Peyton four step approach for technical skills.
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"5063",leadTitle:null,fullTitle:"Perovskite Materials - Synthesis, Characterisation, Properties, and Applications",title:"Perovskite Materials",subtitle:"Synthesis, Characterisation, Properties, and Applications",reviewType:"peer-reviewed",abstract:"The book summarizes the current state of the know-how in the field of perovskite materials: synthesis, characterization, properties, and applications. Most chapters include a review on the actual knowledge and cutting-edge research results. Thus, this book is an essential source of reference for scientists with research fields in energy, physics, chemistry and materials. It is also a suitable reading material for graduate students.",isbn:null,printIsbn:"978-953-51-2245-6",pdfIsbn:"978-953-51-6651-1",doi:"10.5772/60469",price:159,priceEur:175,priceUsd:205,slug:"perovskite-materials-synthesis-characterisation-properties-and-applications",numberOfPages:650,isOpenForSubmission:!1,isInWos:1,hash:"aa79b2307aac87c44aee1b9c4eb26096",bookSignature:"Likun Pan and Guang Zhu",publishedDate:"February 3rd 2016",coverURL:"https://cdn.intechopen.com/books/images_new/5063.jpg",numberOfDownloads:51155,numberOfWosCitations:22,numberOfCrossrefCitations:43,numberOfDimensionsCitations:95,hasAltmetrics:1,numberOfTotalCitations:160,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 12th 2015",dateEndSecondStepPublish:"April 2nd 2015",dateEndThirdStepPublish:"July 7th 2015",dateEndFourthStepPublish:"October 5th 2015",dateEndFifthStepPublish:"November 4th 2015",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7,10",editedByType:"Edited by",kuFlag:!1,editors:[{id:"175680",title:"Dr.",name:"Likun",middleName:null,surname:"Pan",slug:"likun-pan",fullName:"Likun Pan",profilePictureURL:"https://mts.intechopen.com/storage/users/175680/images/4914_n.jpg",biography:"Dr. Likun Pan received his PhD in 2005 at Nanyang Technological University, Singapore, and currently works at the Department of Physics, East China Normal University as a professor. His research interest includes the synthesis and properties of nanomaterials and their applications in energy and environmental fields. He has published more than 180 journal articles with over 4000 citations and his current H-index is 36. Dr. Pan has severed as editorial board member of several international journals and as technical chair or general secretary in several international conferences.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"East China Normal University",institutionURL:null,country:{name:"China"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:{id:"200419",title:"Dr.",name:"Guang",middleName:null,surname:"Zhu",slug:"guang-zhu",fullName:"Guang Zhu",profilePictureURL:"https://mts.intechopen.com/storage/users/200419/images/4915_n.jpg",biography:"Prof. Guang Zhu received his PhD in 2012 at East China Normal University, China. He was a postdoctoral fellow at Northwestern University, USA, and later joined Suzhou University as a associate professor, China. His current research interests include materials synthesis, characterization, and applications in photocatalysis, electrosorption, and solar cells.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:null},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"770",title:"Renewable Energy",slug:"engineering-energy-engineering-renewable-energy"}],chapters:[{id:"49424",title:"Solid-State Mechanochemical Syntheses of Perovskites",doi:"10.5772/61521",slug:"solid-state-mechanochemical-syntheses-of-perovskites",totalDownloads:2263,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Piotr Dulian",downloadPdfUrl:"/chapter/pdf-download/49424",previewPdfUrl:"/chapter/pdf-preview/49424",authors:[{id:"176124",title:"Dr.",name:"Piotr",surname:"Dulian",slug:"piotr-dulian",fullName:"Piotr Dulian"}],corrections:null},{id:"49701",title:"Synthesis of Perovskite Oxides by Hydrothermal Processing – From Thermodynamic Modelling to Practical Processing Approaches",doi:"10.5772/61568",slug:"synthesis-of-perovskite-oxides-by-hydrothermal-processing-from-thermodynamic-modelling-to-practical-",totalDownloads:2338,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Juan Carlos Rendón-Angeles, Zully Matamoros-Veloza, Karla Lorena\nMontoya-Cisneros, Jorge López Cuevas and Kazumichi Yanagisawa",downloadPdfUrl:"/chapter/pdf-download/49701",previewPdfUrl:"/chapter/pdf-preview/49701",authors:[{id:"7101",title:"Prof.",name:"Kazumichi",surname:"Yanagisawa",slug:"kazumichi-yanagisawa",fullName:"Kazumichi Yanagisawa"},{id:"110941",title:"Dr.",name:"Juan Carlos",surname:"Rendon-Angeles",slug:"juan-carlos-rendon-angeles",fullName:"Juan Carlos Rendon-Angeles"},{id:"176195",title:"Prof.",name:"Zully",surname:"Matamoros-Veloza",slug:"zully-matamoros-veloza",fullName:"Zully Matamoros-Veloza"},{id:"176196",title:"Dr.",name:"Jorge",surname:"López-Cuevas",slug:"jorge-lopez-cuevas",fullName:"Jorge López-Cuevas"},{id:"176727",title:"MSc.",name:"Montoya-Cisneros",surname:"Karla Lorena",slug:"montoya-cisneros-karla-lorena",fullName:"Montoya-Cisneros Karla Lorena"}],corrections:null},{id:"49517",title:"Fabrication of Yttrium-Doped Barium Zirconate for High Performance Protonic Ceramic Membranes",doi:"10.5772/61660",slug:"fabrication-of-yttrium-doped-barium-zirconate-for-high-performance-protonic-ceramic-membranes",totalDownloads:1996,totalCrossrefCites:2,totalDimensionsCites:15,signatures:"W. Grover Coors, Anthony Manerbino, David Martinefski and\nSandrine Ricote",downloadPdfUrl:"/chapter/pdf-download/49517",previewPdfUrl:"/chapter/pdf-preview/49517",authors:[{id:"48142",title:"Dr.",name:"W.",surname:"Coors",slug:"w.-coors",fullName:"W. Coors"}],corrections:null},{id:"49438",title:"Perovskite Nanomaterials – Synthesis, Characterization, and Applications",doi:"10.5772/61280",slug:"perovskite-nanomaterials-synthesis-characterization-and-applications",totalDownloads:7653,totalCrossrefCites:14,totalDimensionsCites:31,signatures:"Nada F. Atta, Ahmed Galal and Ekram H. El-Ads",downloadPdfUrl:"/chapter/pdf-download/49438",previewPdfUrl:"/chapter/pdf-preview/49438",authors:[{id:"30072",title:"Prof.",name:"Nada",surname:"F. Atta",slug:"nada-f.-atta",fullName:"Nada F. Atta"},{id:"174033",title:"Prof.",name:"Ahmed",surname:"Galal",slug:"ahmed-galal",fullName:"Ahmed Galal"},{id:"174034",title:"MSc.",name:"Ekram",surname:"El-Ads",slug:"ekram-el-ads",fullName:"Ekram El-Ads"},{id:"176164",title:"MSc.",name:"Ekram",surname:"Ekram H. El-Ads",slug:"ekram-ekram-h.-el-ads",fullName:"Ekram Ekram H. El-Ads"}],corrections:null},{id:"49467",title:"Perovskite Oxide Nanocrystals — Synthesis, Characterization, Functionalization, and Novel Applications",doi:"10.5772/61640",slug:"perovskite-oxide-nanocrystals-synthesis-characterization-functionalization-and-novel-applications",totalDownloads:2489,totalCrossrefCites:1,totalDimensionsCites:4,signatures:"Heng Wu and Xinhua Zhu",downloadPdfUrl:"/chapter/pdf-download/49467",previewPdfUrl:"/chapter/pdf-preview/49467",authors:[{id:"7228",title:"Professor",name:"Xinhua",surname:"Zhu",slug:"xinhua-zhu",fullName:"Xinhua Zhu"},{id:"175838",title:"Mr.",name:"Heng",surname:"Wu",slug:"heng-wu",fullName:"Heng Wu"}],corrections:null},{id:"49411",title:"Synthesis, Crystal Structure, and Physical Properties of the Perovskite Iridates",doi:"10.5772/61281",slug:"synthesis-crystal-structure-and-physical-properties-of-the-perovskite-iridates",totalDownloads:2060,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Yunqi Cai, Yan Li and Jinguang Cheng",downloadPdfUrl:"/chapter/pdf-download/49411",previewPdfUrl:"/chapter/pdf-preview/49411",authors:[{id:"175923",title:"Prof.",name:"Jinguang",surname:"Cheng",slug:"jinguang-cheng",fullName:"Jinguang Cheng"}],corrections:null},{id:"49422",title:"Metal–Insulator Transitions and Non-Fermi Liquid Behaviors in 5d Perovskite Iridates",doi:"10.5772/61285",slug:"metal-insulator-transitions-and-non-fermi-liquid-behaviors-in-5d-perovskite-iridates",totalDownloads:2751,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Abhijit Biswas, Ki-Seok Kim and Yoon Hee Jeong",downloadPdfUrl:"/chapter/pdf-download/49422",previewPdfUrl:"/chapter/pdf-preview/49422",authors:[{id:"175909",title:"Prof.",name:"Yoon Hee",surname:"Jeong",slug:"yoon-hee-jeong",fullName:"Yoon Hee Jeong"},{id:"177405",title:"Prof.",name:"Ki-Seok",surname:"Kim",slug:"ki-seok-kim",fullName:"Ki-Seok Kim"},{id:"194151",title:"Dr.",name:"Abhijit",surname:"Biswas",slug:"abhijit-biswas",fullName:"Abhijit Biswas"}],corrections:null},{id:"49673",title:"Structural, Magnetic and Transport Properties of B-Site Substituted Perovskite La0.7Sr0.3MnO3",doi:"10.5772/61770",slug:"structural-magnetic-and-transport-properties-of-b-site-substituted-perovskite-la0-7sr0-3mno3",totalDownloads:1828,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"J.B. Yang, M.S. Kim, T. F. Creel, H. Zhao, X.G. Chen, W.B. Yelon and\nW.J. James",downloadPdfUrl:"/chapter/pdf-download/49673",previewPdfUrl:"/chapter/pdf-preview/49673",authors:[{id:"111204",title:"Dr.",name:"Jinbo",surname:"Yang",slug:"jinbo-yang",fullName:"Jinbo Yang"},{id:"177647",title:"Dr.",name:"M.S.",surname:"Kim",slug:"m.s.-kim",fullName:"M.S. Kim"}],corrections:null},{id:"49723",title:"Microwave Dielectrics with Perovskite-Type Structure",doi:"10.5772/61718",slug:"microwave-dielectrics-with-perovskite-type-structure",totalDownloads:2026,totalCrossrefCites:3,totalDimensionsCites:4,signatures:"Hitoshi Ohsato",downloadPdfUrl:"/chapter/pdf-download/49723",previewPdfUrl:"/chapter/pdf-preview/49723",authors:[{id:"30328",title:"Prof.",name:"Hitoshi",surname:"Ohsato",slug:"hitoshi-ohsato",fullName:"Hitoshi Ohsato"}],corrections:null},{id:"49759",title:"ESR and Magnetization Studies of Bi-manganites",doi:"10.5772/61936",slug:"esr-and-magnetization-studies-of-bi-manganites",totalDownloads:1350,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Rajender Singh and Ramesh Ade",downloadPdfUrl:"/chapter/pdf-download/49759",previewPdfUrl:"/chapter/pdf-preview/49759",authors:[{id:"165795",title:"Prof.",name:"Rajender",surname:"Singh",slug:"rajender-singh",fullName:"Rajender Singh"},{id:"177452",title:"Mr.",name:"Ramesh",surname:"Ade",slug:"ramesh-ade",fullName:"Ramesh Ade"}],corrections:null},{id:"49587",title:"Charge Carrier Dynamics in Organometal Halide Perovskite Probed by Time-Resolved Electrical Measurements",doi:"10.5772/61631",slug:"charge-carrier-dynamics-in-organometal-halide-perovskite-probed-by-time-resolved-electrical-measurem",totalDownloads:1908,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Carlito S. Ponseca Jr.",downloadPdfUrl:"/chapter/pdf-download/49587",previewPdfUrl:"/chapter/pdf-preview/49587",authors:[{id:"175823",title:"Dr.",name:"Carlito Jr.",surname:"Ponseca",slug:"carlito-jr.-ponseca",fullName:"Carlito Jr. Ponseca"}],corrections:null},{id:"49589",title:"Photoexcitations and Emission Processes in Organometal Trihalide Perovskites",doi:"10.5772/61282",slug:"photoexcitations-and-emission-processes-in-organometal-trihalide-perovskites",totalDownloads:2554,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Michele Cadelano, Michele Saba, Nicola Sestu, Valerio Sarritzu,\nDaniela Marongiu, Feipeng Chen, Roberto Piras, Francesco Quochi,\nAndrea Mura and Giovanni Bongiovanni",downloadPdfUrl:"/chapter/pdf-download/49589",previewPdfUrl:"/chapter/pdf-preview/49589",authors:[{id:"54957",title:"Dr.",name:"Francesco",surname:"Quochi",slug:"francesco-quochi",fullName:"Francesco Quochi"},{id:"61327",title:"Dr.",name:"Michele",surname:"Saba",slug:"michele-saba",fullName:"Michele Saba"},{id:"61328",title:"Prof.",name:"Andrea",surname:"Mura",slug:"andrea-mura",fullName:"Andrea Mura"},{id:"61329",title:"Prof.",name:"Giovanni",surname:"Bongiovanni",slug:"giovanni-bongiovanni",fullName:"Giovanni Bongiovanni"},{id:"176071",title:"MSc.",name:"Michele",surname:"Cadelano",slug:"michele-cadelano",fullName:"Michele Cadelano"},{id:"176072",title:"MSc.",name:"Valerio",surname:"Sarritzu",slug:"valerio-sarritzu",fullName:"Valerio Sarritzu"},{id:"176073",title:"MSc.",name:"Nicola",surname:"Sestu",slug:"nicola-sestu",fullName:"Nicola Sestu"},{id:"176074",title:"Dr.",name:"Daniela",surname:"Marongiu",slug:"daniela-marongiu",fullName:"Daniela Marongiu"},{id:"176075",title:"MSc.",name:"Feipeng",surname:"Chen",slug:"feipeng-chen",fullName:"Feipeng Chen"},{id:"176076",title:"MSc.",name:"Roberto",surname:"Piras",slug:"roberto-piras",fullName:"Roberto Piras"}],corrections:null},{id:"49755",title:"Optical Absorption, Charge Separation and Recombination Dynamics in Pb and Sn/Pb Cocktail Perovskite Solar Cells and Their Relationships to the Photovoltaic Properties",doi:"10.5772/62101",slug:"optical-absorption-charge-separation-and-recombination-dynamics-in-pb-and-sn-pb-cocktail-perovskite-",totalDownloads:1749,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Shen Qing, Ogomi Yuhei, Toyoda Taro, Yoshino Kenji and Hayase\nShuzi",downloadPdfUrl:"/chapter/pdf-download/49755",previewPdfUrl:"/chapter/pdf-preview/49755",authors:[{id:"37865",title:"Prof.",name:"Qing",surname:"Shen",slug:"qing-shen",fullName:"Qing Shen"},{id:"41585",title:"Dr.",name:"Taro",surname:"Toyoda",slug:"taro-toyoda",fullName:"Taro Toyoda"},{id:"176254",title:"Dr.",name:"Yuhei",surname:"Ogomi",slug:"yuhei-ogomi",fullName:"Yuhei Ogomi"},{id:"176255",title:"Prof.",name:"Kenji",surname:"Yoshino",slug:"kenji-yoshino",fullName:"Kenji Yoshino"},{id:"176256",title:"Prof.",name:"Shuzi",surname:"Hayase",slug:"shuzi-hayase",fullName:"Shuzi Hayase"}],corrections:null},{id:"49469",title:"Optical, Excitonic, and Electronic Properties of CH3NH3PbI3 Thin Films and Their Application in Photovoltaics",doi:"10.5772/61278",slug:"optical-excitonic-and-electronic-properties-of-ch3nh3pbi3-thin-films-and-their-application-in-photov",totalDownloads:2621,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Sheng Hsiung Chang, Hsin-Ming Cheng, Sheng-Hui Chen and\nKuen-Feng Lin",downloadPdfUrl:"/chapter/pdf-download/49469",previewPdfUrl:"/chapter/pdf-preview/49469",authors:[{id:"175984",title:"Dr.",name:"Sheng Hsiung",surname:"Chang",slug:"sheng-hsiung-chang",fullName:"Sheng Hsiung Chang"},{id:"175986",title:"Prof.",name:"Hsin-Ming",surname:"Cheng",slug:"hsin-ming-cheng",fullName:"Hsin-Ming Cheng"},{id:"175987",title:"Prof.",name:"Sheng-Hui",surname:"Chen",slug:"sheng-hui-chen",fullName:"Sheng-Hui Chen"},{id:"177336",title:"Mr.",name:"Kuen-Feng",surname:"Lin",slug:"kuen-feng-lin",fullName:"Kuen-Feng Lin"}],corrections:null},{id:"49659",title:"Numerical Simulations on Perovskite Photovoltaic Devices",doi:"10.5772/61751",slug:"numerical-simulations-on-perovskite-photovoltaic-devices",totalDownloads:3760,totalCrossrefCites:6,totalDimensionsCites:10,signatures:"Bernabé Marí Soucase, Inmaculada Guaita Pradas and Krishna R.\nAdhikari",downloadPdfUrl:"/chapter/pdf-download/49659",previewPdfUrl:"/chapter/pdf-preview/49659",authors:[{id:"176126",title:"Prof.",name:"Bernabé",surname:"Marí",slug:"bernabe-mari",fullName:"Bernabé Marí"},{id:"176223",title:"MSc.",name:"Krishna R.",surname:"Adhikari",slug:"krishna-r.-adhikari",fullName:"Krishna R. Adhikari"}],corrections:null},{id:"49380",title:"Tantalate-based Perovskite for Solar Energy Applications",doi:"10.5772/61390",slug:"tantalate-based-perovskite-for-solar-energy-applications",totalDownloads:2296,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Yiguo Su, Junyu Lang, Chunfang Du and Xiaojing Wang",downloadPdfUrl:"/chapter/pdf-download/49380",previewPdfUrl:"/chapter/pdf-preview/49380",authors:[{id:"176181",title:"Prof.",name:"Yiguo",surname:"Su",slug:"yiguo-su",fullName:"Yiguo Su"},{id:"176204",title:"Prof.",name:"Xiaojing",surname:"Wang",slug:"xiaojing-wang",fullName:"Xiaojing Wang"},{id:"176205",title:"Prof.",name:"Chunfang",surname:"Du",slug:"chunfang-du",fullName:"Chunfang Du"},{id:"177339",title:"Dr.",name:"Junyu",surname:"Lang",slug:"junyu-lang",fullName:"Junyu Lang"}],corrections:null},{id:"49451",title:"Energy Production, Decontamination, and Hydrogenation Reactions over Perovskite-Type Oxide Catalyst",doi:"10.5772/61522",slug:"energy-production-decontamination-and-hydrogenation-reactions-over-perovskite-type-oxide-catalyst",totalDownloads:1446,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Gina Pecchi, Nestor Escalona, I. Tyrone Ghampson and Ruddy\nMorales",downloadPdfUrl:"/chapter/pdf-download/49451",previewPdfUrl:"/chapter/pdf-preview/49451",authors:[{id:"175933",title:"Prof.",name:"Gina",surname:"Pecchi",slug:"gina-pecchi",fullName:"Gina Pecchi"},{id:"175974",title:"Prof.",name:"Nestor",surname:"Escalona",slug:"nestor-escalona",fullName:"Nestor Escalona"},{id:"175975",title:"Dr.",name:"I Tyrone",surname:"Ghampson",slug:"i-tyrone-ghampson",fullName:"I Tyrone Ghampson"},{id:"175976",title:"BSc.",name:"Ruddy",surname:"Morales",slug:"ruddy-morales",fullName:"Ruddy Morales"}],corrections:null},{id:"49401",title:"Improvement of Catalytic Performance of Perovskites by Partial Substitution of Cations and Supporting on High Surface Area Materials",doi:"10.5772/61279",slug:"improvement-of-catalytic-performance-of-perovskites-by-partial-substitution-of-cations-and-supportin",totalDownloads:1899,totalCrossrefCites:1,totalDimensionsCites:3,signatures:"Fabio Souza Toniolo and Martin Schmal",downloadPdfUrl:"/chapter/pdf-download/49401",previewPdfUrl:"/chapter/pdf-preview/49401",authors:[{id:"176174",title:"Dr.",name:"Martin",surname:"Schmal",slug:"martin-schmal",fullName:"Martin Schmal"},{id:"177318",title:"Dr.",name:"Fabio",surname:"Souza Toniolo",slug:"fabio-souza-toniolo",fullName:"Fabio Souza Toniolo"}],corrections:null},{id:"49475",title:"Copper-based Perovskite Design and Its Performance in CO2 Hydrogenation to Methanol",doi:"10.5772/61520",slug:"copper-based-perovskite-design-and-its-performance-in-co2-hydrogenation-to-methanol",totalDownloads:1573,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Feng Li, Haijuan Zhan, Ning Zhao and Fukui Xiao",downloadPdfUrl:"/chapter/pdf-download/49475",previewPdfUrl:"/chapter/pdf-preview/49475",authors:[{id:"176007",title:"Dr.",name:"Feng",surname:"Li",slug:"feng-li",fullName:"Feng Li"}],corrections:null},{id:"49510",title:"Designing Perovskite Oxides for Solid Oxide Fuel Cells",doi:"10.5772/61304",slug:"designing-perovskite-oxides-for-solid-oxide-fuel-cells",totalDownloads:2766,totalCrossrefCites:2,totalDimensionsCites:8,signatures:"Idoia Ruiz de Larramendi, Nagore Ortiz-Vitoriano, Isaen B. Dzul-\nBautista and Teófilo Rojo",downloadPdfUrl:"/chapter/pdf-download/49510",previewPdfUrl:"/chapter/pdf-preview/49510",authors:[{id:"76000",title:"Dr.",name:"Idoia",surname:"Ruiz De Larramendi",slug:"idoia-ruiz-de-larramendi",fullName:"Idoia Ruiz De Larramendi"},{id:"176193",title:"Dr.",name:"Nagore",surname:"Ortiz-Vitoriano",slug:"nagore-ortiz-vitoriano",fullName:"Nagore Ortiz-Vitoriano"},{id:"176194",title:"Prof.",name:"Teofilo",surname:"Rojo",slug:"teofilo-rojo",fullName:"Teofilo Rojo"},{id:"177350",title:"MSc.",name:"Isaen B.",surname:"Dzul-Bautista",slug:"isaen-b.-dzul-bautista",fullName:"Isaen B. Dzul-Bautista"}],corrections:null},{id:"49597",title:"Perovskites Used in Fuel Cells",doi:"10.5772/61465",slug:"perovskites-used-in-fuel-cells",totalDownloads:1838,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Diego Pereira Tarragó, Berta Moreno, Eva Chinarro and Vânia\nCaldas de Sousa",downloadPdfUrl:"/chapter/pdf-download/49597",previewPdfUrl:"/chapter/pdf-preview/49597",authors:[{id:"98457",title:"Dr.",name:"Vânia",surname:"De Sousa",slug:"vania-de-sousa",fullName:"Vânia De Sousa"},{id:"175963",title:"Dr.",name:"Diego",surname:"Tarragó",slug:"diego-tarrago",fullName:"Diego Tarragó"},{id:"176200",title:"Dr.",name:"Berta",surname:"Moreno",slug:"berta-moreno",fullName:"Berta Moreno"},{id:"176202",title:"Dr.",name:"Eva",surname:"Chinarro Martín",slug:"eva-chinarro-martin",fullName:"Eva Chinarro Martín"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"3633",title:"Solar Energy",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"solar-energy",bookSignature:"Radu D Rugescu",coverURL:"https://cdn.intechopen.com/books/images_new/3633.jpg",editedByType:"Edited by",editors:[{id:"8615",title:"Prof.",name:"Radu",surname:"Rugescu",slug:"radu-rugescu",fullName:"Radu Rugescu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1288",title:"Solar Cells",subtitle:"Dye-Sensitized Devices",isOpenForSubmission:!1,hash:"05a255471069664ecf5fbf8778b92076",slug:"solar-cells-dye-sensitized-devices",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1288.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3118",title:"Solar Cells",subtitle:"Research and Application Perspectives",isOpenForSubmission:!1,hash:"5502d7fd7559d60419f2615615ae4cf5",slug:"solar-cells-research-and-application-perspectives",bookSignature:"Arturo Morales-Acevedo",coverURL:"https://cdn.intechopen.com/books/images_new/3118.jpg",editedByType:"Edited by",editors:[{id:"90486",title:"Prof.",name:"Arturo",surname:"Morales-Acevedo",slug:"arturo-morales-acevedo",fullName:"Arturo Morales-Acevedo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"877",title:"Third Generation Photovoltaics",subtitle:null,isOpenForSubmission:!1,hash:"c3bdfaebac38dab83a69c488bcda219d",slug:"third-generation-photovoltaics",bookSignature:"Vasilis Fthenakis",coverURL:"https://cdn.intechopen.com/books/images_new/877.jpg",editedByType:"Edited by",editors:[{id:"68723",title:"Dr.",name:"Vasilis",surname:"Fthenakis",slug:"vasilis-fthenakis",fullName:"Vasilis Fthenakis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4479",title:"Solar Cells",subtitle:"New Approaches and Reviews",isOpenForSubmission:!1,hash:"f6907a79a7d35f34d0c719d6297a2667",slug:"solar-cells-new-approaches-and-reviews",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/4479.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1290",title:"Solar Cells",subtitle:"New Aspects and Solutions",isOpenForSubmission:!1,hash:"52415367e48e5b68d47325bdfc81cdce",slug:"solar-cells-new-aspects-and-solutions",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1290.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3676",title:"Solar Collectors and Panels",subtitle:"Theory and Applications",isOpenForSubmission:!1,hash:null,slug:"solar-collectors-and-panels--theory-and-applications",bookSignature:"Reccab Manyala",coverURL:"https://cdn.intechopen.com/books/images_new/3676.jpg",editedByType:"Edited by",editors:[{id:"12002",title:"Associate Prof.",name:"Reccab",surname:"Manyala",slug:"reccab-manyala",fullName:"Reccab Manyala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1289",title:"Solar Cells",subtitle:"Silicon Wafer-Based Technologies",isOpenForSubmission:!1,hash:"76fb5123cd9acbf3c37678c5e9bd056a",slug:"solar-cells-silicon-wafer-based-technologies",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/1289.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"295",title:"Solar Cells",subtitle:"Thin-Film Technologies",isOpenForSubmission:!1,hash:"ad5cda9b208fbf385f7cdf7a5c16baae",slug:"solar-cells-thin-film-technologies",bookSignature:"Leonid A. Kosyachenko",coverURL:"https://cdn.intechopen.com/books/images_new/295.jpg",editedByType:"Edited by",editors:[{id:"6262",title:"Prof.",name:"Leonid A.",surname:"Kosyachenko",slug:"leonid-a.-kosyachenko",fullName:"Leonid A. Kosyachenko"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2154",title:"Energy Storage",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"98b5e296523724495675754b80db6245",slug:"energy-storage-technologies-and-applications",bookSignature:"Ahmed Faheem Zobaa",coverURL:"https://cdn.intechopen.com/books/images_new/2154.jpg",editedByType:"Edited by",editors:[{id:"39249",title:"Dr.",name:"Ahmed F.",surname:"Zobaa",slug:"ahmed-f.-zobaa",fullName:"Ahmed F. Zobaa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"1532",leadTitle:null,title:"Semiconductor Laser Diode",subtitle:"Technology and Applications",reviewType:"peer-reviewed",abstract:"This book represents a unique collection of the latest developments in the rapidly developing world of semiconductor laser diode technology and applications. An international group of distinguished contributors have covered particular aspects and the book includes optimization of semiconductor laser diode parameters for fascinating applications. \nThis collection of chapters will be of considerable interest to engineers, scientists, technologists and physicists working in research and development in the field of semiconductor laser diode, as well as to young researchers who are at the beginning of their career.",isbn:null,printIsbn:"978-953-51-0549-7",pdfIsbn:"978-953-51-4996-5",doi:"10.5772/1999",price:139,priceEur:155,priceUsd:179,slug:"semiconductor-laser-diode-technology-and-applications",numberOfPages:390,isOpenForSubmission:!1,hash:"67c029e3a582411c5f9ab3a7dc28884f",bookSignature:"Dnyaneshwar Shaligram Patil",publishedDate:"April 25th 2012",coverURL:"https://cdn.intechopen.com/books/images_new/1532.jpg",keywords:null,numberOfDownloads:58399,numberOfWosCitations:29,numberOfCrossrefCitations:5,numberOfDimensionsCitations:17,numberOfTotalCitations:51,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"May 2nd 2011",dateEndSecondStepPublish:"May 30th 2011",dateEndThirdStepPublish:"October 4th 2011",dateEndFourthStepPublish:"November 3rd 2011",dateEndFifthStepPublish:"March 2nd 2012",remainingDaysToSecondStep:"10 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:"Edited by",kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"106345",title:"Prof.",name:"Dnyaneshwar",middleName:"Shaligram",surname:"Patil",slug:"dnyaneshwar-patil",fullName:"Dnyaneshwar Patil",profilePictureURL:"https://mts.intechopen.com/storage/users/106345/images/2754_n.jpg",biography:"Dr. D. S. Patil has been graduated from Poona University with a rank. He received the M.Sc. degree in Electronics Science with a first class in 1986 from the Poona university department of Electronics-Science. He secured M.C.M. degree with A+ grade from Poona University and the Ph.D. degree in Electronics from the North Maharashtra University, Jalgaon [Maharashtra], India. He qualified state eligibility test in Electronics in 1995. Since 1991, he has been working in the North Maharashtra University, Jalgaon and presently working as a Professor. He secured high school scholarship, national merit scholarship and received Rashtriya gaurav award sponsored by India International Friendship Society. He successfully completed a major Young scientist project from Department of Science and Technology, India. His name has been considered in the Steering committee as a member for the International Conference on Nanoscience and Technology 2008, Colarado, United States of America, International vacuum Congress, China 2010. He worked on the various committees of the universities. He has published about 157 papers in reputed journals and proceedings of the conferences. His research interests include the computer simulation of semiconductor, nano and optoelectronics devices, nano-electronics, Materials development and characterization for the nano-technological and optoelectronics applications, process automation using advanced microcontrollers and embedded systems, organic electronics and computer simulation of nanostructures including quantum dots and superlattice. He has developed with his research student a novel model of probability density spreading in GaN quantum wells. He has developed with research students, computer controlled dip coating system and microcontroller based spin coating system for the deposition of nano-materials. He has guided many students for their innovative research. He visited France and Germany to attend international conferences and present his papers. Moreover, he visited Technical University, Zurich, Switzerland to know the various activities and research carried out in Electronics Technology department. He worked as a reviewer for many reputed international journals. He has delivered many invited talks and popular lectures. He developed the Electronics Practical laboratory and curriculum as a first member of Electronics Department and framed syllabus of M.Phil. (Electronics) and M.Sc.(Electronics). Despite of this, he taught various courses to M.Tech. (VLSI Technology), M.C.A and B.Tech.(Chemical Technology). Recently, his name has been considered in Marscue Who’s who in the world.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"North Maharashtra University",institutionURL:null,country:{name:"India"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1226",title:"Optoelectronics",slug:"optics-and-lasers-optoelectronics"}],chapters:[{id:"35899",title:"Effect of Cavity Length and Operating Parameters on the Optical Performance of Al0.08In0.08Ga0.84N/ Al0.1In0.01Ga0.89N MQW Laser Diodes",slug:"effect-of-cavity-length-and-operating-parameters-on-the-optical-performance-of-al0-08in0-08ga0-84n-a",totalDownloads:3587,totalCrossrefCites:0,authors:[{id:"104427",title:"Dr.",name:"Alaa J.",surname:"Ghazai",slug:"alaa-j.-ghazai",fullName:"Alaa J. Ghazai"}]},{id:"35900",title:"Electrical Transport in Ternary Alloys: AlGaN and InGaN and Their Role in Optoelectronic",slug:"electrical-transport-in-ternary-alloys-algan-and-ingan-and-their-role-in-optoelectronic",totalDownloads:4838,totalCrossrefCites:0,authors:[{id:"100925",title:"Dr.",name:"Nadia",surname:"Bachir",slug:"nadia-bachir",fullName:"Nadia Bachir"},{id:"109209",title:"Prof.",name:"Chabane Sari",surname:"Nasr Eddine",slug:"chabane-sari-nasr-eddine",fullName:"Chabane Sari Nasr Eddine"},{id:"109215",title:"Dr.",name:"Hamdoune",surname:"Abdelkader",slug:"hamdoune-abdelkader",fullName:"Hamdoune Abdelkader"}]},{id:"35901",title:"Carrier Transport Phenomena in Metal Contacts to AlInGaN-Based Laser Diodes",slug:"carrier-transport-phenomena-in-metal-contacts-to-alingan-based-laser-diodes",totalDownloads:2121,totalCrossrefCites:0,authors:[{id:"103499",title:"Prof.",name:"Joon Seop",surname:"Kwak",slug:"joon-seop-kwak",fullName:"Joon Seop Kwak"}]},{id:"35902",title:"Characterization Parameters of (InGaN/InGaN) and (InGaN/GaN) Quantum Well Laser Diode",slug:"characterization-parameters-of-ingan-ingan-and-ingan-gan-quantum-well-laser-diode",totalDownloads:3442,totalCrossrefCites:0,authors:[{id:"106453",title:"Dr.",name:"Sabah",surname:"Thahab",slug:"sabah-thahab",fullName:"Sabah Thahab"}]},{id:"35903",title:"Analysis of Coherence-Collapse Regime of Semiconductor Lasers Under External Optical Feedback by Perturbation Method",slug:"analysis-of-coherence-collapse-regime-of-semiconductor-lasers-under-external-optical-feedback-by-per",totalDownloads:2447,totalCrossrefCites:0,authors:[{id:"111141",title:"Dr.",name:"Qin",surname:"Zou",slug:"qin-zou",fullName:"Qin Zou"}]},{id:"35904",title:"DFB Laser Diode Dynamics with Optoelectronic Feedback",slug:"dfb-laser-diode-dynamics-with-optoelectronic-feedback",totalDownloads:3677,totalCrossrefCites:0,authors:[{id:"102474",title:"Dr.",name:"M. H.",surname:"Shahine",slug:"m.-h.-shahine",fullName:"M. H. Shahine"}]},{id:"35905",title:"Ultra-Wideband Multiwavelength Light Source Utilizing Rare Earth Doped Femtosecond Fiber Oscillator",slug:"ultra-wideband-multiwavelength-light-source-utilizing-rare-earth-doped-femtosecond-fiber-oscillator",totalDownloads:2204,totalCrossrefCites:0,authors:[{id:"14201",title:"Dr.",name:"Sulaiman Wadi",surname:"Harun",slug:"sulaiman-wadi-harun",fullName:"Sulaiman Wadi Harun"},{id:"102667",title:"MSc.",name:"Nurul Shahrizan",surname:"Shahabuddin",slug:"nurul-shahrizan-shahabuddin",fullName:"Nurul Shahrizan Shahabuddin"},{id:"110438",title:"Dr.",name:"Marinah",surname:"Othman",slug:"marinah-othman",fullName:"Marinah Othman"}]},{id:"35906",title:"Low Frequency Noise Characteristics of Multimode and Singlemode Laser Diodes",slug:"low-frequency-noise-characteristics-of-multimode-and-singlemode-laser-diodes",totalDownloads:2032,totalCrossrefCites:2,authors:[{id:"104384",title:"Dr.",name:"Sandra",surname:"Pralgauskaite",slug:"sandra-pralgauskaite",fullName:"Sandra Pralgauskaite"},{id:"104388",title:"Prof.",name:"Jonas",surname:"Matukas",slug:"jonas-matukas",fullName:"Jonas Matukas"},{id:"104390",title:"Prof.",name:"Vilius",surname:"Palenskis",slug:"vilius-palenskis",fullName:"Vilius Palenskis"}]},{id:"35907",title:"Investigation of High-Speed Transient Processes and Parameter Extraction of InGaAsP Laser Diodes",slug:"investigation-of-high-speed-transient-processes-and-parameter-extraction-of-ingaasp-laser-diodes",totalDownloads:1961,totalCrossrefCites:0,authors:[{id:"104388",title:"Prof.",name:"Jonas",surname:"Matukas",slug:"jonas-matukas",fullName:"Jonas Matukas"},{id:"104390",title:"Prof.",name:"Vilius",surname:"Palenskis",slug:"vilius-palenskis",fullName:"Vilius Palenskis"},{id:"105381",title:"Prof.",name:"Juozas",surname:"Vysniauskas",slug:"juozas-vysniauskas",fullName:"Juozas Vysniauskas"},{id:"105392",title:"MSc.",name:"Tomas",surname:"Vasiliauskas",slug:"tomas-vasiliauskas",fullName:"Tomas Vasiliauskas"},{id:"105396",title:"Dr.",name:"Emilis",surname:"Sermuksnis",slug:"emilis-sermuksnis",fullName:"Emilis Sermuksnis"}]},{id:"35908",title:"Spectral Narrowing and Brightness Increase in High Power Laser Diode Arrays",slug:"spectral-narrowing-and-brightness-increase-in-high-power-laser-diode-arrays",totalDownloads:3256,totalCrossrefCites:0,authors:[{id:"105997",title:"Dr.",name:"Niklaus",surname:"Wetter",slug:"niklaus-wetter",fullName:"Niklaus Wetter"}]},{id:"35909",title:"Tunable Dual-Wavelength Laser Scheme by Optical-Injection Fabry-Perot Laser Diode",slug:"tunable-dual-wavelength-laser-scheme-by-optical-injection-fabry-perot-laser-diode",totalDownloads:2217,totalCrossrefCites:0,authors:[{id:"106255",title:"Prof.",name:"Chien-Hung",surname:"Yeh",slug:"chien-hung-yeh",fullName:"Chien-Hung Yeh"}]},{id:"35910",title:"The Coherent Coupled Output of a Laser Diode Array Using a Volume Bragg Grating",slug:"the-coherent-coupled-output-of-a-laser-diode-array-using-a-volume-bragg-grating",totalDownloads:2334,totalCrossrefCites:0,authors:[{id:"111287",title:"Dr.",name:"Bo",surname:"Liu",slug:"bo-liu",fullName:"Bo Liu"}]},{id:"35933",title:"Laser Diode Pump Technology for Space Applications",slug:"laser-diode-pump-technology-for-space-applications",totalDownloads:3793,totalCrossrefCites:1,authors:[{id:"109008",title:"Dr.",name:"Anthony W.",surname:"Yu",slug:"anthony-w.-yu",fullName:"Anthony W. Yu"},{id:"110631",title:"Ms.",name:"Elisavet",surname:"Troupaki",slug:"elisavet-troupaki",fullName:"Elisavet Troupaki"},{id:"110632",title:"Dr.",name:"Mark A.",surname:"Stephen",slug:"mark-a.-stephen",fullName:"Mark A. Stephen"},{id:"110633",title:"Dr.",name:"Aleksey A.",surname:"Vasilyev",slug:"aleksey-a.-vasilyev",fullName:"Aleksey A. Vasilyev"}]},{id:"35934",title:"Monitoring of Welding Using Laser Diodes",slug:"monitoring-of-welding-using-laser-diodes",totalDownloads:2404,totalCrossrefCites:1,authors:[{id:"107571",title:"Dr.",name:"Badr",surname:"Abdullah",slug:"badr-abdullah",fullName:"Badr Abdullah"}]},{id:"35935",title:"The Development of Laser Diode Arrays for Printing Applications",slug:"the-development-of-laser-diode-arrays-for-printing-applications",totalDownloads:3033,totalCrossrefCites:0,authors:[{id:"106897",title:"Dr.",name:"Olek",surname:"Kowalski",slug:"olek-kowalski",fullName:"Olek Kowalski"}]},{id:"35936",title:"High-Power Pulsed 2-μm Tm3+-Doped Fiber Laser",slug:"high-power-pulsed-2-m-tm3-doped-fiber-laser",totalDownloads:2883,totalCrossrefCites:0,authors:[{id:"5449",title:"Prof.",name:"Jianqiu",surname:"Xu",slug:"jianqiu-xu",fullName:"Jianqiu Xu"},{id:"110808",title:"Dr.",name:"Yulong",surname:"Tang",slug:"yulong-tang",fullName:"Yulong Tang"}]},{id:"35937",title:"Advances in High-Power Laser Diode Packaging",slug:"advances-in-high-power-laser-diode-packaging",totalDownloads:7249,totalCrossrefCites:1,authors:[{id:"113389",title:"Dr.",name:"Ronnie",surname:"Teo",slug:"ronnie-teo",fullName:"Ronnie Teo"}]},{id:"35938",title:"Laser Diode Gas Spectroscopy",slug:"laser-diode-gas-spectroscopy",totalDownloads:2025,totalCrossrefCites:0,authors:[{id:"103920",title:"Dr.",name:"Pablo",surname:"Pineda-Vadillo",slug:"pablo-pineda-vadillo",fullName:"Pablo Pineda-Vadillo"}]},{id:"35939",title:"CW THz Wave Generation System with Diode Laser Pumping",slug:"cw-thz-wave-generation-system-with-diode-laser-pumping",totalDownloads:2907,totalCrossrefCites:0,authors:[{id:"106244",title:"Dr.",name:"Srinivasa",surname:"Ragam",slug:"srinivasa-ragam",fullName:"Srinivasa Ragam"}]}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"1505",title:"Scanning Electron Microscopy",subtitle:null,isOpenForSubmission:!1,hash:"3305b759b0efc22e8ed16e9048818817",slug:"scanning-electron-microscopy",bookSignature:"Viacheslav Kazmiruk",coverURL:"https://cdn.intechopen.com/books/images_new/1505.jpg",editedByType:"Edited by",editors:[{id:"100815",title:"Dr.",name:"Viacheslav",surname:"Kazmiruk",slug:"viacheslav-kazmiruk",fullName:"Viacheslav Kazmiruk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2397",title:"Advanced Aspects of Spectroscopy",subtitle:null,isOpenForSubmission:!1,hash:"bcc83fcd6b4bbfdaa677b37d94bdbdb6",slug:"advanced-aspects-of-spectroscopy",bookSignature:"Muhammad Akhyar Farrukh",coverURL:"https://cdn.intechopen.com/books/images_new/2397.jpg",editedByType:"Edited by",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10",title:"Coherence and Ultrashort Pulse Laser Emission",subtitle:null,isOpenForSubmission:!1,hash:"e1bd25a76712d1cb8792820acf2ff001",slug:"coherence-and-ultrashort-pulse-laser-emission",bookSignature:"F. J. Duarte",coverURL:"https://cdn.intechopen.com/books/images_new/10.jpg",editedByType:"Edited by",editors:[{id:"13752",title:"Dr.",name:"F. J.",surname:"Duarte",slug:"f.-j.-duarte",fullName:"F. J. Duarte"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2018",title:"Recent Progress in Optical Fiber Research",subtitle:null,isOpenForSubmission:!1,hash:"c9f4716122beee57c42cff13c357a2cb",slug:"recent-progress-in-optical-fiber-research",bookSignature:"Moh. Yasin, Sulaiman W. Harun and Hamzah Arof",coverURL:"https://cdn.intechopen.com/books/images_new/2018.jpg",editedByType:"Edited by",editors:[{id:"294347",title:"Dr.",name:"Moh",surname:"Yasin",slug:"moh-yasin",fullName:"Moh Yasin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3166",title:"Optoelectronics",subtitle:"Advanced Materials and Devices",isOpenForSubmission:!1,hash:"b7263978cf34e637a4b9592eb4975f3e",slug:"optoelectronics-advanced-materials-and-devices",bookSignature:"Sergei L. Pyshkin and John M. Ballato",coverURL:"https://cdn.intechopen.com/books/images_new/3166.jpg",editedByType:"Edited by",editors:[{id:"43016",title:"Prof.",name:"Sergei",surname:"Pyshkin",slug:"sergei-pyshkin",fullName:"Sergei Pyshkin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2245",title:"Plasmonics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"e74f79681a8c87bb027f48ad33a3e068",slug:"plasmonics-principles-and-applications",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/2245.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3710",title:"Advances in Solid State Lasers",subtitle:"Development and Applications",isOpenForSubmission:!1,hash:null,slug:"advances-in-solid-state-lasers-development-and-applications",bookSignature:"Mikhail Grishin",coverURL:"https://cdn.intechopen.com/books/images_new/3710.jpg",editedByType:"Edited by",editors:[{id:"4862",title:"Mr.",name:"Mikhail",surname:"Grishin",slug:"mikhail-grishin",fullName:"Mikhail Grishin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"256",title:"Optoelectronics",subtitle:"Materials and Techniques",isOpenForSubmission:!1,hash:"2c0d6a2a51ac114edd58f2c667297503",slug:"optoelectronics-materials-and-techniques",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/256.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3581",title:"Recent Optical and Photonic Technologies",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"recent-optical-and-photonic-technologies",bookSignature:"Ki Young Kim",coverURL:"https://cdn.intechopen.com/books/images_new/3581.jpg",editedByType:"Edited by",editors:[{id:"12009",title:"Dr.",name:"Ki Young",surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"525",title:"Optoelectronics",subtitle:"Devices and Applications",isOpenForSubmission:!1,hash:"f444b982565b0c4be6117a35f7810047",slug:"optoelectronics-devices-and-applications",bookSignature:"Padmanabhan Predeep",coverURL:"https://cdn.intechopen.com/books/images_new/525.jpg",editedByType:"Edited by",editors:[{id:"36735",title:"Prof.",name:"P.",surname:"Predeep",slug:"p.-predeep",fullName:"P. Predeep"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"58779",title:"Integrating Technical and Nontechnical Skills in Hands-On Surgical Training",doi:"10.5772/intechopen.73044",slug:"integrating-technical-and-nontechnical-skills-in-hands-on-surgical-training",body:'
The operating room is a hectic and dynamic teamwork environment requiring safe surgical practice. To achieve this, surgeons have to develop highly effective technical and nontechnical skills that are both built upon formal training [1]. Since technical and nontechnical skills are strongly associated to another [1] and have to be applied concurrently in the real-life operating room, these skills also have to be trained concurrently [2, 3, 4, 5]. However, to date, the training of nontechnical skills is still not effectively and fully implemented in surgical curricula [1].
Surgical curricula have always had a strong focus on the development of surgical technical skills, aiming for high-level psychomotor skills, swift eye-hand coordination, and dexterity [6]. Since it became clear that adverse events in surgery are not so much caused by deficiencies and errors in technical skills but rather by deficiencies and errors in nontechnical team and communication skills, the attention for nontechnical skills training has been increasing [1, 7].
In this chapter, we discuss how to effectively integrate technical and nontechnical skills in surgical curricula, focusing on teaching behaviors, training strategies, and simulated and real-life operating room training. We address the current knowledge on acquiring technical skills in the section “How do we learn and teach surgical technical skills?” and nontechnical skills in “How do we learn and teach nontechnical skills in surgery?”. We discuss training settings used for concurrent technical and nontechnical skills training in “Environments used for teaching nontechnical skills next to technical skills in surgery.” We address frameworks that can be helpful to integrate technical and nontechnical skills teaching in the section “Effective frameworks for integrated technical and nontechnical skills teaching.” Finally, we share our view on how to successfully establish a surgical curriculum with integrated technical and nontechnical skills training and teaching in “Integrating technical and nontechnical skills training during hands-on surgical teaching in a curriculum”.
We realize that nontechnical skills of surgeons encompass more than communication and team skills, such as clinical decision making and stress coping [5]. In this chapter, the term ‘nontechnical skills’ refers to the social team and communication skills necessary for successful surgery, encompassing effective communication (e.g., sharing information efficiently), collaboration (e.g., assisting other team members when needed), coordination (e.g., timely asking team members for requests), leadership (e.g., directing team members), and situational awareness (e.g., asking for information updates regarding the patient’s condition) [8, 9].
Technical skills are core skills of a surgeon. They refer to all goal-directed psychomotor actions. Handling a scalpel to gain access to a patient’s abdomen and handling a needle to repair a ruptured vein are examples of technical surgical skills. We discuss the current knowledge available regarding the learning, training and teaching of technical skills, and surgical technical skills in particular.
To understand how technical skills are acquired, two main principles are important. First, the acquisition of technical skills is not a linear process [10]. At the start of training, trainees are completely unfamiliar and inexperienced. There are many untrained aspects of the skill that can be improved relatively easily resulting in a rapid growth of trainees during their first trials. After the first trials, however, the basics of the skill are acquired and the speed of progress starts to slow down. All aspects of the skill are familiar but now have to be optimized, which requires much more time. The second principle regarding the acquisition of technical skills involves the way a skill is cognitively approached by trainees. In the beginning stages of learning, trainees depend on explicit rules to perform the skill that demands extensive cognitive effort. In later stages, the skill is partially or completely automated and trainees are less dependent on rules. Performing the skill then requires far less cognitive effort and enables trainees to focus on other actions, activities, or aspects in the training or working environment [10]. Both principles are important for designing the training and the teaching that is to be provided.
Distributed, short training sessions with sufficient resting periods in between are most effective to acquire technical skills [10]. Effective training stimulates trainees to engage in deliberate practice, meaning that trainees repetitively train skills in a dedicated and conscious manner according to clear and achievable learning goals. Training of skills has to be simple at the start and complexity should gradually increase over time in accordance to each trainee’s individual progress and needs. Teaching has to contain demonstrations, instructions, and immediate feedback intensely in case of novice trainees [10] to prevent the wrong acquisition and automation of skills [11]. But as trainees progress, this intensity should be reduced accordingly and feedback should be increasingly given reflectively [10] (Figure 1). Highly frequent feedback stimulates the initial acquirement of skills in the short term, whereas less frequent feedback seems to stimulate the retention of the learned skills in the long term. If tasks enable trainees to derive perceptual feedback and trainees are able to evaluate and improve their skills themselves, no feedback may be required. Under such circumstances intense feedback can even hamper learning [10]. Feedback has to be provided in a constructive manner [12]. Based on first-hand observations, teachers should provide specific information to trainees regarding what went well and what needs to be improved [12]. All teaching has to occur in a calm, supportive, and respectful way to create a safe and effective teaching climate [13, 14]. The use of neutral, nondisturbing language is essential in achieving this [15]. When teaching technical skills, the information density should be limited to how to perform the skill without focusing on other aspects or additive information (e.g., other options and the environment) [11]. Such information can prevent trainees from learning because executing the task and simultaneously processing the teaching require trainees to process too much information, which can easily cause cognitive overload. It is also important that trainees can learn by exploring and committing errors to experience firsthand what works best and what possible consequences are [10]. Simulation training plays an important role here.
Changes in feedback on technical skills according to the trainee’s progress.
Research to effective surgical skills teaching is primarily based on trainees’, teachers’, and educational experts’ perceptions of effective teaching. Furthermore, research relating teachers’ teaching behaviors to the actual acquisition of trainees’ skills is scarce, especially in surgical and other medical training. This makes it hard to determine evidence-based how teachers exactly should teach. A recently conducted systematic review study on technical skills teaching in medicine, sports, and music found that feedback, instructions, suggestions for improvement, and demonstrations by teachers improved the skills development in trainees (Medical Teacher, paper under review [16]). It was also found important that teachers stimulated trainees to verbalize their thoughts and reasoning processes. A safe training environment was also found to be important. However, it remained unclear how these behaviors should exactly look like in order to effectively improve the acquisition of skills in trainees. Only one behavior was found to be sufficiently supported by evidence and was described elaborately: instructions and feedback that made trainees externally focus on the task and the effect was more effective than instructions and feedback that made trainees internally focus on how to exactly move their body parts. It may be more effective to explain by “When suturing, move the needle in a circular motion as if you are going to make a full circle.” than by “When suturing, move your wrist with a turning motion.”. However, results were only shown in psychomotor sport skills teaching. It is unclear whether it is also effective in surgical hands-on training.
Most nontechnical skills trainings are built upon (the combination of) three approaches: theory-based, demonstration-based, and simulation-based training [1]. In the theory-based training, trainees are classroom-like taught what nontechnical skills are, why they are important, and how they can be applied in the operating room. Demonstration-based training adds demonstrations of nontechnical skills to the theory-based approach. Trainees observe, for example, video-recordings of a simulated operation and discuss the behaviors they have seen, possible consequences, and solutions. Both approaches are low cost and easily organized. Both approaches improve trainees’ knowledge, awareness, and attitudes. However, there are no possibilities for trainees to apply and train nontechnical skills by doing. Simulation-based approaches do have a training-by-doing component. Trainees apply and train nontechnical skills hands-on in a safe environment, varying from simple bench-top models to full-scale simulated operating rooms with, for example, a patient simulator. This enables the hands-on training of basic and advanced nontechnical skills in a realistic and multidisciplinary team setting. Simulation training is easily compatible with the theory-based and demonstration-based approaches. Simulation has been shown to improve skills acquisition, both in training and in the real-life operating room. Drawbacks are that simulation training is costly, demands extensive organization since realistic operating teams have to be composed, and requires guidance by trained teachers. Blended approaches in which theory, demonstrations, and simulations are combined are advocated. Theory and demonstrations should be the focus in the early stages of nontechnical skills training. In following stages, nontechnical skills should be applied and trained in simulated settings [1, 4]. Simulation has been shown to be most effective in acquiring nontechnical skills [2]. Nontechnical skills training should be long-term, structured according to learning goals, trainees’ individual needs and experiences, and firmly embedded into surgical training curricula [1, 4]. Multiple and distributed training sessions are considered most effective [2].
Although simulation training has been shown to be effective within different surgical specialties [2], the applied interventions are often minimally described [17]. As a consequence, it remains unclear how nontechnical skills teaching should exactly look like to be effective [1]. Most commonly used are debriefing sessions immediately after simulation in which reflective feedback on nontechnical skills is provided by a teacher [2]. Debriefing sessions are considered highly important for teaching nontechnical skills. Trainees receive feedback on their nontechnical skills performance, but also reflect on their nontechnical skills [15]. Teacher feedback on nontechnical skills has to be based on first-hand observations of trainees’ performance and has to address specific strong points, weaknesses, and suggestions for improvement. It should always be provided in a respectful way and with a neutral tone of voice. Teachers have to structure their feedback based on observations and evaluations according to nontechnical skills assessment tools [1, 15]. Training is essential to enable surgical teachers to effectively analyze and teach nontechnical skills [1, 2, 15]. Extensive training and coaching by nontechnical skills experts are required.
To date, surgical trainees generally learn nontechnical skills informally and unstructured as they pass by in the real-life operating room [1]. Teaching in the operating room is a challenging task in itself since the patient’s safety is the most important aspect that often pushes teaching and training to the background [18]. Teaching as it occurs in the operating room is almost entirely focused on technical skills [15]. The same goes for debriefing sessions after the operation [19]. Nontechnical skills teaching remains to be undertaught [15] and surgical teachers are not sufficiently trained to teach nontechnical skills [1]. Nontechnical skills are not yet a part of the surgical educational culture and teachers are inclined to avoid it, often unaware. This means that the real-life operating room is not the best place to teach and train nontechnical skills, especially when trainees lack technical experience.
Simulation offers surgical teachers the possibility to put the teaching of trainees in the forefront [18]. Trainees can train and apply skills and build experience in a safe environment without any risks for patients. For the training of technical skills, synthetic bench top models, box trainers, virtual reality simulators, animal cadavers, human cadavers, and live animal models are commonly used [20, 21]. Recently, nontechnical skills have slowly been added to the skill sets trained by simulation. Possibilities to integrate nontechnical skills next to technical skills training have been developed, for example by using simulated operating rooms with live animal models [22], manikins, and/or synthetic or hybrid models [18].
Using an animal model adds to the reality of the experience in a simulated operating room. Trainees have to deal with real bleedings, time pressure, and hectic teamwork within realistic operating teams [22]. This reality is considered to contribute to the transfer of the acquired nontechnical skills to the real-life operating room [2]. However, our research showed that integrating technical and nontechnical skills during a training using live animal models remained difficult and resulted in a main focus on the teaching of technical skills and hardly on nontechnical skills [22, 23]. It was assumed that the use of a live animal made training activities too unstable to properly teach nontechnical skills next to technical skills. The animal’s condition can really deteriorate without being able to pause the situation. Like in the real-life operating room, the main focus may remain on keeping alive the animal patient and on the technical skills necessary to do so. The teaching of nontechnical skills may easily shift to the background. Furthermore, the occurrence of stress caused by real bleedings, for example, is known to cause cognitive overload. This may have further limited the teachers in teaching nontechnical skills [22].
A simulated operating room equipped with an operating table, equipment, instruments, and synthetic or virtual reality models offers more opportunities for integrating nontechnical next to technical skills teaching than other environments [20]. The use of synthetic or virtual models creates the possibility to teach and train surgical procedures and the necessary technical skills in an authentic setting. By adding a realistic operating team, the teaching and training of nontechnical skills are possible. Such simulation setting not only offers extensive debriefing possibilities after simulation, for example with the help of video-recordings but also offers the possibility to freeze the condition of the patient in time. Pause and reflect procedures focused on nontechnical skills can then follow immediately, even in acute situations [22]. While still in the simulation, trainees receive feedback and have the opportunity to immediately apply and train the improved nontechnical skills during the remainder of the simulation. However, no research has yet been conducted to the effectiveness of such pause and reflect procedures.
Many frameworks are available for teaching surgical skills and skills in general. We discuss four approaches that in our opinion are superior at the moment in contributing to the effective integration of technical and nontechnical skills teaching in surgery.
The Peyton four step approach is a widely accepted method to teach and train technical medical and surgical skills [11] (Table 1). During the first step, the teacher shows the trainee how to perform the skill without any instruction. This is to enable the trainee to entirely focus on the performed motor skills without potentially distracting verbal information. During the second step, the teacher shows and explains the skill according to manageable, logically sequenced part-tasks (steps within the skill). Explanations should be limited to only the key information to prevent cognitive and information overload. In the third step, the teacher performs the part-tasks according to the instructions provided by the trainee. This enables the teacher insight into the trainee’s understandings and misunderstandings and helps the teacher to adjust the teaching. During the fourth step, the trainee first verbalizes what to do in each part-task (the teacher checks whether the part-tasks are understood) and then executes the skill (the teacher checks whether the skill is performed correctly). Misunderstandings or mistakes have to be immediately corrected to teach the skill correctly and prevent the wrong automation of the skill. Although widely used, the evidence for the effectiveness of the Peyton four step and similar approaches is limited [11].
Teacher | Trainee | |
---|---|---|
1 | Performs | Observes |
2 | Shows and explains | Observes |
3 | Performs | Instructs |
4 | Observes | Explains and performs |
Peyton four step approach for technical skills.
The Zwisch model guides teachers in tailoring their teaching and granting autonomy in accordance to each individual trainee’s level for each surgical procedure [24]. The model’s first stage, ‘show and tell,’ applies to inexperienced trainees. The teacher performs the procedure, shows, and explains how it is done, while the trainee observes and assists. This step looks similar to the second step of the Peyton approach; however, the Zwisch model does also allow teaching beyond the key information (e.g., background information, other options, and information on team skills) if the trainee’s level of experience allows this. When the trainee is familiar with the entire procedure and is able to actively assist (e.g., anticipating on the progress of the procedure), the trainee moves on to the second stage, ‘smart help.’ In this stage, the teacher switches between self-performing and assisting the trainee in performing the procedure. The trainee performs most of the procedure based on the teacher’s continuous instructions and feedback. This stage continues until the teacher deems the trainee able to perform the entire procedure with this ‘smart help.’ During the third stage, ‘dumb help,’ the trainee performs the procedure entirely while the teacher assists and only provides feedback and instructions for fine-tuning the trainee’s skills. The final step is called “no help” during which the teacher monitors the trainee performing the procedure and only provides minimal advice. The Zwisch model is supported by psychomotor learning theories [24]; however, research on the effectiveness is mostly lacking.
The three-phase briefing-intraoperative teaching-debriefing (BID) framework [25] has been shown to be effective in structuring the teaching before, during, and after hands-on surgical training in the operating room [13, 14]. The briefing phase is characterized by discussing and setting learning goals for trainees to work on during the intraoperative phase [25, 26]. Trainees come up with learning goals or teachers do suggestions, for example, based on their prior experiences with the trainee. Generally, trainees are inclined to focus on technical skills [14] so teachers may have to stimulate trainees to formulate nontechnical learning goals. Research suggests that if clear learning goals on nontechnical skills are lacking the teachers’ attention for nontechnical skills will be minimal [22]. The teacher and trainee should agree to focus on one or two learning goals [25], which help the teacher, but also the trainee, to focus on what has to be taught and trained during the intraoperative phase. The briefing generally takes only a few minutes.
The teaching during the intraoperative phase should be aimed at achieving the learning goals and form the guidelines for the teacher to structure the training [25]. How to effectively teach during the intraoperative or the hands-on training phase is discussed in the sections concerning the learning of technical and nontechnical skills.
The final phase is the debriefing during which the teacher and trainee reflect on the achievement of the learning goals [25]. Research showed that teachers during the debriefing are inclined to emphasize what went wrong with a focus on technical skills and without sufficient elaboration on how to improve [14]. A teacher-trainee dialog should be established containing honest and specific strong points, weaknesses, suggestions, and solutions for future practice based on the formulated learning goals. Also the underlying schemes why trainees acted the way they acted during the intraoperative phase should be discussed [25]. This provides both the trainee and the teacher insight into the trainee’s thoughts, beliefs, and reasoning processes. This offers reflection and deeper learning for trainees and provides teachers with the opportunity to specifically develop or improve trainees’ schemes regarding technical, and in particular nontechnical skills. Along this process, teachers should preferably ask open questions. Debriefing sessions should always result in individual learning goals for trainees’ future performance [15]. The use of video-recordings of the trainee’s performance has been shown to be effective in debriefing [2]. It helps and teaches trainees to reflect. Mistakes can be discussed and remediated.
The 4 component instructional design (4 C/ID) model is specifically designed for the teaching of complex skills [27, 28] (Figure 2). The model distinguishes four components for designing a successful training program: learning tasks, supportive information, procedural information, and additional part-task training. The learning tasks are at the core of the 4 C/ID model and encompass the training of whole-task procedures in an authentic and realistic training setting from the very start. Whole-task procedures require trainees to combine knowledge, skills, and attitudes and enable them to train these aspects in a realistic relation to each other. This is an important contrast to classical learning theories, which generally prescribe the division of complex tasks into subtasks for training. The 4 C/ID model considers such an approach only effective for the learning of simple skills or skills that can be automated through training. Obviously, confronting a trainee with a new, complex task at the very start of training will induce cognitive overload and hinder learning. To prevent this, the whole-task training should start with the simplest or most simplified version of this task. This requires much less information processing, reasoning, and problem-solving. As trainees improve, they develop schemes and automate skills that then require less cognitive resources and enable them to focus on other aspects of the skill. As trainees’ capabilities improve, the complexity of training should gradually increase accordingly. Whole-task training will improve the effective transfer of the trained skills to real practice, which also requires the whole task to be performed [27, 28]. Regarding the training of technical and nontechnical skills, the 4 C/ID model would require trainees to train these skills concurrently from the very start. Training should gradually progress from the simplest to the most complex version of a surgical procedure.
The 4 components of the 4 C/ID-model.
Supportive information should be available for trainees during training [27, 28]. Supportive information encompasses knowledge that trainees need for reasoning and problem-solving during nonrecurrent, situation-specific aspects of the learning task, for example, information on consequences based on patient-specific characteristics (technical skills) or operating team composition (nontechnical skills). Procedural information encompasses knowledge of recurrent procedural aspects of the learning task [27, 28]. Preferably, this information is provided to trainees during training when the situation requires it, for example, conducting a physical test on the patient (technical skills) or working with a checklist (nontechnical skills) during the operation. Supportive information and procedural information encompass the teaching activities applied by the teacher. The final component of the 4 C/ID model is additional part-task training [27, 28]. Although whole-task training is key and remains the focus during the entire training program, some skills require a high level of automation and additional training. Such skills can be trained and automated in separate training sessions.
The development of and research to integrated technical and nontechnical skills training in surgical specialties are very scarce [5]. Currently, modules are focused on developing technical skills or nontechnical skills, but barely on integrating and developing both skill sets concurrently. Although the 4 C/ID model is built upon solid learning principles and theories, to our knowledge, its effectiveness has not yet been investigated in relation to surgical teaching. Nevertheless, we believe this model helps to integrate technical and nontechnical skills teaching successfully.
In this section, we put the aforementioned theory together and share our view on how to effectively integrate technical and nontechnical skills training and teaching in surgical curricula, using both simulated settings and the real-life operating room. We advocate a surgical curriculum to be organized in different training modules. Each training module is composed out of different training sessions. In these training sessions, the actual teaching and training takes place. We provide recommendations on three main aspects: learning goals and assessment; training modules and training sessions; and teaching and training within training sessions.
To ensure the formal and structural training of nontechnical skills next to technical skills, long-term learning goals on nontechnical skills have to be formulated next to long-term learning goals on technical skills. Long-term learning goals are formulated by program directors in cooperation with surgical teachers. All have to be achieved by trainees during the curriculum. The long-term learning goals on nontechnical skills can be based on research (for example, the studies conducted by Hull et al. [8] and/or Yule et al. [9]) combined with specific needs of the workplace.
Based on the long-term learning goals, the program directors and surgical teachers formulate short-term learning goals (Figure 3). Short-term learning goals have to be achieved by trainees during the training modules within the curriculum. Short-term learning goals address both general and procedure-specific technical and nontechnical skills. General learning goals apply to all surgical procedures. Procedure-specific learning goals specifically apply to distinctive surgical procedures.
Modular structure of a curriculum for integrated skills’ teaching and learning.
The formulated short-term learning goals are the guidelines for the surgical teachers and trainees to formulate personal learning goals for each individual trainee. These personal learning goals enable teachers to tailor the teaching to each individual trainee’s needs, experience, and interests. Personal learning goals are specific and achievable. They can be achieved in one or in multiple training sessions.
Each trainee’s individual performance and progress is assessed and monitored with assessment instruments on technical skills (like the Objective Structured Assessment of Technical Skills (OSATS)) and nontechnical skills (like the Observational Teamwork Assessment for Surgery (OTAS) [8] or Nontechnical Skills for Surgeons (NOTSS) [9]). The trainees’ progress on nontechnical skills is structurally analyzed after each training session and documented with the purpose to provide trainees with feedback and personal learning goals and to improve future performance in upcoming training sessions. Each training module finishes with a summative pass or fail test for trainees on technical and nontechnical skills concurrently, according to the short-term learning goals.
Surgical teachers have to be trained and coached in observing, assessing, and teaching nontechnical skills by nontechnical skills teaching experts. Teachers should regularly reflect on their nontechnical and technical skills teaching abilities based on peer observations and feedback. Assessing the teachers’ abilities is not a goal in itself but rather a method to strive for perfection, learn from each other, and stay up-to-date regarding effective surgical teaching research and frameworks.
Preferably, nontechnical skills are integrated over the entire line of surgical education, starting in undergraduate medical education all the way through to continuing postgraduate surgical education. It may well be that technical skills require more training and teaching effort to develop than nontechnical skills. The perfect ratio is not known. However, effective nontechnical skills can only be achieved through a formal, structured, and sufficient installation of training possibilities.
We advocate that surgical training curricula are composed out of training modules focused on specific surgical procedures (e.g., a laparoscopic cholecystectomy module, an open inguinal hernia repair module, etc.). What training modules are exactly incorporated in a curriculum is decided by the program directors depending on the relevance of the modules and the intentions of the curriculum. Technical and nontechnical skills are integrated from the start of a module so trainees learn that both skills are connected and have to be applied and trained concurrently.
A training module consists out of several distributed training sessions. Two types of training sessions are distinguished: integrated training sessions and focused training sessions. Integrated training sessions focus on the teaching and training of both technical and nontechnical skills concurrently within the same training session, in a simulated setting, or in the real-life operating room. If trainees have no prior experience, a training module may typically start with an integrated training session in which trainees purposefully observe and analyze their teachers’ technical and nontechnical skills (e.g., based on observational assignments and observational instruments) while their teachers are performing simple versions of the procedure in the real-life operating room. The following integrated training sessions are gradually organized, in accordance to each trainee’s individual level, progress, and needs, from:
Simple or simplified versions to complex versions of the procedure
Gradually moving from simple to complex ensures that trainees do not experience cognitive overload and can start performing procedures or components of procedures themselves in an early stage.
Highly controlled simulated to barely controlled real-life training environments
Gradually working from a highly controlled to a barely controlled environment ensures there is sufficient room for teaching technical and nontechnical skills, especially in the early stages of training. A highly controlled environment is characterized by simulation, which enables pause and reflect procedures and learning from mistakes. A typical barely controlled environment is the real-life operating room. As trainees start to perform skills themselves, they start in a simple simulation setting (e.g., bench top models). Depending on the trainee’s progress, simulated environments become gradually less controllable, increasingly realistic and more and more replaced by training in the real-life operating until the point of independent practice is reached.
Teaching of high intensity to teaching of low intensity
The teaching intensity gradually fades from strict guidance and intensive teaching in trainees who are inexperienced to distant observation by the teacher with reflective feedback only when trainees are experienced. The Zwisch model can help teachers to determine the necessary teaching intensity.
Low trainee contribution to high trainee contribution
Trainee contribution gradually increases on the way to independent practice. Trainees first train and apply only the simple components of the procedure, scattered throughout the integrated training sessions. The more complex components are still performed by the teacher. Since full procedure training is important, trainees then purposefully observe and analyze the technical and nontechnical skills still performed by their teacher or assist their teacher during the complex components. As trainees progress, next to the already trained components, increasingly more complex technical and nontechnical components of the procedure are added until trainees can perform the entire and complex versions of the procedure independently. The Zwisch model can be helpful for teachers to gradually grant trainees more autonomy.
Although the integration of nontechnical next to technical skills training is key, there is also room for focused training. When surgical procedures require skills that need to be automated (e.g., suturing) or require deeper understanding (e.g., models for closed loop communication), supplementary focused training sessions are installed with the specific goal to solely focus on, train, and acquire specific skills. If skills like suturing or closed loop communication are concurrently trained next to other technical and nontechnical skills, it may cause cognitive overload. Then, teaching and training best occurs separately until the skills are partly or fully automated. As soon as these skills are acquired, trainees apply them in the integrated training sessions. By then, trainees are experienced on that part of the procedure and have more cognitive resources available to focus on other important technical and nontechnical skills. Focused training sessions typically occur in a simulated setting, with or without a teacher being present, depending on the possibility for perceptual feedback. With some skills, after the teacher explained the skill by the Peyton four step approach, for example, the trainee can independently practice to automation with at-home training kits, simulators, etc. Figure 4 provides examples of training in simulated settings, both for focused training (A and B) and integrated training (C).
Three simulated training settings, ranked from least realistic and most controlled (A) to most realistic (B) and least controlled (C). (A) A focused training session regarding technical laparoscopic skills using a virtual reality simulator. Basic laparoscopic skills are automated before trainees apply them in the operating room. (B) A focused training session regarding nontechnical communication and team skills using a human patient simulator with video recordings for debriefing (view from control room). Additional training may occur next to training in the real-life operating room. (C) An integrated training session using an animal model. Such training is scheduled best if trainees have gained sufficient experience regarding the necessary technical and nontechnical skills.
When applying the aforementioned training and teaching principles, it is important to realize that there is no one size fits all approach. In close and continuous consultation, surgical teachers and trainees individualize each training module and the training sessions within each training module, according to each individual trainee’s experience, progress, needs, or interests. Skills and abilities that are already obtained move to the background to enable focus on other skills and abilities. The length of each training module is flexible and different per individual trainee depending on the trainee’s speed of progress. Different training modules do not necessarily succeed each other but rather run parallel or partly parallel if similarities in difficulty, techniques, and trainee requirements allow. The basic principle is and remains the training of entire surgical procedures in which both technical and nontechnical skills have to be applied, starting simple and gradually move on to a highly complex endpoint. Along this process, ideally, trainees are guided by two or maximum three teachers within a module; that way, teachers get to know their trainees’ strengths and weaknesses, which helps the teacher to tailor the teaching, but also offers trainees feedback from different perspectives.
Good teaching during training sessions is important to develop trainees. Teaching best occurs supportive and in a safe environment. This requires teachers to take time and be calm, approachable, and respectful. Good teaching contains instructions, explanations, demonstrations, and honest feedback with suggestions for improvement tailored to each individual trainee’s needs and level. Effective feedback is constructive, nonoffensive, and neutrally formulated. The trainee’s strong points and weaknesses are addressed based on and illustrated with first-hand observations. The goal of feedback is to improve or maintain the trainee’s level of performance in the future.
The BID model can be helpful to structure the teaching within training sessions. During the briefing, the teacher and trainees briefly discuss and agree on personal learning goals for the upcoming training session, the guidance expectations, and the training activities. Guidance can range from strict and continuously to distant and minimal. Training activities can vary from observing to performing the entire procedure. In integrated training sessions, the teacher and trainee work on one technical and one personal nontechnical learning goal. In focused training sessions, the teacher and trainee work on either one or two technical or one or two nontechnical personal learning goals.
During the hands-on training phase, the actual teaching and training take place. How the teacher teaches depends on the nature of the training session (integrated or focused) and the trainees’ experience. Observational learning, a high level of teaching intensity, and a low level of trainee contribution are typical for inexperienced trainees. Distant monitoring, a low level of teaching intensity, and a high level of trainee contribution are typical for experienced trainees. The Zwisch model can help teachers to grant autonomy and determine the teaching intensity.
During technically focused training sessions, trainees are preferably only taught how to perform skills technically (by the Peyton four step approach, for example). Teaching is predominantly directive and instructive and trainees’ mistakes are corrected immediately. During nontechnically focused training sessions, teaching may occur more reflective, in debriefings or pause and reflect procedures. If, for example, a communication model is new to trainees, they may first receive short instructions, then observe good and wrong examples, and then immediately apply the skill in a simulated setting. The trainees learn by the feedback provided and reflective questions asked by the teacher. Central questions may be: Why did it go the way it went (addressing both positive and corrective aspects)? Why did you act the way you acted? What are the (possible) consequences? What are the solutions for future practice? Video-recordings of the trainees’ performance may be helpful.
In integrated training sessions, teaching focuses on both technical and nontechnical skills concurrently. However, if some technical or nontechnical skills are not yet sufficiently understood or trained, also within integrated training sessions, there can be episodes of pure technical and nontechnical skills teaching. More focused training sessions may be required and can be installed according to the teacher’s insight or on the trainee’s request.
Each training session closes with a debriefing. A debriefing can typically start with the teacher asking the trainee what he or she thinks went well and needs to be improved, with a special focus on the trainee’s personal technical and nontechnical learning goals. The teacher has observed and analyzed the trainee’s performance, preferably by using OTAS or NOTSS (nontechnical skills) and OSATS (technical skills). Observations may focus on a few points, adjusted to the trainees’ personal learning goals. The teacher provides feedback in a dialog with the trainee and tries to get thoughts, beliefs, and reasoning processes clear. The teacher supports the trainee in his or her development by adding knowledge and expertise to the discussion. The briefing finishes with the trainee formulating future personal learning goals or intentions for the next training.
There is abundant evidence that the practice of meditation can lead to improvements in an array of physical and mental health concerns [1]. Not surprisingly, this has led to increasing acceptance of these practices in Western societies. In fact, a recent survey found that three of the top four reasons for starting a meditation practice related to improved mental health or affect management [2]. Despite the increased interest in secular-based meditation programs designed to reduce stress or improve mental well-being (e.g., Mindfulness Based Stress Reduction, Mindfulness Based Cognitive Therapy), many people continue to find it difficult to begin or maintain a consistent practice, giving up before they realize any significant benefit.
Researchers, therapists, and meditation coaches are finding a possible new solution to these challenges by using EEG biofeedback to increase awareness of subtle states of consciousness and speed the meditation learning process [3, 4, 5].
Neurofeedback, sometimes referred to as EEG biofeedback, involves measuring brain wave activity through an electroencephalogram (EEG) and using that information to help the brain understand and modify its processes [6]. Because the raw EEG is a complex signal containing a wide range of frequencies, such data are typically filtered and organized into clusters, called bins. For example, alpha brainwaves are typically identified as the activity occurring between 8 and 12 Hz, while beta brainwaves can be identified as the activity between 15 and 25 Hz. The amount of activity recorded in each of these EEG clusters is measured in microvolts (mv). So, for each electrode used in a recording, it is possible to identify an average amount of power (mv) for each of the specified EEG bands (e.g., delta, theta, alpha, etc., see Figure 1).
Raw, delta, theta, alpha, beta, and gamma EEG bands.
Once the EEG signal has been quantified, it is connected to computer-based audio and visual signals (feedback) that change in response to the EEG patterns. In this way it is possible to create a pleasant signal that occurs when the brain moves in the desired direction and remove the signal when the brain moves in an undesired direction. With repeated exposure to this process the brain can learn to become more flexible and adaptive, shifting out of rigid states that may be connected to particular concerns, such as ADHD or epilepsy [7]. The neurofeedback provider is trained to understand EEG patterns in relation to specific concerns and is able to create individualized programs for each client based on their goals and needs.
EEG bands are clusters of frequencies, organized into groups based loosely on their shape and function. These bands vary in their definition depending on the specific researcher or clinician. Typical EEG band ranges and descriptions follow.
Delta waves (0–4 Hz) are the slowest brainwaves. When they are dominant, the person is most likely asleep. While we always produce delta activity, if it increases significantly in relation to the other EEG bands, it will be very difficult to maintain any sort of alert consciousness. Its function appears to be mostly related to rest and regeneration.
Theta waves (4–8 Hz) are also considered slow brainwaves, although a bit faster than Delta. This band tends to increase during memory retrieval, creative thinking, and the “twilight state” just before falling asleep. Theta waves are often associated with the mind being in a more receptive state, such as might occur during hypnosis.
Alpha waves (8–12 Hz) represent our “idle” speed, between the slow and fast waves. Alpha is generally associated with being relaxed and internally focused, hence its historical connection to meditation. Alpha activity tends to increase in the absence of stimulation and is frequently viewed as an inverse indication of activation.
Beta waves (12–30 Hz) are fast waves and associated with activation and arousal. When beta increases, it is likely that the person is engaged in thinking, planning, worrying, or some other active state.
Gamma waves (35–50 Hz) are associated with a very sharp focus and feelings of creativity and insight. Increases in this activity are often observed during high-level information processing or a more effortless, but complex form of understanding, such as occur in a flow state.
Contrary to popular belief, there is no single EEG pattern associated with meditation. This is largely due to the fact that there are many different approaches to meditation with distinctly different ways of directing attention. In addition, each style of meditation impacts specific regions of the brain. For example many forms of a Focus or Concentration meditation practice result in activation of the frontal lobes while simultaneously showing a de-activation of regions in the back of the brain.
Based on reviews of the EEG meditation literature, most researchers agree that there are four basic styles of meditation defined by how attention is directed, the intention of the meditator, which brainwaves are involved, and in which brain regions [5, 8, 9]. These four styles can be described as follows:
Focus: Meditative practices with this emphasis involve sustaining attention on a single object, such as the breath or a mantra. When the mind wanders, the task is to recognize this and return to the original point of focus. Regardless of the specific target, practices in this category require sustaining attention and minimizing mind wandering. Consequently, neuromeditation approaches with this style in mind must monitor specific regions of the frontal lobe (sustaining attention) and the Default Mode Network (DMN; mind wandering). The goal is to keep the attention circuits activated without becoming caught in self-referencing narratives.
Mindfulness: While the term mindfulness has been popularized to refer to a range of practices, it is being used here to describe meditation styles that require the meditator to shift into an observer state of awareness, gently watching thoughts, feelings, and bodily sensations without attachment. It is a present moment awareness without attempts to control, analyze, or judge the experience. These practices also quiet down the Default Mode Network while simultaneously activating the Salience Network, which directs attention toward what is important in the moment.
Open heart: These practices involve activating a positive feeling state and directing those feelings toward self or others. Practices such as lovingkindness, compassion, gratitude, and forgiveness-based meditations fit in this category. These practices activate attention networks and brain regions associated with empathy and emotional processing.
Quiet mind: Practices in this category represent the stereotype of meditation. This is a state in which internal chatter has been reduced to a minimum. Sometimes it is described as a feeling of spaciousness or emptiness. This state is common in traditions like Zen or Transcendental Meditation (TM). Not surprisingly, the brain patterns connected to these practices show a significant quieting of many regions of the brain, including the Default Mode Network and language centers.
Simply put, neuromeditation is the combination of meditation with neurofeedback. By monitoring brainwave activity in specific regions of the brain, it is possible to determine if someone is focused or relaxed, if the mind is wandering, if they are engaged in body-based emotions, or if they have entered a space of internal quietude. By tracking this activity in real-time and connecting it directly to the intent of the meditation, it is possible to help meditators learn to quickly enter a desired state of consciousness and maintain this state for increasing periods of time, increasing the impact and effectiveness.
The practice of combining neurofeedback with meditation is not new. In fact, many of the pioneers in the field of neurofeedback were motivated by the desire to enhance their meditation practice or explore states of consciousness. Based on the research of the time, meditation was primarily associated with increased Alpha brainwave activity, particularly in the Occipital and Parietal regions of the brain [10, 11]. As a result, rewarding increases in Alpha amplitude in these regions became the “go-to” approach to neuromeditation for many years [11]. Because increases in the Alpha band are generally related to an inhibition of mental activity [12], this approach was useful in achieving Quiet Mind meditative states, consistent with certain TM or Zen practices [4, 8]. It was also found that protocols designed to reward increases in Alpha amplitude frequently resulted in decreased anxiety, feelings of relaxation, and positive emotions, providing mental health benefits to those suffering from chronic stress or anxiety [13, 14].
By placing an EEG electrode near the back of the head, it is possible to gain information about the state of the brain’s Default Mode Network (DMN). The DMN is a vast network with its primary hub located in the Posterior Cingulate Cortex (PCC) of the Parietal lobes (see Figure 2), just beneath electrode site PZ (see Figure 3). This area of the brain becomes active when a person is involved in self-referential thought [16]. Basically, any thought you have that relates back to your view of self or your connection to the world will involve the DMN. Not surprisingly, activity in the DMN (and PCC) is connected to mind wandering during a meditative practice [17]. Essentially, if you are not fully engaged in the intention of the meditation, you are likely thinking about yourself or something related to yourself. By quieting the DMN, represented by increases in Alpha amplitude or decreases in Beta or Gamma, it is possible to move beyond the typical “story-telling” tendencies of the mind and tap into an internalized, peaceful state of consciousness.
Sagittal MRI slice with highlighting indicating location of the posterior cingulate cortex [15].
International 10-20 EEG electrode map.
When the Alpha brainwave patterns increase in this region, it is likely that the internal state is more relaxed and the mental activity is inhibited. When Alpha is lower, there is likely to be more analyzing, judging, comparing, remembering, or planning. By establishing a threshold marker in the neurofeedback software, it is possible to identify when the Alpha is “high” or “low.”
When the Alpha activity increases and moves above the threshold marker, the meditator receives some form of pre-determined feedback, letting them know they are on the right track. The feedback used for meditation is typically some form of audio signal or change in music volume designed to provide information without disrupting the meditative state. When the mind wanders, the Alpha drops, signaling a change in the audio signal (e.g., decrease in volume). This provides direct and nearly immediate feedback to the meditator, allowing them to refine their internal awareness.
It should be noted that the example provided above is an over-simplification of the process, but offered for the purposes of illustration.
While the real-world applications of neuromeditation have been explored in the neurofeedback community for many years, there have been only a few studies demonstrating the power of this approach in the lab. The first study to examine the feasibility of neurofeedback for meditation used real-time fMRI data to examine the subjective experience of meditators when the Posterior Cingulate Cortex (PCC) was active vs. quiet. Rather than measuring EEG activity, this study examined blood flow, which is an indication of activation [18].
The meditators in this study reported experiences of being “distracted,” “interpreting,” “controlling,” and “efforting,” when the PCC was active. In contrast, they reported experiences of “concentration,” “undistracted awareness,” “effortless doing,” and “observing sensory experience” when the PCC was deactivated. A follow-up study provided feedback to meditators about the activity level of the (PCC) during a Focus style of meditation [19]. Both meditators and non-meditators reported a significant relationship between activation of the PCC and mind wandering as well as deactivation of the PCC and focused attention.
The researchers also found that experienced meditators (but not novice meditators) were able to intentionally decrease activation of the PCC through the use of the feedback [18]. In another study using EEG neurofeedback, van Lutterveld, et al., found that both novice and experienced meditators were able to control the experience of effortless awareness in connection with a feedback signal indicating decreased PCC activation [20].
More recently, eight sessions of neurofeedback-enhanced meditation were compared to a control group that received sham neurofeedback [21]. Rather than focusing on the PCC, these researchers rewarded increases of frontal midline theta brainwaves (FM Theta). FM Theta are slow oscillations, between 4 and 7 Hz that are generated in the Anterior Cingulate Cortex (ACC; see Figure 4). Theta originating in the ACC often increases in power during a variety of cognitive processes that require attention, focus, or emotional processing [22, 23, 24, 25]. Several studies have found a correlation between increased FM Theta and focused attention meditation practices [26, 27]. Results showed that the experimental group was not only able to significantly increase FM Theta, but also improved performance on a working memory task [21].
Sagittal MRI slice with highlighting indicating location of the anterior cingulate cortex [15].
Video 1 (
While most work in the field of neuromeditation has been devoted to enhancing or advancing the development of specific meditative states, clinicians and researchers are also beginning to explore this strategy as an intervention to improve mental health and cognitive functioning. Because both meditation and neurofeedback have independently been found to be effective in the treatment of a variety of mental health concerns, it is logical to combine them to target specific outcomes [3, 5]. For example, in the study cited above subjects receiving eight sessions of focus neuromeditation significantly improved their performance on a working memory task, while the control group did not [21]. These outcomes make sense given that regions of the brain involved in working memory are exercised during Focus meditation practices. With this logic, it is possible to identify which styles of meditation might be best suited for particular outcomes.
Focus practices with an emphasis on sustaining attention on a single object, activate the frontal lobes, making it an ideal practice for improving functions related to attention, memory, or other executive functions [8, 29, 30]. Consequently, this might be the most beneficial practice for someone with ADHD, cognitive decline, or traumatic brain injury.
Mindfulness, which involves a much more relaxed, observing form of attention may be best suited for managing stress and anxiety [31]. A key component of mindfulness practices involves non-attachment and learning to let go [32], key elements involved in managing stress and anxiety. Not surprisingly, these practices have been shown to reduce activation of the Amygdala, a key brain region involved in the fight or flight response [33].
Open Heart practices, such as lovingkindness-compassion, and gratitude engage positive feeling states, increasing empathy, perspective-taking, and the experience of joy and appreciation [8, 30]. These practices can be helpful for those dealing with resentment, unresolved grief, anger management, or depression.
Practices in the Quiet Mind category result in a reduction of self-talk, leading to the experience of spaciousness or emptiness [8, 34]. Because these practices essentially involve interrupting the “normal” process of “selfing,” they can be helpful for concerns connected to a distorted or inaccurate perception of self, which includes most mental health concerns.
While the four styles can certainly serve as a guide for matching a person to the ideal meditation practice, there are often levels of nuance that require assessment and direction from a trained mental health professional. This is particularly true for clients engaging in neuromeditation with unresolved trauma. In addition, we have found that EEG guided meditation is most effective when it is individualized and includes meditation coaching. The case study below will demonstrate this approach.
B.A. is a 39-year-old, Caucasian woman with a mental health history of anxiety, eating disordered behaviors, and post-traumatic stress disorder (PTSD). The PTSD relates to a car accident and childhood sexual trauma.*.
B.A. began working with yogic practices in her 20s. She noted that she would frequently experience strong emotions such as grief and anger while holding certain poses which led to some resistance to these practices. She began practicing Transcendental Meditation during her late 20s, but never felt confident in this practice. She described mostly engaging in brief practices and struggles with judging herself.
She identified three concerns she hoped to address through her neuromeditation practice; these included: a tendency to be hyper-critical of self and others, feeling overwhelmed and sensitive to sound, and a desire to feel more grounded-to slow down. These were all rated as moderate concerns. In elaboration of item 3, B.A. noted that she is “very much in her head” and often feels disconnected from her body.
Known barriers to expanding her current meditation practice include time, internal resistance, the critical mind, and a tendency to “leave her body” when she begins to relax.
*Identifying information related to this client has been altered to protect their identity. In addition, the client has given permission for their case to be shared in this format.
Results of the neuromeditation Styles Inventory [35] indicated that her concerns most closely matched the Quiet Mind style of meditation. Elevated scores on the New Mind Cognitive Emotional Checklist (CEC) Symptom Checklist [36] indicated concerns with memory, sensitivity to light and sound, feeling “spacey” or “out of my body,” and thinking obsessively. In addition to the above, a Quantitative EEG assessment provided a comparison of her baseline EEG activity to a clinical database. Using a Laplacian reference for the eyes closed data set and analyzing it through qEEG Pro [37], the most striking feature was increased absolute power across all EEG bands in similar brain regions (see Figure 5).
Absolute power across EEG bands compared to qEEG Pro clinical database.
The EEG analysis indicates that Delta (1–3 Hz) and Theta (4–8) activity were elevated in left frontal and parietal regions. These same regions also demonstrated elevated Beta (15–20 Hz) and Hibeta (20–30 Hz) which appeared more localized at FZ and P3. Alpha activity was largely within normal limits.
The combination of excessive slow and fast activity in similar regions with average alpha activity suggests that this pattern may be related to the PTSD concerns noted in the interview. Specifically, the increased slow activity may be connected to the tendency to dissociate. This pattern could also be related to some of the memory, attention, and impulsivity concerns noted in the CEC. The elevated fast activity may be related to tendencies toward anxiety as well as sensory sensitivity.
Based on the information gathered, a Mindfulness meditation protocol was identified as the best match for her concerns and background. Specifically, this protocol would reward increased activation of the right Insula and deactivation of the PCC. Activity in the Right Insula is a common finding in Mindfulness practices and relates to interoception, emotional self-awareness [38], and metacognitive awareness [39]. The right Insula was highlighted as it tends to be more connected to a felt sense of the body and may be helpful in feeling more grounded (one of B.A.’s goals). The reduction of activity in the PCC will require a limit on cognitive processing such as analysis, comparison, or creating a narrative about the experience. This aspect of the protocol addresses concerns around “thinking obsessively.”
B.A. was initially instructed to simply observe whatever she notices in her body as sensation without any interpretation or internal dialog about these observations. Near the 11-min mark of the meditation, B.A. came out of her meditation and commented that she was having trouble feeling into her body and tends to “disappear,” feeling nothing. The therapist provided grounding skills training including rubbing her fingers together, or tapping her fingers to her thumb to create a tactile sensation. B.A. attempted this for approximately 6 min and stopped the session again. She noted that she was struggling with this practice. After additional discussion, B.A. agreed to try focusing on the heart by imagining breathing into and out of the heart, attending to any sensations in that area. After the session, she noted that this seemed to work better for her and was assigned as homework. Figure 6 below shows an analysis of the session in the neuromeditation Report Writer. Each of the time segments described above were identified in the EEG record for comparison. The scores indicate the percent of time that she was able to keep the identified EEG activity in the desired direction. It is clear from examining the right Insula, PCC, and the combined success, that B.A. was much more skilled at reducing activity in the PCC than in increasing activity in the right Insula. This is consistent with her report that she “felt nothing” and tended to “disappear.” This was also consistent with her history of practicing TM meditation, which falls into the Quiet Mind category.
Analysis of session 1 in the NeuroMeditation report writer. Scores reflect the percent of time that EEG criterion was met for specified meditation segments.
The session began with a discussion of her home practice during the past week (without neurofeedback assistance). We explored her tendency to try too hard, become impatient with herself and judge “success.” B.A. was encouraged to relax her goals and expectations for the practice, allowing time to find the meditative space. B.A. was able to connect to sensations in her throat during the session. The time periods of the session where this occurred were easily identified with increased gamma activity in the R. insula. While this approach appeared successful, B.A. reported feeling somewhat “panicky” near the end of the session. B.A. indicated that focusing on the throat was causing some trauma related feelings and memories connected to a history of sexual abuse. We discussed her reaction briefly, inviting her to change the focus of her meditation, engage with eyes open, use a variety of grounding tools, or titrating the experience to maintain a feeling of safety.
B.A. noted that the tendency to dissociate is so strong that it requires a lot of energy and effort to stay present. To encourage present focused awareness, B.A. began coaching herself internally, reminding herself that she is safe, noting her process and experience. While this strategy helped B.A. to stay in her body without dissociating, the internal narrative caused the activity in the PCC to increase. Consequently, the EEG analysis for this session showed increased success with the R. insula, but decreased success with the PCC.
B.A. noted more spontaneous experiences of mindfulness outside of session and fewer dissociative moments. During the session we altered the instructions and the EEG expectations such that she could use self-talk to help notice her present-moment experiences. This resulted in the most significant positive results to date. In fact, B.A. ended the session claiming that she felt “amazing.” She described the meditative state as “feeling without trying to feel.” She described it as an effortless awareness of her body in the present moment. Figure 7 shows a comparison between the beginning of the session vs. the period of self-coaching. When this shift occurred in session, B.A.’s percent of combined success went from 19 to 42%.
Analysis of session 4 in the NeuroMeditation report writer. Scores reflect the percent of time that EEG criterion was met for specified meditation segments.
Once B.A. was able to experience the desired state and learn to do so in a way that felt safe without dissociating, she mastered it very quickly. During the next three sessions, she continued to demonstrate the ability to quickly find the desired meditative state and maintain it for increasing lengths of time. She also noted experiencing similar meditative moments through the day. B.A. reported feeling that she is fully “in her skin” and enjoying it. Table 1 below is a comparison of sessions, 2, 4, 6, and 8. By examining the percent of success across each session, her progress is clear.
Score Comparison | ||||
---|---|---|---|---|
Session 2 | Session 4 | Session 6 | Session 8 | |
Mindfulness Combined Score | 7% | 22% | 44% | 75% |
Gamma Up R. insula | 15% | 32% | 45% | 83% |
High Beta Down PCC | 61% | 84% | 100% | 86% |
Comparison of sessions 2, 4, 6, and 8 in NeuroMeditation report writer.
At the conclusion of each neuromeditation session, B.A. completed the Toronto Mindfulness Scale [40]. This is a 13-item self-report scale designed to assess state mindfulness with respect to meditation practice. Six items are summed to produce a total Curiosity score (α = 0.88), reflecting an attitude of wanting to learn more about one’s experiences (e.g., “I was curious to see what my mind was up to from moment to moment”), and seven items are summed to produce summed to produce a Decentering score (α = 0.82), reflecting a shift from identifying personally with thoughts and feelings to relating to one’s experience within a wider field of awareness (e.g., “I was aware of my thoughts and feelings without overidentifying with them”). Figure 8 shows her scores for each session.
Toronto Mindfulness Scale scores (curiosity, decentering) for client B.A. across sessions 1–7.
These results show a consistent increase in Decentering, which is the scale most relevant to decreasing stress and anxiety.
B.A. also completed a symptom questionnaire around sessions 4 and 8. Figure 9 below demonstrates the change in symptoms from Pre-post.
Session 4 vs. session 8 symptom questionnaire scores for client B.A.
The gray areas at the top of each bar represent the scores during the initial assessment, the colored areas represent the most recent scores. Clearly, there was a perceived decrease in symptoms, which were most notable in “easily distracted,” “filtering,” “hypervigilance,” “reading comprehension,” and “worry.” Most of these improvements appear directly related to the goals and concerns identified in the intake process. It is unclear why there would be such improvements in reading comprehension. It is possible that improvements in attention resulted in improved reading comprehension. It is also possible that any brain changes occurring as a result of the training had a more generalized impact on brain health and functioning, influencing concerns not directly related to the training itself.
While combining neurofeedback with meditation is not new, advances in our understanding of the neurological mechanisms of meditation have led to a more refined approach. Clinicians and researchers are now able to identify different meditation styles based not only on the way attention and intention are directed, but on brainwave patterns and brain regions involved. This has led to the ability to personalize the process, helping meditators choose a meditation style that is most likely to address their goals and needs. Indeed, researchers are now beginning to show that specific neuromeditation approaches can be used to improve cognitive functioning [41], and psychological concerns including anxiety, depression, and PTSD [5]. When this process is used in conjunction with meditation coaching, it is possible to use neuromeditation as a treatment modality that is individualized, and trauma informed. As such, neuromeditation promises to help define and refine meditation for the 21st century.
The author is the Director of the neuromeditation Institute.
Special thanks to Ray Jackson for her assistance in manuscript preparation, B.A. for sharing her story, and Andrew Tang for development of the neuromeditation Report Writer.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1225",title:"Optical Physics",slug:"optics-and-lasers-optical-physics",parent:{title:"Optics and Lasers",slug:"optics-and-lasers"},numberOfBooks:5,numberOfAuthorsAndEditors:92,numberOfWosCitations:47,numberOfCrossrefCitations:36,numberOfDimensionsCitations:55,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"optics-and-lasers-optical-physics",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8350",title:"Fiber Optic Sensing",subtitle:"Principle, Measurement and Applications",isOpenForSubmission:!1,hash:"d35774b28952d3c4c4643b58dec25549",slug:"fiber-optic-sensing-principle-measurement-and-applications",bookSignature:"Shien-Kuei Liaw",coverURL:"https://cdn.intechopen.com/books/images_new/8350.jpg",editedByType:"Edited by",editors:[{id:"206109",title:"Dr.",name:"Shien-Kuei",middleName:null,surname:"Liaw",slug:"shien-kuei-liaw",fullName:"Shien-Kuei Liaw"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7582",title:"Nonlinear Optics",subtitle:"Novel Results in Theory and Applications",isOpenForSubmission:!1,hash:"a3ad4a3553a3ec59f7992d4f6495ac07",slug:"nonlinear-optics-novel-results-in-theory-and-applications",bookSignature:"Boris I. Lembrikov",coverURL:"https://cdn.intechopen.com/books/images_new/7582.jpg",editedByType:"Edited by",editors:[{id:"2359",title:"Dr.",name:"Boris",middleName:"I.",surname:"Lembrikov",slug:"boris-lembrikov",fullName:"Boris Lembrikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6599",title:"Small Angle Scattering and Diffraction",subtitle:null,isOpenForSubmission:!1,hash:"9b1efb6a54c3fbdadd875f7bac0f6718",slug:"small-angle-scattering-and-diffraction",bookSignature:"Margareth K. K. D. Franco and Fabiano Yokaichiya",coverURL:"https://cdn.intechopen.com/books/images_new/6599.jpg",editedByType:"Edited by",editors:[{id:"186337",title:"Dr.",name:"Margareth Kazuyo Kobayashi",middleName:null,surname:"Dias Franco",slug:"margareth-kazuyo-kobayashi-dias-franco",fullName:"Margareth Kazuyo Kobayashi Dias Franco"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5348",title:"Luminescence",subtitle:"An Outlook on the Phenomena and their Applications",isOpenForSubmission:!1,hash:"d982c49fed4423a0ea7367af4f917b82",slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",bookSignature:"Jagannathan Thirumalai",coverURL:"https://cdn.intechopen.com/books/images_new/5348.jpg",editedByType:"Edited by",editors:[{id:"99242",title:"Prof.",name:"Jagannathan",middleName:null,surname:"Thirumalai",slug:"jagannathan-thirumalai",fullName:"Jagannathan Thirumalai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:5,mostCitedChapters:[{id:"52294",doi:"10.5772/65118",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2472,totalCrossrefCites:2,totalDimensionsCites:9,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52465",doi:"10.5772/65385",title:"Bioluminescent Fishes and their Eyes",slug:"bioluminescent-fishes-and-their-eyes",totalDownloads:1372,totalCrossrefCites:5,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"José Paitio, Yuichi Oba and Victor Benno Meyer-Rochow",authors:[{id:"185998",title:"Dr.",name:"Yuichi",middleName:null,surname:"Oba",slug:"yuichi-oba",fullName:"Yuichi Oba"},{id:"186175",title:"Dr.",name:"Jose Rui",middleName:null,surname:"Lima Paitio",slug:"jose-rui-lima-paitio",fullName:"Jose Rui Lima Paitio"},{id:"202747",title:"Dr.",name:"Victor B.",middleName:null,surname:"Meyer-Rochow",slug:"victor-b.-meyer-rochow",fullName:"Victor B. Meyer-Rochow"}]},{id:"52672",doi:"10.5772/65185",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2918,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]}],mostDownloadedChaptersLast30Days:[{id:"52173",title:"The Dynamics of Luminescence",slug:"the-dynamics-of-luminescence",totalDownloads:1531,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Luyanda L. Noto, Hendrik C. Swart, Bakang M. Mothudi, Pontsho S.\nMbule and Mokhotjwa S. Dhlamini",authors:[{id:"102985",title:"Dr.",name:"Mokhotswa",middleName:null,surname:"Dhlamini",slug:"mokhotswa-dhlamini",fullName:"Mokhotswa Dhlamini"}]},{id:"52294",title:"Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications",slug:"photon-upconverting-materials-advances-and-prospects-for-various-emerging-applications",totalDownloads:2476,totalCrossrefCites:2,totalDimensionsCites:10,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Manoj Kumar Mahata, Hans Christian Hofsäss and Ulrich Vetter",authors:[{id:"185891",title:"Dr.",name:"Manoj Kumar",middleName:null,surname:"Mahata",slug:"manoj-kumar-mahata",fullName:"Manoj Kumar Mahata"},{id:"194423",title:"Prof.",name:"Hans",middleName:null,surname:"Hofsäss",slug:"hans-hofsass",fullName:"Hans Hofsäss"},{id:"194424",title:"Dr.",name:"Ulrich",middleName:null,surname:"Vetter",slug:"ulrich-vetter",fullName:"Ulrich Vetter"}]},{id:"52672",title:"Luminescence in Rare Earth Ion‐Doped Oxide Compounds",slug:"luminescence-in-rare-earth-ion-doped-oxide-compounds",totalDownloads:2922,totalCrossrefCites:4,totalDimensionsCites:7,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Carlos Ruvalcaba Cornejo",authors:[{id:"186306",title:"Dr.",name:"Carlos",middleName:null,surname:"Ruvalcaba",slug:"carlos-ruvalcaba",fullName:"Carlos Ruvalcaba"}]},{id:"65854",title:"The State-of-the-Art of Brillouin Distributed Fiber Sensing",slug:"the-state-of-the-art-of-brillouin-distributed-fiber-sensing",totalDownloads:793,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"fiber-optic-sensing-principle-measurement-and-applications",title:"Fiber Optic Sensing",fullTitle:"Fiber Optic Sensing - Principle, Measurement and Applications"},signatures:"Cheng Feng, Jaffar Emad Kadum and Thomas Schneider",authors:[{id:"280943",title:"M.Sc.",name:"Cheng",middleName:null,surname:"Feng",slug:"cheng-feng",fullName:"Cheng Feng"},{id:"290271",title:"Mr.",name:"Jaffar",middleName:null,surname:"Kadum",slug:"jaffar-kadum",fullName:"Jaffar Kadum"},{id:"290272",title:"Prof.",name:"Thomas",middleName:null,surname:"Schneider",slug:"thomas-schneider",fullName:"Thomas Schneider"}]},{id:"64727",title:"Nonlinear Schrödinger Equation",slug:"nonlinear-schr-dinger-equation",totalDownloads:822,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-novel-results-in-theory-and-applications",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - Novel Results in Theory and Applications"},signatures:"Jing Huang",authors:[{id:"198550",title:"Ph.D.",name:"Jing",middleName:null,surname:"Huang",slug:"jing-huang",fullName:"Jing Huang"}]},{id:"52568",title:"Trap Level Measurements in Wide Band Gap Materials by Thermoluminescence",slug:"trap-level-measurements-in-wide-band-gap-materials-by-thermoluminescence",totalDownloads:1546,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Pooneh Saadatkia, Chris Varney and Farida Selim",authors:[{id:"185781",title:"Prof.",name:"Farida",middleName:null,surname:"Selim",slug:"farida-selim",fullName:"Farida Selim"},{id:"186734",title:"Ms.",name:"Pooneh",middleName:null,surname:"Saadatkia",slug:"pooneh-saadatkia",fullName:"Pooneh Saadatkia"},{id:"186735",title:"Dr.",name:"Chris",middleName:null,surname:"Varney",slug:"chris-varney",fullName:"Chris Varney"}]},{id:"66415",title:"Magnetic Solitons in Optical Lattice",slug:"magnetic-solitons-in-optical-lattice",totalDownloads:227,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"nonlinear-optics-from-solitons-to-similaritons",title:"Nonlinear Optics",fullTitle:"Nonlinear Optics - From Solitons to Similaritons"},signatures:"Xing-Dong Zhao",authors:[{id:"283277",title:"Dr.",name:"Zhao",middleName:null,surname:"Xingdong",slug:"zhao-xingdong",fullName:"Zhao Xingdong"}]},{id:"52708",title:"Bioluminescence of the Black Sea Ctenophores-Aliens as an Index of their Physiological State",slug:"bioluminescence-of-the-black-sea-ctenophores-aliens-as-an-index-of-their-physiological-state",totalDownloads:1126,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Tokarev Yuriy Nikolaevich and Mashukova Olga Vladimirovna",authors:[{id:"186292",title:"Dr.",name:"Yuriy",middleName:null,surname:"Tokarev",slug:"yuriy-tokarev",fullName:"Yuriy Tokarev"},{id:"186293",title:"Dr.",name:"Olga",middleName:null,surname:"Mashukova",slug:"olga-mashukova",fullName:"Olga Mashukova"}]},{id:"52133",title:"Excitation‐Intensity (EI) Effect on Photoluminescence of ZnO Materials with Various Morphologies",slug:"excitation-intensity-ei-effect-on-photoluminescence-of-zno-materials-with-various-morphologies",totalDownloads:1427,totalCrossrefCites:4,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Prasada Rao Talakonda",authors:[{id:"185838",title:"Dr.",name:"Prasada Rao",middleName:null,surname:"Talakonda",slug:"prasada-rao-talakonda",fullName:"Prasada Rao Talakonda"}]},{id:"52293",title:"Luminescent Glass for Lasers and Solar Concentrators",slug:"luminescent-glass-for-lasers-and-solar-concentrators",totalDownloads:1537,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"luminescence-an-outlook-on-the-phenomena-and-their-applications",title:"Luminescence",fullTitle:"Luminescence - An Outlook on the Phenomena and their Applications"},signatures:"Meruva Seshadri, Virgilio de Carvalho dos Anjos and Maria Jose\nValenzuela Bell",authors:[{id:"185581",title:"Dr.",name:"Seshadri",middleName:null,surname:"Meruva",slug:"seshadri-meruva",fullName:"Seshadri Meruva"},{id:"193648",title:"Prof.",name:"Anjos",middleName:null,surname:"V",slug:"anjos-v",fullName:"Anjos V"},{id:"193649",title:"Prof.",name:"Bell",middleName:null,surname:"M.J.V",slug:"bell-m.j.v",fullName:"Bell M.J.V"}]}],onlineFirstChaptersFilter:{topicSlug:"optics-and-lasers-optical-physics",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/288350/samira-el-arabi",hash:"",query:{},params:{id:"288350",slug:"samira-el-arabi"},fullPath:"/profiles/288350/samira-el-arabi",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()