\r\n\tAnimal food additives are products used in animal nutrition for purposes of improving the quality of feed or to improve the animal’s performance and health. Other additives can be used to enhance digestibility or even flavour of feed materials. In addition, feed additives are known which improve the quality of compound feed production; consequently e.g. they improve the quality of the granulated mixed diet.
\r\n
\r\n\tGenerally feed additives could be divided into five groups: \r\n\t1.Technological additives which influence the technological aspects of the diet to improve its handling or hygiene characteristics. \r\n\t2. Sensory additives which improve the palatability of a diet by stimulating appetite, usually through the effect these products have on the flavour or colour. \r\n\t3. Nutritional additives, such additives are specific nutrient(s) required by the animal for optimal production. \r\n\t4.Zootechnical additives which improve the nutrient status of the animal, not by providing specific nutrients, but by enabling more efficient use of the nutrients present in the diet, in other words, it increases the efficiency of production. \r\n\t5. In poultry nutrition: Coccidiostats and Histomonostats which widely used to control intestinal health of poultry through direct effects on the parasitic organism concerned.
\r\n
\r\n\tThe aim of the book is to present the impact of the most important feed additives on the animal production, to demonstrate their mode of action, to show their effect on intermediate metabolism and heath status of livestock and to suggest how to use the different feed additives in animal nutrition to produce high quality and safety animal origin foodstuffs for human consumer.
",isbn:"978-1-83969-404-2",printIsbn:"978-1-83969-403-5",pdfIsbn:"978-1-83969-405-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"8ffe43a82ac48b309abc3632bbf3efd0",bookSignature:"Prof. László Babinszky",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",keywords:"Technological Feed Additives, Feed Industry, Quality of Compound Feed, Non-Antibiotic Growth Promoter, Product Quality, Additive Enzymes, Digestibility of Nutrients, NSP Enzymes, Farm Animals, Livestock, Immunity, Microbiome",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 24th 2020",dateEndSecondStepPublish:"December 22nd 2020",dateEndThirdStepPublish:"February 20th 2021",dateEndFourthStepPublish:"May 11th 2021",dateEndFifthStepPublish:"July 10th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Professor Emeritus from the University of Debrecen, Hungary who authored 297 publications (papers, book chapters) and edited 3 books. Member of various committees and chairman of the World Conference of Innovative Animal Nutrition and Feeding (WIANF).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.jpg",biography:"László Babinszky is Professor Emeritus of animal nutrition at the University of Debrecen, Hungary. From 1984 to 1985 he worked at the Agricultural University in Wageningen and in the Institute for Livestock Feeding and Nutrition in Lelystad (the Netherlands). He also worked at the Agricultural University of Vienna in the Institute for Animal Breeding and Nutrition (Austria) and in the Oscar Kellner Research Institute in Rostock (Germany). From 1988 to 1992, he worked in the Department of Animal Nutrition (Agricultural University in Wageningen). In 1992 he obtained a PhD degree in animal nutrition from the University of Wageningen.He has authored 297 publications (papers, book chapters). He edited 3 books and 14 international conference proceedings. His total number of citation is 407. \r\nHe is member of various committees e.g.: American Society of Animal Science (ASAS, USA); the editorial board of the Acta Agriculturae Scandinavica, Section A- Animal Science (Norway); KRMIVA, Journal of Animal Nutrition (Croatia), Austin Food Sciences (NJ, USA), E-Cronicon Nutrition (UK), SciTz Nutrition and Food Science (DE, USA), Journal of Medical Chemistry and Toxicology (NJ, USA), Current Research in Food Technology and Nutritional Sciences (USA). From 2015 he has been appointed chairman of World Conference of Innovative Animal Nutrition and Feeding (WIANF).\r\nHis main research areas are related to pig and poultry nutrition: elimination of harmful effects of heat stress by nutrition tools, energy- amino acid metabolism in livestock, relationship between animal nutrition and quality of animal food products (meat).",institutionString:"University of Debrecen",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"25",title:"Veterinary Medicine and Science",slug:"veterinary-medicine-and-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"185543",firstName:"Maja",lastName:"Bozicevic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/185543/images/4748_n.jpeg",email:"maja.b@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,isOpenForSubmission:!1,hash:"75cdacb570e0e6d15a5f6e69640d87c9",slug:"veterinary-anatomy-and-physiology",bookSignature:"Catrin Sian Rutland and Valentina Kubale",coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",editedByType:"Edited by",editors:[{id:"202192",title:"Dr.",name:"Catrin",surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"62431",title:"The United Chemicals of Cannabis: Beneficial Effects of Cannabis Phytochemicals on the Brain and Cognition",doi:"10.5772/intechopen.79266",slug:"the-united-chemicals-of-cannabis-beneficial-effects-of-cannabis-phytochemicals-on-the-brain-and-cogn",body:'\n
\n
1. Introduction
\n
Research shows that certain molecules identified in the cannabis plant are able to improve aspects of cognition. Cognition encompasses multiple aspects of thought processing including decision-making, processing speed, attention span, learning and memory. Cognitive dysfunction can occur in a range of illnesses and disease states, for example Alzheimer’s disease, dementia, Parkinson’s disease, schizophrenia, hypoxic ischemia, stroke and meningitis. There is particularly strong evidence in the existing literature to support the pro-cognitive effects of the cannabinoid, cannabidiol (CBD) in disease states. There is also evidence that other phytochemicals in cannabis provide benefits for brain health and cognitive function. Furthermore, the suggested presence of an ‘entourage effect’ may mean that the therapeutic potential of CBD could be boosted through synergistic interactions with other phytochemicals. Therefore, certain cannabis strains may confer greater benefits for particular clinical indications, presenting unique opportunities for the discovery of novel personalised therapeutics. Identifying specific beneficial compounds could underpin selective breeding of plant cultivars with phytochemical profiles optimised towards restoring brain function in diseases associated with cognitive dysfunction.
\n
\n
\n
2. Cannabidiol (CBD) and the brain
\n
CBD is a major cannabinoid of C. sativa, considered a metabolic by-product rather than a biosynthetic product of the plant [1]. There has been a recent burst of studies showing beneficial effects of CBD in the brain, with evidence pointing to CBD as a promising novel therapy for a range of disorders. Based on its ability to change brain function and behaviour, it is, by definition ‘psychoactive’, but CBD is non-intoxicating and there is currently no evidence that it causes the deleterious hallucinogenic, paranoia and anxiety-inducing effects of the delta-tetrahydrocannabinol (Δ-THC) type chemicals, particularly Δ9-THC that is primarily responsible for the ‘high’ induced by recreational cannabis [2]. Instead, CBD has a broad spectrum of therapeutic properties, including antipsychotic, anxiolytic, immunomodulatory, anti-inflammatory, neuroprotective and pro-cognitive benefits in humans and preclinical disease models. Although its mechanisms of action are currently unclear, studies show that CBD is a cannabinoid 1 receptor (CB1) negative allosteric modulator [3], is a partial agonist of the dopamine D2 high receptor sub-type [4] and increases anandamide (AEA) signalling [5], possibly through inhibition of the AEA catabolic enzyme, fatty acid amide hydrolase (FAAH) [6].
\n
\n
2.1. Cannabidiol protects against cognitive harms of high-THC Cannabis
\n
In terms of cognition, our recent systematic review by Osborne et al. [7] revealed a body of clinical and pre-clinical evidence supporting the pro-cognitive effects of CBD. We identified reports demonstrating that CBD can protect against cognitive harms of cannabis. For example, recreational users of cannabis containing higher (>0.75%) CBD performed better in verbal memory testing during acute intoxication compared to users of cannabis with the same Δ9-THC levels but low (<0.14%) CBD [reviewed in 7]. CBD pre-treatment (600 mg oral) also protected against deficits in verbal learning and memory, and aspects of working memory during a Δ9-THC (1.5 mg/kg intravenous (i.v.)) challenge in healthy participants (n = 22) [reviewed in 7].
\n
Imaging studies over the past decade have revealed altered brain morphology in key regions of the brain implicated in cognition in cannabis users. For example, chronic heavy cannabis users (n = 15) exhibit reduced brain volume in the hippocampus and amygdala compared to matched non-using controls (n = 16) [8], and hippocampal shape aberrations were detected in cannabis users (n = 15 male chronic heavy users) that were exacerbated in people with co-morbid schizophrenia (n = 8 males) compared to healthy controls [9]. Interestingly, regular users of low CBD cannabis had reduced hippocampal volumes compared to non-users; a reduction that was not observed in the participants either using cannabis containing CBD or in former users [10]. The authors of that study concluded that CBD could reduce harm to brain health caused by cannabis use, while periods of abstinence could recover damage in the parameters examined [10]. Recently, it was reported that 10-weeks of oral CBD treatment (200 mg) increased the volume of discrete hippocampal regions in cannabis users (n = 18), with higher growth observed in heavy compared to light cannabis users [11]. Overall, these studies point to a protective effect of CBD on cognitive regions of the brain during cananbis use in humans; however, larger scale placebo-controlled trials are required. A potential mechanism for these benefits may relate to the neuroprotective characteristics of CBD, particularly its ability to stimulate neurogenesis, synaptic formation and neurite outgrowth (reveiwed in [12]).
\n
Similar results supporting a protective role of CBD have been reported in pre-clinical studies. For example, CBD (0.5 mg/kg) increased visual learning and memory, and procedural learning in Rhesus monkeys co-administered Δ9-THC (0.2 or 0.5 mg/kg) compared to those administered Δ9-THC alone; however, spatial working memory was further impaired by combined treatment (reviewed in [7]). Chronic Δ9-THC exposure in adolescent mice (3 mg/kg daily) reduced recognition memory that persisted into adulthood, but this was not apparent in the group receiving CBD (3 mg/kg CBD) co-treatment during Δ9-THC exposure [13]. On the other hand, research shows that there are no beneficial effects of CBD on cognition, including verbal learning and memory, social recognition, executive function, spatial memory or conditioned learning, when administered to healthy subjects (humans or rodents) (reviewed in [7, 13]).
\n
\n
\n
2.2. Cannabidiol treatment for neurological disorders and inflammatory disease states
\n
\n
2.2.1. Alzheimer’s disease
\n
Alzheimer’s disease is the most common form of dementia. It is a progressive neurological disorder characterised by the presence of plaques and neurofibrillary tangles in the brain. Amyloid β peptides form densely packed extracellular filaments (plaques) that block cell signalling and trigger neuroinflammation. Neurofibrillary tangles are caused by transport-associated proteins called tau that form twisted structures during oxidative stress and block transport of nutrients and other essentials for neuronal function [14]. The progressive disruption and destruction of synapses results in memory loss and cognitive dysfunction. A role for cannabinoids as a therapy for Alzheimer’s disease has been proposed, in part due to the neuroprotective, anti-inflammatory and anti-oxidant properties of cannabinoids, as well as the role of the endocannabinoid system in memory and Alzheimer’s disease pathology (reviewed in [15]). One study found that Sativex®, containing Δ9-THC and CBD, reduced tau and amyloid deposition in the hippocampus and cortex in a mouse model of tauopathy [16]. In addition, Δ9-THC and CBD administration improved memory deficits in AβPP/PS1 transgenic mice with an Alzheimer-like phenotype, but not in mice with cognitive decline associated with healthy ageing [17]. Another study attributed CBD treatment (20 mg/kg oral, daily for 8 months) of social recognition deficits in AβPP/PS1 mice with the prevention of neuroinflammation and cholesterol homeostasis rather than a reduction in amyloid load [18]. Clinical studies are required to confirm whether CBD/Δ9-THC therapies can improve brain health and function in people with Alzheimer’s disease or dementia.
\n
\n
\n
2.2.2. Huntington’s disease
\n
Huntington’s disease is a progressive neurodegenerative disease of genetic origins, manifesting in motor impairment, cognitive decline and behavioural symptoms. In a double-blinded, placebo-controlled, cross-over clinical trial, Sativex® (orally administered in 12 sprays/day) was unable to improve cognitive, motor or behavioural scores in a cohort of patients with Huntington’s disease (n = 24) compared to placebo-treated controls after 12-weeks of treatment [19]. In a smaller double-blinded, randomised cross-over study, CBD alone (10 mg/kg/day, oral) also yielded no symptom efficacy, including recall memory, in 15 patients Huntington’s disease after 6-weeks of treatment [20]. However, large cohort studies of CBD administration in people with Huntington’s disease are required.
\n
\n
\n
2.2.3. Parkinson’s disease
\n
Parkinson’s disease occurs through the progressive degeneration of dopaminergic neurons in the midbrain, resulting in severe motor impairment and loss of motor control. CBD is a prime novel therapeutic candidate for the treatment of Parkinson’s disease due to its neuroprotective properties. However, one clinical study reported no improvement in motor or general symptoms scores in patients treated with CBD (75 or 300 mg/day) compared to placebo-treated controls (n = 7/group), although, overall quality of life was significantly improved in the 300 mg CBD treatment group compared to placebo-treated controls [21]. Another clinical study (open-label pilot study, n = 6) of Parkinson’s disease patients with psychosis revealed significant improvements to psychiatric scores, but not motor function following CBD (>150 mg/day oral CBD) administration for 4-weeks in combination with existing L-dopa medication [22]. On the other hand, CBD (0.5 or 5 mg/kg CBD administered in four injections) prevented cognition and motor dysfunction when administered prior to reserpine treatment in a rodent model of Parkinson’s disease [23].
\n
\n
\n
2.2.4. Ischemic brain injury
\n
Brain injury due to blood flow impediment and hypoxic damage can result in immediate and progressive cognitive decline. Ischemic brain injury can occur following events such as a stroke, cardiac arrest, near drowning or birth complications resulting in perinatal asphyxia. Rats exposed to hypoxic ischemia at birth exhibited recognition memory deficits that were attenuated by CBD (1 mg/kg) administered subcutaneously 10 min post-ischemia, while CBD treatment (3, 10 or 30 mg/kg 30 min pre- and 3, 24 and 48 h post-ischemic insult) increased spatial memory compared to placebo-treated ischemic rats (reviewed in [7]). In a subsequent study, acute CBD treatment (5 mg/kg, intraperitoneal (i.p.)) reduced apoptosis, neuronal loss and neuroinflammation in ischemic in neonatal rats [24], providing mechanistic clues about the behavioural restorative effects of CBD during hypoxic brain damage. A clinical trial investigating THC:CBD efficacy on spasticity following a stroke has been registered [25]; however, cognitive testing has not been proposed as a treatment outcome.
\n
\n
\n
2.2.5. Sepsis-induced encephalopathy
\n
Sepsis is a potentially life-threatening systemic inflammatory state that occurs as the body attempts to eliminate a pathogen. It can cause rapid cognitive impairment, particularly memory decline that was initially considered a transient state restored through the destruction of the pathogen and attenuation of the inflammatory response. However, sepsis is also associated with encephalopathy, a disease state of the brain that can manifest symptoms ranging from mild personality changes to cognitive and motor impairment, lethargy and coma. Sepsis-induced encephalopathy can be caused by increased permeability of the blood brain barrier and neuroinflammation that can lead to permanent functional impairment and enhance susceptibility to subsequent neurodegenerative disorders post-recovery [26]. Sub-chronic CBD treatment improved associative learning in a rodent model of sepsis (CBD administered either 2.5, 5 or 10 mg/kg daily for 9 days) compared to vehicle-treated controls (reviewed in [7]). CBD (single acute dose 3 mg/kg, i.v.) treatment also preserved blood–brain barrier integrity, restored normal vascular endothelial function and reduced inflammation in the mouse brain during endotoxic shock induced by administration of lipopolysaccharide (LPS) [27], a cell wall component of Gram-negative bacteria that can be used to model an excessive pro-inflammatory response in the host.
\n
\n
\n
2.2.6. Schizophrenia
\n
Schizophrenia is a chronic neurodevelopmental disorder characterised by three main symptom domains: positive (e.g., hallucinations, delusions and paranoia), negative (e.g., social withdrawal, flattened emotional expression, lack of motivation) and cognitive deficits. Existing antipsychotic medications confer minimal to no cognitive benefits (in some instances can further impair cognition) [28], and can cause serious weight gain and diabetes side-effects [29, 30]. We recently discovered that chronic CBD (10 mg/kg CBD, i.p., twice daily (b.i.d.)) treated cognitive impairment (learning, working and recognition memory) and social interaction deficits in a rat prenatal infection (poly I:C) model of schizophrenia-like phenotypes [31]. No behavioural changes were observed in healthy rats administered CBD and CBD did not cause weight gain side-effects [31]. An earlier clinical study (phase II, single-centred, double-blinded, randomised parallel-group controlled clinical trial of CBD vs. amisulpride) had reported improved positive and negative symptoms in people with schizophrenia following 4 weeks of CBD treatment, with therapeutic efficacy similar to the commercial antipsychotic, amisulpride; however, cognitive function was not examined [5]. More recently, a multi-centre double-blinded parallel-group clinical trial examined the efficacy of CBD co-treatment with the patient’s existing antipsychotic medication on a range of endpoints, including positive, negative and cognitive scores and Clinical Global Impression scales (CGI, measuring illness severity, improvement and response to treatment) [32]. Results showed significant improvements in positive (not negative) symptoms and CGI scores, as well as some improvement in cognitive performance (did not reach statistical significance, p = 0.068 CBD vs. placebo) when CBD was combined with the patient’s existing antipsychotic medications [32].
\n
\n
\n
\n
2.3. Conclusions on the use of CBD in neurological disease
\n
There is substantial scientific evidence to show the beneficial effects of CBD in the brain, with protection and treatment efficacy for various cognitive behaviours conferred in multiple disease states. Overall, there seems to be a general requirement for further placebo-controlled clinical trials, as well as investigation of long-term efficacy and safety in different populations of people. Evidence for illness-specific optimal dosing regimens (dose, route of administration, timing and number of daily doses, effect of concurrent medications, etc.) is also required. In addition, similar to our rodent study of CBD effects on cognition in schizophrenia [31], most studies use either isolated CBD or combined THC and CBD. While this methodology enables investigators to attribute results to a specific compound, it may not be the optimal therapeutic approach as cannabis-derived plant molecules are thought to interact and produce a synergy that enhances therapeutic effects—termed the ‘entourage effect’.
\n
\n
\n
\n
3. The entourage effect
\n
The entourage effect is defined as the act by which compounds (both cannabis phytochemicals and compounds from the endogenous cannabinoid system) augment or support the effects of major cannabinoids, for example, Δ9-THC, CBD, 2-arachidonoyl-glycerol (2-AG) [33, 34]. This phenomenon has been likened to an orchestra where ‘many musicians support and harmonise the melody provided by the soloists’ [34]. Compounds can exert synergistic effects through several mechanisms, for example by interacting with each other to improve bioavailability of beneficial compounds, or through combined actions on different therapeutic targets [35].
\n
The concept of a cannabis entourage effect is largely based on anecdotal evidence from medicinal and recreational users attesting to the notion that cannabis ‘works better’ as a whole plant extract and its existence has been argued back and forth over time. However, there is evidence to suggest that the cannabis plant contains active ingredients as well as ‘synergists’ that boost drug effects above that of the isolated compound. Indeed, early description of a potential synergy between molecules in the cannabis plant came from a study in the 1970s that reported a 2–4 times greater deficits in parameters such as processing tasks and motor function in subjects administered Brazilian cannabis samples compared to Δ9-THC [36]. The phrase ‘entourage effect’ was first described in 1998 in response to the finding that certain endogenous molecules (2-linoleoyl-glycerol (2-LG) and 2-palmitoyl-glycerol (2-PG)) potentiated the effects of the endocannabinoid, 2-AG [33]. Interestingly, cultured hippocampal neurons exposed to CBD-rich plant extracts exhibit a significantly greater intracellular signalling response compared to CBD alone [37]. This provides preliminary (in-vitro) evidence that CBD-rich plant extracts exert greater effects on cells of the hippocampus (a region of the brain highly implicated in learning and memory) than isolated CBD. Overall, it may be possible to boost the pro-cognitive therapeutic efficacy of CBD through a synergistic approach. Studies show that cannabinoids other than CBD could confer beneficial effects on the brain through synergistic mechanisms, for example, the parent phytocannabinoid cannabigerol (CBG) exerted greater analgesic effects on mice than Δ9-THC alone, while CBG and cannabichromene (CBC) both have anti-depressant effects in rodents (reviewed in [38]) and CBG is neuroprotective in a mouse model of Huntington’s Disease [39]. However, section 4 will focus on several key non-cannabinoid cannabis phytochemicals with promising evidence of positive effects on brain function.
\n
\n
\n
4. Non-cannabinoid phytochemicals of Cannabis: terpenes, flavonoids and anthocyanins
\n
The cannabis plant contains hundreds of phytochemicals, with new compounds and metabolites frequently identified. The concentration of chemicals in a cannabis plant can be influenced by multiple factors including nutrition, humidity, temperature, age of plant, strain, harvest time, plant stress, organ and storage conditions [1, 40]. Therefore, plant phytochemical composition is highly variable. Variability identified even within the same strain has led some authors to conclude that the name of a plant strain does not necessarily indicate potency or chemical composition [41]. However, others found that when grown under standardised conditions, certain cannabis strains can provide reproducible terpene and phytocannabinoid profiles that have been considered chemotaxonomic markers [42]. Furthermore, cannabinoid content can be used to classify plants into chemovars (plants with distinct photochemical profiles): Type I Δ9-THC-dominant, Type II Δ9-THC and CBD, Type III CBD-dominant and distinctions can be made outside these classes based on specific terpene profiles [43]. Therefore, it is possible to optimise plants to reproduce a distinct chemical composition and, potentially, specific medicinal characteristics.
\n
\n
4.1. Terpenes: linalool, alpha-pinene and beta-caryophyllene
\n
Terpenes have been described as the most abundant class of small natural molecules by mass on Earth, undertaking innumerable structural and functional roles in most life forms on the planet (e.g., cholesterols for structural and signalling components of cell membranes, retinal in the eye for vision, carotenoids in photosynthesis) [44]. In cannabis, they create fragrances and flavours, but are also found in other plants and commonly used as safe food additives [38]. Terpenes can cross the blood brain barrier due to their lipophilic nature and studies have demonstrated a range of health benefits for some terpenes found in cannabis.
\n
\n
4.1.1. Linalool
\n
Linalool is a monoterpene abundant in aromatic plants, such as lavender and purple basil [45]. Evidence shows that chronic administration of linalool reverses deficits in spatial memory and learning, with reduced amyloid plaque deposition and tau dysfunction in the hippocampus in rodent models of Alzheimer’s disease [46, 47], using 25 mg/kg and 100 mg/kg linalool, respectively. Linalool also prevented deficits in spatial memory, motor function, neuroinflammation and post-ischemic neurodegeneration in a rat model of global cerebral ischemia, following oral daily administration (25 mg/kg) for 1 month [48]. However, reduced short and long-term recognition memory (50 and 100 mg/kg linalool, i.p.) [49] and memory acquisition (3% preparation for inhalation) [50] were found when linalool was administered as a single dose to healthy rats. This apparent contradiction in findings could be attributed to the administration of linalool to healthy vs. cognitively impaired rats, suggesting that the compound exerts benefits in a disease state but is detrimental when not patho physiologically required; however, further investigation is necessary to confirm.
\n
\n
\n
4.1.2. Alpha-pinene
\n
Alpha-pinene (α-pinene) is a highly abundant monoterpene found in coniferous trees (e.g., pine and fir) and cannabis [51] that, according to cannabis culture, provides pine-needle fragrances and tastes to cannabis. In mice with cognitive deficits caused by scopolamine-induced blockade of acetylcholine neurotransmission (apparent in advanced stages of Alzheimer’s disease [52]), α-pinene (10 mg/kg, i.p.) improved working and spatial memory, and increased markers of acetylcholine synthesis in the cortex [53]. Inhalation of α-pinene can also influence major neurotransmitter signalling in the brain, for example it improved quality and duration of sleep in mice by modulating the major inhibitory neurotransmitter signalling system, gamma-aminobutyric acid (γ-aminobutyric acid, GABA)) [54], and decreased anxiety-like behaviour that was associated with increased tyrosine hydroxylase (the rate limiting enzyme for dopamine synthesis) in the midbrain [55]. Another study reported significant improvements in avoidance memory of cognitively impaired mice following administration of an essential oil obtained from a Korean fir tree containing α-pinene [56]; however, the results cannot be entirely attributed to this terpene due to the use of whole-plant extract containing other constituents.
\n
\n
\n
4.1.3. Beta-caryophyllene
\n
Beta-caryophyllene (β-caryophyllene) is a sesquiterpene that has a weak woody-spicy characteristic, abundant in cloves, black pepper, cinnamon and thyme [57, 58]. In a mouse model of Alzheimer’s disease, β-caryophyllene reversed spatial memory deficits, reduced β-amyloid deposition in the hippocampus and cortex, and reduced neuroinflammation when administered for 10 weeks (48 mg/kg, oral) [59]. In rats with chronic cerebral ischemia resembling vascular dementia, β-caryophyllene (administered in a hydroxypropyl-β-cyclodextrin inclusion complex delivery system to enhance its bioavailability) attenuated cognitive deficits and increased cerebral blood flow [60]. β-caryophyllene also prevented oxidative stress in the cortex of rats following transient global cerebral hypoperfusion/reperfusion [61]. Neurological scores were improved in mice administered β-caryophyllene (24 and 72 mg/kg, i.p.) following an induced stroke [62] and anti-depressant-like behaviour was reported in healthy mice following β-caryophyllene, through mechanisms involving catecholamine (adrenergic) neurotransmission [63]. Overall, the studies provide some evidence to support the role of β-caryophyllene as pro-cognitive, with anti-inflammatory, neuroprotective and anti-depressant effects.
\n
\n
\n
\n
4.2. Phenolic acids: flavonoids and anthocyanins
\n
In addition to terpenes, cannabis plants contain phenolic compounds, including flavonoids and anthocyanins [40, 64, 65, 66]. Flavonoids are commonly consumed by humans through dietary fruit, vegetable, tea and wine intake. Anthocyanins are a group of flavonoids responsible for the blue-violet and red-orange colours of plant organs. Certain strains of cannabis plants exhibit a purple phenotype (Figure 1), which is widely attributed to anthocyanin content in recreational cannabis culture; however, experimental data showing anthocyanin levels of purple compared to non-purple strains appear to be lacking.
\n
Figure 1.
Inflorescence of purple cannabidiol (CBD)-rich, low Δ9-tetrahydrocannabinol (Δ9-THC) medicinal cannabis cultivar, GHM Genetic Development, Amsterdam, The Netherlands (2018).
\n
Flavonoids and anthocyanins are extensively researched due to their neuroprotective, anti-inflammatory and pro-cognitive characteristics and can pass the blood brain barrier [67]. For example, one study found that anthocyanin pre-treatment (200 mg/kg orally for 7 days) prevented cognitive deficits in a rat model of dementia [68]. Flavonoids improve working memory, processing speed, executive function and episodic memory in humans (reviewed in [69, 70]) and stimulate neurogenesis, synaptic plasticity and reduced neuroinflammation in the hippocampus (reviewed in [71]). Anthocyanin-rich cherry juice improved verbal fluency and short- and long-term memory performance in people with mild-to-moderate dementia during a 12 week randomised, controlled clinical trial of older people (+70 years) with mild to moderate dementia (200 ml/day cherry juice vs. control juice lacking anthocyanin) [72]. Interestingly, both cherries and cannabis plants contain phenolic acids related to flavonoid and anthocyanin biosynthesis pathways [65, 73]. Indeed, hemp seed extract can contain phenolic compound levels that are comparable to Japanese plums [74, 75]. Japanese plums are an important source of anthocyanins, with particularly high levels in darker purple, blue and black coloured fruits [75]. Similar to cannabis plants, the phytochemical profile of Japanese plum varieties is influenced by horticultural practices, processing and storage conditions [75]. Other commercial plants, such as violet cauliflower and Thai purple basil, gain their unusual purple colouring through modifications to anthocyanin regulatory genes [76, 77]. Therefore, it is possible that plants can be manipulated naturally and artificially (i.e., genetically) to maximise anthocyanin content.
\n
\n
\n
4.3. Conclusions on the effects of terpenes and flavonoids on the brain
\n
The terpenes linalool, α-pinene and β-caryophyllene, as well as flavonoids and anthocyanins confer pro-cognitive, neuroprotective and anti-inflammatory effects in models of cerebral ischemia and Alzheimer’s disease, as well as some anxiolytic effects. Most studies have been conducted in pre-clinical (rodent) models; however, pro-cognitive effects of flavonoids and anthocyanins have been shown in human clinical studies of dementia. Overall, combinations of CBD with other key phytochemicals found in cannabis could confer benefits on brain health through a multi-target synergy (entourage effect); however, further research is required.
\n
\n
\n
\n
5. Overall conclusion
\n
This chapter has identified a consensus in the scientific literature that specific phytochemicals (CBD, linalool, α-pinene, β-caryophyllene, flavonoids and anthocyanins) found in cannabis plants are beneficial for cognition and brain health in a number of disease states. These compounds are psychoactive as they alter the brain to effect behaviour, and there is some evidence that they can differentially affect healthy individuals (e.g., CBD has no cognitive benefits and linalool has detrimental effects on cognition in healthy subjects). Therefore, societal consideration of ‘medicinal cannabis’ as a true medicine is necessary, that is, prescribed for patients who require treatment of a clinically diagnosed illness. Further research is needed to inform optimal prescription for treating specific illnesses, including dose, route of administration, long-term clinical efficacy, safety and side effects. There is some evidence to support the existence of an ‘entourage effect’—such synergism could arise from a multi-target approach. The united benefits of specific terpenes and flavonoids could boost the therapeutic potential of CBD to improve cognition in disease states that manifest impairment; we are currently investigating these synergies in my laboratory. An other exciting future area of investigation is the identification of select cannabis phytochemical profiles that will treat specific illnesses with optimal efficacy. Following this, efforts towards standardising horticultural and cannabis plant processing practices to ensure optimal and reproducible medicines can be directed towards a proven goal—a translational interface between medical science and horticulture.
\n
\n
Acknowledgments
\n
I wish to acknowledge the work of Ashleigh L. Osborne, Professor Nadia Solowij and Distinguished Professor Xu-Feng Huang as co-investigators on our project examining the pro-cognitive effects of CBD in a rodent model of schizophrenia. Thanks to Mr. Heiko Hampsink, GHM Genetic Development, The Netherlands, for supplying the purple cannabis photo. I extend gratitude to Mr. Thomas Forrest (Indicated Technology, Australia) and Mr. Heiko Hampsink for generously sharing their knowledge of cannabis horticulture.
\n
Conflict of interest
There are no conflicts of interest to declare.
\n
Notes/Thanks/Other declarations
\n
I dedicate this book chapter to my husband, M. Green, for his tireless support.
\n
\n',keywords:"medicinal cannabis, entourage effect, synergy, cannabidiol, CBD, terpenes, linalool, alpha-pinene, beta-caryophyllene, phenol, flavonoid, anthocyanins, purple cannabis, marijuana, cognition, learning, memory, brain, therapeutics, neuroprotection, inflammation",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/62431.pdf",chapterXML:"https://mts.intechopen.com/source/xml/62431.xml",downloadPdfUrl:"/chapter/pdf-download/62431",previewPdfUrl:"/chapter/pdf-preview/62431",totalDownloads:984,totalViews:592,totalCrossrefCites:2,totalDimensionsCites:5,hasAltmetrics:1,dateSubmitted:"March 14th 2018",dateReviewed:"June 3rd 2018",datePrePublished:"November 5th 2018",datePublished:null,dateFinished:null,readingETA:"0",abstract:"‘Medicinal cannabis’ can be defined as pharmaceutical grade cannabis-based products used for the treatment of illness. Beneficial treatment effects of cannabidiol (CBD), a major non-intoxicating compound isolated from the cannabis plant, have been shown in multiple states of cognitive impairment, including neurodegenerative (Alzheimer’s, Huntington’s and Parkinson’s disease), neuroinflammatory (sepsis-induced encephalopathy) and neurological disorders (ischemic brain injury). CBD can also treat some of the symptoms of schizophrenia, including cognitive deficits (impairments in learning and memory), which is a major symptom domain of the illness that is largely resistant to existing antipsychotic medications. However, empirical evidence suggests the presence of an ‘entourage effect’ in cannabis; that is, observations that medicinal cannabis seems to work better in some instances when administered as a whole-plant extract. While scientific evidence highlights isolated CBD as a strong candidate for treating cognitive impairment, the entourage effect suggests that the co-operation of other plant molecules could provide further benefits. This chapter explores the scientific evidence surrounding the benefits of CBD and other specific key phytochemicals in cannabis: linalool, α-pinene, β-caryophyllene, flavonoids and anthocyanin, on brain health and cognition.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/62431",risUrl:"/chapter/ris/62431",book:{slug:"recent-advances-in-cannabinoid-research"},signatures:"Katrina Weston-Green",authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Cannabidiol (CBD) and the brain",level:"1"},{id:"sec_2_2",title:"2.1. Cannabidiol protects against cognitive harms of high-THC Cannabis",level:"2"},{id:"sec_3_2",title:"2.2. Cannabidiol treatment for neurological disorders and inflammatory disease states",level:"2"},{id:"sec_3_3",title:"2.2.1. Alzheimer’s disease",level:"3"},{id:"sec_4_3",title:"2.2.2. Huntington’s disease",level:"3"},{id:"sec_5_3",title:"2.2.3. Parkinson’s disease",level:"3"},{id:"sec_6_3",title:"2.2.4. Ischemic brain injury",level:"3"},{id:"sec_7_3",title:"2.2.5. Sepsis-induced encephalopathy",level:"3"},{id:"sec_8_3",title:"2.2.6. Schizophrenia",level:"3"},{id:"sec_10_2",title:"2.3. Conclusions on the use of CBD in neurological disease",level:"2"},{id:"sec_12",title:"3. The entourage effect",level:"1"},{id:"sec_13",title:"4. Non-cannabinoid phytochemicals of Cannabis: terpenes, flavonoids and anthocyanins",level:"1"},{id:"sec_13_2",title:"4.1. Terpenes: linalool, alpha-pinene and beta-caryophyllene",level:"2"},{id:"sec_13_3",title:"4.1.1. Linalool",level:"3"},{id:"sec_14_3",title:"4.1.2. Alpha-pinene",level:"3"},{id:"sec_15_3",title:"4.1.3. Beta-caryophyllene",level:"3"},{id:"sec_17_2",title:"4.2. Phenolic acids: flavonoids and anthocyanins",level:"2"},{id:"sec_18_2",title:"4.3. Conclusions on the effects of terpenes and flavonoids on the brain",level:"2"},{id:"sec_20",title:"5. Overall conclusion",level:"1"},{id:"sec_21",title:"Acknowledgments",level:"1"},{id:"sec_24",title:"Conflict of interest",level:"1"},{id:"sec_21",title:"Notes/Thanks/Other declarations",level:"1"}],chapterReferences:[{id:"B1",body:'Citti C, Pacchetti B, Vandelli MA, Forni F, Cannazza G. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA). Journal of Pharmaceutical and Biomedical Analysis. 2018;149:532-540. DOI: 10.1016/j.jpba.2017.11.044\n'},{id:"B2",body:'ElSohly MA, Gul W. Constituents of Cannabis. In: Pertwee R, editor. Handbook of Cannabis. Oxford, UK: Oxford University Press; 2014. DOI: 10.1093/acprof:oso/9780199662685.001.0001\n'},{id:"B3",body:'Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM. Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. British Journal of Pharmacology. 2015;172(20):4790-4805. DOI: 10.1111/bph.13250\n'},{id:"B4",body:'Seeman P. Cannabidiol is a partial agonist at dopamine D2 high receptors, predicting its antipsychotic clinical dose. Translational Psychiatry. 2016;6(10):e920. DOI: 10.1038/tp.2016.195\n'},{id:"B5",body:'Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C, Klosterkötter J, Hellmich M, Koethe D. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Translational Psychiatry. 2012;2:e94. DOI: 10.1038/tp.2012.15\n'},{id:"B6",body:'Elmes MW, Kaczocha M, Berger WT, Leung K, Ralph BP, Wang L, Sweeney JM, Miyauchi JT, Tsirka SE, Ojima I, Deutsch DG. Fatty acid-binding proteins (FABPs) are intracellular carriers for Delta9-tetrahydrocannabinol (THC) and cannabidiol (CBD). Journal of Biological Chemistry. 2015;290(14):8711-8721. DOI: 10.1074/jbc.M114.618447\n'},{id:"B7",body:'Osborne AL, Solowij N, Weston-Green K. A systematic review of the effect of cannabidiol on cognitive function: Relevance to schizophrenia. Neuroscience and Biobehavioral Reviews. 2017;72:310-324. DOI: 10.1016/j.neubiorev.2016.11.012\n'},{id:"B8",body:'Yucel M, Solowij N, Respondek C, Whittle S, Fornito A, Pantelis C, Lubman DI. Regional brain abnormalities associated with long-term heavy cannabis use. Archives of General Psychiatry. 2008;65(6):694-701. DOI: 10.1001/archpsyc.65.6.694\n'},{id:"B9",body:'Solowij N, Walterfang M, Lubman DI, Whittle S, Lorenzetti V, Styner M, Velakoulis D, Pantelis C, Yucel M. Alteration to hippocampal shape in cannabis users with and without schizophrenia. Schizophrenia Research. 2013;143(1):179-184. DOI: 10.1016/j.schres.2012.10.040\n'},{id:"B10",body:'Yucel M, Lorenzetti V, Suo C, Zalesky A, Fornito A, Takagi MJ, Lubman DI, Solowij N. Hippocampal harms, protection and recovery following regular cannabis use. Translational Psychiatry. 2016;6:e710. DOI: 10.1038/tp.2015.201\n'},{id:"B11",body:'Beale C, Broyd SJ, Chye Y, Suo C, Schira M, Galettis P, Martin JH, Yucel M, Solowij N. Prolonged Cannabidiol treatment effects on hippocampal subfield volumes in current Cannabis users. Cannabis and Cannabinoid Research. 2018;3(1):94-107. DOI: 10.1089/can.2017.0047\n'},{id:"B12",body:'Campos AC, Fogaça MV, Sonego AB, Guimarães FS. Cannabidiol, neuroprotection and neuropsychiatric disorders. Pharmacological Research. 2016;112:119-127. DOI: 10.1016/j.phrs.2016.01.033\n'},{id:"B13",body:'Murphy M, Mills S, Winstone J, Leishman E, Wager-Miller J, Bradshaw H, Mackie K. Chronic adolescent Delta(9)-tetrahydrocannabinol treatment of male mice leads to long-term cognitive and behavioral dysfunction, which are prevented by concurrent Cannabidiol treatment. Cannabis and Cannabinoid Research. 2017;2(1):235-246. DOI: 10.1089/can.2017.0034\n'},{id:"B14",body:'Bloom GS. Amyloid-beta and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurology. 2014;71(4):505-508. DOI: 10.1001/jamaneurol.2013.5847\n'},{id:"B15",body:'Karl T, Cheng D, Garner B, Arnold JC. The therapeutic potential of the endocannabinoid system for Alzheimer’s disease. Expert Opinion on Therapeutic Targets. 2012;16(4):407-420. DOI: 10.1517/14728222.2012.671812\n'},{id:"B16",body:'Casarejos MJ, Perucho J, Gomez A, Munoz MP, Fernandez-Estevez M, Sagredo O, Fernandez Ruiz J, Guzman M, de Yebenes JG, Mena MA. Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy. Journal of Alzheimer’s Disease. 2013;35(3):525-539. DOI: 10.3233/jad-130050\n'},{id:"B17",body:'Aso E, Andres-Benito P, Ferrer I. Delineating the efficacy of a Cannabis-based medicine at advanced stages of dementia in a murine model. Journal of Alzheimer’s Disease. 2016;54(3):903-912. DOI: 10.3233/jad-160533\n'},{id:"B18",body:'Cheng D, Spiro AS, Jenner AM, Garner B, Karl T. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer’s disease transgenic mice. Journal of Alzheimer’s Disease. 2014;42(4):1383-1396. DOI: 10.3233/jad-140921\n'},{id:"B19",body:'Lopez-Sendon Moreno JL, Garcia Caldentey J, Trigo Cubillo P, Ruiz Romero C, Garcia Ribas G, Alonso Arias MA, Garcia de Yebenes MJ, Tolon RM, Galve-Roperh I, Sagredo O, Valdeolivas S, Resel E, Ortega-Gutierrez S, Garcia-Bermejo ML, Fernandez Ruiz J, Guzman M, Garcia de Yebenes Prous J. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. Journal of Neurology. 2016;263(7):1390-1400. DOI: 10.1007/s00415-016-8145-9\n'},{id:"B20",body:'Consroe P, Laguna J, Allender J, Snider S, Stern L, Sandyk R, Kennedy K, Schram K. Controlled clinical trial of cannabidiol in Huntington’s disease. Pharmacology Biochemistry and Behavior. 1991;40(3):701-708. DOI: 10.1016/0091-3057(91)90386-G\n'},{id:"B21",body:'Chagas MH, Zuardi AW, Tumas V, Pena-Pereira MA, Sobreira ET, Bergamaschi MM, dos Santos AC, Teixeira AL, Hallak JE, Crippa JA. Effects of cannabidiol in the treatment of patients with Parkinson’s disease: An exploratory double-blind trial. Journal of Psychopharmacology. 2014;28(11):1088-1098. DOI: 10.1177/0269881114550355\n'},{id:"B22",body:'Zuardi AW, Crippa JA, Hallak JE, Pinto JP, Chagas MH, Rodrigues GG, Dursun SM, Tumas V. Cannabidiol for the treatment of psychosis in Parkinson’s disease. Journal of Psychopharmacology. 2009;23(8):979-983. DOI: 10.1177/0269881108096519\n'},{id:"B23",body:'Peres FF, Levin R, Suiama MA, Diana MC, Gouvêa DA, Almeida V, Santos CM, Lungato L, Zuardi AW, Hallak JEC, Crippa JA, Vânia DA, Silva RH, Abílio VC. Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats. Frontiers in Pharmacology. 2016;7:343. DOI: 10.3389/fphar.2016.00343\n'},{id:"B24",body:'Ceprian M, Jimenez-Sanchez L, Vargas C, Barata L, Hind W, Martinez-Orgado J. Cannabidiol reduces brain damage and improves functional recovery in a neonatal rat model of arterial ischemic stroke. Neuropharmacology. 2017;116:151-159. DOI: 10.1016/j.neuropharm.2016.12.017\n'},{id:"B25",body:'Marinelli L, Balestrino M, Mori L, Puce L, Rosa GM, Giorello L, Curra A, Fattapposta F, Serrati C, Gandolfo C, Abbruzzese G, Trompetto C. A randomised controlled cross-over double-blind pilot study protocol on THC:CBD oromucosal spray efficacy as an add-on therapy for post-stroke spasticity. BMJ Open. 2017;7(9):e016843. DOI: 10.1136/bmjopen-2017-016843\n'},{id:"B26",body:'Widmann CN, Heneka MT. Long-term cerebral consequences of sepsis. The Lancet Neurology. 2014;13(6):630-636. DOI: 10.1016/S1474-4422(14)70017-1\n'},{id:"B27",body:'Ruiz-Valdepeñas L, Martínez-Orgado JA, Benito C, Millán Á, Tolón RM, Romero J. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: An intravital microscopy study. Journal of Neuroinflammation. 2011;8(1):5. DOI: 10.1186/1742-2094-8-5\n'},{id:"B28",body:'Nielsen RE, Levander S, Kjaersdam Telléus G, Jensen SOW, Østergaard Christensen T, Leucht S. Second-generation antipsychotic effect on cognition in patients with schizophrenia—A meta-analysis of randomized clinical trials. Acta Psychiatrica Scandinavica. 2015;131(3):185-196. DOI: 10.1111/acps.12374\n'},{id:"B29",body:'Weston-Green K, Huang XF, Deng C. Alterations to melanocortinergic, GABAergic and cannabinoid neurotransmission associated with olanzapine-induced weight gain. PLoS One. 2012;7(3):e33548. DOI: 10.1371/journal.pone.0033548\n'},{id:"B30",body:'Weston-Green K, Huang XF, Deng C. Second generation antipsychotic-induced type 2 diabetes: A role for the muscarinic M3 receptor. CNS Drugs. 2013;27(12):1069-1080. DOI: 10.1007/s40263-013-0115-5\n'},{id:"B31",body:'Osborne AL, Solowij N, Babic I, Huang XF, Weston-Green K. Improved social interaction, recognition and working memory with Cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology. 2017;42(7):1447-1457. DOI: 10.1038/npp.2017.40\n'},{id:"B32",body:'McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, Taylor A, Wright S. Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: A multicenter randomized controlled trial. American Journal of Psychiatry. 2017;175(3):225-231. DOI: 10.1176/appi.ajp.2017.17030325\n'},{id:"B33",body:'Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee M-H, Vogel Z, Bisogno T, De Petrocellis L, Di Marzo V, Mechoulam R. An entourage effect: Inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. European Journal of Pharmacology. 1998;353(1):23-31. DOI: 10.1016/S0014-2999(98)00392-6\n'},{id:"B34",body:'Piomelli D, Russo EB. The Cannabis sativa versus Cannabis indica debate: An interview with Ethan Russo, MD. Cannabis and Cannabinoid Research. 2016;1(1):44-46. DOI: 10.1089/can.2015.29003.ebr\n'},{id:"B35",body:'Wagner H, Ulrich-Merzenich G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine. 2009;16(2-3):97-110. DOI: 10.1016/j.phymed.2008.12.018\n'},{id:"B36",body:'Carlini EA, Karniol IG, Renault PF, Schuster CR. Effects of marihuana in laboratory animals and in man. British Journal of Pharmacology. 1974;50(2):299-309\n'},{id:"B37",body:'Ryan D, Drysdale AJ, Pertwee RG, Platt B. Differential effects of cannabis extracts and pure plant cannabinoids on hippocampal neurones and glia. Neuroscience Letters. 2006;408(3):236-241. DOI: 10.1016/j.neulet.2006.09.008\n'},{id:"B38",body:'Russo EB. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology. 2011;163(7):1344-1364. DOI: 10.1111/j.1476-5381.2011.01238.x\n'},{id:"B39",body:'Valdeolivas S, Navarrete C, Cantarero I, Bellido ML, Munoz E, Sagredo O. Neuroprotective properties of cannabigerol in Huntington’s disease: Studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics. 2015;12(1):185-199. DOI: 10.1007/s13311-014-0304-z\n'},{id:"B40",body:'Andre CM, Hausman J-F, Guerriero G. Cannabis sativa: The plant of the thousand and one molecules. Frontiers in Plant Science. 2016;7(19). DOI: 10.3389/fpls.2016.00019\n'},{id:"B41",body:'Elzinga S, Fischedick J, Podkolinski R, Raber J. Cannabinoids and terpenes as chemotaxonomic markers in Cannabis. Natural Products Chemistry & Research. 2015;3(181). DOI: 10.4172/2329-6836.1000181\n'},{id:"B42",body:'Fischedick JT, Hazekamp A, Erkelens T, Choi YH, Verpoorte R. Metabolic fingerprinting of Cannabis sativa L, cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry. 2010;71(17-18):2058-2073. DOI: 10.1016/j.phytochem.2010.10.001\n'},{id:"B43",body:'Lewis MA, Russo EB, Smith KM. Pharmacological foundations of Cannabis chemovars. Planta Medica. 2018;84(4):225-233. DOI: 10.1055/s-0043-122240\n'},{id:"B44",body:'Oldfield E, Lin F-Y. Terpene biosynthesis: Modularity rules. Angewandte Chemie (International Ed. in English). 2012;51(5):1124-1137. DOI: 10.1002/anie.201103110\n'},{id:"B45",body:'Yavari M, Mirdamadi S, Masoudi S, Tabatabaei-Anaraki M, Larijani K, Rustaiyan A. Composition and antibacterial activity of the essential oil of a green type and a purple type of Ocimum basilicum L. from Iran. Journal of Essential Oil Research. 2011;23(1):1-4. DOI: 10.1080/10412905.2011.9700421\n'},{id:"B46",body:'Sabogal-Guáqueta AM, Osorio E, Cardona-Gómez GP. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer’s mice. Neuropharmacology. 2016;102:111-120. DOI: 10.1016/j.neuropharm.2015.11.002\n'},{id:"B47",body:'Xu P, Wang K, Lu C, Dong L, Gao L, Yan M, Aibai S, Yang Y, Liu X. The protective effect of lavender essential oil and its main component linalool against the cognitive deficits induced by D-galactose and aluminum trichloride in mice. Evidence-based Complementary and Alternative Medicine. 2017;2017:7426538. DOI: 10.1155/2017/7426538\n'},{id:"B48",body:'Sabogal-Guaqueta AM, Posada-Duque R, Cortes NC, Arias-Londono JD, Cardona-Gomez GP. Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by linalool. Neuropharmacology. 2018;135:555-571. DOI: 10.1016/j.neuropharm.2018.04.015\n'},{id:"B49",body:'Coelho VR, Gianesini J, Von Borowski R, Mazzardo-Martins L, Martins DF, Picada JN, Santos ARS, Brum LFS, Pereira P. (−)-linalool, a naturally occurring monoterpene compound, impairs memory acquisition in the object recognition task, inhibitory avoidance test and habituation to a novel environment in rats. Phytomedicine. 2011;18(10):896-901. DOI: 10.1016/j.phymed.2011.02.010\n'},{id:"B50",body:'Linck VM, da Silva AL, Figueiró M, Caramão EB, Moreno PRH, Elisabetsky E. Effects of inhaled linalool in anxiety, social interaction and aggressive behavior in mice. Phytomedicine. 2010;17(8):679-683. DOI: 10.1016/j.phymed.2009.10.002\n'},{id:"B51",body:'Booth JK, Page JE, Bohlmann J. Terpene synthases from Cannabis sativa. PLoS One. 2017;12(3):e0173911. DOI: 10.1371/journal.pone.0173911\n'},{id:"B52",body:'Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research. 2011;221(2):555-563. DOI: 10.1016/j.bbr.2010.11.058\n'},{id:"B53",body:'Lee GY, Lee C, Park GH, Jang JH. Amelioration of scopolamine-induced learning and memory impairment by alpha-Pinene in C57BL/6 mice. Evidence-based Complementary and Alternative Medicine. 2017;2017:4926815. DOI: 10.1155/2017/4926815\n'},{id:"B54",body:'Yang H, Woo J, Pae AN, Um MY, Cho NC, Park KD, Yoon M, Kim J, Lee CJ, Cho S. Alpha-Pinene, a major constituent of pine tree oils, enhances non-rapid eye movement sleep in mice through GABAA-benzodiazepine receptors. Molecular Pharmacology. 2016;90(5):530-539. DOI: 10.1124/mol.116.105080\n'},{id:"B55",body:'Kasuya H, Okada N, Kubohara M, Satou T, Masuo Y, Koike K. Expression of BDNF and TH mRNA in the brain following inhaled administration of alpha-pinene. Phytotherapy Research. 2015;29(1):43-47. DOI: 10.1002/ptr.5224\n'},{id:"B56",body:'Kim K, Bu Y, Jeong S, Lim J, Kwon Y, Cha DS, Kim J, Jeon S, Eun J, Jeon H. Memory-enhancing effect of a supercritical carbon dioxide fluid extract of the needles of Abies koreana on scopolamine-induced amnesia in mice. Bioscience, Biotechnology, and Biochemistry. 2006;70(8):1821-1826. DOI: 10.1271/bbb.50608\n'},{id:"B57",body:'Gertsch J, Leonti M, Raduner S, Racz I, Chen J-Z, Xie X-Q, Altmann K-H, Karsak M, Zimmer A. Beta-caryophyllene is a dietary cannabinoid. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(26):9099-9104. DOI: 10.1073/pnas.0803601105\n'},{id:"B58",body:'Nurdjannah N, Bermawie N, 11 - Cloves A2. In: Peter KV, editor. Handbook of Herbs and Spices. 2 ed. Cambridge, UK: Woodhead Publishing; 2012. pp. 197-215. DOI: 10.1533/9780857095671.197\n'},{id:"B59",body:'Cheng Y, Dong Z, Liu S. Beta-Caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 mice through CB2 receptor activation and the PPARgamma pathway. Pharmacology. 2014;94(1-2):1-12. DOI: 10.1159/000362689\n'},{id:"B60",body:'Lou J, Teng Z, Zhang L, Yang J, Ma L, Wang F, Tian X, An R, Yang M, Zhang Q, Xu L, Dong Z. beta-Caryophyllene/hydroxypropyl-beta-cyclodextrin inclusion complex improves cognitive deficits in rats with vascular dementia through the cannabinoid receptor type 2-mediated pathway. Frontiers in Pharmacology. 2017;8:2. DOI: 10.3389/fphar.2017.00002\n'},{id:"B61",body:'Poddighe L, Carta G, Serra MP, Melis T, Boi M, Lisai S, Murru E, Muredda L, Collu M, Banni S, Quartu M. Acute administration of beta-caryophyllene prevents endocannabinoid system activation during transient common carotid artery occlusion and reperfusion. Lipids in Health and Disease. 2018;17(1):23. DOI: 10.1186/s12944-018-0661-4\n'},{id:"B62",body:'Yang M, Lv Y, Tian X, Lou J, An R, Zhang Q, Li M, Xu L, Dong Z. Neuroprotective effect of beta-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: In vivo and in vitro. Frontiers in Neuroscience. 2017;11:583. DOI: 10.3389/fnins.2017.00583\n'},{id:"B63",body:'Oliveira DR, Silva DM, Florentino IF, de Brito A, Fajemiroye JO, Silva DPB, da Rocha F, Costa EA, De Carvalho PG. Monoamine involvement in the antidepressant-like effect of beta-caryophyllene. CNS & Neurological Disorders Drug Targets. 2018. DOI: 10.2174/1871527317666180420150249\n'},{id:"B64",body:'Flores-Sanchez IJ, Verpoorte R. Secondary metabolism in Cannabis. Phytochemistry Reviews. 2008;7(3):615-639. DOI: 10.1007/s11101-008-9094-4\n'},{id:"B65",body:'Docimo T, Consonni R, Coraggio I, Mattana M. Early Phenylpropanoid biosynthetic steps in Cannabis sativa: Link between genes and metabolites. International Journal of Molecular Sciences. 2013;14(7):13626-13644. DOI: 10.3390/ijms140713626\n'},{id:"B66",body:'Lesma G, Consonni R, Gambaro V, Remuzzi C, Roda G, Silvani A, Vece V, Visconti GL. Cannabinoid-free Cannabis sativa L. grown in the Po valley: Evaluation of fatty acid profile, antioxidant capacity and metabolic content. Natural Product Research. 2014;28(21):1801-1807. DOI: 10.1080/14786419.2014.926354\n'},{id:"B67",body:'Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood-brain barrier: In vitro studies. Journal of Neurochemistry. 2003;85(1):180-192\n'},{id:"B68",body:'Gutierres JM, Carvalho FB, Schetinger MRC, Marisco P, Agostinho P, Rodrigues M, Rubin MA, Schmatz R, da Silva CR, de Cognato PG, Farias JG, Signor C, Morsch VM, Mazzanti CM, Bogo M, Bonan CD, Spanevello R. Anthocyanins restore behavioral and biochemical changes caused by streptozotocin-induced sporadic dementia of Alzheimer’s type. Life Sciences. 2014;96(1):7-17. DOI: 10.1016/j.lfs.2013.11.014\n'},{id:"B69",body:'Bell L, Lamport JD, Butler TL, Williams MC. A review of the cognitive effects observed in humans following acute supplementation with flavonoids, and their associated mechanisms of action. Nutrients. 2015;7(12):10290-10306. DOI: 10.3390/nu7125538\n'},{id:"B70",body:'Spencer JP. The impact of fruit flavonoids on memory and cognition. The British Journal of Nutrition. 2010;104(Suppl 3):S40-S47. DOI: 10.1017/s0007114510003934\n'},{id:"B71",body:'Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology. Journal of the Science of Food and Agriculture. 2014;94(6):1042-1056. DOI: 10.1002/jsfa.6473\n'},{id:"B72",body:'Kent K, Charlton K, Roodenrys S, Batterham M, Potter J, Traynor V, Gilbert H, Morgan O, Richards R. Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. European Journal of Nutrition. 2017;56(1):333-341. DOI: 10.1007/s00394-015-1083-y\n'},{id:"B73",body:'Kent K, Charlton KE, Jenner A, Roodenrys S. Acute reduction in blood pressure following consumption of anthocyanin-rich cherry juice may be dose-interval dependant: A pilot cross-over study. International Journal of Food Sciences and Nutrition. 2016;67(1):47-52. DOI: 10.3109/09637486.2015.1121472\n'},{id:"B74",body:'Smeriglio A, Galati EM, Monforte MT, Lanuzza F, D’Angelo V, Circosta C. Polyphenolic compounds and antioxidant activity of cold-pressed seed oil from Finola cultivar of Cannabis sativa L. Phytotherapy Research. 2016;30(8):1298-1307. DOI: 10.1002/ptr.5623\n'},{id:"B75",body:'Fanning KJ, Topp B, Russell D, Stanley R, Netzel M. Japanese plums (Prunus salicina Lindl.) and phytochemicals—Breeding, horticultural practice, postharvest storage, processing and bioactivity. Journal of the Science of Food and Agriculture. 2014;94(11):2137-2147. DOI: 10.1002/jsfa.6591\n'},{id:"B76",body:'Chiu L-W, Zhou X, Burke S, Wu X, Prior RL, Li L. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiology. 2010;154(3):1470-1480. DOI: 10.1104/pp.110.164160\n'},{id:"B77",body:'Phippen WB, Simon JE. Anthocyanin inheritance and instability in purple basil (Ocimum basilicum L.). Journal of Heredity. 2000;91(4):289-296\n'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Katrina Weston-Green",address:"katrina_green@uow.edu.au",affiliation:'
Neuropharmacology and Molecular Psychiatry Research Laboratory, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Australia
Molecular Horizons, Faculty of Science, Medicine and Health, University of Wollongong, Australia
Illawarra Health and Medical Research Institute, Australia
Australian Centre for Cannabinoid Clinical and Research Excellence, Australia
'}],corrections:null},book:{id:"7040",title:"Recent Advances in Cannabinoid Research",subtitle:null,fullTitle:"Recent Advances in Cannabinoid Research",slug:"recent-advances-in-cannabinoid-research",publishedDate:"May 10th 2019",bookSignature:"Willard J Costain and Robert B Laprairie",coverURL:"https://cdn.intechopen.com/books/images_new/7040.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"89884",title:"Dr.",name:"Willard James",middleName:null,surname:"Costain",slug:"willard-james-costain",fullName:"Willard James Costain"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"66581",title:"Introduction to Recent Advances in Cannabinoid Research",slug:"introduction-to-recent-advances-in-cannabinoid-research",totalDownloads:733,totalCrossrefCites:0,signatures:"Robert B Laprairie and Will Costain",authors:[{id:"89884",title:"Dr.",name:"Willard James",middleName:null,surname:"Costain",fullName:"Willard James Costain",slug:"willard-james-costain"},{id:"245659",title:"Dr.",name:"Robert Brad",middleName:null,surname:"Laprairie",fullName:"Robert Brad Laprairie",slug:"robert-brad-laprairie"}]},{id:"62750",title:"Zebrafish as a High-Throughput In Vivo Model for Testing the Bioactivity of Cannabinoids",slug:"zebrafish-as-a-high-throughput-in-vivo-model-for-testing-the-bioactivity-of-cannabinoids",totalDownloads:680,totalCrossrefCites:0,signatures:"Lee Ellis",authors:[null]},{id:"63474",title:"Structural Insights from Recent CB1 X-Ray Crystal Structures",slug:"structural-insights-from-recent-cb1-x-ray-crystal-structures",totalDownloads:519,totalCrossrefCites:0,signatures:"Rufaida Al-Zoubi, Dow P. Hurst and Patricia H. Reggio",authors:[null]},{id:"63068",title:"Quality Traits of Medical Cannabis sativa L. Inflorescences and Derived Products Based on Comprehensive Mass-Spectrometry Analytical Investigation",slug:"quality-traits-of-medical-cannabis-sativa-l-inflorescences-and-derived-products-based-on-comprehensi",totalDownloads:572,totalCrossrefCites:2,signatures:"Lorenzo Calvi, Radmila Pavlovic, Sara Panseri, Luca Giupponi,\nValeria Leoni and Annamaria Giorgi",authors:[null]},{id:"62431",title:"The United Chemicals of Cannabis: Beneficial Effects of Cannabis Phytochemicals on the Brain and Cognition",slug:"the-united-chemicals-of-cannabis-beneficial-effects-of-cannabis-phytochemicals-on-the-brain-and-cogn",totalDownloads:984,totalCrossrefCites:2,signatures:"Katrina Weston-Green",authors:[null]},{id:"62622",title:"Modulation of Pain by Endocannabinoids in the Periphery",slug:"modulation-of-pain-by-endocannabinoids-in-the-periphery",totalDownloads:484,totalCrossrefCites:0,signatures:"Megan L. Uhelski, Iryna Khasabova and Donald A. Simone",authors:[null]},{id:"62877",title:"Possible Role of the Endocannabinoid System in Tourette Syndrome",slug:"possible-role-of-the-endocannabinoid-system-in-tourette-syndrome",totalDownloads:681,totalCrossrefCites:0,signatures:"Natalia Szejko, Ewgeni Jakubovski and Kirsten Müller-Vahl",authors:[null]},{id:"63561",title:"Cannabis Use Disorder",slug:"cannabis-use-disorder",totalDownloads:531,totalCrossrefCites:0,signatures:"Iris Balodis and James MacKillop",authors:[null]},{id:"64557",title:"Bioligands Acting on the Cannabinoid Receptor CB1 for the Treatment of Withdrawal Syndrome Caused by Cannabis sativa",slug:"bioligands-acting-on-the-cannabinoid-receptor-cb1-for-the-treatment-of-withdrawal-syndrome-caused-by",totalDownloads:502,totalCrossrefCites:0,signatures:"Jaderson Vieira Ferreira, Lenir Cabral Correa, Daniel Castro da Costa\nand Lorane Izabel da Silva Hage-Melim",authors:[null]},{id:"66358",title:"Pediatric Dosing Considerations for Medical Cannabis",slug:"pediatric-dosing-considerations-for-medical-cannabis",totalDownloads:480,totalCrossrefCites:1,signatures:"Jane Alcorn, Stephanie Vuong, Fang Wu, Blair Seifert and Andrew\nLyon",authors:[null]},{id:"66608",title:"Cannabis for Pediatric and Adult Epilepsy",slug:"cannabis-for-pediatric-and-adult-epilepsy",totalDownloads:830,totalCrossrefCites:0,signatures:"Richard James Huntsman, Richard Tang-Wai and Jose Tellez-\nZenteno",authors:[null]}]},relatedBooks:[{type:"book",id:"3846",title:"Neurochemistry",subtitle:null,isOpenForSubmission:!1,hash:"671f065e6c1035adb042edc442626b8a",slug:"neurochemistry",bookSignature:"Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/3846.jpg",editedByType:"Edited by",editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"46312",title:"The Blood Brain Barrier — Regulation of Fatty Acid and Drug Transport",slug:"the-blood-brain-barrier-regulation-of-fatty-acid-and-drug-transport",signatures:"Siddhartha Dalvi, Ngoc On, Hieu Nguyen, Michael Pogorzelec,\nDonald W. Miller and Grant M. Hatch",authors:[{id:"130802",title:"Dr.",name:"Grant",middleName:null,surname:"Hatch",fullName:"Grant Hatch",slug:"grant-hatch"},{id:"170126",title:"Prof.",name:"Donald",middleName:null,surname:"Miller",fullName:"Donald Miller",slug:"donald-miller"},{id:"170127",title:"Mr.",name:"Michael",middleName:null,surname:"Pogorzelec",fullName:"Michael Pogorzelec",slug:"michael-pogorzelec"},{id:"170128",title:"Ms.",name:"Hieu",middleName:null,surname:"Nguyen",fullName:"Hieu Nguyen",slug:"hieu-nguyen"},{id:"170129",title:"Dr.",name:"Ngoc",middleName:null,surname:"On",fullName:"Ngoc On",slug:"ngoc-on"},{id:"170130",title:"Dr.",name:"Siddhartha",middleName:null,surname:"Dalvi",fullName:"Siddhartha Dalvi",slug:"siddhartha-dalvi"}]},{id:"46317",title:"TRP Channels in Neuronal and Glial Signal Transduction",slug:"trp-channels-in-neuronal-and-glial-signal-transduction",signatures:"Christian Harteneck and Kristina Leuner",authors:[{id:"169619",title:"Dr.",name:"Christian",middleName:null,surname:"Harteneck",fullName:"Christian Harteneck",slug:"christian-harteneck"},{id:"169620",title:"Dr.",name:"Kristina",middleName:null,surname:"Leuner",fullName:"Kristina Leuner",slug:"kristina-leuner"}]},{id:"46380",title:"Cytosolic Calcium Homeostasis in Neurons — Control Systems, Modulation by Reactive Oxygen and Nitrogen Species, and Space and Time Fluctuations",slug:"cytosolic-calcium-homeostasis-in-neurons-control-systems-modulation-by-reactive-oxygen-and-nitrogen-",signatures:"Carlos Gutierrez-Merino, Dorinda Marques-da-Silva, Sofia\nFortalezas and Alejandro K. Samhan-Arias",authors:[{id:"169618",title:"Dr.",name:"Carlos",middleName:null,surname:"Gutierrez-Merino",fullName:"Carlos Gutierrez-Merino",slug:"carlos-gutierrez-merino"}]},{id:"46311",title:"Peptide and Protein Neurotoxin Toolbox in Research on Nicotinic Acetylcholine Receptors",slug:"peptide-and-protein-neurotoxin-toolbox-in-research-on-nicotinic-acetylcholine-receptors",signatures:"Victor Tsetlin and Igor Kasheverov",authors:[{id:"169617",title:"Dr.",name:"Victor",middleName:null,surname:"Tsetlin",fullName:"Victor Tsetlin",slug:"victor-tsetlin"},{id:"170304",title:"Dr.",name:"Igor",middleName:null,surname:"Kasheverov",fullName:"Igor Kasheverov",slug:"igor-kasheverov"}]},{id:"46290",title:"Synaptic Soluble and Membrane-Bound Choline Acetyltransferase as a Marker of Cholinergic Function In Vitro and In Vivo",slug:"synaptic-soluble-and-membrane-bound-choline-acetyltransferase-as-a-marker-of-cholinergic-function-in",signatures:"E.I. Zakharova and A.M. Dudchenko",authors:[{id:"169625",title:"Dr.",name:"Elena",middleName:null,surname:"Zakharova",fullName:"Elena Zakharova",slug:"elena-zakharova"},{id:"169867",title:"Dr.",name:"Alexander",middleName:null,surname:"Dudchenko",fullName:"Alexander Dudchenko",slug:"alexander-dudchenko"}]},{id:"46345",title:"Neurochemical Communication: The Case of Endocannabinoids",slug:"neurochemical-communication-the-case-of-endocannabinoids",signatures:"Thomas Heinbockel",authors:[{id:"70569",title:"Dr.",name:"Thomas",middleName:null,surname:"Heinbockel",fullName:"Thomas Heinbockel",slug:"thomas-heinbockel"}]},{id:"46379",title:"High Temporal Resolution Brain Microdialysis as a Tool to Investigate the Dynamics of Interactions Between Olfactory Cortex and Amygdala in Odor Fear Conditioning",slug:"high-temporal-resolution-brain-microdialysis-as-a-tool-to-investigate-the-dynamics-of-interactions-b",signatures:"Chloé Hegoburu, Luc Denoroy, Anne-Marie Mouly and Sandrine\nParrot",authors:[{id:"169622",title:"Dr.",name:"Chloé",middleName:null,surname:"Hegoburu",fullName:"Chloé Hegoburu",slug:"chloe-hegoburu"},{id:"169855",title:"Dr.",name:"Luc",middleName:null,surname:"Denoroy",fullName:"Luc Denoroy",slug:"luc-denoroy"},{id:"169856",title:"Dr.",name:"Anne-Marie",middleName:null,surname:"Mouly",fullName:"Anne-Marie Mouly",slug:"anne-marie-mouly"},{id:"170753",title:"Dr.",name:"Sandrine",middleName:null,surname:"Parrot",fullName:"Sandrine Parrot",slug:"sandrine-parrot"}]},{id:"46438",title:"Participation of Neurochemical Signaling in Adult Neurogenesis and Differentiation",slug:"participation-of-neurochemical-signaling-in-adult-neurogenesis-and-differentiation",signatures:"E.V. Pushchina, A.A. Varaksin and D.K. Obukhov",authors:[{id:"169621",title:"Dr.",name:"Evgeniya",middleName:null,surname:"Pushchina",fullName:"Evgeniya Pushchina",slug:"evgeniya-pushchina"},{id:"169853",title:"Dr.",name:"Anatoly",middleName:null,surname:"Varaksin",fullName:"Anatoly Varaksin",slug:"anatoly-varaksin"},{id:"169854",title:"Dr.",name:"Dmitry",middleName:null,surname:"Obukhov",fullName:"Dmitry Obukhov",slug:"dmitry-obukhov"}]},{id:"46296",title:"Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity",slug:"physiological-role-of-amyloid-beta-in-neural-cells-the-cellular-trophic-activity",signatures:"M. del C. Cárdenas-Aguayo, M. del C. Silva-Lucero, M. Cortes-Ortiz,\nB. Jiménez-Ramos, L. Gómez-Virgilio, G. Ramírez-Rodríguez, E. Vera-\nArroyo, R. Fiorentino-Pérez, U. García, J. Luna-Muñoz and M.A.\nMeraz-Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",fullName:"Jose Luna-Muñoz",slug:"jose-luna-munoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",fullName:"Marco Meraz-Ríos",slug:"marco-meraz-rios"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",fullName:"Maria del Carmen Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo"},{id:"169857",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Silva-Lucero",fullName:"Maria del Carmen Silva-Lucero",slug:"maria-del-carmen-silva-lucero"},{id:"169858",title:"Dr.",name:"Maribel",middleName:null,surname:"Cortes-Ortiz",fullName:"Maribel Cortes-Ortiz",slug:"maribel-cortes-ortiz"},{id:"169859",title:"Dr.",name:"Berenice",middleName:null,surname:"Jimenez-Ramos",fullName:"Berenice Jimenez-Ramos",slug:"berenice-jimenez-ramos"},{id:"169860",title:"Dr.",name:"Laura",middleName:null,surname:"Gomez-Virgilio",fullName:"Laura Gomez-Virgilio",slug:"laura-gomez-virgilio"},{id:"169861",title:"Dr.",name:"Gerardo",middleName:null,surname:"Ramirez-Rodriguez",fullName:"Gerardo Ramirez-Rodriguez",slug:"gerardo-ramirez-rodriguez"},{id:"169862",title:"Dr.",name:"Eduardo",middleName:null,surname:"Vera-Arroyo",fullName:"Eduardo Vera-Arroyo",slug:"eduardo-vera-arroyo"},{id:"169863",title:"Dr.",name:"Rosana Sofia",middleName:null,surname:"Fiorentino-Perez",fullName:"Rosana Sofia Fiorentino-Perez",slug:"rosana-sofia-fiorentino-perez"},{id:"169864",title:"Dr.",name:"Ubaldo",middleName:null,surname:"Garcia",fullName:"Ubaldo Garcia",slug:"ubaldo-garcia"}]},{id:"46347",title:"Alzheimer Disease: The Role of Aβ in the Glutamatergic System",slug:"alzheimer-disease-the-role-of-a-in-the-glutamatergic-system",signatures:"Victoria Campos-Peña and Marco Antonio Meraz-Ríos",authors:[{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",fullName:"Marco Meraz-Ríos",slug:"marco-meraz-rios"},{id:"169615",title:"Dr.",name:"Victoria",middleName:null,surname:"Campos-Peña",fullName:"Victoria Campos-Peña",slug:"victoria-campos-pena"}]},{id:"46370",title:"Genetics of Alzheimer´S Disease",slug:"genetics-of-alzheimer-s-disease",signatures:"Victoria Campos-Peña, Rocío Gómez and Marco Antonio Meraz\nRíos",authors:[{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",fullName:"Marco Meraz-Ríos",slug:"marco-meraz-rios"},{id:"169615",title:"Dr.",name:"Victoria",middleName:null,surname:"Campos-Peña",fullName:"Victoria Campos-Peña",slug:"victoria-campos-pena"},{id:"170264",title:"Dr.",name:"Rocío",middleName:null,surname:"Gómez",fullName:"Rocío Gómez",slug:"rocio-gomez"}]},{id:"46316",title:"Accumulation of Abnormally Processed Tau Protein in Neuronal Cells as a Biomarker for Dementia",slug:"accumulation-of-abnormally-processed-tau-protein-in-neuronal-cells-as-a-biomarker-for-dementia",signatures:"J. Luna-Muñoz, A. Martínez-Maldonado, V. Ibarra-Bracamontes, M.\nA. Ontiveros-Torres, I. Ferrer, B. Floran-Garduño, M. del C. Cárdenas-\nAguayo, R. Mena and M.A. Meraz Ríos",authors:[{id:"42225",title:"Dr.",name:"Jose",middleName:null,surname:"Luna-Muñoz",fullName:"Jose Luna-Muñoz",slug:"jose-luna-munoz"},{id:"114746",title:"Dr.",name:"Marco",middleName:null,surname:"Meraz-Ríos",fullName:"Marco Meraz-Ríos",slug:"marco-meraz-rios"},{id:"169616",title:"Dr.",name:"Maria del Carmen",middleName:null,surname:"Cardenas-Aguayo",fullName:"Maria del Carmen Cardenas-Aguayo",slug:"maria-del-carmen-cardenas-aguayo"},{id:"37331",title:"Prof.",name:"Isidre",middleName:null,surname:"Ferrer",fullName:"Isidre Ferrer",slug:"isidre-ferrer"},{id:"42226",title:"Dr.",name:"Raul",middleName:null,surname:"Mena-López",fullName:"Raul Mena-López",slug:"raul-mena-lopez"},{id:"158882",title:"Dr.",name:"Benjamín",middleName:null,surname:"Florán-Garduño",fullName:"Benjamín Florán-Garduño",slug:"benjamin-floran-garduno"},{id:"169865",title:"Dr.",name:"Alejandra",middleName:null,surname:"Martinez-Maldonado",fullName:"Alejandra Martinez-Maldonado",slug:"alejandra-martinez-maldonado"},{id:"169866",title:"Dr.",name:"Miguel Angel",middleName:null,surname:"Ontiveros-Torres",fullName:"Miguel Angel Ontiveros-Torres",slug:"miguel-angel-ontiveros-torres"}]},{id:"46381",title:"Energy-Dependent Mechanisms of Cholinergic Neurodegeneration",slug:"energy-dependent-mechanisms-of-cholinergic-neurodegeneration",signatures:"Agnieszka Jankowska-Kulawy, Anna Ronowska and Andrzej\nSzutowicz",authors:[{id:"169624",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Jankowska-Kulawy",fullName:"Agnieszka Jankowska-Kulawy",slug:"agnieszka-jankowska-kulawy"},{id:"169868",title:"Dr.",name:"Anna",middleName:null,surname:"Ronowska",fullName:"Anna Ronowska",slug:"anna-ronowska"},{id:"169869",title:"Dr.",name:"Andrzej",middleName:null,surname:"Szutowicz",fullName:"Andrzej Szutowicz",slug:"andrzej-szutowicz"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"73487",title:"Effect of PCP Pesticide Contamination on Soil Quality",doi:"10.5772/intechopen.93714",slug:"effect-of-pcp-pesticide-contamination-on-soil-quality",body:'
1. Introduction
Soil is an active, dynamic, and nonreplaceable reserve, and its situations impact its construction, environmental efficacy, and total stability [1, 2]. The charge of soil reposes on in portion on its ordinary structure and on the variations affected by human use and administration [3]. Soil, as the main interface with other environmental compartments, plays an important role in the fate of organic pollutants. During the treatment of crops, most of the quantities of pesticides applied reach the soil, either because pesticides are directly applied to it, or because the rain has washed the foliage of treated plants (crops and/or weeds). The ground therefore occupies a position central in regulating the fate of pesticides in the environment, and it will have a dual role of storage and purification [4].
Pollutants come into contact with soil primarily through deliberate application, dispersion, and atmospheric deposition. The soil therefore represents a storage reservoir for these substances. These compounds can also be lost from the soil or remain at high concentrations. Consequently, the fate and behavior of organic contaminants in soils have been the subject of intense research, with particular interest in the bioavailability of these contaminants [5]. The greatest difficulties in studying and estimating the retention and degradation of pollutants in soil are the diversity of chemical structures and reactivity of these compounds on the one hand and the high level of diversity of soils in terms of structure and composition, soil, and climatic conditions, especially soil temperature and humidity on the other [6]. Soil pollutants are very diverse, and they are also often harmful and toxic to all living forms and more specifically humans (Roger and Jacq, 2000). The occurrence of pollution most often results from industrial accidents, deposits, or the transport of dangerous materials [7]. Like pesticides, chlorinated solvents, nitrogen, and certain trace elements such as copper, mercury, or silver, pollutants can both be naturally present in the soil or be the result of human activities. This generalized use of PCP has led to the contamination of water and soil systems, with PCP currently considered to be a product of priority for decontamination studies [8]. These compounds are, in fact, the source of many concerns for companies operating in the wood preservation sector. Chlorine compounds are harmful, and they are found in the effluents of many industries, such as the chemical and petrochemical industries, those of resins and coking plants, pesticides, textiles, paper, and even in the pharmaceutical industry and many others [9]. This is why these chlorinated compounds appear as the most frequently encountered pollutants in various natural environments such as forests, rivers, marine waters, industrial discharges, urban effluents and even in the groundwater. The soil has a marked self-purification capacity. It is in fact capable of degrading the polluting compounds or immobilizing them inside it so that the volatilization and leaching processes are drastically reduced to the benefit, also, of the other environmental sectors. However, an excess of pollutant exceeded the soil storage capacity or a change in environmental conditions [10]. Soil, as the main interface with other environmental compartments, plays an important role in the fate of organic pollutants. Pollutants come into contact with soil primarily through deliberate application, dispersion, and atmospheric deposition. The soil therefore represents a storage reservoir for these substances. These compounds can also be lost from the soil or remain at high concentrations. Consequently, the fate and behavior of organic contaminants in soils have been the subject of intense research, with particular interest in the bioavailability of these contaminants [5]. The greatest difficulties in studying and estimating the retention and degradation of pollutants in soil are the diversity of chemical structures and reactivity of these compounds on the one hand and the high level of diversity of soils in terms of structure and composition, soil, and climatic conditions, especially soil temperature and humidity, on the other [6].
2. Soil and pesticide pollution
Vigorous soil is a necessity for a healthy existence. Vigor, value, and sustainability of soils are contingent on their physical, chemical, and biological variety. Hence, soil biodiversity that really tops midair biodiversity is vital for ecosystem permanence and service area. A detailed association occurs among soil biodiversity and agricultural soil organization [11]. Pesticides or biocides are chemicals, organic or inorganic, intended for the fight against undesirable organisms such as bacteria, fungi, insects, and weeds. The use of pesticides appears beneficial, or in the absence of treatments, the yields of agricultural production and quality (essentially the development of crops in the agricultural sector) or industrial (such as wood treatments and railways, textiles and food), would be reduced and/or weakened. Over 500 different pesticide formulations are authorized worldwide to control different types of pests in the agricultural sector [12]. Pesticides are classified into different categories according to their target, their mode of action, their time of action or their chemical nature, and recently, in response to pressure social stressing the danger of pesticides mainly for humans and the environment [12]. In this study, we will focus more specifically on the study of a pesticide very well used in the wood treatment industries, namely PCP. Soil pollution is often thought because of chemical contamination. The use of poor-quality water and application of excessive amounts of pesticides and fertilizers can result in soil contamination. To some degree, most of the soils are capable of adsorbing and detoxifying many pollutants to harmless levels through chemical and biochemical processes. Polluted water and soil pose a serious threat to plants, affecting the yield [13]. Furthermore, soil has the ability to adsorb pesticides in the humus and clay contents [14]. However, soil plays an important role in pesticide degradation [15].
The dispersion of pesticides in the various compartments of the ecosystem (air, soil, and water) is very rapid [4, 17]. When an organic compound is applied and penetrates into the soil, in substance, it may be subject to relocation or alteration of its chemical structure. These mechanisms can be on the one hand abiotic, of a physical nature (volatilization, adsorption by the soil, leaching, etc.) or of a chemical nature (hydrolysis, photodegradation, etc.) and on the other hand biotic when it occurs. Acts of absorption and metabolism by the various microorganisms living in the medium (Figure 1). All of these processes are strictly influenced by the physicochemical properties of the soil and pesticides as well as environmental factors [18].
Figure 1.
Behavior of pesticide molecules in the natural environment [16].
3. Pentachlorophenol and soil contamination
In 1936, the American company Dow and Monsanto Chemical introduced PCP [19]. Due to its high availability and very favorable price, it has been increasingly used in different functions in several countries around the world. Its main use was accentuated in the wood industry as a preservative (80%). PCP (C6Cl5OH) is a highly substituted aromatic compound, prepared by reacting chlorine with phenol in the presence of a catalyst at high temperature and does not have isomers. It was last manufactured in Canada in 1983. Petroleum oils used as a carrier for PCP are generally sourced from Canadian sources. PCP is solid at room temperature. It is a stable organic compound, slightly soluble in water and highly soluble in organic solvents. Also, PCP a proven carcinogen, immunotoxic, produces an oxidative stress and metabolic disorders [20]. PCP is a highly recalcitrant compound with toxic and carcinogenic properties. PCP is a respiratory poison with both noncarcinogenic and carcinogenic health effects. The PCP molecule can be an endocrine disruptor and inflict high toxicity on all types of organisms [21].
Due to its toxicity and carcinogenicity, as well as the large number of known sites contaminated with PCP around the world, it has been placed on the Priority Pollutants Worldwide List. The products treated with PCP are mainly telephone and power line poles and railway ties. It has therefore become the preferred impregnation product for a wide variety of other special purpose products, such as guardrail posts, signposts, retaining walls [22]. It is also used as an antimicrobial agent in industrial cooling systems, in food packaging, as the main active ingredient in exterior stains and paints. It is found in dental care products [23], in antibacterial soaps, in dermatological medical products [24] and as agricultural biocides and fungicides. PCP is toxic to humans as well as to animals. PCP toxicity is due to the fact that it decouples oxidative phosphorylation making the cell membranes permeable to protons and thus dissipating the gradient transmembrane of H + ions and electric potential [25]. It is therefore responsible for alterations in the functionality of the membranes [26]. PCP can be absorbed by mammals through the skin from the ground; it is corrosive to the skin and can cause burns and blisters. In mammals, acute exposure can increase body temperature, causes breathing difficulties, increase blood pressure, causing hypoglycemia and cardiovascular stress [24]. Chronic exposures to PCP can have serious adverse health effects. PCP is a carcinogenic, teratogenic suspect and is highly embryotoxic in addition, potential chronic effects can include kidney, liver, lung and system damage central nervous [24].
Environmental pollution from PCP can occur due to release into the environment during the production, storage, transport or use as a preservative of the wood in place. Also, the production of its sodium salt and the secondary use as fungicide, bactericide, algaecide, herbicide, etc. can cause environmental pollution.
The PCP then enters the surface and deep waters of factories, wood treatment plants, and sites for the accumulation of hazardous waste or for spillage, disposal of hazardous waste and for its use as a pesticide. In soils, due to the stability of its structure and high degree of chlorination, PCP is persistent in the environment and is one of the most common soil contaminants. The dispersion of pesticides in the various compartments of the ecosystem (air, soil, water) is very rapid [17]. When an organic compound is applied and penetrates the soil, in substance, it may be subject to relocation or to a change in its chemical structure. These mechanisms can be on the one hand abiotic, physical in nature (volatilization, adsorption by soil, leaching, etc.) or chemical in nature (hydrolysis, photodegradation, etc.), and on the other hand biotic when it acts of absorption and metabolism by the various microorganisms living in the environment. All these processes are strictly influenced by the physicochemical properties of the soil and pesticides as well as environmental factors [18].
4. Pesticide PCP effect in bacterial ecological system
Microbial communities in soils are among the most diverse on Earth [27]. In doing so, soil microorganisms mainly perform several soil functions such as the nutrient cycle and the detoxification of terrestrial ecosystems [28]. By affecting this diversity, contamination of natural environments constitutes a significant risk that can reduce the ability of ecosystems to resist and recover from the various disturbances they must undergo. The diversity of natural ecosystems is therefore an asset to be preserved. Indeed, it has been shown that the most diverse ecosystems are the most resistant and resilient to natural and anthropogenic disturbances. Since the start of the industrial era, the diversity of natural ecosystems has been in constant decline due to, among other things, contamination of soil, air, and waterways. In order to predict the effect of a substance on a biological community and thus control or limit its use, it is necessary to produce toxicological information on a wide range of organisms. Over 1.75 million different species have been listed for the eukaryotic domain alone [29]. The total number of eukaryotic species has been estimated by several authors and is generally between 5 and 10 million [30]. With regard to prokaryotes (archaea and bacteria), 10,000 species have been described, but this could constitute only around 0.1% of the total diversity of these two domains [31], for an approximate total of around 10 million. It is important to mention that the concept of species in biology and microbiology is different [32]. Each gram of soil can contain more than 1000 species of single-celled fungi [33] and 6000 species of bacteria [34]. This genetic (and therefore metabolic) diversity allows microbial communities to be involved in a multitude of processes that allow ecosystems to function well. Soil microorganisms are important contributors to the different biogeochemical cycles of carbon, nitrogen, and phosphorus in soils [28]. It has been estimated that this community could withstand between 80 to 90% of the biochemical reactions occurring in the soil [35]. Communities of soil microorganisms, via their diverse metabolic capacities, also show a response to soil pollution and thus participate in the detoxification of natural environments [35].
The communities established in polluted soils are very different from those present in unpolluted soils, whether from the point of view of total abundance or specific diversity [36]. It follows from these disturbances of communities of microorganisms a modification of the enzymatic activities carried out by the microorganisms [37]. The specific diversity and the total abundance of microorganisms can be influenced by pollution. This reaction would depend both on the nature of the pollutants and their abundance [37].
In the environment, PCP is a topic to a diversity of biological and physicochemical procedures, counting biodegradation, photodegradation, evaporation, and sorption, and leaching [38]. These procedures happen in all kinds of natural ecosystems with variable efficacy and have a direct influence on the last rate of this chemical. The main way to eliminate PCP from the environment is through biodegradation by microorganisms [39]. Studies with experimental ecosystems have designated that ecological properties may occur at PCP levels as low as those causing chronic toxicity in sensitive species in single-species tests [40, 41]. The final rate that produced adverse effects in these studies was 15.8 μg/L-1, which caused a reduction in numbers of individuals and species in a marine benthic community [42]. The diversity and activity of microorganisms in the soil effect the working of ecosystems and thus plant development and health, including the quality and quantity of the crop yield [43]. However, the variety and movement of microbes are actually prone to various stresses counting chemical pollution [44]. The attendance of soil bacteria can improve the extent of pesticide degradation [15] as well as degradation of other organic pollutants [45].
5. PCP degradation
In the soil, pesticides are affected by diverse physical, chemical, and biological procedures, which will condition their degradation, their transmission to other compartments of the environment (water, plant, and atmosphere) and thus their potential influence on exposed living beings [4]. The behavior of pesticides will be more particularly controlled by the phenomena of retention on soil constituents (organic matter, clays) and degradation [46].
The remediation of a PCP contaminated site can take place through abiotic processes such as volatilization, photodecomposition, and immobilization in the soil. There biotic degradation can occur through absorption by plants or animals and through microbial degradation. Three processes are responsible for PCP biodegradation: hydroxylation, oxygenation and dechlorination. The most common formulation for PCP is that of sodium salt which, being not volatile, causes that the contribution of volatilization to the entire abiotic degradation is normally negligible [24]. The biological degradation of pollutants in the soil, or biodegradation, is carried out by living organisms and / or by the associated enzyme kit. During the biodegradation process one or more organisms metabolize the contaminant in an inorganic compound (such as CO2, H2O, NH3), the autotrophs derive the necessary resources for their growth and development [47]. This catabolic activity of which microorganisms are capable, and which allows them to degrade the contaminants present in the soil, is fundamental for the fertility and health of soils. Several researchers have developed methods to treat and degrade PCP, among these techniques the use of Fenton reagent [48], photocatalytic degradation using TiO2 [49], the combination of the two methods, namely the Fenton reaction and photocatalytic degradation [50], the ultrasonic method recommended by Francony and Pétrier [51] and also by ozonation. Another method, using the purifying capacities naturally present in certain organisms, is bioremediation. In this case, it is the microorganisms present in contaminated environments that are used to degrade the pollutants (Figure 2). Bacteria play an important part in this natural decontamination, due to their ability to evolve very quickly in the presence of selection pressure. Indeed, thanks to point mutations, endogenous rearrangements and horizontal transfers, they can adapt to the presence of pollutants by developing the enzymes making it possible to degrade and/or use this pollutant for their survival and their development. Thus, sometime after the appearance of xenobiotic molecules having no equivalent in nature, we can witness the appearance of new metabolic pathways allowing the degradation of this compound [52]. Thus, microorganisms can adapt to resistance to a broad spectrum of diverse pollutants [21]. They therefore constitute an interesting path in the development of natural techniques for removing pollutants.
Figure 2.
PCP interactions in environment.
Bioremediation can be carried out in different forms: natural attenuation, biostimulation and bioaugmentation. Natural attenuation is a process that uses the capacities of microorganisms present in polluted ecosystems or soils. Even if this decontamination technique does not theoretically require human intervention, it is nevertheless necessary to eliminate or neutralize the source of pollution and to constantly monitor the site until the end of treatment [53].
This type of bioremediation is very inexpensive, since it does not require a lot of resources, but it does require long periods of treatment. Biostimulation is the stimulation of the native microflora by adding nutritive molecules, specific or not, to promote bio-pollution (ex-situ or in-situ). Bioaugmentation consists of the addition or inoculation of specific bacterial cultures to stimulate the biodegradation used in bioreactors and ex situ systems.
Numerous works have monitored PCP removal by bacteria and fungi and the usage of plants for its biological elimination [54, 55, 56, 57]. Organic objects such as wood chips, sawdust, straw of wheat have been revealed to motivate microorganisms in the removal of PCP in soil [58, 59].
6. Some enzymes responsible for the degradation of PCP
For the bacterium Sphingomonas chlorophenolica, the first step is catalyzed by the enzyme PCP-4 monooxygenase encoded by the pcpB gene. According to Orser et al. [60], the pcpB gene would probably be present on the chromosome and not on a mobile element (plasmid or operon). The degradation of PCP by Sphingomonas chlorophenolica sp. nov is carried out via four structural genes pcpA, pcpB, pcpC, and pcpD as well as by the regulatory gene pcpR [61]. Transcription of the pcpB gene is induced by the presence of PCP in the bacteria Flavobacterium sp. ATCC 39723 [60]. The presence of PCP is also necessary in the bacterium Rhodococcus chlorophenolicus, during the degradation of several chlorophenols [62]. For the pcpA gene, its location relative to that of pcpB is not yet known. This enzyme is responsible for the conversion of di-p-Hydroquinone to chloromaleylacetate. The pcpB enzyme is responsible for the conversion of PCP to tetrahydroquinone via the elimination of chloride ions and by hydroxylation at the para position [63]. Subsequently the enzyme tetrachloro dehalogenase reductive (pcpC) converts tetrachlorohydroquinone into trichloro-chlorohydroquinone and itself responsible for the conversion into trichlorohydroquinone (TeCHQ) into dichloro-p-hydroquinone (2,6-DCHQ) or the compound TeCHQ is sequentially dehalogenated. The latter compound is converted into chloromaleylacetate by the enzyme 1,2-dioxygenase (pcpA) which will subsequently be converted into 2-maleylacetate by the enzyme pcpE; this degradation of 2,6-DCHQ occurs by cleavage of the cycle, leading to the formation of 2-chloromaleylacetate which is more degraded via the Krebs cycle [63]. The presence of an electron donor and acceptor is essential. Biodegradation would not occur if one of the two is missing. The degradation rates of organic compounds depend on their chemical structure. The more a molecule is substituted, the more difficult it is to degrade. The position of substituent also plays a role since the ortho and meta positions increase the resistance of the molecules, as well as the substitutions on alpha carbon, compared to that in omega. Under aerobic conditions, substituted chlorine inhibits the activity of monooxygenase and dioxygenase, which are the main aerobic cleavage enzymes of the benzene nucleus. PCP is resistant to aerobic degradation. Reductive dechlorination has been suggested to be the first step in the biodegradation mechanism of PCP [64]. Low-substituted chlorophenols are more sensitive and labile to aerobic degradation [65]. The optimal condition is that these reductive dechlorination metabolites are subsequently degraded via the aerobic process. This can reduce the inhibition produced by the dechlorinated intermediates. The progressive mineralization of the component generates a series of microbial communities and enzymatic activities that enables an efficient dissipation of pesticides in soil and avoids metabolite accumulation [45].
6.1 PCP effect in enzymatic soil activity
It must also take into reason that soil is a specific active micro-habitat, everywhere organic and inorganic constituents, microbes, enzymes, nutrients, and environmental influences collaborate with each other and alteration with period and place. Evidently, these communications can control spatial variety of soil bacterial communities and enzyme activities and affect their appearance and association levels, in turn depending on diverse soil properties [66]. Consequently, difficulties in the approximation of the total bacteriological community and its dynamic portion, characterized by enzyme actions, can raise level if progressive methods have been utilized in their control. Many studies recommended that soil enzyme activities as appropriate and reliable indicators of soil quality by Gianfreda and Bollag [67] and Drijber et al. [68]. The study of Siczek et al. [40, 41] improved that the soil biological parameters can increase the activities of the enzymes involved in the N and P cycle (protease and acid phosphomonoesterase) and total activity (dehydrogenase). Some biological analysis confirmed that the addition of PCP had a significant impact on the metabolic potential of soil bacteria. Several studies have described changes in the enzymatic activities of soil contaminated with PCP [69]. PCP degradation is a process that can be completed through three ways: oxygenolysis, hydroxylation, or reductive dehalogenation [70] (Figure 3). Since, soil microorganisms can produce various extracellular compounds like oxidoreductases, such as peroxidases, laccases, and tyrosinases. The laccase is known as the benzene-oxygen oxidoreductase; EC 1.0.3.2. has been subjected to intensive research in the last decades. This enzyme oxidizes a great variety of aromatic compounds with a concomitant reduction of oxygen to water [71, 72]. Thus, this kind of enzyme is involved in the oxidative coupling processes of chlorophenols [73]. The residual products of enzymatic reactions, laccase, and peroxidase are usually less toxic than the parent components according to Gianfreda and Bollag [74]. PCP removal from soil can occur either by abiotic [58] or enzymatic oxidative processes [75]. According to Liang et al. [76], the incorporation of some organic compounds to soil allowed effectively stimulation of the dehydrogenase activity since the added organic material may contain some intra- and extracellular enzymes allowing stimulation of the microbial activity in the soil. Also, bioaugmentation is known as a bioremediation choice allowed by increasing the natural in-situ microbial population in the polluted environment [77].
Figure 3.
PCP degradation ways.
PCP also troubled the activities of intracellular enzymes, which are measured to be an indicator of the active microbial biomass, since they are active within the living cells of microorganisms [40]. Zhang et al. [78] originate that phenol contaminants (including PCP) significantly reduced dehydrogenase, respiration, and urease activity in comparison with soil, which had not been contaminated. As dehydrogenase contributes to the biological oxidation of soil organic matter by hydrogen relocation from the organic substrate to inorganic acceptors, the lower activity of this enzyme could designate an inferior rate of decomposition of soil organic matter after PCP treatment. A similar conclusion may be drawn from a respiration analysis; this activity was also reduced by PCP [40, 41].
On the other hand, PCP increased the amount of phosphorus transformation, as showed by an acid phosphomonoesterase analysis showing an important coefficient correlation (r = 0.850) with PCP. Wang et al. [79] showed the opposite effect of PCP on acid phosphomonoesterase was create in our study (it increases activity), which could be the result of different soil properties and different experimental conditions.
In a micro-environment study, the destructive effect of PCP on manganese peroxidase activity was controlled during the first 14 days, though, after that period the movement augmented [58]. Additionally, laccase movement decrease to PCP. A laboratory research presented that the influence of PCP on enzymes was reliant on its rate [80]. A study by Urrutia et al. [57] achieved with rhizotrons showed that here was no impact of growing PCP rate in soil from 50 to 250 mg kg − 1 on the microbial biomass in the ryegrass rhizosphere. However, PCP negatively affected soil activity through reducing the dehydrogenase as well as β-glucosidase activities as the PCP rate augmented. A considerable rate of literature has been published in relation to the influence of organic contaminants including PCP on soil enzyme and microorganism activity [41, 81]. However, some studies mainly concerned laboratory experiments, proved that PCP significantly reduced dehydrogenase, respiration, protease, urease, and β-glucosidase activity. This shows that PCP was a substantial factor in decreasing microbe activity in soils [80].
6.2 PCP effect in physicochemical parameters
PCP absorbs to organic matter causing removal of PCP from water into sediment depending on the chemical structure and environmental conditions[82, 83]. Bio-elimination of chemicals arises through the actions of logically arising microorganisms and biomass population. Soil influences, such as moisture content, pH, and temperature, also show a significant character. The removal is improved in the soil pH range of 5.5–8.0, with an optimal value of about 7 [84], and tends to rise with temperature [85]. The result of soil moisture satisfied on the biodegradation of pesticides, though, is not completely assumed. It is acknowledged that the accessibility of soil moisture is obligatory for improved biomass movement. The amount of pesticide removal under saturated soil situations is also acknowledged to be very slow [86]. With upper soil moisture content and soil temperature in the summer months, the pesticide may destroy quickly, thus dropping the hazard of water pollution. It can, though, be renowned that the moisture content in the soil profile is not preserved at the similar level during sub-irrigation; it is close to saturation near the water table and reductions with distance overhead the water table. Yet, when the soils had a low level of organic matter (>10%) will be take a great affinity for organic pollutants due to the presence of humic acid, fulvic acid, and reactive clay such as Al and Fe hydroxide groups [58]. In the literatures, there are plenty of studies indicated that denitrification can be disturbed by several environmental pollutants, such as heavy metal and synthetic organic compounds [87]. For example, the Zinc oxide nanoparticles have been observed to inhibit the denitrifying reductase, which further led to more nitrate accumulation. Zheng et al. [88] found that, it is essential to explore the effect of PCP on the metabolism and function of denitrifying bacteria. The contact of PCP to P. denitrificans bacteria induced the reduced the key enzymes activities connected to glycolysis process, caused the trouble of the metabolism of glucose utilization and the cell growth, and subsequently disturbed the generation of electron donor (NADH) for denitrification via NAD+ decrease. Denitrification procedure was significantly inhibited by the PCP at upper amount of PCP, which would further disturb the nitrogen cycle in soil [89].
This may indicate that less nitrogen was available for the plants, and that the plants contaminated with PCP may suffer from nitrogen deficiency, which confirmed our analysis of plant N content. It is worth noting that relatively speaking the most harmful effect of PCP was noted for enzymes related to the nitrogen cycle, e.g. protease and urease [57]. In satisfactory situations of development e.g. pH, temperature and moisture and adequate supply of nutrients like vitamins, magnesium, manganese, copper, sulfur, potassium, phosphorus and nitrogen, microbes can biodegrade/biotransform the complex hazardous organic chemicals into simpler and harmful ones. After the usage of “super bug” in elimination of oil spills, there has been numerous efficacious stories of microbial method in clean-up of polluted lands and soils [90]. The Microbiological Resource Centers (MIRCENS) at Cairo, Egypt is examining the use of microbes in degrading persistent pesticides pollutants (UNEP Reports, 1996–2006).
6.3 PCP bioremediation in soil
Soils are open, porous, multi-compound of biogeochemical systems containing solids, liquids, and gases [91]. At the same time, they are a preferred sink for dangerous pollutants like hydrophobic organic compounds and multiple other compounds that are increasingly finding their place in the environment [92, 93]. The main difficulties encountered in biological treatment methods are the lack of knowledge concerning the bacterial population degrading PCP under unfavorable environmental conditions [94, 95]. Biodegradation is a biological degradation carried out by living beings (bacteria, fungi, plants, etc.). It is due to the abundance and variety of organisms in the environment considered [96]. For example, the attack of a chemical molecule by microorganisms often results in its mineralization and the production of low molecular weight metabolites (Table 1). Two types of biodegradation are most often cited and distinguished:
Examples of some bacterial strains competent to degrade PCP.
Primary biodegradation: It corresponds to metabolism and co-metabolism. These can be done by substitution or rearrangement of the structure of the compound, by redox or isomerization, or by addition and loss of substituent. This is a partial attack on the molecule. In some cases, it can lead to the appearance of persistent metabolites, more bioavailable and/or more toxic than the initial molecule. Ultimate biodegradation: It is a complete degradation leading to the formation of carbon dioxide, methane, water, and mineral elements. This biodegradation, if it occurs quickly, leads to the total elimination of the pollutant from the environment. A substance that undergoes ultimate biodegradation is one that poses less risk to the environment than a substance that undergoes primary biodegradation.
Bacteria can feed on all kinds of compounds. These are what we call electron donors. In addition, they can breathe with different compounds. These are the electron acceptors. In the case of stimulated biodegradation, the electron donor or electron acceptor is contamination. In this context, several researchers have focused their attention on studying microbial biodegradation which has been reported as a main mechanism of the dissipation of pesticides in the soil environment ([114]; Pieuchot al., 1996). As an electron acceptor or as an electron donor, the degradation of these molecules is an integral part of metabolism and directly serves the production of energy for microorganisms. The substance appears to be metabolized by the body. A compound is said to be biodegradable if it is completely transformed by living organisms into CO2, H2O, and cellular biomass. Mineralization corresponds to the bioconversion of organic matter into mineral products (CO2, CH4, H2O, NH3, HCI, etc.). It is the reverse biological process of the synthesis of organic matter (mainly photosynthesis and methanogenesis). Some molecules are resistant to any degradation action over very long periods. The stability of these molecules is linked to their chemical structure, their concentration, and the characteristics of the surrounding environment. Generally, the more a molecule is substituted, the more it is resistant to biodegradation. The position of the substituents also plays a role [64]. Replacing carbon with other atoms such as O, N, S, such as multiple branching on the same carbon atom, changes the resistance to biotransformation of organic products. The presence of the substrate in too high concentration may result in the inhibition or inactivation of one or more enzymes involved in microbial metabolism. Many species of soil bacteria have been isolated from samples of soil contaminated with PCP (Table 1).
Whereas microbial remediation (bioremediation) is a fixed technology for the removal of organic soil contaminants, the use of microorganisms to transform organic contaminants similar PCP is still being explored. Bioremediation of soils includes numerous technologies, counting bioaugmentation and also biostimulation, to augment the elimination of PAHs. Bio-augmentation, it is the addition of microorganisms that biodegrade (toxic organic compounds) a specific contaminant. Microbial remediation depends upon the appearance of suitable microorganisms in the correct amounts and in mixtures and in appropriate environmental conditions. Biostimulation and bio-augmentation are two indispensable factors inducing bioremediation by microbes. In the bio-Stimulation procedure, the adding of the amendments serves to rise the number or activity or both, of naturally happening micro-organisms available for bioremediation. The in-situ bacteriological remediation approaches might necessity to combination with phytoremediation process with suitable hyper-fixator plants that can successfully acceptance the pollutant (made bioavailable by the microorganisms) from soil and bioaccumulate them in their roots and shoots, thus stopping their reprocessing in soil. Bioremediation is the procedure by which active organisms destroy or transform hazardous organic contaminants to inorganic components, such as CO2, H2O, and NO3− [115], which are also formed during the elimination of organic matter in soil. A numeral of procedures upstream of the biocatalysis, e.g., dispersal in solid matrixes, bioavailability, weathering, and abiotic catalysis of pollutants, and downstream, stress, predation, and competition, are acknowledged to oblige the procedure [116]. PCP degraders are ubiquitous at contaminated sites with widespread PCP contamination, but their degradation amounts are relatively low in soil due to low solubility/bioavailability of PCP, poor nutrient level and inappropriate soil redox conditions [69]. The variation of some enzymatic activities and mainly of those partially involved in the contaminant transformation will occur. On the other side, many studies have shown that the addition of supplemental nutrients known as biostimulation procedures, like carbon, nitrogen (C:N) [117]; phosphorous (as phosphates) should mainly increase the rate of xenobiotic compounds degradation such PCP [118]. However, the relationship between nutrient supplementation and microbial degradation of organic contaminants does not appear to be completely straight forward [117].
6.4 The mechanism of microbial remediation of toxic pesticide
Researches on microbial elimination of pesticide residues created in 1940s, and as people reimbursement more consideration to the environment, the research on the elimination procedure and degradation mechanism of organic contaminants has been intensely considered [120]. Bacteria in normal conditions could destroy the pesticide residues, with little cost and environmentally friendly and it would not cause secondary pollution [121]. But the efficacy was moderately slow, and the natural environment was complex and variable, which may disturb the viability and productivity of microbial degradation of pesticides. Consequently, researchers have showed fine studies of bacteria and had a clear considerate of the degradation mechanism of organic pesticides. Numerous microorganisms have been known in nature, which can disturbance depressed the dangerous organic substances in the environment (soil and water) comprising the xenobiotic composites such as pesticides, polycyclic aromatic hydrocarbons (PAHs) and the chlorinated substances approaching polychlorinated biphenyls (PCBs) in due course of time. General of the organochlorines looks to be bio-change, create conjugates with the soil humic matter. Bacterial mineralization of toxic organics logically happening aerobic bacteria decompose both natural and the synthetic hazardous organic materials to harmless CO2 and water (Figure 4). However, mechanism of microbial act in removal of toxic composites is attained by biodegradation and biotransformation of compound toxic chemicals into inoffensive simpler biochemical produces [119].
Figure 4.
Biological aspects involved in the degradation of organic pollutants [119].
Microorganisms acclimatize to eliminate “novel artificial compounds” either by using catabolic enzymes they previously possess or by obtaining novel metabolic pathways. Microorganisms break down the complex hydrocarbons in the dangerous waste by via the three general mechanisms-aerobic and anaerobic respiration and fermentation. Aerobic procedure needs satisfactory supply of oxygen, the biodegradation procedure is fast and more complete, and there are no problematic products similar methane and hydrogen sulfide. In anaerobic degradation, for example, there is a sequential, biologically destructive process in which the complex “hydrocarbons” of hazardous wastes are converted into simpler molecules of “carbon dioxide” and “methane.” PCP readily degrades in the environment by chemical, microbiological and photochemical procedures. Degradation in soil is affected by numerous chemical, physical, and biological factors. PCP degrades more quickly in flooded or anaerobic soil than in aerobic moist soil. Numerous pathways of degradation have been studied.
7. Conclusions
This chapter investigated the effects of PCP soil contamination on microbial diversity, enzymatic activities, microbial biomass, and physicochemical soil characters. In general, the results verified the damaging consequence of PCP on soil activity and variations in soil microbe and genetic variety. PCP negatively affected the intracellular actions of soil microbes and the amount of nitrogen alteration. This may result in the deterioration of soil role and procedures connected to nutrient availability to plants and soil organic matter decomposition and, so, unfavorably affect plant development and health. Moreover, the results presented that the soil fungal community is more sensitive to PCP pollution than the bacterial community. However, enzyme activity can be inhibited at PCP contaminated soil. The denitrification process was significantly reduced by the PCP at a higher rate of PCP, which would further interrupt the nitrogen cycle in soil. Finally, it is necessary to study more details about the effect of PCP accumulation in long-term in soil.
\n',keywords:"soil contamination, pentachlorophenol, bioremediation, microorganisms, ecological system",chapterPDFUrl:"https://cdn.intechopen.com/pdfs/73487.pdf",chapterXML:"https://mts.intechopen.com/source/xml/73487.xml",downloadPdfUrl:"/chapter/pdf-download/73487",previewPdfUrl:"/chapter/pdf-preview/73487",totalDownloads:38,totalViews:0,totalCrossrefCites:0,dateSubmitted:"May 5th 2020",dateReviewed:"August 24th 2020",datePrePublished:"November 17th 2020",datePublished:null,dateFinished:null,readingETA:"0",abstract:"In recent years, soil contamination with pesticides has become a crucial news issue with serious short- and long-term effects on human health and its environment. Pesticides play a significant role in the success of modern farming and food production. These compounds have potential for toxicity and adverse effects on human health and ecological soil systems. Pentachlorophenol (PCP) is one of the most recalcitrant chemicals polluting the environment for its stable aromatic ring system and chloride content. Nowadays, many sites are contaminated with this substance. In these areas, concentrations may stay high for a long time because of slow degradation in the soil due to the negative effects that PCP has on soil microbial populations. Bioremediation of PCP contaminated sites can be realized introducing directly, into a contaminated system, microorganisms able to consume selectively the target compound (bioaugmentation) or increasing the microbial indigenous population by addiction of nutrients in form of organic and/or inorganic fertilizers and biosolids (biostimulation). In the present chapter, we present an overview of the effect of PCP pesticide contamination on soil microbial populations (density and diversity), enzymatic activity and physicochemical parameters. Additionally, the bioremediation process will be detailed.",reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/73487",risUrl:"/chapter/ris/73487",signatures:"Rim Werheni Ammeri, Yassine Hidri and Hassen Abdenaceur",book:{id:"9843",title:"Soil Contamination",subtitle:null,fullTitle:"Soil Contamination",slug:null,publishedDate:null,bookSignature:"Dr. Marcelo L. Larramendy and Dr. Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9843.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null,sections:[{id:"sec_1",title:"1. Introduction",level:"1"},{id:"sec_2",title:"2. Soil and pesticide pollution",level:"1"},{id:"sec_3",title:"3. Pentachlorophenol and soil contamination",level:"1"},{id:"sec_4",title:"4. Pesticide PCP effect in bacterial ecological system",level:"1"},{id:"sec_5",title:"5. PCP degradation",level:"1"},{id:"sec_6",title:"6. Some enzymes responsible for the degradation of PCP",level:"1"},{id:"sec_6_2",title:"6.1 PCP effect in enzymatic soil activity",level:"2"},{id:"sec_7_2",title:"6.2 PCP effect in physicochemical parameters",level:"2"},{id:"sec_8_2",title:"6.3 PCP bioremediation in soil",level:"2"},{id:"sec_9_2",title:"6.4 The mechanism of microbial remediation of toxic pesticide",level:"2"},{id:"sec_11",title:"7. Conclusions",level:"1"}],chapterReferences:[{id:"B1",body:'Dorana JW, Zeiss MR. Soil health and sustainability: Managing the biotic component of soil quality. Applied Soil Ecology. 2000;15(1):3-11'},{id:"B2",body:'Fatichi S, Or D, Walko R, Vereecken H, Young MH, Ghezzehei TA, et al. Soil structure is an important omission in earth system models. Nature Communications. 2020;11:522'},{id:"B3",body:'Pierce FJ, Larson WE, Dowdy RH, Graham WAP. Productivity of soils: Assessing long-term changes due to erosion. Journal of Soil and Water Conservation. 1983;38:39-44'},{id:"B4",body:'Barriuso E, Calvet R, Schiavon M, Soulas G. Les pesticides et les polluants organiques des sols: Transformations et dissipation. In: Etudes et Gestion des Sols, numéro spécial: Le sol, un patrimoine menacé? Vol. 3. Boca Raton, Florida: Lewis Publishers; 1996. pp. 279-295'},{id:"B5",body:'Semple SJ. Illustrations of damnation in late Anglo-Saxon manuscripts. Anglo-Saxon England. 2003;32:31-45'},{id:"B6",body:'Reid BJ, Stokes JD, Jones KC, Semple KT. Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environmental Science & Technology. 2000;34:3174-3179'},{id:"B7",body:'Riser-Roberts E. Remediation of Petroleum Contaminated Soils: Biological, Physical, and Chemical Processes. Boca Raton: CRC Press; 1998'},{id:"B8",body:'Xiao P, Kondo R. Biodegradation and biotransformation of pentachlorophenol by wood-decaying white rot fungus Phlebia acanthocystis TMIC34875. Journal of Wood Science. 2020;66:2'},{id:"B9",body:'Chanama S, Crawford RL. Mutational analysis of pcpA and its role in pentachlorophenol degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723. Applied and Environmental Microbiology. 1997;63(12):4833-4838'},{id:"B10",body:'Werheni R, Mokni TS, Mehri I, Badi S, Hassen A. Pentachlorophenol biodegradation by Citrobacter freundii isolated from forest contaminated soil. Water, Air, and Soil Pollution. 2016;227:367'},{id:"B11",body:'Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C. Linking soil biodiversity and agricultural soil management. Current Opinion in Environmental Sustainability. 2012;4(5):523-528'},{id:"B12",body:'Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Mejuto JC, Garcia-Rio L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems and Environment. 2008;123:247-260'},{id:"B13",body:'Suresh KR, Nagesh MA. Experimental studies on effect of water and soil quality on crop yield. In: International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE). Aquatic Procedia. Vol. 4. 2015. pp. 1235-1242'},{id:"B14",body:'Castillo MDP, Torstensson L. Effect of biobed composition, moisture, and temperature on the degradation of pesticides. Journal of Agricultural and Food Chemistry. 2007;55(14):5725-5733'},{id:"B15",body:'Yadav M, Srivastva N, Singh RS, Upadhyay SN, Dubey SK. Biodegradation of chlorpyrifos by Pseudomonas sp. in a continuous packed bed bioreactor. Bioresource Technology. 2014;165:265-269. DOI: 10.1016/j.biortech.2014.01.098'},{id:"B16",body:'Siampiringue M. Phototransformation de polluants organiques à la surface de sol (études cinétique et analytique sur supports modèles et sur sol réel). Clermont-Ferrand: Laboratoire de Photochimie Moléculaire et Macromoléculaire, Université Blaise Pascal, École doctorale des sciences fondamentales; 2011'},{id:"B17",body:'Louis M, Strandholm K, Kevin Steensma H, Mark Weaver K. The moderating effect of national culture on the relationship between entrepreneurial orientation and strategic alliance portfolio extensiveness. Entrepreneurship Theory and Practice. 2002;26:145-160'},{id:"B18",body:'Testa RJ, Sciacca LM, Wang F, Hendricks ML, Goldblum P, Bradford J, et al. Effects of violence on transgender people. Professional Psychology: Research and Practice. 2012;43(5):452-459'},{id:"B19",body:'Gunther FA, Buzzetti F, Westlake WE. Residue behavior of polynuclear hydrocarbons on and in oranges. Residue Reviews. 1967;17:81-104'},{id:"B20",body:'Maheshwari P, Du H, Sheen J, Assmann SM, Albert R. Model-driven discovery of calcium-related protein-phosphatase inhibition in plant guard cell signaling. PLoS Computational Biology. 2019;15(10):29-74'},{id:"B21",body:'Santosh P, Ramavadh R, Shanthakumar SP. Isolation and characterization of phenol degrading bacteria Stenotrophomonas sp. SKC_BP54 Kasbekar. Research Journal of Biotechnology. 2018;53(1):39-45'},{id:"B22",body:'Domtar Corporation. Politics and Business Magazines. 395 de Maisonneuve Boulevard West Montreal, Quebec H3A 1L6 Canada; 1996'},{id:"B23",body:'Jones MJ. Conservation systems and crop production. In: Paper Presented to Conference on Agricultural Development in Drought-Prone Africa. London: Royal Commonwealth Society; 1985'},{id:"B24",body:'Crosby DG, Beynon KI, Greve PA, Korte K, Still GG, Vonk JW. Environmental chemistry of pentachlorophenol; 1981'},{id:"B25",body:'Steiert JG, Thoma WJ, Ugurbil K, Crawford RL. 31P nuclear magnetic resonance studies of effects of some chlorophenols on Escherichia coli and a pentachlorophenol-degrading bacterium. Journal of Bacteriology. 1988;170(10):4954-4957'},{id:"B26",body:'Smejtek P, Barstad AW, Wang S. Pentachlorophenol-induced charge of c-potential and gel-to-fluid transition temperature in model lecithin membranes. Chemico-Biological Interactions. 1989;71:37-61'},{id:"B27",body:'Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. The International Society for Microbial Ecology Journal. 2007;1:283-290'},{id:"B28",body:'van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters. 2008;11:296-310'},{id:"B29",body:'Groombridge M, Jenkins D, editors. World Atlas of Biodiversity: Earth’s Living Resources in the 21st Century. Berkeley, CA: University of California Press; 2002. pp. 195-223'},{id:"B30",body:'Baillie JEM, Upham K. Species diversity within and among ecosystems. In: Leemans R, editor. Ecological Systems. 2013. pp. 257-271'},{id:"B31",body:'Tamames J, Rosselló-Móra R. On the fitness of microbial taxonomy. Trends in Microbiology. 2012;20:514-516'},{id:"B32",body:'Ereshefsky M. Darwin’s solution to the species problem. Synthese. 2009;175(3):405-425'},{id:"B33",body:'Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, et al. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytologist. 2009;184:449-456'},{id:"B34",body:'Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N, et al. Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiology Journal. 2017;34(9):760-768'},{id:"B35",body:'Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G. Microbial diversity and soil functions. European Journal of Soil Science. 2003;54:655-670'},{id:"B36",body:'Giller K, Witter E, Corbeels M, Tittonell PA. Conservation agriculture and smallholder farming in Africa: The Heretics’ view. Field Crops Research. 2009;114(1):23-34'},{id:"B37",body:'Brandt A, Papagiannouli F, Wagner N, Wilsch-Bräuninger M, Braun M, Furlong EE, et al. Developmental control of nuclear size and shape by Kugelkern and Kurzkern. Current Biology. 2006;16(6):543-552'},{id:"B38",body:'Verbrugge SAJ, Schonfelder M, Becker L, Yaghoob Nezhad F, Hrabe de Angelis M, Wackerhage H. Genes whose gain or loss-of-function increases skeletal muscle mass in mice: A systematic literature review. Frontiers in Physiology. 2018;9:553'},{id:"B39",body:'Lopez-Echartea E, Macek T, Demnerova K, Uhlik O. Bacterial biotransformation of pentachlorophenol and micropollutants formed during its production process. International Journal of Environmental Research and Public Health. 2016;13:1146'},{id:"B40",body:'Siczek A, Frąc M, Gryta A, Kalembasa S, Kalembasa D. Variation in soil microbial population and enzyme activities under faba bean as affected by pentachlorophenol. Applied Soil Ecology. 2020a;150:103466'},{id:"B41",body:'Siczek A, Wielbo J, Lipiec J, Kalembasa S, Kalembasa D, Kidaj D, et al. Nod factors improve the nitrogen content and rhizobial diversity of faba bean and alter soil dehydrogenase, protease, and acid phosphomonoesterase activities. International Agrophysics. 2020b;34(1):9-15'},{id:"B42",body:'Tagatz ME, Tobia M. Effects of barite (BaSO4) on development of estuarine communities. Estuarine and Coastal Marine Science. 1978;7:401-407'},{id:"B43",body:'Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S. The role of soil microorganisms in plant mineral nutrition - Current knowledge and future directions. Frontiers in Plant Science. 2017;8:16-17'},{id:"B44",body:'Gałązka A, Gawryjołek K, Gajda A, Furtak K, Księżniak A, Jończyk K. Assessment of the glomalins content in the soil under winter wheat in different crop production systems. Plant, Soil and Environment. 2018;64(1):32-37'},{id:"B45",body:'Castillo L, Martínez AI, Gelis S, Ruiz-Herrera J, Valentín E, Sentandreu R. Genomic response programs of Saccharomyces cerevisiae following protoplasting and regeneration. Fungal Genetics and Biology. 2008;45(3):253-265'},{id:"B46",body:'Bosso N, Gugliotta A, Zampieri N. Strategies to simulate wheel-rail adhesion in degraded conditions using a roller-rig. Vehicle System Dynamics. 2015;53(5):619-634'},{id:"B47",body:'Chaplain V, Défossez P, Richard G, Tessier D, Roger-Estrade J. Contrasted effects of no-till on bulk density of soil and mechanical resistance. Soil and Tillage Research. 2011;111(2):105-114'},{id:"B48",body:'Watts RL, Glatt SL, Koller WC. Objective measures of motor disability. In: Koller WC, Paulson G, editors. Therapy of Parkinson’s Disease. New York: Marcel Dekker; 1990. pp. 31-61'},{id:"B49",body:'Pecchi G, Reyes P, Sanhueza P, Villaseñor J. Photocatalytic degradation of pentachlorophenol on TiO2 sol–gel catalysts. Chemosphere. 2001;43(2):141-146'},{id:"B50",body:'Fukushima M, Tatsumi K. Degradation pathways of pentachlorophenol by photo-Fenton systems in the presence of iron(III), humic acid and hydrogen peroxide. Environmental Science and Technology. 2001;35:1771-1778'},{id:"B51",body:'Francony A, Pétrier C. Sonochemical degradation of carbon tetrachloride in aqueous solution at two frequencies: 20 kHz and 500 kHz. Ultrasonics Sonochemistry. 1996;3:77-82'},{id:"B52",body:'Boubakri H. Le Maghreb et les migrations de transit: le piège. In revue. Migrations et sociétés. Septembre-Octobre 2006;107:20'},{id:"B53",body:'Mulligan CN, Yong RN, Gibbs BF. Remediation technologies for metal-contaminated soils and groundwater: An evaluation. Engineering Geology. 2001;60(1-4):193-207'},{id:"B54",body:'Hechmi N, Aissa NB, Abdenaceur H, Jedidi N. Evaluating the phytoremediation potential of Phragmites australis grown in pentachlorophenol and cadmium contaminated soils. Environmental Science and Pollution Research. 2014;21:1304'},{id:"B55",body:'Kumari R, Kumar R, Lynn A. g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling. 2014;54(7):1951-1962'},{id:"B56",body:'Marichal R, Grimaldi M, Feijoo MA, Oszwald J, Praxedes C, Ruiz Cobo DH, et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology. 2014;83:177-185'},{id:"B57",body:'Urrutia P, Aguirre P, Esparza A, Tapia V, Mena NP, Arredondo M, et al. Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. Journal of Neurochemistry. 2013;126:541-549'},{id:"B58",body:'Cea M, Jorquera M, Rubilar O, Langer H, Tortella G, Diez MC. Bioremediation of soil contaminated with pentachlorophenol by Anthracophyllum discolor and its effect on soil microbial communities. Journal of Hazardous Materials. 2010;181:315-323'},{id:"B59",body:'Lin X, Wang F, Li Y, Zhai C, Wang G, Zhang X, et al. The SCF ubiquitin ligase slimb controls Nerfin-1 turnover in Drosophila. Biochemical and Biophysical Research Communications. 2018;495(1):629-633'},{id:"B60",body:'Orser CS, Lange CC. Molecular analysis of pentachlorophenol degradation. Biodegradation. 1994;5:277-288'},{id:"B61",body:'Copley J. Ecology goes underground. Nature. 2000;406:452-454'},{id:"B62",body:'Apajalahti JHA, Salkinoja-Salonen MS. Degradation of polychlorinated phenols by Rhodococcus chlorophenolicus. Applied Microbiology and Biotechnology. 1986;25:62-67'},{id:"B63",body:'Ohtsubo N, Mitsuhara I, Koga M, Seo S, Ohashi Y. Ethylene promotes the necrotic lesion formation and basic PR gene expression in TMV-infected tobacco. Plant & Cell Physiology. 1999;40:808-817'},{id:"B64",body:'Wang X, Mann CJ, Bai Y, Ni L, Weiner H. Molecular cloning, characterization, and potential roles of cytosolic and mitochondrial aldehyde dehydrogenases in ethanol metabolism in Saccharomyces cerevisiae. Journal of Bacteriology. 1998;180(4):822-830'},{id:"B65",body:'Reddy GVB, Gold MH. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology. 2000;146:405-413'},{id:"B66",body:'Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, et al. Methods of studying soil microbial diversity. Journal of Microbiological Methods. 2004;58:169-188'},{id:"B67",body:'Gianfreda L, Bollag J-M. Influence of natural and anthropogenic factors on enzyme activity in soil. In: Stotzky G, Bollag J-M, editors. Soil Biochemistry. Vol. 9. New York: Marcel Dekker; 1996. pp. 123-194'},{id:"B68",body:'Drijber RA, Doran JW, Parkhurst AM, Lyon DJ. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil Biology and Biochemistry. 2000;32:1419-1430'},{id:"B69",body:'Scelza R, Rao MA, Gianfreda L. Response of an agricultural soil to phenanthrene and pentachlorophenol pollution and different bioremediation strategies. Soil Biology and Biochemistry. 2008;40:2162-2169'},{id:"B70",body:'Field JA, Sierra-Alvarez R. Microbial degradation of chlorinated dioxins. Chemosphere. 2008;71:1005-1018'},{id:"B71",body:'Couto SR, Herrera JI. Laccases in pollution control. Terrestrial and Aquatic Environmental Toxicology. 2006;2(1):34-45'},{id:"B72",body:'Couto SR, Toca-Herrera JL. Laccase production at reactor scale by filamentous fungi. Biotechnology Advances. 2007;25(6):558-569'},{id:"B73",body:'Gianfreda L, Bollag JM. Isolated enzyme for the transformation and detoxification of organic pollutants. In: Burns R, Richard D, editors. Enzyme in the Environment. Activity, Ecology and Applications. New York: Marcel Dekker; 2002'},{id:"B74",body:'Gianfreda L, Bollag JM. Effect of soils on the behavior of immobilized enzymes. Soil Science Society of America Journal. 1994;58(16):681-721'},{id:"B75",body:'Bollag JM. Enzymes catalyzing oxidative coupling reactions of pollutants. Metal Ions in Biological Systems. 1992;28:205-217'},{id:"B76",body:'Liang Y, Nikolic M, Peng Y, Chen W, Jiang Y. Organic manure stimulates biological activity and barley growth in soil subject to secondary salinization. Soil Biology and Biochemistry. 2005;37:1185-1195'},{id:"B77",body:'Innemanova P, Velebova R, Filipova A, et al. Anaerobic in situ biodegradation of TNT using whey as an electron donor: A case study. New Biotechnology. 2015;32(6):701-709'},{id:"B78",body:'Zhang M, Hanna M, Li J, Butcher S, Dai H, Xiao W. Creation of a hyperpermeable yeast strain to genotoxic agents through combined inactivation of PDR and CWP genes. Toxicological Sciences. 2010;113(2):401-411'},{id:"B79",body:'Wang G, Post WM, Mayes MA. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecological Applications. 2013;23(1):255-272'},{id:"B80",body:'Diez JMC, Gallardo FA, Saavedra GM, Cea L, Gianfreda L, Alvear ZM. Effect of pentachlorophenol on selected soil enzyme activities in a Chilean Andisoil. Soil Nutrition Vegetal. 2006;6(3):40-51'},{id:"B81",body:'Jia Q, Liu S, Wen D, Cheng Y, Bendena WG, Wang J, et al. Juvenile hormone and 20-hydroxyecdysone coordinately control the developmental timing of matrix metalloproteinase-induced fat body cell dissociation. The Journal of Biological Chemistry. 2017;292(52):21504-21516'},{id:"B82",body:'Coats JR, Karr LL, Drewes CD. Toxicity and neurotoxic effects of monoterpenoids: In insects and earthworms. Entomology at Iowa State University digital repository. In: Hedin P, editor. Natural Occuring Pest Bioregulators, ACS Symposium Series. Washington, D.C.; 1991a. pp. 1-9'},{id:"B83",body:'Coats JR, Karr LL, Drewes CD. Toxicity and neurotoxic effects of monoterpenoids: In insects and earthworms. In: Entomology at Iowa State University Digital Repository. 1991b. pp. 1-9'},{id:"B84",body:'Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, et al. Methods of Soil Analysis. Part 3: Chemical Methods. 3rd ed. Madison, WI: SSSA and ASA; 1996. pp. 46-64'},{id:"B85",body:'Savage DC. Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology. 1977;31:107-133'},{id:"B86",body:'Goswami KP, Green RE. Microbial degradation of the herbicide atrazine and its 2-hydroxy analog in submerged soils. Environmental Science & Technology. 1971;5:426-429'},{id:"B87",body:'Behera PC, Tripathy DP, Parija SC. Shatavari: Potentials for galactogogue in dairy cows. Indian Journal of Traditional Knowledge. 2013;12(1):9-17'},{id:"B88",body:'Zheng X, Su Y, Chen Y, et al. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science & Technology. 2014;48:800-807'},{id:"B89",body:'Chen Y, Yu S, Tang S, Li Y, Liu H, Zhang X, et al. Site-specific water quality criteria for aquatic ecosystems: A case study of pentachlorophenol for Tai Lake, China. Science of the Total Environment. 2016;541:65-73'},{id:"B90",body:'US Geology Survey (USGS). Coastal Wetlands and Global Change: Overview. USGS FS-089-97; 1997'},{id:"B91",body:'McBride MB. Environmental Chemistry of Soils. New York: Oxford University Press, Inc.; 1994'},{id:"B92",body:'Cordova-Rosa SM, Dams RI, Cordova-Rosa EV, Radetski MR, Corrêa AXR, Radetski CM. Remediation of phenol-contaminated soil by a bacterial consortium and Acinetobacter calcoaceticus isolated from an industrial wastewater. Journal of Hazardous Materials. 2009;164:61-66'},{id:"B93",body:'Cornelissen G, Gustafsson Ö, Bucheli TD, Jonker MTO, Koelmans AA, van Noort PCM. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology. 2005;39(18):6881-6895'},{id:"B94",body:'Kaoa CM, Chaib CT, Liub JK, Yehc TY, Chena KF, Chend SC. Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Research. 2004;38:663-672'},{id:"B95",body:'Thakur A, Chitoor B, Goswami AV, Pareek G, Atreya HS, D’Silva P. Structure and mechanistic insights into novel iron-mediated moonlighting functions of human J-protein cochaperone, Dph4. The Journal of Biological Chemistry. 2012;287(16):194-205'},{id:"B96",body:'Errampalli D, Trevorns JT, Lee H, Leung K, Cassidy M, Knoke K. Bioremediation: A perspective. Journal of Soil Contamination. 1997;6:207-218'},{id:"B97",body:'Leung W, Malkova A, Haber JE. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(13):51-68'},{id:"B98",body:'Radehaus PM, Schmidt SK. Characterization of a novel Pseudomonas sp. that mineralizes high concentrations of pentachlorophenol. Applied and Environmental Microbiology. 1992;58(9):79-85'},{id:"B99",body:'Resnick SM, Chapman PJ. Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation. 1994;5:47-54'},{id:"B100",body:'Thakur V, Guptan RC, Kazim SN, Malhotra V, Sarin SK. Profile, spectrum and significance of HBV genotypes in chronic liver disease patients in the Indian subcontinent. Journal of Gastroenterology and Hepatology. 2002;17:165-170'},{id:"B101",body:'Kao MH, Doupe AJ, Doupe AJ, Brainard MS. Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature. 2005;433(7026):38-43'},{id:"B102",body:'Häggblom MM, Nohynek LJ, Salkinoja-Salonen MS. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Applied and Environmental Microbiology. 1988;54:3043-3052'},{id:"B103",body:'Wittmann T, Hyman T. Chapter 7 recombinant p50/Dynamitin as a tool to examine the role of Dynactin in intracellular processes. Methods in Cell Biology. 1998;61:137-143'},{id:"B104",body:'Rutgers M, Breure AM, van Andel JG, Duetz WA. Growth yield coefficients of Sphingomonas sp. strain P5 on various chlorophenols in chemostat culture. Applied Microbiology and Biotechnology. 1997;48:656-661'},{id:"B105",body:'Tiirola MA, Busse HJ, Kampfer P, Mannisto M. Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. International Journal of Systematic and Evolutionary Microbiology. 2005;55:583-588'},{id:"B106",body:'Yang Z, Khoury C, Jean-Baptiste G, Greenwood MT. Identification of mouse sphingomyelin synthase 1 as a suppressor of Bax-mediated cell death in yeast. FEMS Yeast Research. 2006;6(5):751-762'},{id:"B107",body:'Crawford RW, Giangrande P, Murray D. Fibrin sealant reduces blood loss in total hip arthroplasty. Hip International. 1999;9(3):127-132'},{id:"B108",body:'Chu JP, Kirsch EJ. Metabolism of pentachlorophenol by an axenic bacterial culture. Applied Microbiology. 1972;23(5):1033-1035'},{id:"B109",body:'Hu ZC, Korus RA, Levinson WE, Crawford RL. Adsorption and biodegradation of pentachlorophenol by polyurethane-immobilized Flavobacterium. Environmental Science & Technology. 1994;28(3):491-496'},{id:"B110",body:'Saber DL, Crawford RL. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Applied and Environmental Microbiology. 1985;50:1512-1518'},{id:"B111",body:'Steiert JG, Crawford RL. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochemical and Biophysical Research Communications. 1986;141(2):825-830'},{id:"B112",body:'Stanlake GJ, Finn RK. Isolation and characterization of a pentachlorophenol-degrading bacterium. Applied and Environmental Microbiology. 1982:1421-1427'},{id:"B113",body:'Cobos I, Long JE, Thwin MT, Rubenstein JL. Cellular patterns of transcription factor expression in developing cortical interneurons. Cerebral Cortex. 2006;16(suppl 1):82-88'},{id:"B114",body:'Cox RT, Kirkpatrick C, Peifer M. Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during Drosophila embryogenesis. The Journal of Cell Biology. 1996;134(1):133-148'},{id:"B115",body:'Paul R, Augustyn A, Klin A, Volkmar FR. Perception and production of prosody by speakers with autism spectrum disorders. Journal of Autism and Developmental Disorders. 2005;35(2):205-220'},{id:"B116",body:'Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, et al. North Pacific gyre oscillation links ocean climate and ecosystem change. Geophysical Research Letters. 2008;35:8607'},{id:"B117",body:'Providenti MA, Lee H, Trevors JT. Selected factors limiting the microbial degradation of recalcitrant compounds. Journal of Industrial Microbiology. 1993;12:379-395'},{id:"B118",body:'Harmsen EW, Converse JC, Anderson MP, Hoopes JA. A model for evaluating the three-dimensional groundwater dividing pathline between a contaminant source and a partially penetrating water-supply well. Journal of Contaminant Hydrology. 1991;8(1):71-90'},{id:"B119",body:'Diez MC. Biological aspects involved in the degradation of organic pollutants. Journal of Soil Science and Plant Nutrition. 2010;10(3):244-267'},{id:"B120",body:'Audus LJ. The biological detoxication of 2:4-dichlorophenoxyacetic acid in soil. Plant and Soil. 1949;2:31-36'},{id:"B121",body:'Akbar S, Sultan S. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Brazilian Journal of Microbiology. 2016;47:563-570'}],footnotes:[],contributors:[{corresp:"yes",contributorFullName:"Rim Werheni Ammeri",address:"rimwerheni@gmail.com",affiliation:'
Water Treatment and Recycling Laboratory, Tunisie
Water Research and Technology Center (CERTE), Technopole Borj-Cédria, Tunisie
Faculty of Sciences of Tunis (FST), University of Mathematical, Physical and Natural Sciences of Tunis El Manar, Tunisie
Water Research and Technology Center (CERTE), Technopole Borj-Cédria, Tunisie
Faculty of Sciences of Tunis (FST), University of Mathematical, Physical and Natural Sciences of Tunis El Manar, Tunisie
'}],corrections:null},book:{id:"9843",title:"Soil Contamination",subtitle:null,fullTitle:"Soil Contamination",slug:null,publishedDate:null,bookSignature:"Dr. Marcelo L. Larramendy and Dr. Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9843.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},profile:{item:{id:"290505",title:"Dr.",name:"Ahmed",middleName:null,surname:"Issa",email:"ahmadissa@hotmail.com",fullName:"Ahmed Issa",slug:"ahmed-issa",position:null,biography:null,institutionString:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",totalCites:0,totalChapterViews:"0",outsideEditionCount:0,totalAuthoredChapters:"1",totalEditedBooks:"0",personalWebsiteURL:null,twitterURL:null,linkedinURL:null,institution:null},booksEdited:[],chaptersAuthored:[{title:"Nanoplasmonic for Solar Energy Conversion Devices",slug:"nanoplasmonic-for-solar-energy-conversion-devices",abstract:"The effect of nanoplasmonic (Ag) on the performance of DSSCs has been studied in doped and undoped ZnO (DZ and UZ) NPs, which were prepared by the urea-assisted combustion route. Different techniques were conducted to characterize DZ and UZ NPs. XRD patterns were indexed to the hexagonal wurtzite structure of ZnO NPs (ICSD-52362). The values of average crystalline size of UZ and DZ (1.0 mol% Ag) NPs were 20.45 and 22.30 nm, respectively. HR-TEM micrograph revealed good crystallization with an intermediate or poor agglomeration with distribution of semispherical morphologies of ZnO NPs. The energy bandgap of UZ and DZ NPs was changed from 3.21 to 3.31 eV. The deconvolution of the PL spectra recognized eight peaks into near ultraviolet (NUV) and visible regions. The PL emission of visible region overshadowed NUV transition. The photovoltaic cell with the doped photoanode DZ:1.0 mol% Ag exhibited the best performance parameters: Voc = 0.46 V, Jsc = 7.81 mA.cm−2, Pm = 1.91, FF = 51%, and η = 1.91%. A double exponential function was used as a powerful fitting function for the TOCVD data. The results revealed that τn in the UZ NPs photoanode was longer than that in the DZ:1.0 mol% Ag NPs photoanode.",signatures:"Samy K.K. Shaat, Hussam Musleh, Jihad Asad, Nabil Shurrab, Ahmed Issa, Amal AlKahlout and Naji Al Dahoudi",authors:[{id:"242721",title:"Prof.",name:"Naji",surname:"Al Dahoudi",fullName:"Naji Al Dahoudi",slug:"naji-al-dahoudi",email:"dah288@yahoo.com"},{id:"277780",title:"Dr.",name:"Samy K. K.",surname:"Shaat",fullName:"Samy K. K. Shaat",slug:"samy-k.-k.-shaat",email:"sshaat@gmail.com"},{id:"290502",title:"Dr.",name:"Hussam",surname:"Musleh",fullName:"Hussam Musleh",slug:"hussam-musleh",email:"h.mphysics@hotmail.com"},{id:"290503",title:"Mr.",name:"Jihad",surname:"Asad",fullName:"Jihad Asad",slug:"jihad-asad",email:"asaadjihad@gmail.com"},{id:"290504",title:"Dr.",name:"Nabil",surname:"Shurrab",fullName:"Nabil Shurrab",slug:"nabil-shurrab",email:"nabilshurrab139@gmail.com"},{id:"290505",title:"Dr.",name:"Ahmed",surname:"Issa",fullName:"Ahmed Issa",slug:"ahmed-issa",email:"ahmadissa@hotmail.com"},{id:"290506",title:"Prof.",name:"Amal",surname:"AlKahlout",fullName:"Amal AlKahlout",slug:"amal-alkahlout",email:"dramalkahlout@yahoo.com"}],book:{title:"Solar Cells",slug:"solar-cells",productType:{id:"1",title:"Edited Volume"}}}],collaborators:[{id:"226186",title:"Dr.",name:"Jyoti",surname:"Narayan",slug:"jyoti-narayan",fullName:"Jyoti Narayan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"North Eastern Hill University",institutionURL:null,country:{name:"India"}}},{id:"237249",title:"Ph.D.",name:"Jejiron Maheswari",surname:"Baruah",slug:"jejiron-maheswari-baruah",fullName:"Jejiron Maheswari Baruah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/no_image.jpg",biography:null,institutionString:null,institution:null},{id:"274866",title:"Prof.",name:"Muhammad Y.",surname:"Bashouti",slug:"muhammad-y.-bashouti",fullName:"Muhammad Y. Bashouti",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"277271",title:"Dr.",name:"Pedro Pablo",surname:"Zamora",slug:"pedro-pablo-zamora",fullName:"Pedro Pablo Zamora",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"279694",title:"Dr.",name:"Klaus",surname:"Bieger",slug:"klaus-bieger",fullName:"Klaus Bieger",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"288200",title:"Dr.",name:"Riam",surname:"Abu Much",slug:"riam-abu-much",fullName:"Riam Abu Much",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"288201",title:"Dr.",name:"Prakash",surname:"Natarajan",slug:"prakash-natarajan",fullName:"Prakash Natarajan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"288202",title:"Mr.",name:"Sumesh",surname:"Sadhujan",slug:"sumesh-sadhujan",fullName:"Sumesh Sadhujan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"288203",title:"Mr.",name:"Awad",surname:"Shalabny",slug:"awad-shalabny",fullName:"Awad Shalabny",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"288204",title:"Ms.",name:"Sherina",surname:"Harilal",slug:"sherina-harilal",fullName:"Sherina Harilal",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null}]},generic:{page:{slug:"WIS-cost",title:"What Does It Cost?",intro:"
Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.
",metaTitle:"What Does It Cost?",metaDescription:"Open Access publishing helps remove barriers and allows everyone to access valuable information, but article and book processing charges also exclude talented authors and editors who can’t afford to pay. The goal of our Women in Science program is to charge zero APCs, so none of our authors or editors have to pay for publication.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\\n\\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\\n\\n
\\n\\t
European Commission
\\n\\t
Bill and Melinda Gates Foundation
\\n\\t
Wellcome Trust
\\n\\t
National Institute of Health (NIH)
\\n\\t
National Science Foundation (NSF)
\\n\\t
National Institute of Standards and Technology (NIST)
We are currently in the process of collecting sponsorship. If you have any ideas or would like to help sponsor this ambitious program, we’d love to hear from you. Contact us at info@intechopen.com.
\n\n
All of our IntechOpen sponsors are in good company! The research in past IntechOpen books and chapters have been funded by:
\n\n
\n\t
European Commission
\n\t
Bill and Melinda Gates Foundation
\n\t
Wellcome Trust
\n\t
National Institute of Health (NIH)
\n\t
National Science Foundation (NSF)
\n\t
National Institute of Standards and Technology (NIST)
\n\t
Research Councils United Kingdom (RCUK)
\n\t
Foundation for Science and Technology (FCT)
\n\t
Chinese Academy of Sciences
\n\t
Natural Science Foundation of China (NSFC)
\n\t
German Research Foundation (DFG)
\n\t
Max Planck Institute
\n\t
Austrian Science Fund (FWF)
\n\t
Australian Research Council (ARC)
\n
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"15"},books:[{type:"book",id:"10471",title:"Advances in Dynamical Systems Theory, Models, Algorithms and Applications",subtitle:null,isOpenForSubmission:!0,hash:"689fdf3cdc78ade03f0c43a245dcf818",slug:null,bookSignature:"Dr. Bruno Carpentieri",coverURL:"https://cdn.intechopen.com/books/images_new/10471.jpg",editedByType:null,editors:[{id:"92921",title:"Dr.",name:"Bruno",surname:"Carpentieri",slug:"bruno-carpentieri",fullName:"Bruno Carpentieri"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:3},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"100",title:"Climatology",slug:"earth-and-planetary-sciences-climatology",parent:{title:"Earth and Planetary Sciences",slug:"earth-and-planetary-sciences"},numberOfBooks:21,numberOfAuthorsAndEditors:692,numberOfWosCitations:749,numberOfCrossrefCitations:468,numberOfDimensionsCitations:1138,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"earth-and-planetary-sciences-climatology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7299",title:"Climate Change and Global Warming",subtitle:null,isOpenForSubmission:!1,hash:"4ae62fab8fc16c47936a1ac234a405d3",slug:"climate-change-and-global-warming",bookSignature:"Ata Amini",coverURL:"https://cdn.intechopen.com/books/images_new/7299.jpg",editedByType:"Edited by",editors:[{id:"179844",title:"Associate Prof.",name:"Ata",middleName:null,surname:"Amini",slug:"ata-amini",fullName:"Ata Amini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5876",title:"Glacier Evolution in a Changing World",subtitle:null,isOpenForSubmission:!1,hash:"807ab415fef80eae5053189b154da8aa",slug:"glacier-evolution-in-a-changing-world",bookSignature:"Danilo Godone",coverURL:"https://cdn.intechopen.com/books/images_new/5876.jpg",editedByType:"Edited by",editors:[{id:"313983",title:"Dr.",name:"Danilo",middleName:null,surname:"Godone",slug:"danilo-godone",fullName:"Danilo Godone"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5221",title:"Topics in Climate Modeling",subtitle:null,isOpenForSubmission:!1,hash:"f3205fd51558e7d62187cbdf47e979c6",slug:"topics-in-climate-modeling",bookSignature:"Theodore Hromadka and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/5221.jpg",editedByType:"Edited by",editors:[{id:"181008",title:"Dr.",name:"Theodore",middleName:null,surname:"Hromadka",slug:"theodore-hromadka",fullName:"Theodore Hromadka"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4495",title:"Global Warming",subtitle:"Causes, Impacts and Remedies",isOpenForSubmission:!1,hash:"2d99bd0d03471f9871f0fcadd967ba53",slug:"global-warming-causes-impacts-and-remedies",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/4495.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3380",title:"Climate Variability",subtitle:"Regional and Thematic Patterns",isOpenForSubmission:!1,hash:"28cb775691751f6829c82e78d725e4e8",slug:"climate-variability-regional-and-thematic-patterns",bookSignature:"Aondover Tarhule",coverURL:"https://cdn.intechopen.com/books/images_new/3380.jpg",editedByType:"Edited by",editors:[{id:"78083",title:"Dr.",name:"Aondover",middleName:null,surname:"Tarhule",slug:"aondover-tarhule",fullName:"Aondover Tarhule"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3492",title:"Climate Change and Regional/Local Responses",subtitle:null,isOpenForSubmission:!1,hash:"60ca2b9d2e89a90cee7df35b5ae1289a",slug:"climate-change-and-regional-local-responses",bookSignature:"Yuanzhi Zhang and Pallav Ray",coverURL:"https://cdn.intechopen.com/books/images_new/3492.jpg",editedByType:"Edited by",editors:[{id:"87977",title:"Dr.",name:"Pallav",middleName:"Kumar",surname:"Ray",slug:"pallav-ray",fullName:"Pallav Ray"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3162",title:"Climate Change",subtitle:"Realities, Impacts Over Ice Cap, Sea Level and Risks",isOpenForSubmission:!1,hash:"6ed24c01a5b46c314f59ea98100f0965",slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",bookSignature:"Bharat Raj Singh",coverURL:"https://cdn.intechopen.com/books/images_new/3162.jpg",editedByType:"Edited by",editors:[{id:"26093",title:"Dr.",name:"Bharat Raj",middleName:null,surname:"Singh",slug:"bharat-raj-singh",fullName:"Bharat Raj Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3102",title:"Advances in Hurricane Research",subtitle:"Modelling, Meteorology, Preparedness and Impacts",isOpenForSubmission:!1,hash:"92a1a44953085414828e5969e9ac3434",slug:"advances-in-hurricane-research-modelling-meteorology-preparedness-and-impacts",bookSignature:"Kieran Hickey",coverURL:"https://cdn.intechopen.com/books/images_new/3102.jpg",editedByType:"Edited by",editors:[{id:"17924",title:"Dr.",name:"Kieran",middleName:"Richard",surname:"Hickey",slug:"kieran-hickey",fullName:"Kieran Hickey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2312",title:"Atmospheric Aerosols",subtitle:"Regional Characteristics - Chemistry and Physics",isOpenForSubmission:!1,hash:"5f0c63a1d9340befc07046080cd39569",slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",bookSignature:"Hayder Abdul-Razzak",coverURL:"https://cdn.intechopen.com/books/images_new/2312.jpg",editedByType:"Edited by",editors:[{id:"135965",title:"Dr.",name:"Hayder",middleName:null,surname:"Abdul-Razzak",slug:"hayder-abdul-razzak",fullName:"Hayder Abdul-Razzak"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1571",title:"Doppler Radar Observations",subtitle:"Weather Radar, Wind Profiler, Ionospheric Radar, and Other Advanced Applications",isOpenForSubmission:!1,hash:"f6614a3df0bad532ed06d41891fe9c96",slug:"doppler-radar-observations-weather-radar-wind-profiler-ionospheric-radar-and-other-advanced-applications",bookSignature:"Joan Bech and Jorge Luis Chau",coverURL:"https://cdn.intechopen.com/books/images_new/1571.jpg",editedByType:"Edited by",editors:[{id:"113007",title:"Dr.",name:"Joan",middleName:null,surname:"Bech",slug:"joan-bech",fullName:"Joan Bech"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1546",title:"Atmospheric Model Applications",subtitle:null,isOpenForSubmission:!1,hash:"30315ea16bedb67eebd4fb0e9f38f968",slug:"atmospheric-model-applications",bookSignature:"Ismail Yucel",coverURL:"https://cdn.intechopen.com/books/images_new/1546.jpg",editedByType:"Edited by",editors:[{id:"100229",title:"Dr.",name:"Ismail",middleName:null,surname:"Yucel",slug:"ismail-yucel",fullName:"Ismail Yucel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:21,mostCitedChapters:[{id:"34744",doi:"10.5772/35368",title:"The JMA Nonhydrostatic Model and Its Applications to Operation and Research",slug:"the-jma-nonhydrostatic-model-and-its-applications-to-operation-and-research",totalDownloads:2581,totalCrossrefCites:35,totalDimensionsCites:47,book:{slug:"atmospheric-model-applications",title:"Atmospheric Model Applications",fullTitle:"Atmospheric Model Applications"},signatures:"Kazuo Saito",authors:[{id:"104090",title:"Dr.",name:"Kazuo",middleName:null,surname:"Saito",slug:"kazuo-saito",fullName:"Kazuo Saito"}]},{id:"44055",doi:"10.5772/55140",title:"West African Monsoon in State-of-the-Science Regional Climate Models",slug:"west-african-monsoon-in-state-of-the-science-regional-climate-models",totalDownloads:3972,totalCrossrefCites:23,totalDimensionsCites:46,book:{slug:"climate-variability-regional-and-thematic-patterns",title:"Climate Variability",fullTitle:"Climate Variability - Regional and Thematic Patterns"},signatures:"M. B. Sylla, I. Diallo and J. S. Pal",authors:[{id:"158387",title:"Dr.",name:"Mouhamadou",middleName:"Bamba",surname:"Sylla",slug:"mouhamadou-sylla",fullName:"Mouhamadou Sylla"},{id:"166845",title:"MSc.",name:"Ismaila",middleName:null,surname:"Diallo",slug:"ismaila-diallo",fullName:"Ismaila Diallo"},{id:"166846",title:"Dr.",name:"Jeremy",middleName:null,surname:"Pal",slug:"jeremy-pal",fullName:"Jeremy Pal"}]},{id:"21327",doi:"10.5772/24467",title:"Crop Production and Global Warming",slug:"crop-production-and-global-warming",totalDownloads:3733,totalCrossrefCites:7,totalDimensionsCites:25,book:{slug:"global-warming-impacts-case-studies-on-the-economy-human-health-and-on-urban-and-natural-environments",title:"Global Warming Impacts",fullTitle:"Global Warming Impacts - Case Studies on the Economy, Human Health, and on Urban and Natural Environments"},signatures:"Masahumi Johkan, Masayuki Oda, Toru Maruo and Yutaka Shinohara",authors:[{id:"57569",title:"Prof.",name:"Johkan",middleName:null,surname:"Masahumi",slug:"johkan-masahumi",fullName:"Johkan Masahumi"},{id:"62171",title:"Prof.",name:"Oda",middleName:null,surname:"Masayuki",slug:"oda-masayuki",fullName:"Oda Masayuki"},{id:"62172",title:"Prof.",name:"Toru",middleName:null,surname:"Maruo",slug:"toru-maruo",fullName:"Toru Maruo"},{id:"62173",title:"Prof.",name:"Shinohara",middleName:null,surname:"Yutaka",slug:"shinohara-yutaka",fullName:"Shinohara Yutaka"}]}],mostDownloadedChaptersLast30Days:[{id:"19636",title:"Impacts of Climate Change on Animal Production and Quality of Animal Food Products",slug:"impacts-of-climate-change-on-animal-production-and-quality-of-animal-food-products",totalDownloads:7827,totalCrossrefCites:3,totalDimensionsCites:9,book:{slug:"climate-change-socioeconomic-effects",title:"Climate Change",fullTitle:"Climate Change - Socioeconomic Effects"},signatures:"László Babinszky, Veronika Halas and Martin W.A. Verstegen",authors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky"},{id:"61600",title:"Dr.",name:"Veronika",middleName:null,surname:"Halas",slug:"veronika-halas",fullName:"Veronika Halas"},{id:"61601",title:"Prof.",name:"Martin",middleName:null,surname:"Verstegen",slug:"martin-verstegen",fullName:"Martin Verstegen"}]},{id:"18727",title:"Impacts of Climate Change on the Power Industry and How It is Adapting",slug:"impacts-of-climate-change-on-the-power-industry-and-how-it-is-adapting",totalDownloads:1881,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"climate-change-research-and-technology-for-adaptation-and-mitigation",title:"Climate Change",fullTitle:"Climate Change - Research and Technology for Adaptation and Mitigation"},signatures:"James S McConnach, Ahmed F Zobaa and David Lapp",authors:[{id:"39249",title:"Dr.",name:"Ahmed F.",middleName:null,surname:"Zobaa",slug:"ahmed-f.-zobaa",fullName:"Ahmed F. Zobaa"},{id:"59173",title:"MSc.",name:"James",middleName:"S",surname:"McConnach",slug:"james-mcconnach",fullName:"James McConnach"},{id:"121166",title:"BSc.",name:"David",middleName:null,surname:"Lapp",slug:"david-lapp",fullName:"David Lapp"}]},{id:"38765",title:"Aerosol Direct Radiative Forcing: A Review",slug:"aerosol-direct-radiative-forcing-a-review",totalDownloads:5448,totalCrossrefCites:4,totalDimensionsCites:13,book:{slug:"atmospheric-aerosols-regional-characteristics-chemistry-and-physics",title:"Atmospheric Aerosols",fullTitle:"Atmospheric Aerosols - Regional Characteristics - Chemistry and Physics"},signatures:"Chul Eddy Chung",authors:[{id:"90089",title:"Prof.",name:"Chul",middleName:null,surname:"Chung",slug:"chul-chung",fullName:"Chul Chung"}]},{id:"19852",title:"Mountains Under Climate and Global Change Conditions – Research Results in the Alps",slug:"mountains-under-climate-and-global-change-conditions-research-results-in-the-alps",totalDownloads:2671,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Oliver Bender, Axel Borsdorf, Andrea Fischer and Johann Stötter",authors:[{id:"58222",title:"Prof.",name:"Axel",middleName:null,surname:"Borsdorf",slug:"axel-borsdorf",fullName:"Axel Borsdorf"},{id:"61016",title:"Dr.",name:"Andrea",middleName:null,surname:"Fischer",slug:"andrea-fischer",fullName:"Andrea Fischer"},{id:"61017",title:"Dr.",name:"Oliver",middleName:null,surname:"Bender",slug:"oliver-bender",fullName:"Oliver Bender"},{id:"61018",title:"Dr.",name:"Johann",middleName:null,surname:"Stötter",slug:"johann-stotter",fullName:"Johann Stötter"}]},{id:"19854",title:"Glaciers Shrinking in Nepal Himalaya",slug:"glaciers-shrinking-in-nepal-himalaya",totalDownloads:2868,totalCrossrefCites:0,totalDimensionsCites:10,book:{slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Samjwal R. Bajracharya, Sudan B. Maharjan and Finu Shrestha",authors:[{id:"62372",title:"MSc.",name:"Samjwal",middleName:null,surname:"Bajracharya",slug:"samjwal-bajracharya",fullName:"Samjwal Bajracharya"},{id:"62373",title:"MSc",name:"Sudan",middleName:null,surname:"Maharjan",slug:"sudan-maharjan",fullName:"Sudan Maharjan"},{id:"136280",title:"Dr.",name:"Finu",middleName:null,surname:"Shrestha",slug:"finu-shrestha",fullName:"Finu Shrestha"}]},{id:"70313",title:"The Developing World’s Contribution to Global Warming and the Resulting Consequences of Climate Change in These Regions: A Nigerian Case Study",slug:"the-developing-world-s-contribution-to-global-warming-and-the-resulting-consequences-of-climate-chan",totalDownloads:474,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"global-warming-and-climate-change",title:"Global Warming and Climate Change",fullTitle:"Global Warming and Climate Change"},signatures:"Angela Oyilieze Akanwa and Ngozi Joe-Ikechebelu",authors:[{id:"262653",title:"Dr.",name:"Angela Oyilieze",middleName:null,surname:"Akanwa",slug:"angela-oyilieze-akanwa",fullName:"Angela Oyilieze Akanwa"},{id:"309477",title:"Ph.D. Student",name:"Ngozi",middleName:null,surname:"Joe-Ikechebelu",slug:"ngozi-joe-ikechebelu",fullName:"Ngozi Joe-Ikechebelu"}]},{id:"19833",title:"Chemistry-Climate Connections – Interaction of Physical, Dynamical, and Chemical Processes in Earth Atmosphere",slug:"chemistry-climate-connections-interaction-of-physical-dynamical-and-chemical-processes-in-earth-atmo",totalDownloads:2332,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"climate-change-geophysical-foundations-and-ecological-effects",title:"Climate Change",fullTitle:"Climate Change - Geophysical Foundations and Ecological Effects"},signatures:"Martin Dameris and Diego Loyola",authors:[{id:"56154",title:"MSc",name:"Diego",middleName:null,surname:"Loyola",slug:"diego-loyola",fullName:"Diego Loyola"},{id:"56178",title:"Prof.",name:"Martin",middleName:null,surname:"Dameris",slug:"martin-dameris",fullName:"Martin Dameris"}]},{id:"45287",title:"The Effect of Agricultural Growing Season Change on Market Prices in Africa",slug:"the-effect-of-agricultural-growing-season-change-on-market-prices-in-africa",totalDownloads:3485,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"climate-variability-regional-and-thematic-patterns",title:"Climate Variability",fullTitle:"Climate Variability - Regional and Thematic Patterns"},signatures:"K. M. de Beurs and M. E. Brown",authors:[{id:"166024",title:"Dr.",name:"Kirsten",middleName:null,surname:"De Beurs",slug:"kirsten-de-beurs",fullName:"Kirsten De Beurs"}]},{id:"42002",title:"Climate Change Adaptation Strategies in Sub-Saharan Africa: Foundations for the Future",slug:"climate-change-adaptation-strategies-in-sub-saharan-africa-foundations-for-the-future",totalDownloads:2891,totalCrossrefCites:7,totalDimensionsCites:14,book:{slug:"climate-change-realities-impacts-over-ice-cap-sea-level-and-risks",title:"Climate Change",fullTitle:"Climate Change - Realities, Impacts Over Ice Cap, Sea Level and Risks"},signatures:"P. J. M. Cooper, R. D. Stern, M. Noguer and J. M. Gathenya",authors:[{id:"147065",title:"Prof.",name:"Peter",middleName:null,surname:"Cooper",slug:"peter-cooper",fullName:"Peter Cooper"}]},{id:"18717",title:"Atmospheric Aerosol Optical Properties and Climate Change in Arid and Semi-Arid Regions",slug:"atmospheric-aerosol-optical-properties-and-climate-change-in-arid-and-semi-arid-regions",totalDownloads:2223,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"climate-change-research-and-technology-for-adaptation-and-mitigation",title:"Climate Change",fullTitle:"Climate Change - Research and Technology for Adaptation and Mitigation"},signatures:"Tugjsuren Nasurt",authors:[{id:"59873",title:"Prof.",name:"Tugjsuren",middleName:null,surname:"Nas-Urt",slug:"tugjsuren-nas-urt",fullName:"Tugjsuren Nas-Urt"}]}],onlineFirstChaptersFilter:{topicSlug:"earth-and-planetary-sciences-climatology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/290505/ahmed-issa",hash:"",query:{},params:{id:"290505",slug:"ahmed-issa"},fullPath:"/profiles/290505/ahmed-issa",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()