Bay of Bengal (BoB) is an affluent region for the mesoscale (eddies) and synoptic scale (cyclones) systems. It occurs primarily through the seasonal variations, dynamical instabilities and equatorial wind forcing mechanisms. The individual or cumulative effect of these changes is vulnerable to the coastal and marine ecosystems. For example, tropical cyclone (TC) AILA experienced a warm core eddy (WCE) before the landfall, and consequently it intensified into a severe cyclonic storm (CS) and remained as a CS up to 15 h after the landfall. Its severity produces a heavy rainfall of >18 cm day−1, thus leads to the coastal flooding. The eddy contribution to the TC is witnessed during and after the landfall. Inappropriately, high resolution in-situ observations are not available to identify such important processes on different time and spatial scales. Therefore, the present chapter analyses the northern BoB eddy induced signals using both in-situ and satellite (advanced microwave scanning radiometer—AMSR-2) derived products. Two in-situ locations (BD08 and BD09) are employed for this study purpose. The eddy responses at no-eddy, during and after eddy, have been analyzed. Besides, WCE imprints on the overlying atmosphere are also observed. The relationship between sea surface temperature and wind speed over the BoB region is assessed.
Part of the book: Coastal and Marine Environments