International semantic on normal and abnormal lung sounds use in clinical practice [2,7,8].
\r\n\tIn sum, the book presents a reflective analysis of the pedagogical hubs for a changing world, considering the most fundamental areas of the current contingencies in education.
",isbn:"978-1-83968-793-8",printIsbn:"978-1-83968-792-1",pdfIsbn:"978-1-83968-794-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"b01f9136149277b7e4cbc1e52bce78ec",bookSignature:"Dr. María Jose Hernandez-Serrano",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10229.jpg",keywords:"Teacher Digital Competences, Flipped Learning, Online Resources Design, Neuroscientific Literacy (Myths), Emotions and Learning, Multisensory Stimulation, Citizen Skills, Violence Prevention, Moral Development, Universal Design for Learning, Sensitizing on Diversity, Supportive Strategies",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 14th 2020",dateEndSecondStepPublish:"October 12th 2020",dateEndThirdStepPublish:"December 11th 2020",dateEndFourthStepPublish:"March 1st 2021",dateEndFifthStepPublish:"April 30th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Phil. Maria Jose Hernandez Serrano is a tenured lecturer in the Department of Theory and History of Education at the University of Salamanca, where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. in Education and Training in Virtual Environments by research with the University of Manchester, UK (2009).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"187893",title:"Dr.",name:"María Jose",middleName:null,surname:"Hernandez-Serrano",slug:"maria-jose-hernandez-serrano",fullName:"María Jose Hernandez-Serrano",profilePictureURL:"https://mts.intechopen.com/storage/users/187893/images/system/187893.jpg",biography:"DPhil Maria Jose Hernandez Serrano is a tenured Lecturer in the Department of Theory and History of Education at the University of Salamanca (Spain), where she currently teaches on Teacher Education. She graduated in Social Education (2000) and Psycho-Pedagogy (2003) at the University of Salamanca. Then, she obtained her European Ph.D. on Education and Training in Virtual Environments by research with the University of Manchester, UK (2009). She obtained a Visiting Scholar Postdoctoral Grant (of the British Academy, UK) at the Oxford Internet Institute of the University of Oxford (2011) and was granted with a postdoctoral research (in 2021) at London Birbeck University.\n \nShe is author of more than 20 research papers, and more than 35 book chapters (H Index 10). She is interested in the study of the educational process and the analysis of cognitive and affective processes in the context of neuroeducation and neurotechnologies, along with the study of social contingencies affecting the educational institutions and requiring new skills for educators.\n\nHer publications are mainly of the educational process mediated by technologies and digital competences. Currently, her new research interests are: the transdisciplinary application of the brain-based research to the educational context and virtual environments, and the neuropedagogical implications of the technologies on the development of the brain in younger students. Also, she is interested in the promotion of creative and critical uses of digital technologies, the emerging uses of social media and transmedia, and the informal learning through technologies.\n\nShe is a member of several research Networks and Scientific Committees in international journals on Educational Technologies and Educommunication, and collaborates as a reviewer in several prestigious journals (see public profile in Publons).\n\nUntil March 2010 she was in charge of the Adult University of Salamanca, by coordinating teaching activities of more than a thousand adult students. She currently is, since 2014, the Secretary of the Department of Theory and History of Education. Since 2015 she collaborates with the Council Educational Program by training teachers and families in the translation of advances from educational neuroscience.",institutionString:"University of Salamanca",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"University of Salamanca",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"23",title:"Social Sciences",slug:"social-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"301331",firstName:"Mia",lastName:"Vulovic",middleName:null,title:"Mrs.",imageUrl:"https://mts.intechopen.com/storage/users/301331/images/8498_n.jpg",email:"mia.v@intechopen.com",biography:"As an Author Service Manager, my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6942",title:"Global Social Work",subtitle:"Cutting Edge Issues and Critical Reflections",isOpenForSubmission:!1,hash:"222c8a66edfc7a4a6537af7565bcb3de",slug:"global-social-work-cutting-edge-issues-and-critical-reflections",bookSignature:"Bala Raju Nikku",coverURL:"https://cdn.intechopen.com/books/images_new/6942.jpg",editedByType:"Edited by",editors:[{id:"263576",title:"Dr.",name:"Bala",surname:"Nikku",slug:"bala-nikku",fullName:"Bala Nikku"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"38846",title:"Advances and Perspectives in the Field of Auscultation, with a Special Focus on the Contribution of New Intelligent Communicating Stethoscope Systems in Clinical Practice, in Teaching and Telemedicine",doi:"10.5772/48402",slug:"advances-and-perspectives-in-the-field-of-auscultation-with-a-special-focus-on-the-contribution-of-n",body:'The stethoscope and the semantic of auscultatory findings were invented more than 200 years ago by Dr. Laennec (Traité de l’Auscultation Médiate, Paris, 1819 [Figure 1]) and over the years very few changes have been made to both the stethoscope itself and the way in which it is used [1]. However, the ability to differentiate between normal and abnormal sounds or noises (vesicular sounds, wheezes, crackles, etc) remains essential in clinical practice for correct diagnosis and management.
Over the past two decades, much of the progress made in this area has resulted primarily from improvements made to the stethoscope itself [1]. More recently, we have seen advances in the techniques used to process auscultatory signals as well as in the analysis and clarification of the resulting sounds [2,3]. The availability of novel representations of the sounds, with phono- and spectrograms, also opens interesting perspectives in the context of diagnostic aids, but also in education and pedagogy [4].
This chapter aims to review recent technological advances, evaluate promising innovations and perspectives in the field of auscultation, with a special focus on the development of new intelligent communicating stethoscope systems in clinical practice, and in the context of teaching and telemedicine.
The physical characterization of physiological and pathological sounds in humans is still at a fledgling stage and has not yet resulted in reliable documentation, especially not so in the field of pulmonary auscultation [2]. In cardiology, the situation is somewhat similar. However, more precise data, essentially based on phonocardiography, are available, outdated as they may be [1]. Analysis and characterization of auscultation sounds have been totally neglected by practicing physicians and any major improvements have been made were primarily in auscultatory tools, i.e., the new intelligent communicating stethoscope systems [4].
Portrait of René Théophile Hyacinthe Laennec. Front cover of the first edition of the “Traité de l’Auscultation Médiate”, Paris, France, 1819. Note the handwritten Latin dedication to his uncle Guillaume Laennec in Nantes: “A mon excellent oncle, mon autre père” ("To my great uncle, my other father"). The original Laennec stethoscope, in wood, retains in the Museum of the History of Medicine, in Paris, France.
Whilst conventional stethoscope auscultation is subjective and hardly sharable, the characterization and identification of sounds by computer-based recording and analysis systems provide objective and early diagnostic help along with better sensitivity and reproducibility [2]. The precise definition of these physical characteristics and the availability of new visual representations of sounds constitute exciting perspectives for teaching and pedagogy, as we shall see later in this chapter [5].
Thus, as we have hypothesized, the new intelligent communicating stethoscope systems will also possibly contribute to a new auscultatory semiology, based on reliable methods of signal analysis and on visual display, and will be complementary to the acoustic signals perceived by the practitioner [2,6].
Breath sounds or noises are produced by airflow in the respiratory system as well as the work of the breathing apparatus. These sounds are characterized by a wide spectrum of different sounds - the average frequency depends on the site of auscultation [3]. It is generally accepted that the frequency of lung sounds ranges between 50 and 2500 Hz, while tracheal sounds can reach up to 4000 Hz [2,3,5]. In terms of respiratory pathology, it should be emphasized that, only a small number of sounds are currently well identified and documented in regard of physical characteristics (for review see the reference [2]).
Table 1 gives a description of various auscultatory findings - normal breath sound, namely the vesicular murmur, and abnormal (pathological) - use clinically according to international literature [3,4].
Type of lung sounds according to international nomenclature | Clinical Features | Pathological circumstances |
Vesicular murmur | Very soft noise, audible throughout the entire phase of inspiration and during early expiration. Detected in antero-lateral areas of the chest and in the back, it consists in a continuous, soft low intensity murmur, heard throughout inspiration | The vesicular murmur is weakened in the following circumstances: extensive thickening of the wall, for example, in obesity), for example, in cases of emphysema (chest hyperinflation. It is abolished when : the lung is collapsed by the pressure of fluid or air in the pleural cavity, such as in cases of pneumothorax or pleurisy absence of ventilation in the affected lung area, for example, in cases of lung compression, especially in atelectasis with retraction after pneumonectomy, on the operated side. |
Wheezes and whistles | Of bronchial origin and variable intensity, wheezes are heard at a distance from the patient. They include inspiratory wheezes, as well as sibilant wheezes heard during both phases of breathing. | In cases of localized wheezing, it can be heard during inspiration or during both phases, with similar pitch, caused by partial obstruction of the trachea or bronchi, due to the presence of a tumor or foreign body. In cases of diffuse wheezing, it is most often in the form of bilateral wheezing, of various tonalities, heard especially at the end of expiration and encountered in instances of bronchial asthma. In chronic obstructive bronchitis (bronchial pneumonia), there is also diffuse expiratory wheezing, due to vibration of the bronchial walls which tend to collapse at expiration. |
Rhonchi or snoring | Also of bronchial origin, sonorous rhonchi are low-pitched, in both inspiratory and expiratory phases, and altered by coughing. | They are encountered in acute or chronic bronchitis accompanied with bronchial hypersecretion. Usually cleared by coughing, the so-called fixed rhonchus on the other hand does not disappear after coughing effort and is generally associated with downstream bronchial obstruction. |
Coarse crackles (or rales) | Also called mucous rales, bubbling rales are discontinuous and of short duration. Emitted sounds are irregular, uneven, intense, observed in both phases of respiration and altered by coughing. | They make a gurgling noise in the large airways often associated with bronchial congestion due to hypersecretion of mucus. They are predominantly observed in bronchitis. |
Fine crackles (or rales) | Also called fine rales or crepitations, they emit discontinuous, thin, dry noises, high and evenly pitched, occurring in spells during inspiration. | They become more distinctive after coughing and usually point to an alveolar disease process. Due to alveolar wall detachment and their pathological features, they are observed primarily in cases of pneumonia, interstitial alveolar or pulmonary edema subsequent to heart failure, but also in pulmonary fibrosis and in certain interstitial pneumonias. |
Bronchial or tubular breathing Bronchial sound | A coarse, high intensity and high-pitch noise that can be heard in both inspiratory and expiratory phases, although predominantly inspiratory. | It can be heard over the thorax suggesting pneumonia-induced pulmonary consolidation and is typically accompanied by a series of crackles |
Pleural breathing sound | A soft, distant, veiled expiratory sound. | It is heard at the upper limit of moderate pleural effusion. Like (bronchial or tubular) breathing, it is determined by pulmonary consolidation complicated by pleurisy. Although attenuated by the latter, it nevertheless exhibits different features than (bronchial, tubular) breathing. |
Amphoric breathing | A high-pitch expiratory metallic sound | It is caused by the resonance of normal breath sounds in an air pocket, for example in cases of pneumothorax (with a persistent pleural breach). |
Pleural rub or Pleural friction rub | Dry grating and superficial sounds, unchanged by coughing. Their Intensity may be discrete, like the «rustle of silk paper», or intense, such as the «creaking sound of new leather». | They are due to the two inflamed pleural layers rubbing against each other. They occur at the onset of pleurisy, at its upper limit or after fluid evacuation. The differential diagnosis with that of coarse crackles may be difficult, but unlike the latter, pleural rubs appear soon after the start of inspiration. |
The generation of heart sounds is essentially related to cardiac muscle contraction, the functioning of the valves and turbulence generated by blood flow. The spectrum of heart sounds is between 20 and 100 Hz for baseline signals and higher frequencies for murmurs: 500 Hz and above [1,2]. S1, corresponding to the closure of the mitral and tricuspid valves, incorporate frequencies ranging from 10 to 100 Hz. S2, resulting from the opening of the aortic and pulmonary sigmoid valves, is of higher frequency, generally between 150 and 200 Hz. It should be noted that additional heart sounds (S3 and S4) may be heard and additional diastolic noises originating from the valves can also be observed with mitral opening snap, pericardial (friction) rub or knock, etc. Lastly, we can also detect so-called “organic murmurs” which are related to alterations of the mitral or tricuspid atrioventricular valves (inlet valves) or ventriculo-aortic or pulmonary valves (ejection valves) (for review see the reference [4]).
Figure 2 depicts the chronological and morphological characteristics of heart murmurs, illustrating how the practitioner makes a diagnosis by taking into account these elements when analyzing the auscultatory signal perceived [2].
Schematic representation of breaths during the cardiac cycle.
In practice, auscultation diagnoses are often made based solely on past experience of the practitioners, and rely more on intuition than on rigorous and systematic classification systems [1]. However in recent years, various studies have endeavored to characterize, identify and describe sounds in greater detail, especially in the respiratory field [5-8].
It is in this context that an innovative project known as ASAP: “Analyse de Sons Auscultatoires et Pathologiques” (Analysis of Auscultatory and Pathological Sounds) was developed by the French national agency for research (ANR 2006 - TLOG 21 04, headed by Professor E. Andrès) [5]. This project was supported by the development and the provision of a new intelligent communicating stethoscope system.
The main objective of this project was to bring pulmonary auscultation into the era of evidence-based medicine, based on the identification of sounds using innovations in technology, mathematics and computer science in order to "rediscover" the clinical significance of respiratory sounds [5]. The ASAP project allowed us to documented physically characterized these sounds in more detail.
To date, we have collected over 500 auscultations, well-documented clinically (Figure 3), and began an analysis of its physical characteristics of the sounds. Thus, physically-speaking, crackles correspond to a characteristic wave whose appearance is shown in Figure 4, a representation revisited and detailed elsewhere [4,9]. Note that it is generally accepted that the duration of crackles is less than 20 ms and their frequency is between 100 and 200 Hz [10]. A sibilant wheeze, on the other hand, is characterized by a waveform with a dominant frequency usually above 100 Hz and a duration exceeding 100 ms. In terms of physics, wheezing sounds are longer than 50 or 100 ms but less than 250 ms [4,9,10]. The frequency of wheezes ranges between 100 and 2500 Hz with a characteristic peak frequency of 100 or 400 Hz and 1000 or 1600 Hz.
Clinical documentation and physical characterization of sounds collected through the ASAP project. These data includes: characteristics of the patient; auscultation type; acoustic data; diagnosis; sounds (data collected in the ASAP project) [5].
Representation of a breathing cycle in a patient with chronic obstructive pulmonary disease, along with respective phases of inspiration, expiration and respiratory pause in the form of a phonopneumogram (2a) and a spectrogram (2b). Presence of numerous coarse crackles especially visible on the spectrogram (2b) (indicated by arrows) (data collected in the ASAP project) [5].
The ASAP project is complementary to other work conducted locally at the University Hospital (CHRU) of Strasbourg in collaboration with the research team led by Doctor C. Brandt, notably the project: “Perspectives et apports du développement d’un stéthoscope communiquant à l’ère de la telemedicine” (Perspectives and contributions of the development of a communicating stethoscope in the era of telemedicine) (PRI HUS - No. 4179, headed by Doctor C. Brandt and Professor E. Andrès, Strasbourg, France) [6].
The objectives of this project were: validation of a new communicating stethoscope we have developed (see a next section of this chapter); comparison of conventional (acoustic) auscultation with this new communicating stethoscope system; creating an auscultatory library; and development of expert systems for real-time analysis of signals from cardiovascular and pulmonary auscultation for diagnosis assistance.
Forward, the ASAP and PRI projects aims at making evolve the auscultation technics:
first, by the development objective tools for the analyse of auscultation sounds: electronic stethoscopes paired with computing device;
by the creation of an auscultation sounds’ database in order to compare and identify the physical characteristics, the acoustical and visual signatures of the pathologies;
and lastly, by the capitalisation of these new auscultation techniques around the creation of a teaching unit and a school of auscultation on the web (http://www.websound.fr) [5,6]. This auscultation’s school, potentially hosted on the web, will be destined to the initial and continuous formation of the medical attendants (Figure 5).
Whereas conventional auscultation is subjective and interpreted by a single clinician, the characterization of sounds through recording, analysis and auscultatory signal processing systems provides in several studies better sensitivity and specificity when interpreting findings [4,11]. The availability of new technologies opens up interesting perspectives in the field of diagnostic tools, but also in education [4,12].
In fact, as well as providing a reliable addition to routine clinical diagnosis, these "tools" should ultimately lead to improvements in auscultatory training, based on the "physical" characterization of signals and sounds, as well as a visual representation in the form of:
phonopneumogram or phonocardiogram: a tool providing simultaneous representation in time of the respiratory phases (Figure 2a) or the cardiac cycle and the auscultation signal (Figure 6a);
spectrogram: a tool where time is indicated on the abscissa, frequency on the ordinate and the intensity of the signal is represented by a color palette for the respiratory (Figure 2b) or heart signal (Figure 6b).
Potential teaching contributions of advances and innovations in the field of auscultation with the creation of a school of auscultation on the web [4,5]. This school of auscultation includes several components: Patient follow-up, Collection of sounds, Consultation, Transmission, Listening, Analysis, Validated and classified respiratory sounds, Automated analysis, Sound database, Secured access, Students, Initial training, School of Auscultation, Physicians, Diagnostic aid, Continuing Education, Specialists, Certification Validation.
Representation of a recording of a cardiac auscultation in an individual with aortic stenosis with a systolic ejection murmur (indicated by a white arrow) in the form of a phonocardiogram (6a) and a spectrogram (6b) (data collected in the PRI project) [4,5].
To have a sort of proof of concept of the “plus value” of our intelligent communicating stethoscope system, we conducted a preliminary study at the University Hospital of Strasbourg with the aim of evaluating the diagnostic "performance" of these new visualization tools (phono- and spectrogram). We asked a cohort of medical graduate students (n = 30) to listen to 10 sounds in order to diagnose heart and lung pathology [13].
They were then asked to tick the appropriate box corresponding to the diagnosis relating to the sound they had just heard (as with an acoustic stethoscope). The correct response rate was 40 to 60 %. The same exercise was then carried out again with the addition of a visual representation of the sound (phonopneumogram or phonocardiogram and spectrograms). In this second phase of the trial, the rate of correct diagnosis reached 70 to 90%. Table 2 presents the detail of these data. Analysis of this table shows that the improved performance (rate of correct diagnosis) is particularly significant for cardiac pathology.
Thus in our experience, addition of visual representation of sounds has significant implications in terms of medical medical education, and also in term of decision-making, potential patient safety, and cost control. In the field of teaching, a recent well designed study conducted by Sestini et al. supports the results of our work, concluding that an association between the acoustic signal and the image is highly useful for learning and understanding the basis of respiratory sounds [12].
To date, several stethoscopes on the market are already accompanied by specialized software providing the physician with a "visual representation of sounds", using various time-frequency representations, in the form of images. These can then be used in conjunction with the auditory information obtained from a stethoscope to achieve a diagnosis [6]. This “second channel” of information allows the practitioner to strengthen his clinical findings, and is likely to result in a more reliable diagnosis [14]. Figure 7 illustrates this concept by using the example of aortic insufficiency (confirmed by cardiac ultrasound scan) which was not heard with the acoustic stethoscope but was visualized using our intelligent stethoscope prototype from the ASAP project [4]. This is a major achievement, using advances in medical technology to facilitate the work and training of practitioners.
Aortic insufficiency (indicated by white arrows) not heard with the acoustic stethoscope but visualized using our intelligent stethoscope prototype and confirmed by echocardiography (data collected in the ASAP project) [4].
All students (n = 30) | ||
Without tools | With tools | |
% of “good” diagnosis (n = 10) | 64% (191) | 80% (239) |
% of “good” diagnosis in respiratory auscultation (n = 5): normal respiratory auscultation crackles (chronic bronchitis) crackles (interstitial pneumonia) wheeze sibilants (acute crisis of asthma) stridor (lung carcinoma) | 61% (92) 57% (17) 57% (17) 53% (16) 70% (21) 70% (21) | 70% (105) 63% (19) 60% (18) 70% (21) 83% (25) 73% (22) |
% of “good” diagnosis in cardiac auscultation (n = 5): normal cardiac auscultation aortic stenosis aortic regurgitation (minimal murmur) mitral stenosis arrhythmia (auricular fibrillation) | 66% (99) 73% (22) 60% (18) 30% (30) 40% (12) 57% (17) | 89% (134) 93% (28) 100% (30) 70% (21) 87% (26) 97% (29) |
Results of the use of new tools as phono- and spectrogram for visualizing sounds in 30 medical students [13].
To date, there has been very little research on the analysis of auscultatory signals. In terms of signal automation and processing, research is limited to detection of frequency peaks, sound duration measurements, etc [15,16].
In cardiology, little work has been conducted to render the stethoscope "intelligent" by allowing it to provide the clinician with an advanced diagnostic tool, as, for example, that provided by ECG systems which offer the practitioner a plot analysis as a diagnostic aid [14,17].
Of note is the work by Mint and Dillard who developed a stethoscope capable of diagnosing systolic or diastolic sounds present between B1 and B2 beats, and which measured the heart rate using a simple time-frequency analysis of the time periods of interest [14].
We also should acknowledge the work carried out by Murphy, who worked towards developing an "intelligent" stethoscope for which the technology is both interesting and innovative. These studies are reviewed, appended and presented in detail in reference [2].
In terms of respiratory medicine, the automated analysis of pulmonary auscultatory signals remains a challenge, especially compared with the cardiac field. The European Community-funded CORSA project, conducted between 1990 and 2000, provides an overview of the technical advances in respiratory sound analysis using signal processing tools [8,18].
Several studies have also provided an update on the various techniques used for the capture and digitization of respiratory sounds as well as giving an overview of analytical methods based on more standardized semantics [17-20]. A summary of the techniques and characteristics of the leading methods used to assess each type of respiratory sound is provided in references [2,16,17].
As part of the ASAP project mentioned above [5], the team led by Professor C. Collet of the Image Sciences, Computer Sciences and Remote Sensing Laboratory (LSIIT) of the University of Strasbourg (in Strasbourg, France), developed a novel approach in automated analysis of pulmonary auscultation signals [20-22]. As a second step, we then validated this approach on a small number of patients presenting with either: an auscultation defined as "normal", COPD with numerous crackles or asthma with wheezing.
The methods developed by C. Collet’s team involve multiresolution signal analysis through the use of Bayesian tools in the wavelet packet domain, associated with multimodal Markovian modeling adapted for the analysis of lung sounds (high intra and interpatient variability, low signal to noise ratio SNR) (
It should be mentioned that, in collaboration with the team led by Professor A. Dieterlen (University of Haute Alsace, Mulhouse, France), our team at the University Hospital of Strasbourg are also trialing a complementary approach in the field of cardiac signal analysis (PRI project [see above]).
Ultimately, there is scope for these different innovations to be combined in the future after refining and re-valuation of the procedures involved (using strict protocols similar to those used for drug development), to create new "communicating," "intelligent" stethoscopes.
Today’s technology, along with developments in modern medicine means that in the near future a communicating, wireless stethoscope will soon become available. This stethoscope will enable the recording, automated analysis and visualization of auscultatory signals [6,9].
INFRAL, a company (with whom we collaborate) based in Strasbourg, France, has developed several prototypes, with the aim of creating an intelligent communicating stethoscope system, which combines a diagnostic aid with tools for visualization and automated analysis [4].
This diagnostic aid is not only a helpful tool which assists physicians in making rapid decisions, but it will also allow developments in the field of telemedicine, for example; by the establishment of a database of auscultation sounds, by enabling the exchange of sounds between physicians and by allowing auscultation to be performed “from a distance” e.g. when seeking further expertise, etc. More importantly, it will allow auscultation to enter the field of fact-based medicine [6,9].
Figure 8 depicts one of the intelligent stethoscope prototypes, which uses Bluetooth to communicate with a PC, hand held computer or smartphone. This prototype was developed initially in the ASAP project (input of ALCATEL LUCENT), than by INFRAL, combining our expertise from several research projects as well as in the field of human sounds analysis, electronic stethoscope, e-health, e-teaching [4].
Several prototypes of intelligent (automatic signal analysis) communicating (Bluetooth) stethoscope system developed by our team in Strasbourg, France in different research projects, in collaboration mainly with LANNEXT, ALCATEL LUCENT, and currently with INFRAL [4].
In practical terms, a certain number of modern stethoscope models already feature functions for recording, storing and transmitting sounds. Table 3 presents an overview of the major “electronic” stethoscope models currently available on the market and those, which we have tested [4,23]. The following section outlines two examples of new intelligent communicating stethoscope systems that we tested in clinical practice in our Department.
Frequency bands and implemented filters | Communication mode | Additional Information | Ref | Price | |
Andromed | Presence of filers (high-pass at 200 Hz) | Wired connection | [Andromed 08a] [Andromed 08b] | ||
Jabes | Diaphragm mode (lung): 200 to 500 Hz Bell mode (heart) : 20 to 200 Hz Wide mode : 20 to 1000 Hz | Wired connection | [Jabes 08] | $299- $389 | |
Stethoflux | Coupling of acoustic stethoscope and integrated continuous wave doppler | [Stethoflux 08] | $960 | ||
Welch-Allyn | 20 - 20000 Hertz ; although two modes are present : the bell mode (heart) 20-420 Hz, and the diaphragm mode (lungs) 350-1900 Hz | Wired connection | Integrated ECG | [WelchAllyn 08] | $225 - $240 |
3M Littmann | Bell mode (20-200 Hz), diaphragm mode (100-500 Hz) and extended mode (20-1000 Hz). | Infrared | Transfer and display of sounds require additional time and investment by the physician conducting the auscultation Differed viewing and not in real time | [Littmann 08] | $465 - $674 (4100WS model) |
Thinklabs | Filter for adjusting sound in bell/diaphragm mode, and acoustic mode. | Analysis software derived from Audacity | [Thinklabs 08] | $400 - $500 | |
Cardionics | 8 filters enabling the attenuation or amplification of 8 different frequency bands | Wired (jack) | Also has a complement system enabling ECG capability | [Cardionics O8a][Cardionics O8b] | $335 - $575 |
Cardionics – Stethographics | 8 filters enabling the attenuation or amplification of 8 different frequency bands | Wire (jack) | Multi probes | [Stethographics 08] | $279 - $489 |
Principal characteristics of electronic stethoscopes currently available commercially [4].
The JABES Life Sound System is an auscultatory system composed of the JABES Electronic Stethoscope and JABES Life Sound Analyzer software. JABES hold the patent to this stethoscope technology, which consists primarily of an analog amplifier that can amplify body sounds up to 20 times. Hand tremor and ambient noise is minimized using information provided by the manufacturer, but in reality noise from the chest piece is very important.
The stethoscope offers various modes of auscultation: Bell, Diaphragm or Wide, each with 7 levels of volume control. Auscultation modes are reported to imitate the behavior of an acoustic stethoscope. Moreover, the system includes filters that reject certain frequency ranges in order to focus on lung or heart signals.
The JABES Life Sound System software allows the physician to record the body sounds of the patient directly onto his PC in order to view the phonocardiogram. In addition, heart and lungs sounds as well as the heartbeat can be visualized in real time.
The connection between the stethoscope and the PC or external recording equipment comprises a cable connected to the PC or external recorder jack socket. Sounds can be recorded on the PC in MP3 format, but are not documented. In particular, the sample sounds are not accompanied by tags (i.e. basic information such as the area over which the sample was taken).
It is also significant that sounds cannot be transmitted in “real-time” – hence simultaneous auscultation from a distance is not possible: the signal must first be recorded on the PC, before it can be transferred via email, CD or USB flash drive (for a second opinion). Thus because of these limitations, in our opinion it is not suitable for teaching purposes.
The 3MTM LITTMANN stethoscope (LITTMANN 08) is an electronic stethoscope that allows to 6 different sound recordings during auscultation. The sounds are stored directly in.wav format in the internal memory of the stethoscope.
The practitioner can then, through an analog connection to the PC (i.e. external microphone jack), or via an infrared link, transfer the sounds onto his PC for viewing using specific software provided by 3M.
This stethoscope allows sound to be amplified up to 18 times. It has several features including: ambient mechanical noise reduction technology, configurable filters with 3 frequency response modes for listening to the heart, lungs and other human body sounds: bell mode (20-200 Hz), diaphragm mode (100-500 Hz) and extended mode (20-1000 Hz).
The features are very similar to those of the JABES stethoscope; however this system is much more expensive. The stethoscope allows the physician to view the auscultatory sounds; although the display image is delayed and not in real time. Moreover, the transfer of sounds and their display require both additional cost and time. During auscultation it is not possible to visualize how the frequency spectrum of the signal changes with time, making the examination unsystematic, complicated, and invariably much longer.
It should be noted that the electronic stethoscopes currently on the market all have analog amplifiers, providing the option of connecting to a PC through the analog microphone jack socket [4]. In order to simulate "defects" introduced by acoustic stethoscopes, these electronic stethoscopes all offer analog filters that supposedly mimic the behavior of the bell or chest piece of the acoustic stethoscope. Finally, the wired connection between the stethoscope and the storage/processing device (PC or hand held computer or smartphone) is a major handicap in terms of user ergonomics.
Moreover, applications, including diagnosis establishment, monitoring and data exchange through Internet are obviously complementary tools to objective and automatic auscultation sounds analysis. Sensors devices will allow long duration monitoring for patient at home or at hospital. It could also be a useful solution for less-developed countries and remote communities... In addition, this type of system has the great advantage to keep the non-invasive and less expensive characteristics of auscultation.
The European based project, known as E-PERION, aims to develop telemedicine by using a platform which enables "secure" home support for fragile patients and/or those with chronic diseases (LEAD-ERA tender, 2010) (Figure 9). An intelligent communicating stethoscope system is one the deployed devices, especially in patients with respiratory and/or cardiac failure. This project is developped by INFRAL company (based in Strasbourg, France), in association with our team in Strasbourg.
This company is actively involved in the design and manufacture of modular and portable devices, which enable the transfer of essential medical data (http://infral-systems.com/). Such devices use innovative concepts to register and transmit vital parameters from medical devices.
In clinical practice, the most interesting and immediate advantages offered by this tool include:
the ability to strengthen clinical evidence in favor of a particular diagnosis by visualization of the acoustic “pattern” of the sound;
the ability to monitor the evolution of a pathology, by recording findings in a given individual;
and the ability to share data, allowing the exchange of data between health care professionals (using an infrastructure similar to that of the ASAP project)).
Prototype of a telemedicine platform enabling the "secure" home support of frail subjects and patients with chronic diseases, and integrating a “communicating” and “intelligent” stethoscope (with the permission of INFRAL Company).
Conventional auscultation is subjective and not easily shared. Modern medical technology allows us to optimize ausculatory findings and hence achieve a correct diagnosis by physically characterizing sounds through recordings, visualization and automated analysis systems. The development and availability of novel tools based on innovations in science and communications technology provide the clinician with an invaluable aid in order to achieve an early objective diagnosis, as well as offering increased sensitivity and reproducibility of auscultatory findings. Such advances have not only led to the development and use of new intelligent communicating stethoscope systems, but they have also significantly contributed to the revival of telemedicine, particularly as a diagnostic and teaching aid, e-teachnig and pedagogy.
With the rapid development of the economy and the large-scale development of water energy, the construction of reservoir dams has become an important engineering initiative to meet the needs of social and economic development. Over time, the sediment in the reservoir continues to accumulate, and the storage capacity for prosperity and flood control continues to decrease or even loses capacity completely. In addition, due to a lack of water level data and drainage area data in the original design or a lack of labor, equipment, funds, or other resources during construction, the construction of small storage capacity reservoirs cannot meet the current demand for water resources. Therefore, the construction of new water conservancy facilities or the heightening of the old dams has become an urgent problem to consider. Compared with the construction of a new dam, raising an original dam body does not require the consideration of the location of a new dam, and it can obtain a larger storage capacity at a lower economic cost. Therefore, the dam heightening scheme has attached increasing attentions from engineers [1].
Addressing the technical problems that rise during the process of heightening is becoming a top priority due to the large amount of work and the complexity of construction technology. There are different key problems in dam heightening engineering due to the dam type and heightening method. Earth-rock dams are a widely used type of dam. Due to the permeability of earth-rock materials, it is urgent to study the impact of seepage on the earth-rock dam during the heightening process [2]. For slope-type heightened and thickened concrete dams, the key issues related to dam heightening are the stress concentrations and deformation of the dam body during construction and operation, stress analysis and structural form of the interface between new and old concrete, and design of drainage and water stop [3]. Periodic changes in the temperature and changes in the temperature of the old dam after new concrete is placed will cause problems such as deterioration of the dam heel stress, cracks in the joint surface, and cracks in the downstream dam surface [4].
There are many engineering precedents for dam elevation, such as the Goscheneralp Dam and Grande Dixence Dam in Switzerland, Steenbras Dam in South Africa, Roseires Dam in Sudan, and Danjiangkou Dam and Songyue Dam in China [3, 5, 6, 7, 8, 9]. Due to the rapid increases in the urban population of Cape Town, raising the Steenbras Dam offered an effective solution to the problem of a serious water shortage. During the course of anchoring the dam, engineers considered that post-stressing would have advantages in terms of cost and expedition. Essentially the process is one of placing vertical cables through the wall of a mass concrete dam from the crest into the foundation and stressing the cables to produce stabilizing compressive forces on the upstream face. Similar to the Steenbras Dam, the Songyue Dam also raised the dam to meet the water supply needs of Helong City. The Songyue Dam is located in a severely cold area, with an average annual temperature of 4.8°C, and the temperature changes greatly during the year. Therefore, the heightened structure needed to adapt to the characteristics of the severely cold area. The calculation research on the Songyue Dam heightening scheme shows that setting a sliding joint in the middle of the joint surface can absorb the shrinkage and deformation of a part of the newly poured concrete, which has a significant effect on improving the tensile stress of the upstream and downstream dam surfaces.
The Zhushou Reservoir is located in Sichuan Province, China, which is located in a seismically active area. The dam of Zhushou Reservoir is a clay core rock-debris dam. To meet the production and domestic water demand of nearby cities, it is necessary to expand the capacity of the Zhushou Reservoir. Under the action of gravity loads, water loads, and earthquake loads, effectively coordinating the deformation of the rockfill of the new and old dams to allow the stress and deformation of the seepage control system to be within the allowable range of the materials is a major technical difficulty to be solved. Therefore, based on the experience of previous engineering technologies, the necessary theoretical research is carried out to accurately predict the stress and deformation of the dam, especially the coordination between the deformation of the old and new dams, to improve the rationality of engineering design and to improve future engineering operations.
The Zhushou Reservoir pivotal project is located in Liangshan Prefecture, Sichuan Province, and is a medium-sized reservoir. The dam is made of a clay core rock-debris dam. Its top elevation is 2416.10 m, the dam length is 190.00 m, the top elevation of the wave-proof wall is 2417.10 m, the dam height is 63.4 m, and the width of the dam top is 6.0 m. Both the upper and lower dams are provided with rockfilled prisms. The upstream slope is protected by dry block stone, while the downstream slope is protected by a dry block stone arch ring and turf in the circle. The thickness of the dry block stone is 40 cm. The top width of the gravel soil core wall is 6.0 m, the top elevation is 2415.3 m, and the upper and lower slopes are 1:0.4.
According to the water supply project planning of the Baihetan hydropower station resettlement area, to meet the production and domestic water demand of the resettlement area, the Zhushou Reservoir should be expanded and matched to the corresponding water diversion project. The dam should be increased from 63.4 m to 98.1 m. At the same time, when the dam is heightened, the impervious body of the original dam should be strengthened [10].
The objective of dam heightening is to make use of the water-retaining capacity of the original core wall dam to produce rockfill heightening on the top and downstream slope of the old dam so that the original dam body becomes a part of the heightened dam. At the same time, a core wall and foundation anti-seepage system of the original dam is strengthened, a concrete cutoff wall is added, and the foundation anti-seepage curtain grouting is strengthened. The anti-seepage type of the heightening dam body adopts the upstream reinforced concrete-faced slab, the slope ratio of the upstream dam is 1:1.4, and the comprehensive slope of the downstream rockfill body is 1:1.6 [11]. Figures 1 and 2 show general view of the Zhushou Reservoir dam.
Plane figure of heightening of the Zhushou Reservoir dam.
Standard profile of heightening of the Zhushou Reservoir dam.
To avoid excessive deformation and cracking of the lower core wall caused by the compression of the upper high rockfill, the cutoff wall is constructed after the upper rockfill body is filled and settled for 3 months. The concrete connecting plate between the cutoff wall and the toe slab shall be constructed after the toe slab and the face plate are completed.
The overall construction procedure is as follows: old dam filling → new dam filling to 2447.90 m → core wall reinforcement and cutoff wall construction → toe slab construction → panel construction → connecting plate construction → new dam filling to 2451 m. The water level remains at 2395.0 m during the construction period. The construction period of dam heightening is 31 months, which are as follows:
From September of the first year to February of the second year, the construction period of the old dam filling is 6 months.
From March of the second year to November of the second year, the construction period of the new dam filling to an elevation of 2447.9 m is 9 months.
From December of the second year to May of the third year, the construction period of core wall reinforcement and cutoff wall construction is 6 months.
During June of the third year, the construction period of toe slab is 1 month.
From July of the third year to August of the third year, the construction period of concrete panel and wave wall construction is 2 months.
From September of the third year to November of the third year, the construction period of connecting plate construction is 3 months.
From December of the third year to July of the fourth year, the construction period of new dam filling to 2451 m is 4 months.
Figure 3 shows a finite element mesh diagram of a typical riverbed section, Figure 4 shows a three-dimensional finite element mesh diagram, and Figure 5 shows an anti-seepage system (core wall, connecting plate, toe slab and panel) meshing diagram, where the X forward direction is defined as from the left bank to the right bank, the Y forward direction is defined as upstream to downstream, and the Z forward direction is defined as the opposite direction of gravity. The three-dimensional solid element adopts an 8-node hexahedral isoparametric element and a 4-node tetrahedral isoparametric element, and the latter is treated as a degenerated hexahedral element. There are 29,905 generating units and 33,482 nodes in total.
Finite element mesh diagram of a typical riverbed section.
Three-dimensional finite element mesh diagram.
Anti-seepage system meshing diagram.
According to the above construction and water storage process, the order of the filling and storage simulation in the finite element calculation is as follows: old dam filling → new dam filling to 2447.90 m (the water level remained at 2395.0 m) → cutoff wall construction → toe slab construction → panel construction → connecting plate construction → new dam filling to 2451 m → upstream water storage to a normal water level elevation of 2444 m. There are 70 stages for simulation, including 42 stages for dam filling and 38 stages for water storage. Figure 6 shows the simulation diagram of the Zhushou Reservoir construction and water storage process. Figure 7 shows the water level-time curve of the Zhushou Reservoir during the construction and water storage process.
The Zhushou reservoir construction and water storage process simulation diagram.
The Zhushou reservoir water level-time curve during the construction and water storage process.
As the main body of the concrete-faced rockfill dam, reasonable simulation of its stress–strain relationship is very important to improve the rationality of the calculation results of the stress and deformation of the concrete-faced rockfill dam. In this project, the constitutive model of rockfill material is based on the Shen Zhujiang double-yield surface elastic-plastic model proposed by Shen Zhujiang. Compared with the nonlinear elastic model, the model can consider the dilatancy and shear-shrinkage characteristics of rockfill bodies and can more accurately reflect the stress-strain characteristics of dam bodies than other models.
In the Shen Zhujiang double-yield surface elastic-plastic model, the two-yield surfaces are only regarded as the boundary of elastic region and are no longer related to hardening parameters. The double-yield surface is used to establish the unloading criterion, make the elastic-plastic matrix symmetrical, and specify the direction of plastic strain. As shown in Figure 8, due to the double-yield surface, not only the loading direction B will produce plastic strain, but also the loading directions A and C will produce plastic strain.
Double hardening model.
The two-yield surfaces of the Shen Zhujiang double-yield surface elastic-plastic model are
where
where
The model adopts the normal flow rule, so the plastic potential surface is orthogonal to the direction of the plastic strain increase and
Tangent Young’s modulus is defined as
where
In the formula, the elastic Poisson’s ratio
where
However, the expression of
where
The Shen Zhujiang elastic-plastic model has eight model parameters, which are
The Shen Zhujiang elastic-plastic model can also be calculated by the parameters of the model Duncan
The tangent Poisson’s ratio
For unloading, the modulus of resilience is calculated as follows:
where
The loading and unloading criteria of the Shen Zhujiang elastic-plastic model are as follows:
If
If
If
For coarse-grained materials,
where
The linear elastic model is used for concrete materials, and the stress–strain relationship conforms to the following generalized Hooke’s law:
where
At present, the Goodman thickness-free elements and Desai thin-layer elements are commonly used. Because the interface is a kind of interface without a thickness, it is more suitable to use the Goodman element without a thickness to theoretically simulate the interface. However, in fact, a Goodman element without a thickness must obtain a large normal stiffness to avoid overlap. In addition, shear dislocation does not necessarily occur on the interface and may penetrate into the soil at a certain distance. Desai thin-layer elements reflect normal deformation to a certain extent, but the choice of the thickness of thin-layer elements has a great influence on the calculation results. A large element thickness will introduce errors in the physics, and a small element thickness will introduce errors in the mathematics. Desai suggests that the ratio of the thickness
For the constitutive model of the contact surface, the hyperbolic model and ideal elastic-plastic model of the relationship between the shear stress and relative displacement proposed by Clough and Duncan are most commonly used. The results show that the shear stress on the interface between the soil and structure is not uniform, the shear deformation is actually a rigid-plastic deformation, and the contact friction model can be well simulated.
Before the shear stress
The deformation on the contact surface can be divided into two parts: basic deformation and failure deformation. The basic deformation is similar to the deformation calculation model of other soils, expressed as
There are two forms of failure and deformation of the elements: tension cracking and slip. The rigid-plastic model is used to calculate the relative shear deformation of the element. There is no relative slip on the contact surface before failure, and after failure, the relative slip will continue to develop.
For the three-dimensional thin-layer contact surface element, the Y direction is the normal direction of the contact surface:
If the contact surface is under tension,
The value of
The flexibility matrix
The dam uses C25 concrete and C30 concrete. The unit weight, elastic modulus and Poisson’s ratio of C25 and C30 concrete are 2.5 t/m3, 2.8 × 104 N/mm2, and 0.167 and 2.5 t/m3, 3.0 × 104 N/mm2, and 0.167, respectively.
The lithology of the newly filled rockfill material in the Zhushou Reservoir is the Ordovician Hongshiya Formation (O1h) quartz sandstone, fine sandstone with silty mudstone, and Qiaojia Formation (O2q) gray thin-to-medium thick sandstone, dolomite, and limestone. According to design filling standards and field testing data, the triaxial CD test had been carried out on rockfill materials of the heightening dam and the filling materials of the old dam body. The calculated parameters determined by the test are shown in Table 1.
Material name | ρd (g/cm3) | c (kPa) | φо (°) | Δφ (°) | k | n | Rf | D | F | G | |
---|---|---|---|---|---|---|---|---|---|---|---|
Old dam | Gravel clay core wall | 1.84 | 56.9 | 29.3 | 0 | 164.4 | 0.46 | 0.69 | 3.68 | 0.1 | 0.3 |
Stone slag in the upper part of the dam hell (elevation above 2390 m) | 2.04 | 0 | 41.8 | 9.1 | 318.8 | 0.46 | 0.79 | 2.78 | 0.04 | 0.35 | |
Stone slag in the lower part of the dam shell (elevation above 2390 m) | 2.12 | 0 | 44.9 | 9.1 | 431.3 | 0.38 | 0.72 | 3.3 | 0.09 | 0.37 | |
Rockfill | 2.14 | 0 | 47.7 | 10.1 | 811 | 0.31 | 0.54 | 10.4 | 0.12 | 0.4 | |
New dam | Cushion zone | 2.2 | 0 | 58.8 | 10.9 | 1245.6 | 0.35 | 0.60 | 10.4 | 0.12 | 0.4 |
Transition region | 2.17 | 0 | 59.5 | 13.3 | 1405.4 | 0.29 | 0.65 | 10.1 | 0.15 | 0.39 | |
Main rockfill area | 2.16 | 0 | 59.4 | 13.6 | 1301.5 | 0.27 | 0.60 | 9.3 | 0.15 | 0.39 | |
Secondary rockfill area | 2.14 | 0 | 56.1 | 11.9 | 954.1 | 0.37 | 0.63 | 9.5 | 0.13 | 0.36 |
Calculated parameters of the dam material.
Considering the stress and deformation of the new dam after filling and storage period and influence of the stress and deformation of the new dam on the old dam, Table 2 lists the characteristic values of the stress and deformation of the dam body.
Statistical items | Dam body | ||
---|---|---|---|
Completion period | Storage period | ||
Displacement along the river (cm) | Downstream | −18.2 | −10.2 |
Upstream | 6.9 | 9.25 | |
Settlement (cm) | 47.5 | 48.8 | |
Major principal stress (MPa) | 2.13 | 2.14 | |
Minor principal stress (MPa) | 1.21 | 1.23 |
Characteristic values of stress and deformation of the dam body.
Figures 9 and 10 show the contour of the displacements of the dam body during the completion period and the storage period. The simulation results show that the maximum horizontal displacement occurs in the dam body of the old dam and the maximum settlement occurs at the interface between the old and new dams. During the completion period, the maximum settlement of the dam is 47.5 cm, and the horizontal displacement to the upstream and downstream is 18.2 cm and 6.90 cm, respectively. After the water storage, the maximum deformation of the dam body under upstream water load was reduced to 10.2 cm, while the horizontal displacement towards the downstream was increased to 9.25 cm, and the maximum settlement was increased to 48.8 cm.
Contour of the displacements of the dam body during the completion period (cm). (a) Displacement along the river and (b) settlement.
Contour of the displacements of the dam body during the storage period (cm). (a) Displacement along the river and (b) settlement.
The results of principal stress calculation show that due to the large modulus of cutoff wall and pile foundation, significant stress concentration has occurred in the dam.
Table 3 lists the characteristic values of the stress and deformation of the cutoff wall.
Statistical items | Cutoff wall | ||
---|---|---|---|
Completion period | Storage period | ||
Dam axial displacement (cm) | Left side bank | / | −0.11 |
Right side bank | / | 0.12 | |
Displacement along the river (cm) | Downstream | / | 10.6 |
Settlement (cm) | / | 0.48 | |
Dam axial stress (MPa) | Tensile stress | −0.21 | −2.53 |
Compressive stress | 1.18 | 3.21 | |
Major principal compressive stress (MPa) | 2.25 | 12.0 | |
Minor principal tensile stress (MPa) | −0.23 | −1.74 |
Characteristic values of stress and deformation of the cutoff wall.
Since the cutoff wall is constructed after the new dam is filled to 2447.9 m, the deformation of the cutoff wall will not occur during the completion period, so only the deformation distribution during the storage period is given. Figure 11 shows contour of the displacement of the cutoff wall during the storage period. The axial displacement of the dam is represented by the compression from both sides towards the riverbed, and the deformation in the direction of the right bank and the left bank is 0.12 cm and 0.11 cm, respectively. The axial displacement of the dam is generally small. For the displacement along the river, the water load shows a deformation towards the downstream, and the maximum value is 10.6 cm. Because the upper part of the impervious wall is filled with rockfill and supported by the connecting plate, the deformation along the river of the impervious wall increases first and then decreases slightly from the bottom to the top. For the vertical displacement, the maximum value is 0.48 cm, which increases gradually from the bottom to top under the action of the upper water load.
Contour of the displacements of the cutoff wall during the storage period (cm). (a) Dam axial direction, (b) displacement along the river and (c) settlement.
Figure 12 shows the contour of the dam axial stresses on the downstream and upstream sides of the cutoff wall during the completion period. Figure 13 shows the contour of the dam axial stresses on the downstream and upstream sides of the cutoff wall during the storage period. Because the cutoff wall will be built after the new dam is basically completed, the stress difference between the upstream and downstream faces of the completion period is small, the stress of the cutoff wall is mainly caused by the self-weight, and the tensile and compressive stresses are small. During the storage period, the axial stress of the dam corresponds to the deformation direction. After storage, the upstream face is in tension at both ends of the middle compression zone, while the downstream face is basically in compression, but the pressure stress at both sides is significantly greater than that at the riverbed. The maximum value of the tensile and compressive stress is −2.53 MPa and 3.21 MPa, respectively. For the major principal stress, the downstream stress is greater than the upstream stress because the deformation is oriented downstream during the storage period. At the same time, due to the relatively small height of the wall near the bank slope and the influence of the boundary constraints, the local stress near the bank slope is concentrated, so the stress at the bank slope on both banks is large, and the maximum pressure stress is 12.0 MPa. For the minor principal stress, the upstream and downstream faces are all in compression at the middle part and tension at both sides. The maximum tensile stress is −1.74 MPa.
Contour of the dam axial stresses on the downstream and upstream sides of the cutoff wall during the completion period (MPa). (a) Downstream side and (b) upstream side.
Considering the ultimate compressive strain of 700 με and ultimate tensile strain of 100 με, the allowable compressive strength and tensile strength of C25 concrete are 19.6 MPa and −2.8 MPa, respectively. From the above calculation results, the tensile and compressive stresses of the cutoff wall are all within the allowable range for C25 plain concrete (Figure 13).
Contour of the dam axial stresses on the downstream and upstream surface of the cutoff wall during the storage period (MPa). (a) Downstream side and (b) upstream side.
Table 4 lists the characteristic values of the stress and deformation of the connecting plate and toe slab during the storage period.
Statistical items | Storage period | ||
---|---|---|---|
Connecting plate and toe slab | Dam axial displacement (cm) | Left side bank | −0.71 |
Right side bank | 0.89 | ||
Displacement along the river (cm) | Upstream | / | |
Downstream | 5.36 | ||
Settlement (cm) | 5.63 | ||
Connecting plate | Dam axial stress (MPa) | Tensile stress | −1.81 |
Compressive stress | 0.56 | ||
Major principal stress (MPa) | Compressive stress | 0.86 | |
Minor principal stress (MPa) | Tensile stress | −1.82 | |
Compressive stress | 0.32 | ||
Toe slab | Dam axial stress (MPa) | Tensile stress | −4.78 |
Compressive stress | 1.53 | ||
Major principal stress (MPa) | Compressive stress | 6.33 | |
Minor principal stress (MPa) | Tensile stress | −4.80 | |
Compressive stress | 0.90 |
The characteristic values of the stress and deformation of the connecting plate and toe slab during the storage period.
Figure 14 shows the contour of the deformation of the connecting plate and toe slab during the storage period. For the axial displacement of the dam, the water displacement is represented by the compression from both sides of the riverbed. The axial displacement of the dam is generally small. The maximum displacements of the left and right banks after water storage are 0.71 cm and 0.89 cm, respectively, which occur in the 0 + 209 and 0 + 65 sections. The displacement of the river is characterized by a downward-directed deformation under the water load during the storage period, with a maximum value of 5.36 cm, which occurs in the 0 + 125 section of the riverbed. For the vertical displacement, the maximum value is 5.63 cm during the storage period, which also occurs at the 0 + 125 section of the riverbed. It can also be seen from Figure 14 that due to the deformation joint between the connecting plate and the toe slab, the connection between the toe slab and the connecting plate is staggered, but the magnitude is small, and the setting of the toe slab length is appropriate.
Contour of the deformation of the connecting plate and toe slab during the storage period (cm). (a) Dam axial displacement, (b) displacement along the river and (c) settlement.
Figure 15 shows the contour of the dam axial stresses of the connecting plate and toe slab during the storage period. Under the action of water loading, the deformation of the connecting plate is constrained by the toe slab, and the deformation of the toe slab is constrained by the face slab, so the stress of the toe slab is greater than that of the connecting plate. The dam axial stress, corresponding to the deformation direction, is mainly manifested as tension at both ends and compression in the middle, and the downstream compressive stress is greater than the upstream compressive stress. After the storage period, the maximum tensile compressive stress is −4.78 MPa and 1.53 MPa, respectively, which occurs at the right end of the toe slab and in the 0 + 95 section of the riverbed.
Contour of the dam axial stresses of the connecting plate and toe slab during the storage period (MPa).
Considering the ultimate compressive strain of 700 με and ultimate tensile strain of 100 με for C30 concrete, the allowable compressive strength and tensile strength are 27.3 MPa and −3.9 MPa, respectively. It can be seen from the above calculation results that the compressive stress and tensile stress of the connecting plate and toe slab are within the allowable range for C30 plain concrete, but the maximum tensile stress of the toe plate exceeds the allowable value of C30 plain concrete, and the exceeding area is mainly located in the local area at the junction of the toe slab and the bank slope, which could be resolved by adding reinforcement.
The Zhushou Reservoir was transformed from a clay core rock-debris dam to a concrete-faced rockfill dam, with the maximum dam height increasing from 63.4 m to 98.1 m. The three-dimensional finite element method was used to simulate the operation process of construction filling and the storage period, and the conclusions are discussed as follows:
The simulation results show that the maximum horizontal displacement occurs in the dam body of the old dam, and the maximum settlement occurs at the interface between the old and new dams. Due to the large modulus of cutoff wall and pile foundation, significant stress concentration has occurred in the dam.
During the storage period, the maximum axial tensile and compressive stresses of the cutoff wall are −2.53 MPa and 3.21 MPa, respectively, and the maximum major and minor principal stresses are 12.0 MPa and −1.74 MPa, respectively. The tensile and compressive stresses are all within the allowable range for C25 plain concrete, and the cutoff wall will not be damaged under static conditions.
During the storage period, the maximum axial tensile and compressive stresses of the toe slab (connecting plate) dam are −4.78 MPa and 1.53 MPa, respectively, and the maximum major and minor principal stresses are 6.33 MPa and −4.80 MPa, respectively. The compressive stress of toe slab and connecting plate and the tensile stress of connecting plate are all within the allowable range for C30 plain concrete, but the tensile stress of the local area at the junction of toe slab and bank slope has exceeded the allowable value for C30 plain concrete, so the reinforcement should be strengthened at this location.
Unsubscribe unsuccessful, no matching records found in our database.
",metaTitle:"Unsubscribe Unsuccessful",metaDescription:"Unsubscribe unsuccessful, no matching records found in our database.",metaKeywords:null,canonicalURL:"/page/unsubscribe-unsuccessful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"20"},books:[{type:"book",id:"10206",title:"Terahertz Technology",subtitle:null,isOpenForSubmission:!0,hash:"2cdb79bf6297623f1d6202ef11f099c4",slug:null,bookSignature:"Dr. Borwen You and Dr. Ja-Yu Lu",coverURL:"https://cdn.intechopen.com/books/images_new/10206.jpg",editedByType:null,editors:[{id:"191131",title:"Dr.",name:"Borwen",surname:"You",slug:"borwen-you",fullName:"Borwen You"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10575",title:"Magnetic Skyrmions",subtitle:null,isOpenForSubmission:!0,hash:"d93d7485e8a6a30d9e069aed78fdb355",slug:null,bookSignature:"Prof. Dipti Ranjan Sahu",coverURL:"https://cdn.intechopen.com/books/images_new/10575.jpg",editedByType:null,editors:[{id:"251855",title:"Prof.",name:"Dipti Ranjan",surname:"Sahu",slug:"dipti-ranjan-sahu",fullName:"Dipti Ranjan Sahu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10675",title:"Hydrostatics",subtitle:null,isOpenForSubmission:!0,hash:"c86c2fa9f835d4ad5e7efd8b01921866",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10675.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10957",title:"Liquid Crystals",subtitle:null,isOpenForSubmission:!0,hash:"b8dac1788dc54d12f8fc3d94a7e3e338",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:16},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:56},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:4},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5143},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"90",title:"Computer Science and Engineering",slug:"computer-science-and-engineering",parent:{title:"Computer and Information Science",slug:"computer-and-information-science"},numberOfBooks:33,numberOfAuthorsAndEditors:771,numberOfWosCitations:720,numberOfCrossrefCitations:637,numberOfDimensionsCitations:1179,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8423",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",subtitle:null,isOpenForSubmission:!1,hash:"dc4f0b68a2f903e7bf1ec7fbe042dbf2",slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",bookSignature:"Christos Kalloniatis and Carlos Travieso-Gonzalez",coverURL:"https://cdn.intechopen.com/books/images_new/8423.jpg",editedByType:"Edited by",editors:[{id:"219671",title:"Associate Prof.",name:"Christos",middleName:null,surname:"Kalloniatis",slug:"christos-kalloniatis",fullName:"Christos Kalloniatis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8511",title:"Cyberspace",subtitle:null,isOpenForSubmission:!1,hash:"8c1cdeb133dbe6cc1151367061c1bba6",slug:"cyberspace",bookSignature:"Evon Abu-Taieh, Abdelkrim El Mouatasim and Issam H. Al Hadid",coverURL:"https://cdn.intechopen.com/books/images_new/8511.jpg",editedByType:"Edited by",editors:[{id:"223522",title:"Dr.",name:"Evon",middleName:"M.O.",surname:"Abu-Taieh",slug:"evon-abu-taieh",fullName:"Evon Abu-Taieh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6958",title:"High Performance Parallel Computing",subtitle:null,isOpenForSubmission:!1,hash:"dd811128360e48c520a91871f0279659",slug:"high-performance-parallel-computing",bookSignature:"Satyadhyan Chickerur",coverURL:"https://cdn.intechopen.com/books/images_new/6958.jpg",editedByType:"Edited by",editors:[{id:"239076",title:"Dr.",name:"Satyadhyan",middleName:null,surname:"Chickerur",slug:"satyadhyan-chickerur",fullName:"Satyadhyan Chickerur"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6715",title:"Petri Nets in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"b0b98cd043ed2dc582d8365630929d33",slug:"petri-nets-in-science-and-engineering",bookSignature:"Raul Campos-Rodriguez and Mildreth Alcaraz-Mejia",coverURL:"https://cdn.intechopen.com/books/images_new/6715.jpg",editedByType:"Edited by",editors:[{id:"178524",title:"Dr.",name:"Raul",middleName:null,surname:"Campos-Rodriguez",slug:"raul-campos-rodriguez",fullName:"Raul Campos-Rodriguez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5368",title:"Radio Frequency Identification",subtitle:null,isOpenForSubmission:!1,hash:"c86dd0c6a48afce125a9f8f2363fd4b8",slug:"radio-frequency-identification",bookSignature:"Paulo Cesar Crepaldi and Tales Cleber Pimenta",coverURL:"https://cdn.intechopen.com/books/images_new/5368.jpg",editedByType:"Edited by",editors:[{id:"38288",title:"Prof.",name:"Paulo",middleName:"Cesar",surname:"Crepaldi",slug:"paulo-crepaldi",fullName:"Paulo Crepaldi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6038",title:"Wireless Sensor Networks",subtitle:"Insights and Innovations",isOpenForSubmission:!1,hash:"e63cb7f71bc1fed54902b371cbe21a2a",slug:"wireless-sensor-networks-insights-and-innovations",bookSignature:"Philip Sallis",coverURL:"https://cdn.intechopen.com/books/images_new/6038.jpg",editedByType:"Edited by",editors:[{id:"10893",title:"Prof.",name:"Philip John",middleName:null,surname:"Sallis",slug:"philip-john-sallis",fullName:"Philip John Sallis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5745",title:"Recent Progress in Parallel and Distributed Computing",subtitle:null,isOpenForSubmission:!1,hash:"dba64b23d703d16339860ebf4a13f022",slug:"recent-progress-in-parallel-and-distributed-computing",bookSignature:"Wen-Jyi Hwang",coverURL:"https://cdn.intechopen.com/books/images_new/5745.jpg",editedByType:"Edited by",editors:[{id:"108614",title:"Prof.",name:"Wen-Jyi",middleName:null,surname:"Hwang",slug:"wen-jyi-hwang",fullName:"Wen-Jyi Hwang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5707",title:"Computer Simulation",subtitle:null,isOpenForSubmission:!1,hash:"9eec1723d4d4775dc9755db55aa387a6",slug:"computer-simulation",bookSignature:"Dragan Cvetkovic",coverURL:"https://cdn.intechopen.com/books/images_new/5707.jpg",editedByType:"Edited by",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5183",title:"Face Recognition",subtitle:"Semisupervised Classification, Subspace Projection and Evaluation Methods",isOpenForSubmission:!1,hash:"d693acce19fca9cbf40d8f3f759e491d",slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",bookSignature:"S. Ramakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/5183.jpg",editedByType:"Edited by",editors:[{id:"116136",title:"Dr.",name:"Srinivasan",middleName:null,surname:"Ramakrishnan",slug:"srinivasan-ramakrishnan",fullName:"Srinivasan Ramakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5150",title:"Electronics Cooling",subtitle:null,isOpenForSubmission:!1,hash:"b95856cfcc87ef3cb7d7c7c7bac4010d",slug:"electronics-cooling",bookSignature:"S M Sohel Murshed",coverURL:"https://cdn.intechopen.com/books/images_new/5150.jpg",editedByType:"Edited by",editors:[{id:"24904",title:"Prof.",name:"S. M. Sohel",middleName:null,surname:"Murshed",slug:"s.-m.-sohel-murshed",fullName:"S. M. Sohel Murshed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4655",title:"Applications of Digital Signal Processing through Practical Approach",subtitle:null,isOpenForSubmission:!1,hash:"b20308efd28e8a487949997c8d673fb8",slug:"applications-of-digital-signal-processing-through-practical-approach",bookSignature:"Sudhakar Radhakrishnan",coverURL:"https://cdn.intechopen.com/books/images_new/4655.jpg",editedByType:"Edited by",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:33,mostCitedChapters:[{id:"50801",doi:"10.5772/62898",title:"Performance Evaluation of Nanofluids in an Inclined Ribbed Microchannel for Electronic Cooling Applications",slug:"performance-evaluation-of-nanofluids-in-an-inclined-ribbed-microchannel-for-electronic-cooling-appli",totalDownloads:1949,totalCrossrefCites:44,totalDimensionsCites:78,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohammad Reza Safaei, Marjan Gooarzi, Omid Ali Akbari, Mostafa\nSafdari Shadloo and Mahidzal Dahari",authors:[{id:"178854",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Safaei",slug:"mohammad-reza-safaei",fullName:"Mohammad Reza Safaei"},{id:"179807",title:"Dr.",name:"Mostafa",middleName:null,surname:"Safdari Shadloo",slug:"mostafa-safdari-shadloo",fullName:"Mostafa Safdari Shadloo"},{id:"179809",title:"Dr.",name:"Mahidzal",middleName:null,surname:"Dahari",slug:"mahidzal-dahari",fullName:"Mahidzal Dahari"},{id:"179813",title:"MSc.",name:"Marjan",middleName:null,surname:"Goodarzi",slug:"marjan-goodarzi",fullName:"Marjan Goodarzi"},{id:"185093",title:"MSc.",name:"Omid",middleName:null,surname:"Ali Akbari",slug:"omid-ali-akbari",fullName:"Omid Ali Akbari"}]},{id:"5184",doi:"10.5772/6180",title:"From the Lab to the Real World: Affect Recognition Using Multiple Cues and Modalities",slug:"from_the_lab_to_the_real_world__affect_recognition_using_multiple_cues_and_modalities",totalDownloads:3132,totalCrossrefCites:34,totalDimensionsCites:51,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hatice Gunes, Massimo Piccardi and Maja Pantic",authors:null},{id:"5197",doi:"10.5772/6167",title:"Generating Facial Expressions with Deep Belief Nets",slug:"generating_facial_expressions_with_deep_belief_nets",totalDownloads:3140,totalCrossrefCites:1,totalDimensionsCites:46,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Joshua M. Susskind, Geoffrey E. Hinton, Javier R. Movellan and Adam K. Anderson",authors:null}],mostDownloadedChaptersLast30Days:[{id:"68505",title:"Research Design and Methodology",slug:"research-design-and-methodology",totalDownloads:16004,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Kassu Jilcha Sileyew",authors:null},{id:"15946",title:"Wake-Up-Word Speech Recognition",slug:"wake-up-word-speech-recognition",totalDownloads:4003,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"speech-technologies",title:"Speech Technologies",fullTitle:"Speech Technologies"},signatures:"Veton Kepuska",authors:[{id:"24379",title:"Prof.",name:"Veton",middleName:null,surname:"Kepuska",slug:"veton-kepuska",fullName:"Veton Kepuska"}]},{id:"51031",title:"Face Recognition: Issues, Methods and Alternative Applications",slug:"face-recognition-issues-methods-and-alternative-applications",totalDownloads:10292,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Waldemar Wójcik, Konrad Gromaszek and Muhtar Junisbekov",authors:[{id:"24059",title:"Dr.Ing.",name:"Konrad",middleName:null,surname:"Gromaszek",slug:"konrad-gromaszek",fullName:"Konrad Gromaszek"}]},{id:"56541",title:"Routing Protocols for Wireless Sensor Networks (WSNs)",slug:"routing-protocols-for-wireless-sensor-networks-wsns-",totalDownloads:4344,totalCrossrefCites:9,totalDimensionsCites:11,book:{slug:"wireless-sensor-networks-insights-and-innovations",title:"Wireless Sensor Networks",fullTitle:"Wireless Sensor Networks - Insights and Innovations"},signatures:"Noman Shabbir and Syed Rizwan Hassan",authors:[{id:"206600",title:"Mr.",name:"Noman",middleName:null,surname:"Shabbir",slug:"noman-shabbir",fullName:"Noman Shabbir"},{id:"206601",title:"Mr.",name:"Syed Rizwan",middleName:null,surname:"Hassan",slug:"syed-rizwan-hassan",fullName:"Syed Rizwan Hassan"}]},{id:"62639",title:"Reliability Evaluation for Mechanical Systems by Petri Nets",slug:"reliability-evaluation-for-mechanical-systems-by-petri-nets",totalDownloads:514,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"petri-nets-in-science-and-engineering",title:"Petri Nets in Science and Engineering",fullTitle:"Petri Nets in Science and Engineering"},signatures:"Jianing Wu and Shaoze Yan",authors:[{id:"238979",title:"Dr.",name:"Jianing",middleName:null,surname:"Wu",slug:"jianing-wu",fullName:"Jianing Wu"}]},{id:"70973",title:"Social Media, Ethics and the Privacy Paradox",slug:"social-media-ethics-and-the-privacy-paradox",totalDownloads:850,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"security-and-privacy-from-a-legal-ethical-and-technical-perspective",title:"Security and Privacy From a Legal, Ethical, and Technical Perspective",fullTitle:"Security and Privacy From a Legal, Ethical, and Technical Perspective"},signatures:"Nadine Barrett-Maitland and Jenice Lynch",authors:[{id:"311821",title:"Ph.D. Student",name:"Nadine",middleName:null,surname:"Barrett-Maitland",slug:"nadine-barrett-maitland",fullName:"Nadine Barrett-Maitland"},{id:"311822",title:"Ms.",name:"Jenice",middleName:null,surname:"Lynch",slug:"jenice-lynch",fullName:"Jenice Lynch"}]},{id:"50437",title:"Face Recognition: Demystification of Multifarious Aspect in Evaluation Metrics",slug:"face-recognition-demystification-of-multifarious-aspect-in-evaluation-metrics",totalDownloads:2343,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"face-recognition-semisupervised-classification-subspace-projection-and-evaluation-methods",title:"Face Recognition",fullTitle:"Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods"},signatures:"Mala Sundaram and Ambika Mani",authors:[{id:"180904",title:"Mrs.",name:"Mala",middleName:null,surname:"Sundaram",slug:"mala-sundaram",fullName:"Mala Sundaram"},{id:"180905",title:"Mrs.",name:"Ambika",middleName:null,surname:"Mani",slug:"ambika-mani",fullName:"Ambika Mani"}]},{id:"50065",title:"Heat Pipes for Computer Cooling Applications",slug:"heat-pipes-for-computer-cooling-applications",totalDownloads:4038,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"electronics-cooling",title:"Electronics Cooling",fullTitle:"Electronics Cooling"},signatures:"Mohamed H.A. Elnaggar and Ezzaldeen Edwan",authors:[{id:"178453",title:"Dr.",name:"Mohamed",middleName:null,surname:"Elnaggar",slug:"mohamed-elnaggar",fullName:"Mohamed Elnaggar"},{id:"184278",title:"Dr.",name:"Ezzaldeen",middleName:null,surname:"Edwan",slug:"ezzaldeen-edwan",fullName:"Ezzaldeen Edwan"}]},{id:"5175",title:"Facial Expression Recognition Using 3D Facial Feature Distances",slug:"facial_expression_recognition_using_3d_facial_feature_distances",totalDownloads:3825,totalCrossrefCites:5,totalDimensionsCites:10,book:{slug:"affective_computing",title:"Affective Computing",fullTitle:"Affective Computing"},signatures:"Hamit Soyel and Hasan Demirel",authors:null},{id:"68561",title:"Cyberspace and Artificial Intelligence: The New Face of Cyber-Enhanced Hybrid Threats",slug:"cyberspace-and-artificial-intelligence-the-new-face-of-cyber-enhanced-hybrid-threats",totalDownloads:527,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"cyberspace",title:"Cyberspace",fullTitle:"Cyberspace"},signatures:"Carlos Pedro Gonçalves",authors:[{id:"278948",title:"Prof.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/290504/nabil-shurrab",hash:"",query:{},params:{id:"290504",slug:"nabil-shurrab"},fullPath:"/profiles/290504/nabil-shurrab",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()