oxygen is not present in wastewater, and this process is called as anaerobic treatment technique. In this treatment technique, organic matters convert into other organics including sulfur and carbon by anaerobic and facultative bacteria. There are two metabolic phases named acidogenic phase and methanogenic phase in the anaerobic separation technique. Some gases such as methane, hydrogen sulfide, ammonia, and nitrogen can be released. To reduce the biological load of wastewater, this method is very vital [1].
For the production of safe water that people can consume, tertiary water treatment techniques are very important, and they should be applied to wastewater. In this last step, wastewater is subjected to final treatment using some vital techniques, and they are briefly summarized below.
The distillation method is based on the principle that the water is evaporated to the boiling point and the steam is distilled by cooling. After this process, purified water can be obtained free from impurities up to 99% in addition to wastewater is also freed from the volatile pollution. The obtained water by the distillation method is usable in levels of laboratory applications and medicinal preparations. In addition, to prepare potable water from the sea, distillation separation method is an effective tool.
The crystallization method, which is based on the increasing principle of the concentrations of pollutants up to the crystallization point, is an effective method for obtaining quality water. Crystallization technique is useful to remove high concentrations of total dissolved solids including soluble organics and inorganics from wastewater, and it can be created either by mixing some solvents or by evaporation. This process is generally used for wastewater released to the environment from paper and dying industries. In addition, crystallization can be used for pH control because of other constituents including sulfite bicarbonate [1].
When compared to other techniques, evaporation separation method is a natural process and suitable method but only for small wastewater volumes due to its high-energy consumption. However, this technique has some problems such as pollution, calcification, and foaming that have occurred in the presence of suspended solids and carbonates in the wastewater. Thus, to increase the evaporation rate and to reduce energy consumption, vacuum evaporation step can be used. Under natural conditions, water surface molecules escape from the surface, and they generally collected pure water. Recently, to recycle water process, mechanical evaporators and sometimes vacuum evaporation have also been used. Using evaporation separation technique is effective for the removal of pollutants including organic and inorganic compounds, but some volatile organic compounds may recirculate into the water during the evaporation phase. Evaporation treatment technique is applicated to various industry wastewaters like pharmaceutical, petroleum, and fertilizer industries. The obtained water from evaporation treatment technique has been used for different purposes including cooling in towers and boilers [28].
Solvent extraction separation method is an important tool to dissolve pollutants from wastewater using various organic solvents like phosphoric acid. Acetone, methanol, hexane, ethanol, and acetonitrile are the most commonly used organic solvents. In this technique, some organic solvents are added to the wastewater to facilitate contaminant removal. The technique is very effective to remove oils, greases, and various organics. However, the process is often used for extraction and separation of heavy metals like lead, cobalt, and chromium using extraction and separation techniques from various industrial wastewater and effluents [29].
To remove various toxic and hazardous chemicals especially endocrine-disrupting chemicals from wastewater, chemical oxidation techniques are preferred, and it is a promising technology for the treatment of wastewaters containing pharmaceuticals products. Organic compounds that are oxidized by oxidation of readily degradable species such as alcohols and carboxylic acids are the main components of this process [30]. Ozone, hydrogen peroxide, and Fenton’s reagent are commonly used as chemical oxidation reagent. The chemical oxidation rate depends on some variables such as the presence of catalyst, temperature, and pH. Also, pollutants and nature of oxidants identify the rate of chemical oxidation. Various organic pollutants including hydrocarbons, dyes, and phenols can be removed from wastewater using chemical oxidation treatment technique. Recently, there has been a continuously increasing worldwide concern for the development of alternative wastewater reuse and recycling methods. Single oxidation separation method can sometimes be inadequate for the total decomposition of organic contaminants in wastewater. This requires advanced oxidation processes, which involve the use of more than one oxidation process at the same time [31]. Summarize, advanced oxidation process has big advantage because in this process all organic contaminants can be commonly oxidized to carbon dioxide form.
The precipitation method based on the principle that the solubility of the contaminants is reduced and the precipitates which are converted into the solid form are easily separated from the water surface is an effective method for removing metal ions and various organic contaminants from wastewater. Chemical precipitation is a physicochemical process and a very flexible approach to various pollutant removals and can be applied at several stages during wastewater treatment. In industrial applications, precipitation has been the most common technology for metals [32]. In this process, to reduce solubility of the dissolved pollutants, it can be carried out either by lowering the temperature of the water or by adding some chemicals like sodium bicarbonates and ferric chloride, but chemical addition is not preferred because it increases the cost. Common applications of precipitation separation method are wastewater treatment from chromium and nickel plating industries and water recycling besides water softening and removal phosphate from water.
Ion exchange technique provides advantages due to it being technologically simple and enables efficient removal of even traces of impurities from solutions, high treatment capacity, high-removal efficiency, and fast kinetics when compared other usual methods. It can be applicable to various industrial wastewaters to remove hazardous materials. Ion exchange treatment technique depends on toxic or undesirable ions, which are replaced with others ions. There are two types of ion exchangers, which can be classified as cation and anion exchangers. Ion exchangers are natural or synthetic resins with active sites on their surface. Synthetic resins are widely preferred because of their effectiveness in removing heavy metals from wastewater [33]. In order to remove hazardous ions from wastewater, some resins including zeolites, sodium silicates, and acrylic and metha-acrylic resins are used as the most common. Reversible process and low-energy requirements are the most important advantages of this method. Using this method, organic and inorganic pollutants can be reduced about by 95%, but pretreatment may be needed if the wastewater contains oil or grease.
Recently, from the industrial sources, a large amount of oily wastewaters has been generated. The most serious pollutants are oil-in-water emulsions because of treatment cost and ineffective of using treatment methods [34]. Using micro-filtration, a suspended solid pollutant that is a particle size from 0.04 to 1 mm can be removed. Microfiltration separation technique has been widely used to remove macromolecules, emulsion droplets, suspended particles, and microorganisms from various industrial fields including food, pharmaceutical, biotechnological, and petrochemical. In the last decade, membrane separations have been developed using various organic/inorganic membranes like ceramic membranes. It is becoming a promising technology for industrial processes and is utilized currently for oil field-produced WWT. When compared to traditional treatment methods, they have some advantages including high oil removal efficiency, low-energy cost, and compact design. Perhaps the most important advantage is that it does not require any chemicals. Some materials such as cellulose, fiberglass, and cotton can be used as filters in filtration method. Recently, several researchers focused on the new inorganic membrane development, for example, natural mineral-based ceramic membranes, carbon membrane, and zeolite membrane [35].
As membrane technology has been developed, membrane filtration mechanism became a feasible option for wastewaters. Reverse osmosis treatment technique that is called as hyperfiltration is the wastewater purification system that relies on the membranes’ development technology. Using membrane filtration mechanism has shown results of very high efficiency in the filtration of wastewater. According to various studies from literature, when it is used, removal percentage has been achieved as at least 99.9% for COD, total organic carbon, suspended solids, coliforms, and pathogens. To achieve the required filtration, various membranes including cellulose, polyether, and polyamide are used in this process. In this process, the most important parameter is free energy, and other considerable parameters can be identified as pressure, pH, and operation time. To remove the soluble pollutants which contain macro- and microlevel nonpolar, ionic and toxic materials from the wastewater reverse osmosis is a very suitable separation technique. Reverse osmosis treatment technique is the most economic process because the water obtained from this process is of ultrapure water. It can be used in pharmacy and medicines because it can remove various microbes, bacteria, and viruses at high percentages (up to 99.99%) when compared other techniques [36].
Electrolysis method based on the redox reaction principle can be expressed as the separation and deposition of the dissolving materials on an electrode surface. During electrolysis separation method, metal ions are deposited on the electrode and separated from the wastewater. In the last decade, electrochemical oxidation methods have been an increasing interest because they can be applicable to WWT. In this process, various electrodes and anodes such as iron electrode, boron-doped diamond electrode, PbO2 electrode, and graphite electrode [37, 38] have been used to remove different pollutants from wastewater.
To remove various ions and other pollutants which have serious impact on the environment from wastewater, several methods have been used. Electrodialysis technique may be one of the most effective methods among these techniques because of recent progress in membrane technology. Electrodialysis, which is a membrane separation technology, depends on an electric potential difference, which is used to drive ion migration toward oppositely charged electrodes. In this process, under the influence of electric current, water-soluble ions pass through the membranes that are made of ion exchange material [39]. Certain factors, for example, nature of pollutants, applied current amount, temperature, and pH, must be kept in mind to remove dissolved solids. This method has been used to produce potable water from brackish water and for water source reduction [40].
Adsorption separation method is an attractive process because it can be easily applied to WWT, which includes efficiency and flexibility. When it is compared with other treatment methods, it appears superior than others. Some factors that affect adsorption efficiency including the type of adsorbents, pollutant concentration, adsorbent particle size, pH, contact time, and temperature are very important for this process. A pretreatment may be needed to successfully apply the adsorption technique to wastewater because of the presence of suspended particles and oils. To remove pollutants especially heavy metals from wastewater, various adsorbents such as activated carbons from different materials [41, 42], Astragalus [19], carbon nanotubes [43], and a large number of biosorbents [44] have been used by different studies in the literature. However, novel and effective adsorbents with local availability besides economic suitability are still needed. Adsorption technique has two main problems: the first is the regeneration of columns and column life used as an adsorbent and the second is the management of the exhausted adsorbent.
Nowadays, because of rapid technological development especially in developing countries, environmental pollution is a serious problem for the ecosystem because wastewaters contaminated with toxic heavy metals are discharged directly or indirectly into the environment. Unlike most organic contaminants, heavy metals including As, Hg, and Cr are hazardous due to its nonbiodegradable nature [33, 45]. Thus, to protect the people and the environment, these hazardous ions should be removed from wastewater [46]. For example, while industrial wastewaters which contain Cr ions range from 0.5 to 270 mg L−1, inland surface water tolerance limits 0.1 mg L−1, and potable water Cr level should not exceed 0.05 mg L−1 according to various health organization such as the WHO and EPA [47, 48]. To remove heavy metal ions from wastewater, many conventional techniques such as membrane filtration, reverse osmosis, ion exchange, chemical precipitation, electrodialysis, electrochemical treatment, and adsorption have been employed. While most of these methods suffer from operational costs for the treatment process and high capital, the adsorption method is better than the other methods due to its flexibility in design, simplicity of operation, and facile handling, and it is considered more efficient and economical [45, 49]. Since the dynamic characteristics of the adsorption process are complex, it is essential to have optimum working conditions in order to achieve optimum pollution removal efficiency. Process optimization is crucial to determine design parameters value, which is achieving the optimal obtained response level. The RSM is one of the most used methods because of its developing, improving, and optimizing of the processes especially in the presence of complex interactions. It is also used to determine the ideal points of independent variables that are effective under optimum conditions and to evaluate the interactions of these variables [50]. Its greatest advantage is the decreased experimental trial number required to interpret multiple parameters. Therefore, RSM optimization process contains three main steps: (a) appropriate experimental design selection, (b) model coefficient estimation using analysis of variance (ANOVA), and (c) model validation based on prediction and experimental runs of the process response validation of the final model [51]. This experimental design method for an adsorption process is more practical than other approaches because it allows for the opportunity to monitor and interpret interactions between variables and to describe the overall effect of the parameters on the process. The RSM has been successfully used; in addition, its greatest applications have been in industrial research [52].
There are numerous studies, and different results were obtained using various adsorbents reported such as by Anupama et al. [53]. They used a CCD with RSM for removing Cr(VI) from aqueous medium [53]. They investigated the effect of some parameters including pH and temperature on adsorption, and the optimum pH, time, and adsorbent dose were found to be 2.32, 25.76 min, and 1.79 g L−1. Also various adsorption kinetic models and isotherms were compared to find fit model. Jain et al. [54] studied Cr(VI) removal from aqueous solution using Box-Behnken model with combined RSM approach by chemically treated Helianthus annuus flowers. They investigated three effective factors for Cr(VI) removal. It was reported that the optimum pH, adsorbent dose, and initial concentration of Cr(VI) were found to be 2.0, 5.0 g L−1, and 40 mg L−1, respectively [54]. In an another study [55], Box-Behnken design has been applied to evaluate operating variables interaction for Cr (VI), Ni (II), and Zn (II) ions adsorption on Bacillus brevis. They carried out a total of 17 experiments and used a quadratic model. Based on this model, it was reported that the regression equation coefficients were calculated, and the data fitted to a second-order polynomial equation for these metal ions removal with immobilized on B. brevis. According to another study, to evaluate and optimize Cr ions, adsorption on activated carbon experimental conditions using RSM as an efficient approach for predictive model building was performed by Sahu et al. [56]. A full factorial CCD was employed, and based on ANOVA, a high coefficient (R2 = 0.928) was obtained. In addition, satisfactory prediction of second-order regression model was derived. According to optimized process parameters, Cr(VI) removal percentage was obtained higher than 89% [56]. Kaplan Ince et al. [57] studied a batch experimental system for removal Pb(II) using clay, and optimized experimental approach was applied to some alcoholic beverages including beer and wine samples. Various effective parameters were investigated using a Box-Behnken experimental design methodology and RSM. They reported that the optimal conditions used for Pb(II) removal were pH of 5, contact time of 31 minutes, 75 mg for adsorbent dosage, and 100 rpm for agitation speed. Based on these results, maximum Pb(II) ion removal was calculated as 120 mg g−1 from aqueous medium using an ETAAS [57]. Balan et al. (2009) examined the efficiency of Cd(II) removal from aqueous solutions using sphagnum moss peat as biosorbent. They carried out a CCD for experimental design to evaluate an analysis of results and to optimize process parameters including the pH of solution, biosorbent dosage, and Cd(II) initial concentration. The optimum values of experimental parameters were obtained as 4.72 for pH, 14.7 g L−1 for biosorbent amount, and 13.64 mg Cd L−1 for initial concentration of Cd(II) [58]. In another study, removal of Cr(VI) from simulated wastewater using RSM was examined by Bhatti et al. [59]. They investigated the performance of a laboratory scale electrocoagulation system for the removal of Cr(VI) using Al-Al electrodes. They obtained an interaction between voltage × time and amperage × time coefficient of determination as 0.8873 and 0.9270, respectively. For the optimization of process variables including pH, voltage, and treatment time, the RSM was used. Prediction model results were validated through laboratory scale batch experiments [59]. In another similar study, to remove arsenic from contaminated water by arsenite, an electrocoagulation method with stainless steel electrode was used. A response surface methodology approach was performed to optimize significant process variables such as treatment time and solution pH. They obtained pH as 5.2, treatment time ¼ 20 min for 10, and 55–100 mg L−1 of initial arsenic concentration. It was stated that the waste elimination with electrocoagulation is a sustainable treatment technology with quick start-up, shorter treatment time, and minimum sludge generation [60]. An alginate-coated chitosan nanoparticle was carried out for heavy metal removal from industrial effluents by Esmaeili and Khoshnevisan [61]. To optimize the process of biomass for heavy metal removal from synthetic and industrial effluents containing nickel, an RSM approach was performed. Under optimum experimental conditions, which they obtained as a dose of 0.3 g biomass, pH of 3, 70 mg L−1 of initial concentration nickel, and 30 min contact time, maximum removal efficiency of biomass was found as 94.48% [61]. The Cd removal from wastewater and simulated aqueous solution was examined by Iqbal et al. [62] using a polyurethane material as adsorbent. The effect of operating parameters including adsorbent dosage, pH of solution, and metal ion concentration was modeled by RSM combined with CCD. Experimental runs and independent variables optimum values for Cd adsorption were obtained as 305 mg L−1 Cd ion initial concentration, pH 4.9, contact time 932 min, and adsorbent dose 1.3 g for polyurethane material. Based on the experimental results, to predict the response with good accuracy and reliability, it was mentioned that the RSM proved to be the best statistical model [62]. Ince and Kaplan Ince [63] examined the removal of Cr from industrial wastewater using RSM combined with CCD besides investigated as an efficient approach for examining predictive model building and optimization. To predictive regression models and optimize experimental variables, statistical design was modeled. The experimental parameters such as pH and agitation speed were selected for optimization. They obtained ideal Cr ion removal conditions as pH of 5.0, contact time 23.0 minutes, adsorbent dosage of 69.4 mg, and agitation speed of 135 rpm. The Cr removal efficiency was found at 23.16 mg g−1. Also, significant independent parameters and their interactions were verified by means of the ANOVA. The proposed adsorption process was applied to various industrial wastewaters. It was stated that a CCD method was identified to yield a maximum Cr ion removal of 99% [63].
The choice of method to be used in the treatment of water/wastewater depends on the wastewater type and its composition besides the economic aspect. For example, high-grade contaminated water containing solid waste and poor color must be subjected to tertiary water treatment after primary and secondary water treatment processes. If the water does not contain any solids and is contaminated by other contaminants including inorganic, organic, and biological pollutants, the application of the tertiary treatment technique is sufficient. While surface waters are often polluted by organic, inorganic, and biologic pollutants, secondary and tertiary methods of treatment are needed in the treatment of these waters, and only tertiary methods of treatment should be used since groundwater is exposed to hazardous metal ions and anion pollution. The present study summarized removing heavy metal ions in various industrial wastewaters exposed to heavy metal pollution and was focused on optimizing the removal method and determining optimum experimental conditions.
The authors declare that they have no conflicts of interest in the research.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:907,numberOfCrossrefCitations:646,numberOfDimensionsCitations:1200,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:2017,totalCrossrefCites:45,totalDimensionsCites:79,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3183,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3194,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:17520,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10496,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4459,totalCrossrefCites:9,totalDimensionsCites:13,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4135,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3914,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"56900",title:"Mobile Wireless Sensor Networks: An Overview",slug:"mobile-wireless-sensor-networks-an-overview",totalDownloads:1933,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Velmani Ramasamy",authors:[{id:"206195",title:"Dr.",name:"Velmani",middleName:null,surname:"Ramasamy",slug:"velmani-ramasamy",fullName:"Velmani Ramasamy"}]},{id:"49264",title:"Application of DSP Concept for Ultrasound Doppler Image Processing System",slug:"application-of-dsp-concept-for-ultrasound-doppler-image-processing-system",totalDownloads:1504,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applications-of-digital-signal-processing-through-practical-approach",title:"Applications of Digital Signal Processing through Practical Approach",fullTitle:"Applications of Digital Signal Processing through Practical Approach"},signatures:"Baba Tatsuro",authors:[{id:"65121",title:"Dr.",name:"Baba",middleName:null,surname:"Tatsuro",slug:"baba-tatsuro",fullName:"Baba Tatsuro"}]},{id:"52156",title:"Case Study: Installing RFID Systems in Supermarkets",slug:"case-study-installing-rfid-systems-in-supermarkets",totalDownloads:1639,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"radio-frequency-identification",title:"Radio Frequency Identification",fullTitle:"Radio Frequency Identification"},signatures:"María-Victoria Bueno‐Delgado, Francesc Burrull and Pablo Pavón‐\nMariño",authors:[{id:"186584",title:"Dr.",name:"M.V.",middleName:null,surname:"Bueno-Delgado",slug:"m.v.-bueno-delgado",fullName:"M.V. Bueno-Delgado"},{id:"194375",title:"Dr.",name:"Francesc",middleName:null,surname:"Burrull",slug:"francesc-burrull",fullName:"Francesc Burrull"},{id:"194376",title:"Prof.",name:"Pablo",middleName:null,surname:"Pavón-Mariño",slug:"pablo-pavon-marino",fullName:"Pablo Pavón-Mariño"}]},{id:"24300",title:"Complex Digital Signal Processing in Telecommunications",slug:"complex-digital-signal-processing-in-telecommunications",totalDownloads:11126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"applications-of-digital-signal-processing",title:"Applications of Digital Signal Processing",fullTitle:"Applications of Digital Signal Processing"},signatures:"Zlatka Nikolova, Georgi Iliev, Miglen Ovtcharov and Vladimir Poulkov",authors:[{id:"18206",title:"Dr.",name:"Vladimir",middleName:null,surname:"Poulkov",slug:"vladimir-poulkov",fullName:"Vladimir Poulkov"},{id:"21534",title:"Dr.",name:"Georgi",middleName:null,surname:"Iliev",slug:"georgi-iliev",fullName:"Georgi Iliev"},{id:"21536",title:"Associate Prof.",name:"Zlatka",middleName:null,surname:"Valkova-Jarvis",slug:"zlatka-valkova-jarvis",fullName:"Zlatka Valkova-Jarvis"},{id:"71205",title:"MSc.",name:"Miglen",middleName:null,surname:"Ovtcharov",slug:"miglen-ovtcharov",fullName:"Miglen Ovtcharov"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:939,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/291955/mafalda-freitas",hash:"",query:{},params:{id:"291955",slug:"mafalda-freitas"},fullPath:"/profiles/291955/mafalda-freitas",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()