Materials in industry: Types, main properties and uses.
\r\n\t
",isbn:"978-1-83969-558-2",printIsbn:"978-1-83969-557-5",pdfIsbn:"978-1-83969-559-9",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"97b6de623f15598880112f6bafedc3e1",bookSignature:"Dr. Robert M.X. Wu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/11916.jpg",keywords:"Business Models, E-commerce Marketing Strategy, E-commerce Business Models, Digital Transformation, Business Intelligence, E-business Applications, Research, Information System Management, Marketing Management, Electronic Commerce, Internet Marketing, Information Systems",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"April 26th 2022",dateEndSecondStepPublish:"June 30th 2022",dateEndThirdStepPublish:"August 29th 2022",dateEndFourthStepPublish:"November 17th 2022",dateEndFifthStepPublish:"January 16th 2023",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"7 hours",secondStepPassed:!0,areRegistrationsClosed:!1,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:'Dr. Wu holds a Ph.D. in e-Commerce, lectures at the School of Engineering and Technology in Australia, and is a Distinguished Professor at Shanxi Normal University, China. In 2011, Dr. Wu was recognized as a ‘Top 100 Outstanding Academic Leader for China’s Informatics’ by the China Informatics Society. He was awarded "Outstanding Contribution in Reviewing" by Q1 Journals such as Electronic Commerce Research and Applications (Elsevier).',coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190913",title:"Dr.",name:"Robert M.X.",middleName:null,surname:"Wu",slug:"robert-m.x.-wu",fullName:"Robert M.X. Wu",profilePictureURL:"https://mts.intechopen.com/storage/users/190913/images/system/190913.jpg",biography:"Robert M.X. Wu has a diploma in Computer Science, a bachelor’s degree in Economics, and master’s and doctorate degrees in e-Commerce. He is currently lecturing e-commerce / Information Systems at Central Queensland University Australia (CQU). He has led more than ten industry-based research projects since 2012 and contributes to reviewing five A-level Australian Business Deans Council (ABDC) journals and Q1 journals.\r\nIn July 2011, Dr. Wu was recognized as a ‘Top 100 Outstanding Academic Leader for China’s Informatics’ by the China Informatics Society. In 2017 he was appointed Distinguished Professor at Shanxi Normal University, China. He was also awarded ‘Outstanding Contribution in Reviewing’ in 2016 and 2018 by the Electronic Commerce Research and Applications journal (Elsevier) and ‘Student Voice Commendation – EDUCATORS of THE YEAR 2020’ for Emerging Technologies in E-Business, CQU.",institutionString:"Central Queensland University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Central Queensland University",institutionURL:null,country:{name:"Australia"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"9",title:"Computer and Information Science",slug:"computer-and-information-science"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"440204",firstName:"Ana",lastName:"Cink",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/440204/images/20006_n.jpg",email:"ana.c@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",isOpenForSubmission:!1,hash:null,slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3828",title:"Application of Nanotechnology in Drug Delivery",subtitle:null,isOpenForSubmission:!1,hash:"51a27e7adbfafcfedb6e9683f209cba4",slug:"application-of-nanotechnology-in-drug-delivery",bookSignature:"Ali Demir Sezer",coverURL:"https://cdn.intechopen.com/books/images_new/3828.jpg",editedByType:"Edited by",editors:[{id:"62389",title:"PhD.",name:"Ali Demir",surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3569",title:"Biodegradation",subtitle:"Life of Science",isOpenForSubmission:!1,hash:"bb737eb528a53e5106c7e218d5f12ec6",slug:"biodegradation-life-of-science",bookSignature:"Rolando Chamy and Francisca Rosenkranz",coverURL:"https://cdn.intechopen.com/books/images_new/3569.jpg",editedByType:"Edited by",editors:[{id:"165784",title:"Dr.",name:"Rolando",surname:"Chamy",slug:"rolando-chamy",fullName:"Rolando Chamy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"41213",title:"Corrosion Control in Industry",doi:"10.5772/51987",slug:"corrosion-control-in-industry",body:'The economic development of any region, state or country, depends not only on its natural resources and productive activities, but also on the infrastructure that account for the exploitation, processing and marketing of goods. Irrigation systems, roads, bridges, airports, maritime, land and air transport, school buildings, offices and housing, industrial installations are affected by corrosion and therefore susceptible to deterioration and degradation processes.
Corrosion is a worldwide crucial problem that strongly affects natural and industrial environments. Today, it is generally accepted that corrosion and pollution are interrelated harmful processes since many pollutants accelerate corrosion and corrosion products such as rust, also pollute water bodies. Both are pernicious processes that impair the quality of the environment, the efficiency of the industry and the durability of the infrastructure assets. Therefore, it is essential to develop and apply corrosion engineering control methods and techniques.
Other critical problems, that impact on infrastructure and industry are climate change, global warming and greenhouse emissions, all interrelated phenomena.
This chapter presents important aspects of corrosion in industrial infrastructure, its causes, impacts, control, protection and prevention methods.
Metallic materials play a key role in the development of a country and its sustained growth in the context of the global economy. Table 1 shows a classification and the properties of different types of materials used in the industry. During the course of the metal production it undergoes various types of processes: mining of minerals, manufacturing and application and generation of gases, liquids or solids that are released into the environment. In the industrial development, production and use of materials in general, economic cycles are due to take effect that influence the environment (Raichev et al., 2010). The selection of a predominant group of materials depends on the particular industries; they determine to a greater or lesser extent the pattern of consumption of a given product, inducing the market to adapt itself to this new reality. The materials industry follows two general strategies: research the materials and the available technology recommended for their. Recycled materials typically require less capital and energy consumption, but need more manpower, for primary processing. Also, the costs of pollution control are lower than those required for primary processing of minerals. Recycling becomes more intense, as economies tend to be more sophisticated, since viable quantities of recycled material must be available for reuse (Garcia, R., et al, 2012, Lopez, G. 2011, Schorr, M., 2010).
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Metals and alloys (carbon and stainless steels, non ferrous alloys) | \n\t\t\tMechanical resistance hardness | \n\t\t\tCars, aircraft, tanks, infrastructure reinforcement. | \n\t\t
Plastics (Synthetic polymers, rubbers) | \n\t\t\tLow density and corrosion resistance | \n\t\t\tProcess components, tubes, vessels, coatings, paints. | \n\t\t
Ceramics (Metallic carbides, silica, glass, alumina) | \n\t\t\tHigh hardness, high temperature and corrosion resistance | \n\t\t\tCutting tools, motor components, refractory bricks, ovens, etc. | \n\t\t
Composites (glass and carbon fibers reinforced plastics, plastic matrixes reinforced with metallic particles) | \n\t\t\tLight weight, high strength and hardness. | \n\t\t\tCar bodies, aircraft components, vessels, construction. | \n\t\t
Materials in industry: Types, main properties and uses.
In the production of a material waste is generated: for example, parts of material that was left aside, through the production steps. There are called effluent, which consist of waste that comes from the processes linked to the technology involved in each step of production, although not necessarily with the main material. Industrial processes for the recovery of ore from the mine to produce a metal, are related to technological development and therefore varies from one country to another, including regulatory laws, financial aspects etc.. Therefore, the environmental impacts vary widely. A low grade or poor quality of the ore, with low metal content, increase the cost of recovery, requiring large amounts of mineral raw material and energy invested for the recovery of small amounts of metal. Also important is the feasibility of the mineral that can be worked out e.g., the cost of physical removal of rock, accessibility to the mines, thickness and regularity of the ore zone, and its hardness. Figure 1, shows the material cycle, which involves processes from raw material, extraction from natural sources, processing and conversion into industrial materials, their processing and application, the deterioration rate effects, its mechanical properties, environmental behavior, corrosion, disposal and possible recovery of some of these through the use of recycling methods.
There are many examples of recovery of metals, which could help to describe step by step the various interactions with the environment itself. A mineral submitted to a production process will impact the environment, during four steps: extraction, processing, fabrication and manufacturing, of goods as seen in the cycle of materials. (Figure 1)
Materials production and use cycle.
In the mineral extraction step, the effluents of N, C, S, NOx, SOx and COx, from machinery and equipment, operation process water, particulate matter and ground movement in landfills.
The processing stage, chemical operations or extractive metallurgy for converting the concentrate into metal apply selected technologies. The effluents are gases such as SO2, NO2 and CO2, water contaminated with heavy metals, and hazard sediments.
In the manufacturing step the material undergoes operations that transform it into rods, bars, sheets; losses are scrap metal, such as cuts, burrs, mill scale, which recycled with no net loss of metal. In the manufacturing stage the metal is formed by stamping, machining and forging.
Focus on good operations management involves control of air emissions, water management and treatment, solid waste disposal and good land use, will greatly help to maintain a good balance with the environment. It is also necessary to analyze the production area to identify what improvements or measures should be implemented. The role of hydrometalurgist is particularly important and so he is responsible for the design of environmentally friendly processes in each of his steps, to promote sustainable production.
In addition to the common processes of deterioration of materials by chemical reactions and mechanical fracture, there are others who are concerned with the participation of various types of microorganisms that adhere in colonies or develop on their surfaces.
Biocorrosion and biodeterioration of metallic materials and nonmetallic materials are two important processes that cause serious problems to the infrastructure of various industrial systems. Generally, microorganisms do not deteriorate or corrode metals directly, but modify the conditions of interface material / environment and surroundings, favoring the degradation of these materials in such a way that induce or influence the development process.
Biofouling is a common term that indicates the presence of microbiological growth on the surfaces of structures built of different materials favoring the formation of biofilms with the colonies of various types of microorganisms.
In the case of metal, biocorrosion occurs due to corrosion electrochemical processes and biological agents due to the action of microorganisms and / or bacteria present in the system. The knowledge of these biological processes and their effects is necessary in order to establish preventive measures and control measures in industrial systems.
An industrial plant containing several biocorrosion environments is a potential risk:
In a heat exchangers system, usually dust accumulates biological waste; biocorrosion could occur, leading to corrosion film formation on walls surface. Therefore, it will be energy loss by increasing the resistance to fluid flow and heat transfer. Loss by evaporation of water favors the increase of the concentration of nutrients, the residence time, the water temperature and the surface / volume ratio, which leads to higher rate of microbial growth (Stoytcheva et al., 2010, Carrillo M. et al., 2010).
Until the early 80\'s of the twentieth century, we used mixtures of anodic and cathodic inhibitors, such as chromium, zinc and phosphates, to lessen the effects of corrosion in water systems. In some cases we added a polymer, as is still done to date, to avoid or eliminate the problems of fouling on the metal walls. On the other hand, to prevent microbiological growth, we added biocides such as chlorine and quaternary ammonium compounds under acidic conditions.
In the early 90\'s, the strategies for industrial water treatment changed because of pressure from laws inforcing for the preservation of the environment. Chromates and acid pH values are replaced by the use of organic phosphonates as corrosion inhibitors, while for the control of fouling polycarboxylate type polymers are used. However, this change brought about an increase in the amount of suspended solids, a greater number and variety of microorganisms and therefore a greater amount of inorganic deposits on the heat exchangers walls.
The metal nature has an effect on the distribution and development of microbial films on its surface. These films influence on the wear and corrosion of the metal substrate. The lack of homogeneity in the biofilm is a precursor of differential aeration processes with formation of differential cell concentration, for example, stainless steels (SS) and nickel-copper (Ni-Cu) alloys in seawater. The oxides passive films or hydrated hydroxides (corrosion products) are a good place for the establishment and growth of bacteria, especially when these products are at a physiological pH values (pH ≈ 7.4)
Carbon Steel (CS)
CS are very active metals in aggressive media, such as seawater. In this case, the action of microorganisms involves the dissolution of films of corrosion products, by processes of oxidation and reduction. This creates new metal active areas, exposed to the aggressive medium and suffers corrosion processes. In the case of sulfate-reducing bacteria (SRB), the species generated by their metabolism (sulfides) are corrosive to the metal. Figure 2 shows the final state pitting outside a CS pipe, which was affected by microbial growth inside, prompting a process of microbial corrosion with not uniform localized attack.
Stainless steel
The presence of chromium and molybdenum as alloying elements, enable passive behavior of stainless steels in different environments. However, the passive surface of these SS provides an ideal location for microbial adhesion and therefore are susceptible to corrosion pitting, crevice corrosion under stress or in solutions containing chlorides, as sea water.
External pitting caused by biocorrosion on the internal surface of a carbon steel pipe in a fire extinguisher system.
In marine environments, the generation of peroxides during bacterial metabolism causes an ennoblement of the pitting potential of SS, thus promoting corrosion. Obviously, not all SS have the same behavior, but in general they tend to deteriorated in the presence of colonies of microorganisms.
Copper and nickel alloys
Alloys of Cu with Zn, Sn and Al, brasses, bronzes, aluminum bronzes; also the nickel alloys: Monel, Hastelloy, nickel superalloys: Ni-Mo, Ni-Cr-Mo, Ni-Cr-Fe- Mo; the traditional nickel alloys: Ni-Cr-Fe, Ni-Fe-Cr, Fe-Ni-Cr-Mo), and the Cu-ni alloys CuNi\\70/30, CuNi\\90/10, have shown great corrosion resistance in different environments, so they have found a wide use in different industries and environments. However, despite these skills, there are reports that these alloys are colonized by bacteria after several months of exposure in seawater (Acuña, N. et al., 2004).
Aluminum and its alloys
Al is an active metal which is passivated rapidly in some neutral and acid media, thus offering a good resistance to corrosion. Al alloys with copper, magnesium and zinc, are widely used in the aviation industry. However, there have been cases of biocorrosion on fuel tanks of jet aircraft made of Al alloys by microbial contaminants in turbo combustibles. The presence of water (moisture), even in minimal amounts, allows growth of microorganisms (typically fungi), when these are able to utilize hydrocarbons as a carbon source.
Titanium
Ti is considered as the most resistant metal to biocorrosion, according to the results of tests carried in different conditions, due to its passive behavior that is reinforced in the presence of oxidizing agents. This is the reason why Ti is the material of choice, for example, for the manufacture of tubes in cooling systems that use seawater.
Nonmetallic materials
Non-metallic materials such as fiberglass reinforced polyester (FGRP), concrete and wood, are also affected by biodeterioration processes in the presence of microorganisms
In the case of FGRP, bacteria and algae are able to use the polyester matrix as a carbon source, consuming and considerably reducing the mechanical strength of composite material, ultimately causing its failure. This is easily observable in screens of this material in cooling towers or tanks containing fresh water or salt water. Wood suffers biodeterioration by the presence of fungi in moist environments that promote the delignification of this material (Valdez B., et al., 1996, 1999, 2008).
The inevitable presence of microorganisms in the feed water causes a sequence of biofouling, biocorrosion and biodeterioration of the materials component of the structures. This sequence depends on the degree of microbial contamination and the system operating characteristics.
The most common methods of controlling these problems involve the application of continuous or metered biocides such as chlorine. Currently, we use substances more compatible with the environment, since the use of chlorine is limited to certain concentrations. Such is the case of ozone, which is also ascribed with passivating effects on certain metals and alloys commonly applied in industry, and also in antifouling action.
In order to tackle a biodeterioration problem it is required a prior analysis of the problem, to know when conditions are suitable for the development of this process. In industrial systems we need to know some parameters: temperature, pH, nutrients; carbon, phosphorus, nitrogen, sulfate ion levels and flow rates. The places where we find biodeterioration are: biofouling deposits, under any deposit, zones of localized metal corrosion. to check their presence it is necessary to utilize sampling techniques, isolation and identification of microorganisms. It is interesting to note that there are commercial devices for in situ measurements that are practical and useful for the plant engineer.
Corrosion of device components, manufactured by the electronics industry, is a problem that has occurred during a long time. Often, especially corrosion of one or more of the metallic elements of an electronic component is the primary cause of failure in various electronic equipments. The high density of components required to reduce the size of electronic equipment, also for a better signal processing, leads to the generation of enclosed corrosion between thin metal sections. Furthermore, when electronic devices are in more severe environments such as tropical, subtropical, contaminated deserts, etc., they have high failure rates. Problems, due to the aggressiveness of the medium in electronic equipment for military use, have also occurred in aircraft and submarine guidance systems. Another common problem is corrosion damage suffered by components music players, when exposed to humid environments contaminated with chlorides, for example, during transport by ship, from the manufacture location to the consumer place. Thin layers of corrosion products on the surface of the metal component change their electrical characteristics: resistance, capacity and lead to partial or total failure of the electronic system. There are reported cases where small amounts of moisture have caused corrosion in tablets with printed circuits, nichrome resistors, fittings, electrical connectors and a wide range of components, and micro-electronic components, which have been coated with metallic films (Valdez B. et al., 2006, G. Lopez et. al., 2007)
Corrosion of metal components in the electronics industry may occur at different stages: during manufacture, storage, shipping and service. The main factors in the onset of corrosion and subsequent development are moisture and corrosive pollutants, such as chlorides, fluorides, sulfides and nitrogen compounds, organic solvent vapors, emanating from the resins used as label, or coatings formed during the curing process and packaging of microcircuits.
The sources providing aggressive pollutants are diverse, from flux residues used for welding processes, waste and vapors from electrolytic baths, arising volatile organic adhesives, plastics and acidification of their environment. Assays in artificial atmosphere, which simulates an indoor environment of an electronic plant have shown that the surface of the silver undergoes browning or tarnishing and the formation of dendrite whiskers due to corrosion (Figure 3).
The elemental chemical analysis of the surface (EDX - Scattered Electron Spectroscopy and XRD - X-rays) shows that the corrosion product formed on the silver surface is silver sulfide (Ag2S), due to the action of pollutant gases such as SO2 and H2S present in a humid environment (Figure 4). Moreover, the micrograph of the silver surface (SEM) shows a dendritic growth of corrosion products, characteristic for silver components.
The design of electronics equipment requires a great variety of different metals, due to their different physical and electrical features. Metals and alloys used in the electronics industry are:
Gold (Au) coating and / or foil in electrical connectors, printed circuits, hybrid and miniature circuits.;
Silver (Ag) for protective coating in contact relays, cables, EMI gaskets, etc..;
Magnesium (Mg) alloys for radar antenna dishes and light structures, chassis brackets, etc..;
Iron (Fe), steel and ferroalloys for guide components, magnetic shielding, magnetic coatings memory disks, processors, certain structures, etc..;
Aluminum (Al) alloys for armor equipment, chassis, mounting frames, brackets, trusses, etc..;
Copper and its alloys for cables, tablets printed circuit terminals, nuts and bolts, RF packaging, etc..;
Cadmium (Cd) for sacrificial protective coating on iron and safe electrical connectors;
Nickel (Ni) coating for layers such as barrier between copper and gold electrical contacts, corrosion protection, electromagnetic interference applications and compatibility of dissimilar material joints;
Tin (Sn) coating for corrosion protection of welding; for compatibility between dissimilar metals, electrical connectors, RF shielding, filters, automatic switching mechanisms;
Welding and weld coatings for binding, weldability, and corrosion protection.
Silver sulfide whiskers corrosion products on silver exposed in an electronics plant atmosphere.
Many of these metals are in contact with each other, so that in the presence of moisture, galvanic corrosion / bimetallic corrosion occurs. When using similar metals, due to design the following requirements must be taken into account.
Designing the contact of different metals such that the area of the more noble cathodic metal should be appreciably smaller than the area of the more active anodic metal. The area of the cathode can be decreased by applying paint or coating.
Coating the contact area of a metal with a compatible metal.
Interpose between dissimilar metals in a metal compatible packaging.
Sealing interfaces to prevent ingress of moisture.
Set the electronic device in a hermetically sealed arrangement.
Other corrosion problems can occur due to the characteristics of electronic components such as electromagnetic interference, electromagnetic pulse, flux residues, finishes and materials component tips, organic products that are used for various purposes and emitting gases during curing, whiskers, embrittlement inter-metallic electrical contacts.
Metal components may corrode during manufacture and storage prior to assembly, needing protection against corrosion. In plants and warehouses, air conditioning systems must operate efficiently, removing moisture and suspended particulate matter. Filters and traps should be cleaned and replaced regularly. For closed containers, we recommend the installation of dryers with visual indicators, and the use of volatile vapor phase corrosion inhibitors. In the case of sealed black boxes, the temperature inside these drops should never be below the dew point (Veleva L. et al., 2008, Vargas L. et al., 2009, Lopez G. et al., 2010).
Scanning Electron Microscopy and EDS analysis of silver corrosion products at indoor conditions of an electronics plant contaminated with H2S.
Abundant water sources are essential to a country\'s industrial development. Large quantities of this precious liquid are required for cooling products, machinery and equipment, to feed boilers, meet health needs and provide drinking water to humans. Estimates of water consumption for each country are different and depend on the degree of industrial development thereof. In first world countries like the United States, these intakes are as high as several hundred billion liters per day. These countries have implemented water reuse systems with certain efficiency due to the application of appropriate treatment for purification. Water, a natural electrolyte is an aggressive environment for many metals / alloys, so that they may suffer from corrosion, whose nature is electrochemical.
As raw water or fresh water we mean natural water from direct sources such as rivers, lakes, wells or springs. Water has several unique properties and one of these is its ability to dissolve to some degree the substances found in the earth\'s crust and atmosphere allowing the water to contain a certain amount of impurities, which causes problems of scale deposition on the metal surface, e.g. in pipelines, boiler tubes and all kinds of surfaces that are in contact with water (Valdez, B. et al., 1999, 2010).
Oxygen is the main gas dissolved in water, it is also responsible for the costly replacement of piping and equipment due to its corrosive attack on metals in contact with dissolved oxygen (DO). The origin of all sources of water is the moisture that has evaporated from the land masses and oceans, then precipitated from the atmosphere. Depending on weather conditions, water may fall as rain, snow, dew, or hail. Falling water comes into contact with gases and particulate matter in the form of dust, smoke and industrial fumes and volcanic emissions present in the atmosphere.
The concentrations of several substances in water in dissolved, colloidal or suspended form are low but vary considerably. A water hardness value greater than 400 parts per million (ppm) of calcium carbonate, for example, is sometimes tolerated in the public supply, but 1 ppm of dissolved iron should be unacceptable. In treated water for high pressure boiler or where radiation effects are important, as in nuclear reactors, impurities are measured in very small amounts such as parts per billion (ppb).
In the case of drinking water the main concern are detailed physicochemical analysis, to find contamination, and biological assays to detect bacterial load. For industrial water supplies it is of interest the analysis of minerals in particular salts. The main constituents of water are classified as follows:
Dissolved gases: oxygen, nitrogen, carbon dioxide, ammonia and sulfide gases;
Minerals: calcium, sodium (chloride, sulfate, nitrate, bicarbonate, etc.), Salts of heavy metals and silica;
Organic matter: plant and animal matter, oil, agricultural waste, household and synthetic detergents;
Microbiological organisms: include various types of algae, slime forming bacteria and fungi.
The pH of natural waters typically lies within the range of 4.5 to 8.5; at higher pH values, there is the possibility that the corrosion of steel can be suppressed by the metal passivation. For example, Cu is greatly affected by the pH value in acidic water and undergoes a slight corrosion in water releasing small amounts of Cu in the form of ions, so that it’s corroded surface because green stained clothing and sanitary ware. Moreover, deposition of the Cu ions on surfaces of aluminum or galvanized zinc corrosion cells leads to new bimetallic contact, which cause severe corrosion in metals.
The mineral water saturation produces a greater possibility of fouling on the metal walls, due to the ease with which the insoluble salts (carbonates) can be precipitated. To control this effect it is necessary to know and use the Saturation Indices. Water saturation refers to the solubility product of a compound and is defined as the ratio of the ion activity and the solubility product. For example, water is saturated with calcium carbonate when it is no more possible to dissolve the salt in water and then it begins to precipitate as scale. In fact, it is called supersaturated when carbonate precipitation occurs on standing the solution. The most common parameters that must be known to characterize the water corrosivity, be it raw or treated, for operation in an industrial facility are shown in Table 2.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Hardness | \n\t\t\tSource of scaling that promotes corrosion | \n\t\t
Alkalinity | \n\t\t\tProduces foam and motion of solids | \n\t\t
pH | \n\t\t\tCorrosion depends on its value | \n\t\t
Sulphates | \n\t\t\tProduces scaling | \n\t\t
Chloride | \n\t\t\tIncreases water corrosivity | \n\t\t
Silica | \n\t\t\tGenerates scaling in hot water. Condensers and steam turbines | \n\t\t
Total Dissolved Solids (TDS) | \n\t\t\tIncreases electrical conductivity and corrosivity | \n\t\t
Temperature | \n\t\t\tElevated temperatures increases corrosion rates | \n\t\t
Water properties and corrosivity.
There six formulas to calculate Saturation Indices and embedding: Langelier index (LSI), Ryznar stability index, Puckorious index of scaling, Larson-Shold index, index of Stiff- Davis and Oddo-Tomson index. There is some controversy and concern for the correlation of these indices with the corrosivity of the waters, particularly regarding the Langelier (LSI).
A LSI saturation index with value "0" indicates that the water is balanced and will not be fouling, while the positive value indicates that the water may be fouling (Table 3). The negative value of the LSI suggests that water is corrosive and can damage the metal installation, increasing the content of metallic ions in water. While some sectors of the water management industry uses the values of the indices as a measure of the corrosivity of the water. Corrosion specialists are alerted and are very wary of issuing an opinion, or extrapolate the use of indices to measure the corrosivity of the environment.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
-5.0 | \n\t\t\tSevere corrosion | \n\t\t
-4.0 to -2.0 | \n\t\t\tModerate corrosion | \n\t\t
-1.0 to -0.5 | \n\t\t\tLight corrosion | \n\t\t
0.0 | \n\t\t\tNo corrosion / no scale (balance) | \n\t\t
0.5 to 2.0 | \n\t\t\tLight incrustation | \n\t\t
3.0 | \n\t\t\tModerate incrustation | \n\t\t
4.0 to 5.0 | \n\t\t\tSevere incrustation | \n\t\t
Langelier index for water corrosivity and scaling.
Sometimes the raw water is contaminated with chemicals such as fertilizers and other chemicals coming from agricultural areas (Figure 5).
In these cases, ionic agents such as nitrites, nitrates, etc., in water causes an accelerated process of localized corrosion to many metals and the consequent failure of equipment.
Corrosion on the gates dam on the Colorado River, Baja California, Mexico
Raw water contaminants can be quite varied, including both heavy metals and organic chemicals, referred to as toxic pollutants. Among the heavy metals may be mentioned arsenic (As), mercury (Hg), cadmium (Cd), lead (Pb), zinc (Zn) and cadmium (Cd), which are sometimes at trace levels, but they tend to accumulate over time, so that priority pollutants are to be treated.
Pesticides, insecticides and plaguicides comprise a long list of compounds, for which we should be concerned: DDT (insecticide), aldrin (an insecticide), chlordane (pesticide), endosulfan (insecticide), diazinon (insecticide), among others.
Contaminants, such as polycyclic aromatic organic compounds, include what is known as volatile organic compounds such as naphthalene, anthracene and benzopyrene. There are two main sources of these pollutants: petroleum and combustion products found in municipal effluents. On the other hand, there are polychlorinated biphenyls or PCBs, which are mainly used in transformers for the electrical industry, heavy machinery and hydraulic equipment. This class of chemicals is extremely persistent in the environment and affects human health.
From the viewpoint of corrosion, these contaminants which are present even at low concentrations or trace in the raw water, favor the corrosivity the metals which are in contact with. The combination of the corrosive effects of these contaminants together with the oxidation by oxygen, minerals and other impurities, leads to consider raw water as a natural means capable of generating corrosion of metals. It is recommended at least, to carry out a process of treating raw water, to reduce significantly the hardness and remove suspended solids, which will help greatly in preventing subsequent problems of corrosion and fouling on metal surfaces, curbing economic losses and maintaining the industrial process in good operating condition.
Corrosion is a complex phenomenon that arises as a result of the interaction between water and the surface of metallic pipes or the equipment of storage and handling. The process is invariably a combination of oxidation and reduction, as already described in previous chapters. In drinking water, it should be noted that the corrosion products which are partially soluble in water in ionic form are toxic at certain concentrations, e.g. copper and lead. The existence of high concentrations of lead in water carried by copper tubing, indicate that the source of lead may be tin-lead solder at the junctions of the copper pipes. The consumption of domestic water contaminated with toxic metal ions (Pb+2, Cu+2, Zn+2, Cr+3), gives rise to acute chronic health problems. The regulations have set the following limits allowable concentration in drinking water: Cr (0.05 ppm), Cu (0.01 ppm), Pb (0.05 ppm) and Zn (5 ppm). These regulations are made in order to protect the public user and consumer of drinking water and are continuously striving for a reduction in the maximum allowable limits. Some concentrations reach zero as is the case of Pb in the United States due to the concerns Pb about poisoning of children. Still, many sources such as wells and springs are outside the control of law and toxic substances, bacteria and pathogens. Damage caused by corrosion of household plumbing may be accompanied by unpleasant aesthetic problems such as soiled clothing, unpleasant taste, stains and deposits in the toilets, floors of bathrooms, tubs and showers. To prevent corrosion of pipes, we recommend the use of PVC pipes for drinking water, replacing the metal, as a preventive measure.
Corrosion can occur anywhere on the pipes that carry drinking water, mainly at sites of contact between two dissimilar metals, thus forming a corrosion cell. In general, the metals will corrode to a greater or lesser degree in water, depending on the nature of the metal, on the ionic composition of water and its pH. Waters high in dissolved salts (water hardness), favor the formation of scale, more or less adherent, in different parts of the equipment (Figure 6). These deposits may be hard or brittle, sometimes acting as cement, creating a physical barrier between the metal and water, thereby inhibiting corrosion. Calcium carbonate (CaCO3) is the most common scale; its origin is associated with the presence of carbon dioxide gas (CO2) in water. Sometimes these deposits are filled with pasty or gelatinous hydrated iron oxides or colonies of bacteria (Valdez, B. et al., 1999, 2010).
Corrosion in potable water pipes.
Usually, groundwater CaCO3 saturated (calcareous soils), due to the presence of dissolved CO2, whose content depends on its content in the air in contact with the water and on temperature. These waters are often much higher in CO2 content, so they may dissolve substantial amounts of calcium carbonate. These waters are at pressures lower than they had in the ground, so CO2 gas lost with consequent supersaturation of carbonates. If conditions are appropriate, the excess of CaCO3 can precipitate as small agglomerates deposited in muddy or hard layers on solid surfaces, forming deposits. An increase in temperature is an important factor and also leads to supersaturation of carbonates, with the consequent possibility of fouling. To a lesser extent fouling can precipitate more soluble Mg carbonates (MgCO3) and Mn (MnCO3), and also oxides / hydroxides, dark colored and gelatinous. Except in very exceptional cases in sulfated water, it is normal to find deposits of gypsum (CaSO4•½ H2O) because their solubility is high, but decreases with increasing temperature. Hard silica scale (SiO2) may appear with oversaturated waters or appear as different silicates (SiO44-) trapped in the carbonate deposits. Generally, the silica appears trapped in other types of scale and it is not chemical precipitation.
Waters often carry considerable amounts of iron (ferrous ion, Fe+2), which may be often precipitated by oxidation upon contact with air as hydrated iron oxide (ferric, Fe+3) but sometimes can be Fe+2 form black sludge, more or less pasty or gelatinous and sometimes very large. The voluminous precipitate occupies the pores, significantly reducing the permeability of the fouling. Sometimes the Fe ions can come from corrosion of the pipe giving rise to simultaneous corrosion and scaling (Figure 6). Common bacteria of the genera Gallionella, Leptothrix Cremothrix are known as Fe bacteria, can give reddish-yellow voluminous precipitate and sticky ferric compounds from ferrous ion, which drastically reduce the permeability of the deposit, in addition to trap other insoluble particles.
The cost for impairment of domestic water systems and the impact on health, involves several consequences: premature corrosion and failure of the pipes and fittings that carry water in a house or building, a low thermal efficiency (up to 70%) of water heaters (boilers), which can cause their premature failure. High levels of metals or oxides, which usually are not properly, treated in drinking water cause red or blue-green deposits and stains in the toilets sinks. In addition to concerns about the aesthetic appearance, a corrosion process can result in the presence of toxic metals in our drinking water. For evaluating water quality and their tendency corrosive and / or fouling, LSI can be used. This analysis must be accompanied by measurements of water pH and conductivity, and corrosion tests applying international standards.
Corrosion control is complex and requires a basic knowledge of corrosion of the system and water chemistry. Systems can be installed for water pretreatment, using non-conductive connections, reducing the temperature of hot Cu water pipes employed and copper installing PVC or other plastic materials. It is important to note that the corrosiveness of water can be increased by the use of water softeners, aeration mechanisms, increasing the temperature of hot water, water chlorination, and attachment of various metals in the water conduction system. A proper balance between the treatment systems and water quality, can be obtained with acceptable levels of corrosivity. Thus, the lifetime of the materials that make the water system in buildings, public networks, homes and other systems will be longer.
A large part of steel structures: aqueducts, pipelines, oil pipelines, communications wire ropes, fuel storage tanks, water pipes, containers of toxic waste, are buried, in aggressive soils. Large amounts of steel reinforced concrete structures are also buried in various soil types. In the presence of soil moisture it is possible to have humid layer on the metal surface, whose aggressiveness depends on soil type and degree of pollution (decaying organic matter, bacterial flora, etc.). Thus, the soil can form on the metal surface an electrolyte complex with varying degrees of aggressiveness, a necessary element for the development of an underground electrochemical corrosion. The corrosion process of buried structures is extremely variable and can occur in a very fast, but insignificant rate, so that pipes in the soil can have perforations, presenting localized corrosion attack or uniform.
Metal structures are buried depending on their functionality and security. Most often they traverse large tracts of land, being exposed to soils with different degrees of aggressiveness exposed to air under atmospheric conditions (Figure 7).
Valve system of a desert water aqueduct.
When pipes or tanks are damaged by corrosion, the formation of macro-and micro-cracks can lead to leaks of contained products or fluids transported, causing problems of environmental pollution, accidents and explosions, which can end in loss of life and property (Guadalajara, Jalisco, Mexico, 1992). In the case of pipes used to carry and distribute water, a leak may cause loss of this vital liquid, so necessary for the development of society in general and especially important in regions where water is scarce, so the leakage through aqueducts pipes should be avoided. An important tool needed to prevent the most serious events, is the knowledge of the specific soil and its influence on the corrosion of metal structures.
A natural soil contains various components, such as sand, clay, silt, peat and also organic matter and organisms, gas, mineral particles and moisture. The soils are usually named and classified according to the predominant size range of individual inorganic constituent particles. For example, sandy soil particles (0.02 - 2 mm) are classified as fine sand (0.02 - 0.2 mm) or thick (0.20 -2.00 mm). Silt particles (0.002 to 0.02 mm) and clay, which have an average diameter 0.002 mm, are classified as colloidal matter. A comparison of the sizes of these typical soils is done in Figure 8.
Currently exists in the U.S. and in over 50 countries worldwide, a detailed classification for soils, which includes nine classes with 47 subgroups.
The variation in the proportion of the groups of soil with different sizes, determines many of its properties. Fine-textured soils due to high clay content, have amassed particles, so they have less ability to store and transport gases such as oxygen, that any ground-open e.g. sandy soil. The mineralogy of both clay types and their properties, are closely related to the corrosivity of the soil. Silica (SiO2) is the main chemical constituent of soils type clay, loam and silt, also in the presence of Al2O3. Common species in moist soil are dissolved ions H+, Cl-, SO42-, HCO3-. The chemical composition and mineralogy of the soil determine its corrosive aggressiveness; poorly drained soils (clay, silt and loam) are the most corrosive, while soils with good drainage (gravel and sand type) are less aggressive to metals. Vertically homogeneous soils do not exist, so it is convenient to consider the non-uniformity of ground, formed of different earth layers. To understand the corrosion behavior of a buried metal is very important to have information about the soil profile (cross section of soil layers). The physicochemical and biological nature of soil, corrosive aggressiveness and dynamic interactions with the environment, distinguishes the ground like a very complex environment and different from many others. Climate changes of solar radiation, air temperature and relative humidity, amount of rainfall and soil moisture are important factors in corrosion. Wind, mechanical action of natural forces, chemical and biological factors, human manipulation can alter soil properties, which directly affects the rate of corrosion of metals buried in the ground. Conditions may vary from atmospheric corrosion, complete immersion of the metal, depending on the degree of compactness of the soil (existence of capillaries and pores) and moisture content. Thus the variation in soil composition and structure can create different corrosion environments, resulting in different behavior of the metal and oxygen concentrations at the metal / soil interface.
Size of soil particles.
Two conditions are necessary to initiate corrosion of metal in soil: water (moisture, ionic conductor) and oxygen content. After startup, a variety of variables can affect the corrosion process, mentioned above, and among them of importance are the relative acidity or alkalinity of the soil (pH), also the content and type of dissolved salts.
Mainly three types of water provide moisture to the soil: groundwater (from several meters to hundreds below the surface), gravitational (rain, snow, flood and irrigation) and capillary (detained in the pores and capillary spaces in the soil particles type clay and silt). The moisture content in soils can be determined according to the methodology of ASTM D 2216 ("Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass"), while its permeability and moisture retention can be measured the methods described in ASTM D2434 and D2980. The presence of moisture in soils with a good conductivity (presence of dissolved salts), is an indication for high ion content and possible strong corrosive attack.
The main factors that determine the corrosive aggressiveness of the soil are moisture, relative acidity (pH), ionic composition, electrical resistance, microbiological activity.
Given the electrochemical nature of corrosion of buried metals and specific soils, this can be controlled through the application of electrochemical techniques of control, such as cathodic protection. This method has been universally adopted and is appropriate to protect buried metallic structures. For an effective system of protection and cheaper maintenance, pipelines must be pre-coated, using different types of coatings, such as coal tar, epoxies, etc. This helps reduce the area of bare metal in direct contact with the ground, lowering the demand for protection during the corrosion process. The purpose of indirect inspection is to identify the locations of faulty coatings, cathodic protection and electrical Insufficient shorts (close-interval, on/off Potential surveys, electromagnetic surveys of attenuation current, alternating current voltage gradient surveys, etc..), interference current, geological surveys, and other anomalies along the pipeline.
One of the most common corrosion problems in pipes, ducts, tanks, preheaters, boilers and other metal structures, insulated heat exchange systems, is the wear and corrosion occurring on metal (steel, galvanized steel, Al, SS, etc.), below a deposit or in its immediate neighborhood. This corrosion is known as corrosion under deposit. The deposit may be formed by metal corrosion products and / or different types of coating applied for protection. For example, in the case of a calcareous deposit, formed in the walls of galvanized steel pipes which carry water with a high degree of hardness (dissolved salts), it might develop corrosion under deposit. These shells may be porous, calcareous deposit and / or partially detached from the metal surface, so that direct contact between metal, water and oxygen (the oxidizing agent in the corrosion process) allows the development of metal corrosion. For this reason the pipes could be damaged severely in these locations up to perforation, while in parts of the installation corrosion might occur at a much lower level.
There is a considerable amount of factors in the design, construction and maintenance, which can be controlled to avoid the effects of deterioration of metal by corrosion under deposit. In general, under these conditions the metal is exposed to frequent cycles of moisture, corrosivity of the aqueous medium or failure in the protective coatings (paint, metal, cement, fiberglass, etc.). Figure 9 shows a conductor tube steam in a geothermal power plant, where CS corrosion happened beneath the insulation.
Corrosion of a carbon steel pipe under insulation.
Seven factors can be controlled on the ground, to prevent this type of corrosion: design of equipment, operating temperature, selection of the insulation, protective coatings and paints, physical barriers from the elements, climate and maintenance practices of the facility. Any change in any of these factors may provide the necessary conditions for the corrosion process to take place. The management knowledge of these factors help explain the causes of the onset conditions of corrosion under deposits, and it will guide a better inspection of existing equipment and the best design.
The design of pressure vessels, tanks and pipes, generally includes accessories for support, reinforcement and connection to other equipment. Details about the installation of accessories are the responsibility of the engineers or designers, using building codes to ensure reliability of both insulated and non insulated equipment. The protective barrier against the environment surrounding the metal structure in such designs often breaks donor due to an inappropriate insulation, loss of space for the specified thickness of insulation or simply by improper handling during installation of the equipment. The consequence of a rupture or insulation failure means greater flow water ingress to the space between metal and coating hot-cold cycle, generating over time a buildup of corrosive fluid, increasing the likelihood of corrosive damage. Moreover, wet insulation will be inefficient and also cause economic losses. The solution of this factor is to meet the thickness specifications and spacing, as indicated in the code or equipment-building specifications and characteristics of the coating used.
The operating temperature is important for two reasons: a high temperature favors the water is in contact with the metal for less time, however, also provides a more corrosive environment, causes fast failures of coatings. Usually a team operating in freezing temperatures is protected against corrosion for a considerable life time. However, some peripheral devices, which are coupled to these cold spots and operating at higher temperatures, are exposed to moist, air and steam, with cycles of condensation in localized areas, which make them more vulnerable to corrosion. For most operating equipment at freezing conditions, the corrosion occurs in areas outside and below the insulation. The temperature range where this type of corrosion occurs is 60 °C to 80 °C; however, there have been failures in zones at temperatures up to 370 °C. Also, in good water-proof insulation, corrosion is likely to occur at points where small cracks or flaws are present, so that water can reach the hot metal and evaporate quickly. On the other hand, in machines where the temperature reaches extreme values, as in the case of distillation towers, it is very likely to occur severe corrosion problems.
The characteristics of the insulation, which have a greater influence on the corrosion processes deposits, are the ability to absorb water and chemical contribution to the aqueous phase. The polyurethane foam insulation is one of the most widely used; however, in cold conditions they promote corrosion due to water absorption present. The coatings of glass fiber or asbestos can be used in these conditions, always when the capacity of absorbing water do not becomes too high. Corrosion is possible under all these types of coating, such insulation. The selection of insulation requires considering a large group of advantages and disadvantages regarding the installation, operation, cost, and corrosion protection, which is not an easy task. The outside of the insulation is the first protective barrier against the elements and this makes it a critical factor, plus it is the only part of the system that can be readily inspected and repaired by a relatively inexpensive process. The durability and appearance, melting point fire protection, flame resistance and installation costs are other important factors that must be taken into account together with the permeability of the insulation. Usually the maintenance program should include repairs to the range of 2 to 5 years. Obviously the weather is important and corrosion under thermal insulation will more easily in areas where humidity is high. Sometimes conditions of microclimate can be achieved through the use of a good design team.
One of the most important elements of our daily life, which has great impact on economic activity, is represented by automotive vehicles. These vehicles are used to transport people, animals, grains, food, machinery, medicines, supplies, materials, etc. They range from compact cars to light trucks, heavy duty, large capacity and size. All operate mostly through the operation of internal combustion engines, which exploit the heat energy generated by this process and convert it in a mechanical force and provide traction to these vehicles.
The amount and type of materials used in the construction of automotive vehicles are diverse, as the component parts. They are usually constructed of carbon steel, fiberglass, aluminum, magnesium, copper, cast iron, glass, various polymers and metal alloys. Also, for aesthetic and protection against corrosion due to environmental factors, most of the body is covered with paint systems, but different metal parts are protected with metallic or inorganic coatings.
Corrosion in a car is a phenomenon with which we are in some way familiar and is perhaps for this reason that we often take precautions to avoid this deterioration problem.
A small family car, with an average weight of 1000 kg, is constructed of about 360 kg of sheet steel, forged steel 250 kg, 140 kg cast iron mainly for the engine block (now many are made of aluminum), 15 kg of copper wires, 35 kg and of plastic 50 kg of glass that usually do not deteriorate, and 60 kg for rubber tires; which wear and tear. The remaining material is for carpets, water and oil. Obviously, that is an advanced technology in the car industry, with automobiles incorporating many non-metallic materials into their structure. However, the problem of corrosion occurs at parts where the operation of the vehicle is compromised. Corrosion happens in many parts of the car (mostly invisible) it is not only undesirable for the problems it causes, but also reduces the vehicle\'s resale value and decreases the strength of the structure. To keep the car in good condition and appearance, its high price, it is necessary to pay attention to the hidden parts of the vehicle.
The main cause of corrosion of the car body is the accumulation of dust in different closed parts, which stays for a long time by absorbing moisture, so that in these areas metal corrosion proceeds, while in the clean and dry external parts it does not occur (Figure 10).
The corrosion problem that occurs in the metal car body has been a serious problem that usually arises most often in coastal environments, contaminated with chlorides and rural areas with high humidity and specific contaminants. Many countries use salt (NaCl, CaCl2 or MgCl2) to keep the roads free of ice; under these conditions these salts, in combination with the dust blown by the car, provide conditions for accelerated corrosion. Therefore, it is recommended as a preventative measure, after a visit on the coast or being on dirty roads, to wash the car with water, and also the tires and the doors, especially their lower parts. In urban environments, the corrosion problem has been reduced due to the new design and application of protective coatings, introduced by major manufacturers in the early nineties of the twentieth century. The areas most affected are fenders, metal and chrome bumpers views which are used in some luxury vehicles as well as areas where water and mud are easily accumulated e.g. auctions of funds windshield and doors (Figure 11).
In regions with high incidence of solar radiation and the presence of abrasive dust, paint vehicles deteriorate rapidly. The hot, humid weather, combined with high levels of SO2 and NOx emissions that come from burning oil, chlorides salt. In the Gulf of Arabia, the blowing sand from the nearby desert, creates a very aggressive environment; statistics reveals that one in seven cars is damaged and due to corrosion the car life is estimated to an average of 8 months, also the car corrosion resistance decreases in the following order: manufactured in Europe, USA and Japan. White paints generally have shown a significantly better corrosion protection than other colors. Initially, corrosion defects appear as a kind of dots and spots of corrosion products formed under the paint and subsequently emerge from the steel sheet, leaving a free entry for moisture and air (oxygen), accelerating the corrosion process; in these cases reddish metal corrosion products.
Corrosion on a bodywork exposed to the Gulf of Mexico tropical coast.
Corrosion on a car door and bottom of the bodywork
The cooling system of a car combustion engine consists of several components, constructed of a variety of metals: radiators are made of copper or aluminum, bronze and solder couplings with tin water pumps; motors are made of steel, cast iron or aluminum. Most modern automobiles, with iron block engine and aluminum cylinder head, require inhibitor introduced into the cooling water to prevent corrosion in the cooling system. The inhibitor is not antifreeze, although there are in the market solutions which have the combination of inhibitor-antifreeze. The important thing is to use only the inhibitor recommended in the automobile manual and not a mixture of inhibitors, since these may act in different ways and mechanisms. The circulating water flow should work fine without loss outside the system. If the system is dirty, the water should be drain and filling the system with a cleaning solution. It is not recommended to fill the system with hard water, but with soft water, introducing again the inhibitor in the correct concentration. If there exhaust at the water cooling system, every time water is added the inhibitor concentration should be maintained to prevent.
In small cars, it is common for water pumps; constructed mainly of aluminum, to fail due to corrosion, cavitation, erosion and corrosion, making it necessary to replace the pump (Valdez, B. et al., 1995). Accelerated corrosion in these cases is often due to the use of a strong alkaline solution of antifreeze. On the other hand, in heavy duty diesel trucks, the cooling system is filled with tap water or use filters with rich conditioner chromates that can cause the pistons jackets to suffer localized corrosion. After 12 or 15 months, the steel jackets are perforated and the water passes into the cavity through which the piston runs, forcing to carry out repair operations (Figure 12).
Corrosion in a carbon steel jacket on the water face in a diesel combustion engine truck.
Corrosion causes great economic losses to the transport industry, since it must stop to repair the truck and abandon to provide the service with all the consequences that this entails. Furthermore, the use of chemical conditioning is now controlled by environmental regulations, so chromates and phosphates are restricted and novel mixtures of corrosion inhibitors have been produced to control the problem of corrosion in automobile cooling systems.
Exhaust pipes made of SS (0.6 - 0.8 mm thick) have a better resistance to chemical corrosion at high temperatures, which is why we are now using SS in many popular models. This SS resists corrosion much more than conventional CS and thus their long life covers the higher price. Another alternative is to use conventional CS tube, zinc coated or aluminum (Figure 13). These exhaust pipes are less expensive than stainless steel, but less resistant to corrosion.
Corrosion on carbon steel exhaust pipes coated with aluminum.
The acidic environment which is generated on the surface of accumulators supplying the energy necessary for starting the engine, favors conducting corrosion processes in the lead terminals, where the cables are connected by bronze or steel clamps. Thus, this environment and these contact zones predispose cells to a process galvanic corrosion, which gradually deteriorates the contact wires, generating bulky corrosion products. This phenomenon is called sulfation of the contacts due to the sulfuric acid containing the battery, thus forming white sulfates on the corroded metal surface. These products introduce high resistance to current flow and cause failure to the engine ignition system, and impede the battery charge process. This problem has been eliminated in batteries that have airtight seals, or are manufactured with new technologies as well as bases covered with organic coatings that prevent corrosion.
Some years ago it was common for starters to fail, because the moisture or water penetrated into the gear area preventing it sliding motion and causing burning of the electric motor. Currently, new designs avoid contact with moisture and other foreign agents, preventing the occurrence of corrosion problems in these devices. As a preventive measure is recommended to prevent spillage of battery acid, to periodically clean the battery terminals (with a brush of wire or a special instrument), also coat them with petroleum jelly to prevent corrosion in these contact areas. A fat based composition which contains several components: alkaline salts and oxides of lithium, sodium bicarbonate and magnesium oxide are applied to the terminals and the connector. In general, in wet weather, the contacts of the accumulators have a tendency to more accelerated corrosion, thus requiring greater care to disconnect the terminals when not being used.
To keep the vehicle for a longer time without the appearance of corrosion, it always requires washing with running water and, the use of very soft brush or cloth-like material, with a special detergent (not household detergents, which are very corrosive) and finally wash the vehicle with plenty of water. The floor carpet should be maintained clean and dry. A car should not be left wet in a hot garage, since under these conditions accelerated corrosion takes place since the water does not dry and can condense on the cold parts of the vehicle. In these cases, it is best not to close the garage door or use a roof space, to protect it from rain, and not allow moisture condensation. However, if the vehicle is left unused for a long time in a closed garage, it should be protected from dust, moisture and contaminants.
Electricity is a key element in ensuring economic growth and social development of a country. Many conventional power plants in recent years are being installed in combined cycle power plants, also called cogeneration. The latter, simultaneously generate electricity and / or mechanical power and useful heat, sometimes using thermal energy sources that are lost in conventional plants.
A power station is a thermoelectric energy conversion system, starting with the chemical energy of fuel that during combustion is converted into heat energy accumulated in the steam. This thermal energy generates mechanical energy from the hot steam, which expands in a turbine, turning on electricity in the generator. In this process of low energy thermal efficiency is lost in the hot gases that escape through the chimney and the cooling steam in the condenser.
Electricity generating plants burn fossil fuels such as coal, fuel oil and natural gas. These fuels containing as minor components sulfur compounds (S), nitrogen (N), vanadium (V) and chloride (Cl-). These are corrosive chemicals attacking the metal infrastructure; and polluting the environment by becoming acid gas emissions, also affecting the health of the population.
The three central equipment of a thermoelectric plant are the boiler, which converts the water into steam, the steam turbine to whom the pressure imparts a rotary motion and the condenser that condenses the vapor released by the turbine and the condensed water is returned to the boiler as feed water. The turbine itself transmits rotary motion to the generator of electricity, which will be distributed to industrial, commercial and homes in cities.
Corrosion in steam plant equipment occurs in two parts of the boiler: on the water side and the steam side, with the fire temperature up to 700 ° C, depending on the type, size and capacity of the boiler. The boiler feedwater must be treated to eliminate the corrosive components: salts such as chlorides and sulfates dissolved oxygen (DO); silicates and carbonates, producing calcareous scale on the boiler walls, regarded as precursors for the formation of corrosion under deposits. The water is softened by eliminating salts and treated to remove oxygen; the pH is controlled by addition of alkaline phosphate to reach a pH range of 10 to 11, and inhibitors are added to the feedwater to prevent corrosion.
The flue gases and ash solid particles reach temperatures up to 1000 to 1200 °C, impinging on the outer surface of the boiler water tubes and preheater, creating an atmosphere for aggressive chemical corrosion. The damaged tubes lose its thickness generating metal corrosion products; they often are fractured, suffering a stress corrosion due to the combined effects of mechanical stress and corrosion (Figure 14). Since the tubes lose steam and pressure, the operation of the plant is interrupted and the tubes or its sections should be changed incurring severe economic losses. For example, in the United States has been concluded that the costs of electricity are more affected by corrosion than any other factor, contributing 10% of the cost of energy produced.
Stress corrosion cracking, in a combustion gases pipe of a thermoelectric station.
A study reveals that in 1991 there were more than 1250 days lost in nuclear plants operating in the United States, due to failure by corrosion, which represented an economic loss of $ 250.000 per day. Such statistics indicate that the power generation industry needs to obtain a balance between cost and methods for controlling effectively corrosion in their plants. It is sometimes advisable to add additives to the fuel, for example, magnesium oxide which prevent the deposition of the molten salts on the boiler tubes. Corrosion occurs also in the combustion air preheater, by sulphurous gases which react with condense and form sulfuric acid. Metal components of the turbine rotor: disks and blades suffer from corrosion by salts, alkalis and solid particles entrained in the vapor. In these cases, it is common to observe the phenomena of erosion-corrosion, pitting and stress corrosion fracture; their damage can be ameliorated through a strict quality control of boiler water and steam.
Efficient maintenance and corrosion control in a power plant is based on the following:
Operation according to mechanical and thermal regime, indicated by the designer and builder of the plant;
Correct treatment of fuel, water and steam;
Chemical cleaning of the surfaces in contact with water and steam, using acidic solutions containing corrosion inhibitors, passivating ammoniacal solutions and solutions;
Mechanical cleaning of surfaces covered with deposits (deposits), using alkaline solutions and water under pressure;
Perform an optimum selection of the materials of construction for the components of the plant, including those suitable as protective coatings.
The installation of online monitoring of corrosion in critical plant areas will be one of the most effective actions to control corrosion. In addition, it is recommended same use and document to use corrosion expert system software and materials databases for the analysis of the materials corrosion behavior.
Corrosion in power plants can be controlled by applying the knowledge, methods, standards and materials, based on corrosion engineering and technology.
The development of alternative energy sources represents one of the most attractive challenges for engineering. There are several types of renewable energies already in operation, such as wind, solar and geothermal. Geothermal environments can lead to aggressive environments, e.g. the geothermal field of "Cerro Prieto", located in Baja California, Mexico.
The physical and chemical properties of the vapor at "Cerro Prieto" make it an aggressive environment for almost any type of material: metal, plastic, wood, fiberglass or concrete. The typical chemical composition of a geothermal brine, is shown in Table 4. Many engineering materials are present as components of the infrastructure and field equipment, required for the steam separation, purification and posterior operations for the generation of electricity. This entire infrastructure is a costly investment and therefore, failure or stoppage of one of them, means economic losses, regardless of how vital it is to maintain constant production of much-needed electricity.
Corrosion in concrete structures used to separate steam from water and to operate steam silencers.
In the process of the geothermal fluid exploitation, corrosion of metal structures occurs from the wells drilling operation, where the drilling mud used, causes corrosion of pumping and piping equipment. Subsequently, when the wells pipes are in contact with the steam, they can also suffer from corrosion-erosion problems, where the corrosive agent is hydrogen sulfide. Steam separators and the pipes are exposed to problems of fouling and localized corrosion due to the presence of aggressive components such as H2S and chloride ions (Cl-), present in the wells fluid. These agents lead to the deterioration of reinforced concrete foundations supporting steel pipes, or other concrete structures used to separate steam from water and to operate steam silencers. The reinforced concrete deterioration due to steel corrosion in this aggressive environment, and the steam pressure mechanical forces lead to concrete damage with formation of cracks and fractures.
\n\t\t\t\t | \n\t\t\tNa+\n\t\t\t | \n\t\t\tK+\n\t\t\t | \n\t\t\tMg2+\n\t\t\t | \n\t\t\tCa2+\n\t\t\t | \n\t\t\tCl-\n\t\t\t | \n\t\t\tSO4\n\t\t\t\t2-\n\t\t\t | \n\t\t\tSiO2\n\t\t\t | \n\t\t\tHCO3-\n\t\t\t | \n\t\t
\n\t\t\t\t | \n\t\t\t6429 | \n\t\t\t1176 | \n\t\t\t18.6 | \n\t\t\t347 | \n\t\t\t11735 | \n\t\t\t15 | \n\t\t\t1133 | \n\t\t\t303 | \n\t\t
Typical chemical composition of typical “Cerro Prieto” geothermal brine
In the power plants, the observed corrosion affects components of the steam turbines, condensers and pipelines, and also the cooling towers and concrete structures inside and outside the building that houses the plant. In these cases, the effects of corrosive attack appears in the form of localized corrosion in metal walls and gas piping) or as corrosion fatigue or stress corrosion, caused by cyclic mechanical forces or residual stresses, in turbines and other metal equipment. Table 5 shows a list of equipment and materials used for construction, which are part of the infrastructure of a geothermal power (Valdez, B. et al., 1999, 2008)
The combination of an aerated moist environment with the presence of hydrogen sulfide gas (H2S) dissolved in water provides a very aggressive medium (Figure 16), which promotes the corrosion of metals and alloys, such as CS and SS. The presence of dust, from the geothermal field and condensation cycles favor the failure of protective coatings applied to steel, so that developed corrosion leads to constant repairs and maintenance of metal installations: pipes, machinery, cooling towers, vehicles, tools, fences, warehouses, etc.
\n\t\t\t\t | \n\t\t\t\n\t\t\t\t | \n\t\t
Pipelines | \n\t\t\tConcrete, steel | \n\t\t
Vertical and centrifugal pumps | \n\t\t\tSteel, copper alloys | \n\t\t
Valves | \n\t\t\tSteel | \n\t\t
Flanges and fits | \n\t\t\tSteel | \n\t\t
Silencers | \n\t\t\tConcrete, steel, FRGP | \n\t\t
Brine canals | \n\t\t\tReinforced concrete | \n\t\t
Evaporation ponds | \n\t\t\tPlastics | \n\t\t
Control and safety instruments | \n\t\t\tMetals and plastics | \n\t\t
Equipment and materials used to build infrastructure in a geothermal field
Cooling towers constructed of wood, steel and fiberglass in the presence of flowing and stagnant water and air currents (induced to complete cooling fans), suffer a serious deterioration of the steel by corrosion and biodeterioration, involving a variety of microorganisms. The timber is subjected to oxygen delignification under the effect of colonies of fungi and algae, as well as fiberglass reinforced polyester screens, which deteriorate due to colonies of aerobic and anaerobic bacteria e.g. sulfate reducers.
Furthermore, carbon steels corrode in the form of delamination due to sulfate reduction processes which induce the oxidation of iron, while the SS nails and screws undergoes localized corrosion, forming pits (Figure 17)
A humid corrosive environment in a geothermal field caused by steam and gases emission.
Corrosion in a cooling tower of a geothermal power plant.
The deterioration by microorganisms capable of living in these conditions is one of the processes that have provided more information to the study of corrosion induced by microorganisms. In "Cerro Prieto", for example, have been isolated and studied various bacteria capable of growing even at temperatures of 70 ° C under conditions of low nutrient concentrations, while in the geothermal field of "Azufres" bacteria have been isolated to survive at temperatures of 105 °C and pressures of downhole (Figure 18).
Biodeterioration of polyester polymeric matrix in a fiberglass screen exposed at geothermal temperatures.
Corrosion of the infrastructure used in the pulping and paper industry, is another serious problem for corrosion specialists. The wide experience, gathered from cases of corrosion in the various infrastructure components of the paper industry, has provided an extensive literature on mechanisms, types and control of corrosion in this environment.
In the early 60\'s of last century, when the continuous digester process was adopted, the paper industry had limited knowledge about caustic embrittlement. Currently, it is known that the digesters are subjected to caustic levels and temperatures too close to the fracture caustic range where the total relieves of stresses in the material are essential. To elucidate the mechanism of this phenomenon, it was necessary to conduct serious investigations, which subsequently provide solutions to the problem of corrosion and caustic embrittlement. Technology in the paper industry has evolved over the last forty years and in parallel we can talk about the solution of corrosion problems in different parts of its infrastructure. Components with high failure rate due to corrosion are those built of bronze, SS, cast iron. Corrosion occurs in the papermaking machinery, where the white water equipment is subjected to an aggressive environment. The metal surfaces are exposed to immersion in this water; to steam that promotes the formation of cracks, which favor the deposit of pulp and other compounds. CS undergoes rapid uniform corrosion, while the copper alloys and SS (austenitic UNS S30400 L: 18% Cr8% Ni, UNS S31600 L: 16% Cr10% Ni 2% Mo) develop localized pitting corrosion. In the mill bleach plants the pulp equipment has traditionally been made of SS which has good general corrosion resistance and weldability. The use of chlorine gas (Cl2) and oxygen in the bleach plant and pulp bleaching, favors a very aggressive oxidant and SS, as type 317 L (18% Cr14% Ni3.5% Mo). However, in the last 25 years the environment in these plants has become much more corrosive due to the wash systems employed for the paper pulp, which increased the emission of oxidizing and corrosive gases; so type "317 L" SS is not resistant and has a shorter service life. Many mills in the paper industry have opted for the use of high-alloy SS, nickel (Ni) and titanium (Ti), for better corrosion resistance in these particular environments. In general, SS exposed to corrosive environment of bleach plants are benefited by the share of chromium, nickel and molybdenum as alloying elements, which increase their resistance to the initiation of pitting and crevice corrosion. The addition of nitrogen (N) increases its resistance to pitting corrosion, particularly when it contains molybdenum (Mo). Furthermore, to avoid waste of elements such as carbon (C), where a concentration greater than 0.03%, can cause sensitization at affected by heat areas in the solder, causing the SS to be less resistant to corrosion. Other waste elements, such as phosphorus (P) and sulfur (S) can cause fractures in the hot steel, formed in the metal welding area. The corrosive environment of bleach plants contain residual oxidants such as chlorine (Cl2) and chlorine dioxide (ClO2), these are added to resists the effects of temperature and acidity, maintaining a very aggressive environment.
Corrosion also occurs in the pulping liquor facilities by sulfites, chemical recovery boilers, suction rolls and Kraft pulping liquors. The Kraft process is the method of producing pulp or cellulose paste, to extract the wood fibers, necessary for the manufacture of paper.
The process involves the use of sodium hydroxide (NaOH) and sodium sulfite (Na2SO3) to extract the lignin from wood fibers, using large high pressure digesters. High strength is obtained in the fiber and methods for recovery of chemicals explain the popularity of the Kraft process. The black liquor separated, is concentrated by evaporation and burned in a recovery boiler to generate high pressure steam, which can be used for the plant steam requirements for the production of electricity. The inorganic portion of the liquor is used to regenerate sodium hydroxide and sodium sulfite, necessary for pulping. Corrosion of metals in the facilities used in this process may occur during the acid pickling operation for the removal of carbonate incrustations on the walls and black liquor pipe heaters. It has been found that SS 304 L presents fracture failure and stress corrosion. In the recovery processes of chemical reagents, known as stage re alkalinization, metals can fail due to caustic embrittlement or corrosion-erosion under conditions of turbulent flow. Corrosion also occurs in the equipment used for mechanical pulping, such as stress corrosion cracking, crevice corrosion, cavitation and corrosion-friction.
The accelerated pace of industrialization, combined with rapid population growth, intensive agricultural techniques, and inappropriate waste management in developing countries have increased the levels of micropollutants such as heavy metals, considered harmful or toxic to living beings [1, 2]. These heavy metals can enter the human body —causing serious damage— via food, water, air, soil, skin absorption, polluting emissions, anthropogenic sources (treated sewage discharges, mining operations), contact with industrial and agricultural products such as pesticide formulations, urban traffic, contamination from chemical fertilizers, and irrigation with poor quality water [3, 4, 5, 6, 7, 8].
The migration of heavy metals induced by substances in contact with food is given by the negative interaction between packaging and food. Another risk factor is constituted by the fact that heavy metals are nonbiodegradable and cannot be metabolized and, thus, persist and accumulate in the environment and in organisms over long periods of time [1, 2, 3, 9, 10, 11].
Thermoformed and flexible films are very popular in the food packaging market given their low cost, large surface area by volume, and outstanding performance across a wide temperature range [12]. Thermoforming is a generic term that encompasses several processing techniques, by which plastic articles can be obtained from flat sheets of different polymers. Thermoformed products are classified into two major categories: permanent or industrial products (shelves for medical or electronic equipment, decorative panels for cars, planes, motorcycles, bathtubs and bathroom fixtures, helmets and seats for boats, and skylights) and disposable products (packaging for medicines, bubble wrap, cups for hot and cold beverages, baking trays, food containers, and clear packaging that is shaped like the product) [13, 14].
The films are defined as thin flexible sheets of synthetic or natural origin, that reach a thickness of 0.01 inches or less. The polymeric matrix that forms the film can be defined as the random arrangement of the chains that make up the structure. Flexible films used in the food industry are currently divided into two groups: synthetic or non-biodegradable materials and biodegradable materials. The manufacture of these products is important, as they break down quickly and easily, without producing residues that cause unfavorable impacts on environmental ecosystems [14].
Biodegradable thermoformed and flexible films can be made of cassava flour (given its high starch content, making it suitable for use in the manufacture of various products in the food industry, as well as for the production of biopolymers) and cassava starch (as it can be converted into a thermoplastic material by interrupting the molecular interactions of the double helix chain, formed by hydrogen bridges between the hydroxyl groups, in the presence of a plasticizer aided by suitable temperature and shear stress [15, 16], and by adding matter such as fique fiber, gelatin, poly(butylene adipate-coterephthalate), polylactic acid, glycerol, plasticizer, green composites, cellulose, chitosan, clay, pullulan, natural extracts, poly(vinyl alcohol), and kaolin [7, 8, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35].
Industries are currently striving to improve their products by using natural and renewable sources to store, package, and wrap food products [7, 8, 29, 32, 36]. These include thermoformed and flexible films (biopolymers) obtained from agricultural sources (cassava), and constitute a new and environmentally friendly industrial alternative (composting) given their rapid and easy biodegrading processes. Their main purpose is the replacement of regularly used petroleum-derived plastic polymers and their associated waste [8, 18, 20, 22, 23, 26, 31, 37, 38]. A common production method for thermoforming is the compression molding technique (Figure 1), in which the material is placed into an open mold to which pressure and heat are applied.
Compression molding machine used for thermoforming.
Single screw extrusion —a continuous process that forms the plastic material— is used to produce biodegradable flexible films, whereby turning the screw and applying heat pushes the material along while melting it [13, 21, 27, 32], turning it into a viscous material. Where the nozzle is positioned at the end of the cylinder, there is a hole shaped according to the use required (for films, the extrusion nozzle is round). From the extrusion hopper comes the plasticized mass, which is stretched, smoothed, and rolled by the rollers (Figure 2) [39].
Film extrusion machine.
The casting technique, using native and ozonated cassava starch, glycerol as the plasticizer, and water as the solvent is used for the elaboration of biodegradable films from cassava starch modified by ozone at different levels [40].
Biodegradable polymers may lead to heavy metal contamination during their manufacture if the raw material used to process them is contaminated (cassava flour and starch, fique fiber, polylactic acid, glycerin, etc.). They may also be subject to cross-contamination during production, for example, via petroleum- and nonpetroleum-associated activities, from containers used for cooking and storage, during drying, and from contaminated utensils or water [4, 41, 42].
Thus, tracking the manufacturing process is essential in determining the presence of toxic heavy metals in the biopolymers, in turn, to safeguard public health by limiting exposure [1, 9].
Among these metals, cadmium (Cd) is considered toxic to plants and animals; it is widespread in the atmosphere, soils, and water, and is a serious health hazard, affecting the gastrointestinal, cardiovascular, musculoskeletal, nervous, renal, and reproductive systems. Long-term exposure may cause mitochondrial damage and possible death. Cd bioaccumulates in individual organisms [4, 5, 43, 44, 45, 46] and is likely to continue to do so due to the future use of biodegradable polymers in the packing and packaging of dry foods and other degradable products, as it enters the food chain.
The US Department of Health and Human Services has insisted that an excessive Cd accumulation in humans may be the cause of cancer as Cd and Cd salts are considered a “possible human carcinogen” [4, 44]. Certain plants can also accumulate Cd in their tissues, and levels are even more significant in plants grown in peri-urban areas with soil contaminated by irrigation using wastewater and sewage sludge [10, 47, 48, 49, 50].
There are currently no studies reporting Cd found in thermoformed and biodegradable flexible films; however, the literature does report the presence of Cd in cassava tubers’ cortex [42], cassava food crops [51], as well as Cd contaminated rice which causes the Itai-itai disease [52] by exposure to Cd-contaminated water used for irrigation or from farms affected by petroleum- and nonpetroleum-related activities. The safety of the materials that come into contact with food is assessed by the amount of substances that migrate into it from the biopolymer and whether or not these meet the conditions established in the legislation on foods.
The legislation limits the migration of toxic pollutants from reaching unacceptable levels and helps to maintain the integrity of foodstuffs, thereby preventing health hazards, contamination, and alternations in food composition and sensory properties [9]. The current Colombian regulation NTC 4096 [53], allows a maximum level of Cd of 1 mg/kg for plasticizers while the Agency for Toxic Substances and Disease Registry [44] estimated that average Cd intake in Americans is 30 mg/day and that only one-tenth of this amount is absorbed into the tissues. Given that thermoformed and flexible film can be used as food containers, their Cd levels must be strictly monitored.
The samples must be treated prior to analysis. The particle size of thermoformed samples are reduced via mechanical methods, starting with manual cracking; followed by maceration (Figure 3) to a particle size of less than 1,135 mm; and finally, the removal of water content by placing the particles in an oven at 70 °C for 3 hours [54].
Sample: Thermoforming and maceration.
For flexible film samples, all that is required is manual cutting as shown in Figure 4, and drying at 50 °C for 45 minutes [54, 55, 56, 57, 58].
Sample: Flexible films and cutting.
The samples’ moisture content can be determined in triplicate by calculating the weights obtained before and after drying (see Eq. (1)).
Following drying in a furnace, the moisture values for thermoformed samples were between 3.71% and 5.80% (RSD lower than 3.4%). Biodegradable flexible films revealed higher values of moisture (following 45 mins of drying in a furnace) at 7.81–10.35%, with relative standard deviation (RSD) lower than 1.96% [54].
When an analyte cannot be determined, it must be transformed to a state in which an appropriate identification and quantification technique can be applied. These transformations are usually dissolutions or digestions, which involve the sample passing from a solid state to a liquid one, using the correct solvent (acids or bases of different strength, oxidizing agents, or enzymes, etc.); in this energetic process, heating and agitation increase the speed of mass transfer, unifying the decomposition and elimination of organic matter, and leaving the trace components of interest (metallic ions) in solution [59, 60].
In this procedure, the organic matter is destroyed by a wet process and the sample is digested (with an acid/oxidant mixture), combining sulfuric, nitric, perchloric acid or hydrogen peroxide, in a system that can be open or refluxed [61];
This technique is generally preferred to dry oxidation (where the sample is heated to 450–500 °C), as the presence of large volumes of acids produces less loss of trace elements through evaporation. However, there is also the danger of elements being lost by evaporation (antimony, arsenic, boron, chromium, tin, germanium, mercury, osmium, rhenium and selenium), although these losses can be prevented by adjusting the conditions (mounting of reflux, temperature control and time) [59, 60].
A wide range of acid digestion procedures are reported in the literature, in which various mixtures of inorganic acids and, in some cases, hydrogen peroxide have been used (HNO3, HNO3-H2SO4, HNO3-HF, HNO3-H2O2, HNO3-HF–H2O2, HNO3-HClO4, y HNO3-HClO4–H2O2) [11, 62, 63, 64].
Of the mineral acids, nitric acid offers the best digestion result for all types of samples; however, there is no consensus on the addition of other substances, such as perchloric acid or hydrogen peroxide, to accelerate the process and reduce the volume of nitric acid used [60].
This study employed acid digestion in its sample preparation [51, 54]. Optimizing acid digestion using the reflux system involved the determination of cadmium in a thermoformed sample (HMC-1) and flexible film (SM 707–17 hydrolyzed), taking four absorbance readings and considering the following variables: sample weight, temperature, time, and acid ratio. Each test should be performed in triplicate.
The optimal acid ratio for the digestion of thermoformed samples is determined experimentally, by varying the amount of mineral acids: HNO3 at 65% (20 to 5 mL) and HClO4 at 48% (5 to 20 mL), as shown in Table 1. Each test should be performed in triplicate.
HNO3:HClO4 Ratio | HNO3 (mL) | HClO4 (mL) |
---|---|---|
1:0 | 20.0 | — |
3:1 | 15.0 | 5.0 |
1:1 | 10.0 | 10.0 |
1:3 | 5.0 | 15.0 |
0:1 | — | 20.0 |
Acid ratio (HNO3 and HClO4) for acid digestion using the reflux system.
For flexible films, the optimization was only possible with an acid ratio of 3:1 as this was the best response to the digestion procedure for thermoforming.
Digestion was performed using the sample dissolved in 20 mL of a mixture containing HNO3 (65%, Merck): perchloric acid (48%, Merck) at a 3:1 ratio [54].
This parameter is optimized by varying the sample quantity, which for our study, has been: 0.5000 (± 0.0001) g, 1.0000 (± 0.0001) g and 2.0000 (± 0.0001) g, for thermoforming, and 0.5000 (± 0.0001) g and 1.0000 (± 0.0001) for flexible films, on a dry base.
Digestion was performed using a 1.0 g of the sample dissolved in acid [54].
The optimal digestion temperature is determined experimentally at three heating temperatures (35, 50 and 70 °C) for both thermoformed samples and flexible films.
For digestion time, 60, 120 and 180 minutes were tested for the thermoformed samples, for the acid ratios shown in Table 1, and for flexible films 15, 30, 45, 60 and 120 minutes, for the acid ratio 3:1. After cooling to room temperature, all digested solutions were filtered using a filter crucible, and then stored in polyethylene containers at 4 °C for further analysis by atomic absorption spectrometry.
Thermoformed samples were dried at 70 °C in a furnace for 3 h. Biodegradable flexible films were dried at 50 °C in a furnace for 45 min [54].
Numerous techniques have been used to determine the concentration of heavy metals in different samples, such as X-ray fluorescence spectrometry (XRFS), atomic absorption spectrometry (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). XRFS makes it possible to analyze solid materials without sample pretreatment; however, this advantage is limited by the need to use appropriate certified reference materials for calibration, making it a very expensive technique. In ICP-MS and EAA, dissolved liquid samples are usually required, so the samples have to be previously digested. This procedure can be tedious, time consuming and results in systematic errors due to incomplete extraction or solubility of the analyte [65].
When compared to the flame atomization method, the graphite furnace atomic absorption spectrometry is the most suitable technique to determine elements such as Cd, in trace level concentrations in polymer samples. The latter has many advantages such as its high sensitivity, its limits of detection in the order of micrograms per liter μg/L to ng/L, its tolerance to complex matrices, the fact that it minimizes analyte loss, that it uses few sample volumes, and that it reduces analyst contamination risk [65, 66, 67, 68, 69]. With this technique, samples are often introduced in solution form, however, the EAA-HG technique with solid samples has been reported as a simple and fast method for the determination of lead and cadmium in polymer samples [65].
The following statistical tests have to be applied in order to analyze the degree of agreement between the individual data obtained for the standardization of the analytical method:
The Shapiro–Wilk and Levene tests are used to evaluate the normality and homogeneity of the data obtained for repeatability and intermediate precision, with a confidence interval greater than 95%. It is also necessary to determine the standard deviation and the coefficient of variation to determine whether the method is precise.
For linearity, the Pearson correlation coefficient and the coefficient of determination (R2) must be determined, a one-way ANOVA applied, and the t-student test performed to evaluate whether the slope differs significantly from zero.
For samples of thermoformed, flexible films, flour and starch samples, one-way ANOVA needs to be applied in order to determine whether there are any significant differences between them.
For statistical analysis, programs such as: Microsoft Office Excel 2007 and SPSS Statistical Software version 11.5 are used.
The analytical technique has to be fine-tuned prior to analysis:
To determine the stability of the lamp, the absorbance value of at least three element standards of different concentrations 0.2, 0.6 and 1.0 μg Cd/L must be monitored for at least 30 minutes throughout three hours, as shown in Figure 5.
Cadmium hollow cathode lamp stability [
Subsequently, the normality and homogeneity of the data must be analyzed by applying the Shapiro–Wilk test with N-1 degrees of freedom and Levene test with degrees of freedom 1 and 2, determined as K-1 and (k-N)-K (N = absorbance readings and K = number of times). One-way ANOVA statistical treatment is applied next to determine whether there are any significant differences between the absorbances obtained for each standard during the three hours of analysis.
In the Shapiro–Wilk test, the Ho was accepted, since the calculated W was lower than the tabulated W (0.999) and the homogeneity of variances with calculated F was lower than the tabulated F (5.100), indicating that the means obtained are representative values of the absorbances of each one of the standards, with good variation coefficients (<3.5%) [70].
The one-way ANOVA used to measure the absorbance of each of the standards for the metal, showed a constant value for the sum of squares, as for the root mean square (0.000). We can also see that the calculated F is lower than the tabulated F at a 95% confidence level, indicating that there were no significant differences between the values of the absorbances at different times when the analysis was performed [70].
In order to obtain a higher sensitivity for cadmium determination, the calcination and atomization temperature in the graphite furnace must be optimized. To do so, a standard of 1 μg/L of cadmium must be prepared and the atomization temperature set by varying the calcination temperature from 500 to 800 °C in 50 °C intervals. Once this is done, the highest absorbance is observed (which in our study was between 500 and 550 °C) and another variation of the calcination temperature in this range is made, but this time by modifying it in 10 °C intervals. Once the calcination temperature has been optimized, a standard of 0.8 μg/L of Cd is prepared and read on the atomic absorption equipment, setting the calcination temperature at 800 °C and varying the atomization temperature from 900 to 1800 °C. This variation is made at intervals of 100 °C. Table 2 shows the optimum temperatures at 530 and 1750 °C [54, 70].
Stage | Temperature(°C) | Time(s) | Argon Gas Flow (L/min) |
---|---|---|---|
Drying | 100 | 30 | 0.2 |
Calcination | 530 | 20 | 0.2 |
Atomization | 1750 | 3 | Off |
Cleaning | 2500 | 3 | 0.2 |
Optimal graphite furnace temperature programming for Cd determination.
Cd quantitative analysis was performed using the calibration curve for which standard solutions of the metal were prepared as follows:
The calibration curve was constructed based on the stock solution of 1000 μg Cd/L by preparing 5 mL of six cadmium standards in a range of 0.1 to 1.0 μg Cd/L in 0.2% HNO3 solution. For each Cd standard, four absorbance readings are taken in the AAS-HG.
The Pearson’s Correlation Coefficient showed that the calibration curve for cadmium has a high r value, above 0.9950, demonstrating that there is a positive correlation between the absorbance of the metal and its concentration [54, 70].
Statistical quality parameters must be evaluated in order to standardize the analytical method, as described below.
To examine linearity, a calibration curve needs to be prepared in a concentration range including at least six different cadmium concentrations between 0.1 and 1.0 μg Cd/L. This should be analyzed using the atomic absorption equipment, taking four absorbance readings for each cadmium standard. The calibration curve should be plotted (Absorbance vs. concentration) and the correlation coefficient and slope should be statistically evaluated, through statistical treatment of the parametric data obtained for each concentration level [54, 70].
A regression analysis for the model Y = β0+ β1X is required to confirm whether the degree of relationship is significantly linear between the two variables (absorbance and concentration). Table 3 illustrates the coefficient that defines the slope of the regression line and the t-statistics for cadmium, making it possible to contrast the null hypothesis (Ho) that the slope has a value of zero. According to the results, the calculated statistics are greater than the tabulated ones, confirming that the slopes differ significantly from zero and therefore, the absorbance is significantly correlated to the concentration [54, 70].
Metal | Slope | Calculated T | Tabulated T |
---|---|---|---|
Cadmium | 0.1324 | 78.226 | 2.048 |
Regression analysis for model Y = β0+ β1x.
The one-way ANOVA was applied to confirm the association between the two variables (absorbance and concentration) by means of a linear regression for cadmium. The results showed that the calculated F (6119.282) was higher than the tabulated F (4.080) and therefore, the null hypothesis raised is rejected (Ho = There is no significant linear relationship between absorbance and concentration) [54, 70].
Standard deviation (s) and the coefficient of variation (CV) must be determined in order to analyze the degree of agreement between the individual data obtained when the method is repeatedly applied to multiple aliquots of a homogeneous sample.
Accuracy is evaluated at two levels: Repeatability and Intermediate accuracy as described below.
We analyzed the precision obtained after performing five calibration curves, in a concentration range of 0.1 to 1.0 μg/L for cadmium, where absorbance is measured four times per standard, under the same operating conditions in a short time interval (same day) by the same analyst and using the same equipment, materials, and reagents. This value corresponds to 0.136 [54, 70].
We analyzed the precision obtained after performing seven calibration curves, in the same concentration range as for repeatability, where absorbance is measured four times per standard under the same operating conditions, in different time intervals (7 different days), by the same analyst and using the same equipment, materials, and reagents. This value corresponds to 0.135 [54, 70].
This method increases sensitivity when the analysis is conducted on the same day, indicating that the proposed method for sample preparation is appropriate. The sensitivity measured for the method was 0.136.
For the two previous procedures (Repeatability and intermediate precision), the Shapiro–Wilk test was applied with N-1 degrees of freedom (N = readings of absorbance) and Homogeneity of variances with degrees of freedom 1 and 2 calculated as K-1 and (k-N)-K respectively (where N = readings of absorbance and K = number of calibration curves), posing the corresponding null and alternative hypotheses at a 95% confidence level. In addition, for each of the (standard) concentration levels, the respective standard deviations and variation coefficients were obtained to determine whether the method is accurate.
For repeatability, the results show that at a 95% confidence level, the calculated W is lower than the tabulated W (0.999) for all levels of metal concentration, with 3 degrees of freedom for cadmium. Thus, the null hypothesis is accepted and it is concluded that the data come from a normal distribution. Applying Levene’s test for cadmium data, we can see that for 4 and 15 degrees of freedom, the calculated statistic is lower than the tabulated statistic for all levels of concentration. Thus, we conclude that the variances are homogeneous. The standards present a low standard deviation (less than 0.004) and a coefficient of variation that is lower or equal to 5%, thus indicating that the method used presents a good repeatability [54, 70].
For the intermediate precision, the calculated Shapiro–Wilk statistic was lower than the tabulated statistic (0.999), therefore concluding that the data come from a normal distribution at a 95% confidence level. Taking into account Levene’s statistic, the calculated statistic was lower than the tabulated one, thus concluding that the variances are homogeneous [54, 70].
The metal standards, show a small deviation (less than 0.005) and a coefficient of variation that is lower than or equal to 4.0%, leading to the conclusion that the method is of good accuracy [54, 70].
Sensitivity is assessed as analytical sensitivity and calibration sensitivity, as described below.
The parameters used to determine analytical sensitivity are the limit of detection and quantification. Fifteen absorbance readings were taken from the metal target and the standard deviation calculated along with the detection and quantification limits, following the method suggested by IUPAC (1995) [70, 71].
The LOD of Cd was 0.02 mg/L (0.4 mg/kg) and corresponds to the minimum amount of Cd derived from the lowest analytical signal that can be detected with reasonable certainty. The LOQ of Cd was 0.07 mg/L (1.4 mg/kg) and represents the minimum concentration that can be measured with precision and accuracy. The LOD and LOQ are adequate for the quality control of biopolymers [54, 70].
This parameter is determined by comparing the slopes of the Cd calibration curves obtained with the precision of the method (repeatability and intermediate accuracy). The slopes obtained for repeatability (0.1358 ± 0.004) and intermediate precision (0.1351 ± 0.004), show that there is a greater response to concentration changes in repeatability [70].
The accuracy of the method is determined in terms of percent recovery by adding in triplicate, known amounts (4, 8 and 12 μL) of a 1000 μg/L standard of cadmium to a thermoformed or flexible film sample prior to the digestion process. Following this, the respective readings (4 absorbance readings for cadmium) are taken using the atomic absorption equipment of the doped sample and of the sample with the standard added.
To calculate the percentage recovery, the cadmium concentrations in the samples are determined previously, as indicated in Eq. (2).
The percent recovery of Cd ranged between 96.23% and 97.31% for the MPER 183 thermoformed material, which makes it possible to conclude that the extraction method used is suitable, and that the determinations are therefore reliable [54, 70].
A statistical t-student test should be applied to determine whether there are significant differences between the value obtained from recovery and the 100% level. The experimental t-values are compared with the tabulated values (t(0.05, 8) = 1.860) for 8 degrees of freedom in our case. The results show that for all the recoveries of the thermoformed samples, there are significant differences between the average values and 100% since t calculated > t tabulated (11.489> 1.860) [54, 70].
To establish the testing time for a standard and a sample in a laboratory, the stability of the samples over time must be determined as follows.
Cadmium standards are prepared (0.8 μg/L) and kept refrigerated while they are analyzed for ten consecutive days. A one-way ANOVA analysis (calculated F < tabulated F, 1,675 < 2,420) indicates that there are no significant differences between the average absorbances during the days analyzed, and therefore this standard can be prepared and stored at a temperature of 4 °C for analysis for up to 10 days [54, 70].
To evaluate the stability of cadmium, a thermoformed sample is subjected to digestion via a dilution of 5 to 100 mL, which is refrigerated and read on the equipment for ten consecutive days. The samples for flexible film were not read, as in our case, they were not detectable.
By applying a Shapiro–Wilk statistical analysis, we were able to conclude that the data come from a normal distribution, since the calculated W is smaller than the tabulated W and the data maintain a homogeneous distribution, since the calculated Levene statistic is smaller than the tabulated one [70].
A one-way ANOVA was applied to determine any significant differences in the average absorbances between the different days analyzed. The results show that cadmium was stable in the thermoformed sample analyzed in our study (CM 4574–7) as the calculated F < tabulated F (1.87 < 2,420) [70].
According to the results obtained, cadmium is stable in the thermoformed digested sample. Thus, these samples can be stored at 4 °C and analyzed on consecutive days [70], allowing the laboratory to establish its analysis times and organize the relevant protocols.
To quantify cadmium in the samples, the graphite furnace atomic absorption spectrometer was used under the instrumental conditions shown in Table 4. The metal was measured in triplicate in the thermoformed and flexible film samples, as well as in the source materials (cassava flour, cassava starch and fique fiber), in order to determine whether the metal in the samples derives from the raw material used for manufacture.
Method | Graphite Furnace-AAS |
---|---|
Atomization | Electrothermal |
Element | Cd |
Lamp | Hollow cathode Cd |
Background correction | D2 Quadline |
Wave length (nm) | 228.8 |
Injection volume | 20 |
Slit (nm) | 0.5 |
Instrumental conditions in the GF-AAS for cadmium determination.
Cd concentrations in the thermoformed products typically ranged between 4.2 mg/kg and 17.9 mg/kg, which could be the result of the quality of the raw materials used to process the biopolymers. Sample concentrations were significantly different from each other, given that when applying one-way ANOVA, the calculated F value was greater than tabulated F (1507.861 >3.501) at 95% confidence.
Cd was not detected in flexible films, meaning that no contamination was present.
The cadmium concentrations found in the thermoformed products were lower than those established by NTC-40961 (1 mg Cd/kg). Thus, these biopolymers can be used for these purposes, but care needs to be taken as this metal can bioaccumulate, causing serious environmental problems in the long term.
Once the Cd concentration in the samples of thermoformed products had been determined, we proceeded to analyze the main raw material —cassava flour and fique fiber— in order to identify whether the metal found in the thermoformed products originated in the processing materials.
The results show that the flours presented Cd concentrations of between 3.5–18.2 mg/kg, while Cd concentration in the fique fiber was 7.2 mg/kg, meaning that it contributes the most Cd to the thermoformed film.
Given that the fique fiber and flour are agricultural products, the presence of cadmium in these samples may be due to the fact that this metal is used in herbicides used to control weeds such as Linuron or Dinuron. It can also be present in soil from municipal waste and the incineration of plastic materials, in fertilizers (phosphorous and nitrogenous fertilizers), pesticides and fungicides such as copper oxychloride and carbofurans among others, used to cultivate cassava [4, 10, 42, 72].
The GF-AAS method developed was efficient (highly sensitive and acceptable in terms of accuracy and reliability) to quantify Cd in thermoformed and biodegradable flexible films and cassava flour samples. The method is therefore reliable, with low variation coefficients, and limits of detection and quantification that indicate that the standardized method is optimal.
The concentrations that were found in the samples of thermoformed and flexible films, are below the amounts allowed for products that come into contact with food (1 mg/Kg), but, as mentioned above care needs to be taken as Cd bioaccumulation can lead to grave environmental problems.
Cd content found in thermoformed films is associated with prior contamination of the raw material (during cultivation, pretreatment, and/or transportation) or contamination derived from old machinery used for manufacturing.
This study also provides new data for food safety authorities and which broaden the existing knowledge of the contribution of raw materials in terms of Cd concentrations in biopolymers.
There is great potential in using biopolymers in packaging and food conservation, in terms of the value these materials add to agricultural activity and in helping to reduce nonbiodegradable plastics in the environment.
The authors would like to acknowledge Universidad del Cauca (Industrial Analysis Unit, BICAMSA and QPN laboratories) and the Ministry of Agriculture and Rural Development.
The authors declare no conflict of interest.
We believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at funders@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6669},{group:"region",caption:"Middle and South America",value:2,count:5955},{group:"region",caption:"Africa",value:3,count:2457},{group:"region",caption:"Asia",value:4,count:12710},{group:"region",caption:"Australia and Oceania",value:5,count:1016},{group:"region",caption:"Europe",value:6,count:17716}],offset:12,limit:12,total:134177},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"114"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:38},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:13},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:23},{group:"topic",caption:"Computer and Information Science",value:9,count:24},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:15},{group:"topic",caption:"Engineering",value:11,count:65},{group:"topic",caption:"Environmental Sciences",value:12,count:10},{group:"topic",caption:"Immunology and Microbiology",value:13,count:16},{group:"topic",caption:"Materials Science",value:14,count:25},{group:"topic",caption:"Mathematics",value:15,count:11},{group:"topic",caption:"Medicine",value:16,count:116},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:6},{group:"topic",caption:"Neuroscience",value:18,count:4},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:9},{group:"topic",caption:"Psychology",value:21,count:10},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:9},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:4}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11012",title:"Radiopharmaceuticals",subtitle:"Current Research for Better Diagnosis and Therapy",isOpenForSubmission:!1,hash:"f9046d6f96148b285e776f384991120d",slug:"radiopharmaceuticals-current-research-for-better-diagnosis-and-therapy",bookSignature:"Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/11012.jpg",editors:[{id:"41865",title:"Prof.",name:"Farid A.",middleName:null,surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4428},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10858",title:"MOOC (Massive Open Online Courses)",subtitle:null,isOpenForSubmission:!1,hash:"d32f86793bc72dde32532f509b1ec5b0",slug:"mooc-massive-open-online-courses-",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/10858.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1677,editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10195",title:"Serotonin and the CNS",subtitle:"New Developments in Pharmacology and Therapeutics",isOpenForSubmission:!1,hash:"7ed9d96da98233a885bd2869a8056c36",slug:"serotonin-and-the-cns-new-developments-in-pharmacology-and-therapeutics",bookSignature:"Berend Olivier",coverURL:"https://cdn.intechopen.com/books/images_new/10195.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1337,editors:[{id:"71579",title:"Prof.",name:"Berend",middleName:null,surname:"Olivier",slug:"berend-olivier",fullName:"Berend Olivier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10755",title:"Corporate Governance",subtitle:"Recent Advances and Perspectives",isOpenForSubmission:!1,hash:"ffe06d1d5c4bf0fc2e63511825fe1257",slug:"corporate-governance-recent-advances-and-perspectives",bookSignature:"Okechukwu Lawrence Emeagwali and Feyza Bhatti",coverURL:"https://cdn.intechopen.com/books/images_new/10755.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:1309,editors:[{id:"196317",title:"Associate Prof.",name:"Okechukwu Lawrence",middleName:null,surname:"Emeagwali",slug:"okechukwu-lawrence-emeagwali",fullName:"Okechukwu Lawrence Emeagwali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11120",title:"Environmental Impact and Remediation of Heavy Metals",subtitle:null,isOpenForSubmission:!1,hash:"9e77514288e7394f1e6cd13481af3509",slug:"environmental-impact-and-remediation-of-heavy-metals",bookSignature:"Hosam M. Saleh and Amal I. Hassan",coverURL:"https://cdn.intechopen.com/books/images_new/11120.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:847,editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:null,surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10901",title:"Grapes and Wine",subtitle:null,isOpenForSubmission:!1,hash:"5d7f2aa74874444bc6986e613ccebd7c",slug:"grapes-and-wine",bookSignature:"Antonio Morata, Iris Loira and Carmen González",coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",publishedDate:"June 15th 2022",numberOfDownloads:2273,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11080",title:"Engineering Principles",subtitle:"Welding and Residual Stresses",isOpenForSubmission:!1,hash:"6c07a13a113bce94174b40096f30fb5e",slug:"engineering-principles-welding-and-residual-stresses",bookSignature:"Kavian Omar Cooke and Ronaldo Câmara Cozza",coverURL:"https://cdn.intechopen.com/books/images_new/11080.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:591,editors:[{id:"138778",title:"Dr.",name:"Kavian",middleName:"Omar",surname:"Cooke",slug:"kavian-cooke",fullName:"Kavian Cooke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11332",title:"Essential Oils",subtitle:"Advances in Extractions and Biological Applications",isOpenForSubmission:!1,hash:"742e6cae3a35686f975edc8d7f9afa94",slug:"essential-oils-advances-in-extractions-and-biological-applications",bookSignature:"Mozaniel Santana de Oliveira and Eloisa Helena de Aguiar Andrade",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:515,editors:[{id:"195290",title:"Ph.D.",name:"Mozaniel",middleName:null,surname:"Santana De Oliveira",slug:"mozaniel-santana-de-oliveira",fullName:"Mozaniel Santana De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11029",title:"Hepatitis B",subtitle:null,isOpenForSubmission:!1,hash:"609701f502efc3538c112ff47a2c2119",slug:"hepatitis-b",bookSignature:"Luis Rodrigo",coverURL:"https://cdn.intechopen.com/books/images_new/11029.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:413,editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9537",title:"Human Rights in the Contemporary World",subtitle:null,isOpenForSubmission:!1,hash:"54f05b93812fd434f3962956d6413a6b",slug:"human-rights-in-the-contemporary-world",bookSignature:"Trudy Corrigan",coverURL:"https://cdn.intechopen.com/books/images_new/9537.jpg",publishedDate:"June 8th 2022",numberOfDownloads:2194,editors:[{id:"197557",title:"Dr.",name:"Trudy",middleName:null,surname:"Corrigan",slug:"trudy-corrigan",fullName:"Trudy Corrigan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11371",title:"Cerebral Circulation",subtitle:"Updates on Models, Diagnostics and Treatments of Related Diseases",isOpenForSubmission:!1,hash:"e2d3335445d2852d0b906bb9750e939f",slug:"cerebral-circulation-updates-on-models-diagnostics-and-treatments-of-related-diseases",bookSignature:"Alba Scerrati, Luca Ricciardi and Flavia Dones",coverURL:"https://cdn.intechopen.com/books/images_new/11371.jpg",publishedDate:"June 23rd 2022",numberOfDownloads:341,editors:[{id:"182614",title:"Dr.",name:"Alba",middleName:null,surname:"Scerrati",slug:"alba-scerrati",fullName:"Alba Scerrati"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"11043",title:"Endometriosis",subtitle:"Recent Advances, New Perspectives and Treatments",isOpenForSubmission:!1,hash:"7baf1c70b11d41400bb9302ae9411ca4",slug:"endometriosis-recent-advances-new-perspectives-and-treatments",bookSignature:"Giovana Ap. Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/11043.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"185930",title:"Associate Prof.",name:"Giovana",middleName:null,surname:"Gonçalves",slug:"giovana-goncalves",fullName:"Giovana Gonçalves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10536",title:"Campylobacter",subtitle:null,isOpenForSubmission:!1,hash:"c4b132b741dd0a2ed539b824ab63965f",slug:"campylobacter",bookSignature:"Guillermo Tellez-Isaias and Saeed El-Ashram",coverURL:"https://cdn.intechopen.com/books/images_new/10536.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"73465",title:"Dr.",name:"Guillermo",middleName:null,surname:"Téllez",slug:"guillermo-tellez",fullName:"Guillermo Téllez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10798",title:"Starch",subtitle:"Evolution and Recent Advances",isOpenForSubmission:!1,hash:"f197f6062c1574a9a90e50a369271bcf",slug:"starch-evolution-and-recent-advances",bookSignature:"Martins Ochubiojo Emeje",coverURL:"https://cdn.intechopen.com/books/images_new/10798.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"94311",title:"Prof.",name:"Martins",middleName:"Ochubiojo",surname:"Ochubiojo Emeje",slug:"martins-ochubiojo-emeje",fullName:"Martins Ochubiojo Emeje"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11083",title:"Hazardous Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"d553bd4f6f1c4b115ca69bd19faac7dc",slug:"hazardous-waste-management",bookSignature:"Rajesh Banu Jeyakumar, Kavitha Sankarapandian and Yukesh Kannah Ravi",coverURL:"https://cdn.intechopen.com/books/images_new/11083.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"218539",title:"Dr.",name:"Rajesh Banu",middleName:null,surname:"Jeyakumar",slug:"rajesh-banu-jeyakumar",fullName:"Rajesh Banu Jeyakumar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10848",title:"Tribology of Machine Elements",subtitle:"Fundamentals and Applications",isOpenForSubmission:!1,hash:"3c4ca4c4692ca8d4fa749b4ae81ec1fa",slug:"tribology-of-machine-elements-fundamentals-and-applications",bookSignature:"Giuseppe Pintaude, Tiago Cousseau and Anna Rudawska",coverURL:"https://cdn.intechopen.com/books/images_new/10848.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"18347",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pintaude",slug:"giuseppe-pintaude",fullName:"Giuseppe Pintaude"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10856",title:"Crude Oil",subtitle:"New Technologies and Recent Approaches",isOpenForSubmission:!1,hash:"8d0a7ca35b3de95b295dc4eab39a087e",slug:"crude-oil-new-technologies-and-recent-approaches",bookSignature:"Manar Elsayed Abdel-Raouf and Mohamed Hasan El-Keshawy",coverURL:"https://cdn.intechopen.com/books/images_new/10856.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"102626",title:"Prof.",name:"Manar",middleName:null,surname:"Elsayed Abdel-Raouf",slug:"manar-elsayed-abdel-raouf",fullName:"Manar Elsayed Abdel-Raouf"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9625",title:"Spinocerebellar Ataxia",subtitle:"Concepts, Particularities and Generalities",isOpenForSubmission:!1,hash:"365a7025fd46eb45de2549bdd9d50b98",slug:"spinocerebellar-ataxia-concepts-particularities-and-generalities",bookSignature:"Patricia Bozzetto Ambrosi",coverURL:"https://cdn.intechopen.com/books/images_new/9625.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"221787",title:"Dr.",name:"Patricia",middleName:null,surname:"Bozzetto Ambrosi",slug:"patricia-bozzetto-ambrosi",fullName:"Patricia Bozzetto Ambrosi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10905",title:"Plant Defense Mechanisms",subtitle:null,isOpenForSubmission:!1,hash:"84ad5b27dde5f01dc76087d0fd6fa834",slug:"plant-defense-mechanisms",bookSignature:"Josphert Ngui Kimatu",coverURL:"https://cdn.intechopen.com/books/images_new/10905.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"224171",title:"Prof.",name:"Josphert N.",middleName:null,surname:"Kimatu",slug:"josphert-n.-kimatu",fullName:"Josphert N. Kimatu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10686",title:"Natural Gas",subtitle:"New Perspectives and Future Developments",isOpenForSubmission:!1,hash:"581763788a6a59e653a9d1d9b5a42d79",slug:"natural-gas-new-perspectives-and-future-developments",bookSignature:"Maryam Takht Ravanchi",coverURL:"https://cdn.intechopen.com/books/images_new/10686.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"2416",title:"Dr.",name:"Maryam",middleName:null,surname:"Takht Ravanchi",slug:"maryam-takht-ravanchi",fullName:"Maryam Takht Ravanchi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10988",title:"Railway Transport Planning and Manageme",subtitle:null,isOpenForSubmission:!1,hash:"5cb54cc53caedad9ec78372563c82e2c",slug:"railway-transport-planning-and-management",bookSignature:"Stefano de Luca, Roberta Di Pace and Chiara Fiori",coverURL:"https://cdn.intechopen.com/books/images_new/10988.jpg",editedByType:"Edited by",publishedDate:"June 28th 2022",editors:[{id:"271061",title:"Prof.",name:"Stefano",middleName:null,surname:"de Luca",slug:"stefano-de-luca",fullName:"Stefano de Luca"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"29",title:"Agronomy",slug:"agronomy",parent:{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:54,numberOfSeries:0,numberOfAuthorsAndEditors:1493,numberOfWosCitations:1638,numberOfCrossrefCitations:1236,numberOfDimensionsCitations:2708,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"29",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10774",title:"Model Organisms in Plant Genetics",subtitle:null,isOpenForSubmission:!1,hash:"f6624b58571ac10c9b636c5d85ec5e54",slug:"model-organisms-in-plant-genetics",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/10774.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Prof.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10896",title:"Integrative Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"47659401ffe512c28313440110c0a903",slug:"integrative-advances-in-rice-research",bookSignature:"Min Huang",coverURL:"https://cdn.intechopen.com/books/images_new/10896.jpg",editedByType:"Edited by",editors:[{id:"189829",title:"Dr.",name:"Min",middleName:null,surname:"Huang",slug:"min-huang",fullName:"Min Huang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11571",title:"Cereal Grains",subtitle:"Volume 2",isOpenForSubmission:!1,hash:"2c4003ff225208126f1e2386eefa4d5a",slug:"cereal-grains-volume-2",bookSignature:"Aakash Kumar Goyal",coverURL:"https://cdn.intechopen.com/books/images_new/11571.jpg",editedByType:"Edited by",editors:[{id:"97604",title:"Dr.",name:"Aakash K.",middleName:null,surname:"Goyal",slug:"aakash-k.-goyal",fullName:"Aakash K. Goyal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10499",title:"Next-Generation Greenhouses for Food Security",subtitle:null,isOpenForSubmission:!1,hash:"456f82c97eafad5734cd36c48e167781",slug:"next-generation-greenhouses-for-food-security",bookSignature:"Redmond R. Shamshiri",coverURL:"https://cdn.intechopen.com/books/images_new/10499.jpg",editedByType:"Edited by",editors:[{id:"203413",title:"Dr.",name:"Redmond R.",middleName:null,surname:"Shamshiri",slug:"redmond-r.-shamshiri",fullName:"Redmond R. Shamshiri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9643",title:"Agrometeorology",subtitle:null,isOpenForSubmission:!1,hash:"492510d45d202e73a8a7d6eb6cc60be8",slug:"agrometeorology",bookSignature:"Ram Swaroop Meena",coverURL:"https://cdn.intechopen.com/books/images_new/9643.jpg",editedByType:"Edited by",editors:[{id:"315343",title:"Dr.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editedByType:"Edited by",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9712",title:"Genetic Transformation in Crops",subtitle:null,isOpenForSubmission:!1,hash:"c111fe32d4d7e3988e4ef2fd6775a265",slug:"genetic-transformation-in-crops",bookSignature:"Kin-Ying To",coverURL:"https://cdn.intechopen.com/books/images_new/9712.jpg",editedByType:"Edited by",editors:[{id:"310646",title:"Dr.",name:"Kin-Ying",middleName:null,surname:"To",slug:"kin-ying-to",fullName:"Kin-Ying To"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8153",title:"Agronomy",subtitle:"Climate Change & Food Security",isOpenForSubmission:!1,hash:"2c01368bbeacbbedeb3681ea0c037dbe",slug:"agronomy-climate-change-food-security",bookSignature:"Amanullah",coverURL:"https://cdn.intechopen.com/books/images_new/8153.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:54,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"40178",doi:"10.5772/52583",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"33765",doi:"10.5772/37578",title:"Nutrient Solutions for Hydroponic Systems",slug:"nutrient-solutions-for-hydroponic-systems",totalDownloads:71704,totalCrossrefCites:11,totalDimensionsCites:66,abstract:null,book:{id:"1781",slug:"hydroponics-a-standard-methodology-for-plant-biological-researches",title:"Hydroponics",fullTitle:"Hydroponics - A Standard Methodology for Plant Biological Researches"},signatures:"Libia I. Trejo-Téllez and Fernando C. Gómez-Merino",authors:[{id:"113365",title:"Dr.",name:"Libia I.",middleName:null,surname:"Trejo-Téllez",slug:"libia-i.-trejo-tellez",fullName:"Libia I. Trejo-Téllez"},{id:"113414",title:"Dr.",name:"Fernando C.",middleName:null,surname:"Gómez-Merino",slug:"fernando-c.-gomez-merino",fullName:"Fernando C. Gómez-Merino"}]},{id:"45745",doi:"10.5772/56824",title:"Current Advances on Genetic Resistance to Rice Blast Disease",slug:"current-advances-on-genetic-resistance-to-rice-blast-disease",totalDownloads:4528,totalCrossrefCites:27,totalDimensionsCites:58,abstract:null,book:{id:"3554",slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Xueyan Wang, Seonghee Lee, Jichun Wang, Jianbing Ma, Tracy\nBianco and Yulin Jia",authors:[{id:"168971",title:"Dr.",name:"Yulin",middleName:null,surname:"Jia",slug:"yulin-jia",fullName:"Yulin Jia"}]},{id:"68945",doi:"10.5772/intechopen.88434",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:1494,totalCrossrefCites:28,totalDimensionsCites:46,abstract:"Crop yield is mainly influenced by climatic factors, agronomic factors, pests and nutrient availability in the soil. Stress is any adverse environmental condition that hampers proper growth of plant. Abiotic stress creates adverse effect on multiple procedures of morphology, biochemistry and physiology that are directly connected with growth and yield of plant. Abiotic stress are quantitative trait hence genes linked to these traits can be identified and used to select desirable alleles responsible for tolerance in plant. Plants can initiate a number of molecular, cellular and physiological modifications to react to and adapt to abiotic stress. Crop productivity is significantly affected by drought, salinity and cold. Abiotic stress reduce water availability to plant roots by increasing water soluble salts in soil and plants suffer from increased osmotic pressure outside the root. Physiological changes include lowering of leaf osmotic potential, water potential and relative water content, creation of nutritional imbalance, enhancing relative stress injury or one or more combination of these factors. Morphological and biochemical changes include changes in root and shoot length, number of leaves, secondary metabolite (glycine betaine, proline, MDA, abscisic acid) accumulation in plant, source and sink ratio. Proposed chapter will concentrate on enhancing plant response to abiotic stress and contemporary breeding application to increasing stress tolerance.",book:{id:"9345",slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"45540",doi:"10.5772/56621",title:"Genes and QTLs for Rice Grain Quality Improvement",slug:"genes-and-qtls-for-rice-grain-quality-improvement",totalDownloads:3737,totalCrossrefCites:21,totalDimensionsCites:46,abstract:null,book:{id:"3554",slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Jinsong Bao",authors:[{id:"52135",title:"Dr.",name:"Jinsong",middleName:null,surname:"Bao",slug:"jinsong-bao",fullName:"Jinsong Bao"}]}],mostDownloadedChaptersLast30Days:[{id:"70658",title:"Factors Affecting Yield of Crops",slug:"factors-affecting-yield-of-crops",totalDownloads:4044,totalCrossrefCites:25,totalDimensionsCites:40,abstract:"A good understanding of dynamics involved in food production is critical for the improvement of food security. It has been demonstrated that an increase in crop yields significantly reduces poverty. Yield, the mass of harvest crop product in a specific area, is influenced by several factors. These factors are grouped in three basic categories known as technological (agricultural practices, managerial decision, etc.), biological (diseases, insects, pests, weeds) and environmental (climatic condition, soil fertility, topography, water quality, etc.). These factors account for yield differences from one region to another worldwide. The current chapter will discuss each of these three basic factors as well as providing some recommendations for overcoming them. In addition, it will provide the importance of climate-smart agriculture in the increase of crop yields while facilitating the achievement of crop production in safe environment. This goes in line with the second goal of 2030 Agenda for Sustainable Development of United Nations in transforming our world formulated as end hunger, achieve food security, improve nutrition and promote sustainable agriculture.",book:{id:"8153",slug:"agronomy-climate-change-food-security",title:"Agronomy",fullTitle:"Agronomy - Climate Change & Food Security"},signatures:"Tandzi Ngoune Liliane and Mutengwa Shelton Charles",authors:[{id:"313819",title:"Dr.",name:"Liliane",middleName:null,surname:"Tandzi",slug:"liliane-tandzi",fullName:"Liliane Tandzi"},{id:"314316",title:"Prof.",name:"Charles Shelton",middleName:null,surname:"Mutengwa",slug:"charles-shelton-mutengwa",fullName:"Charles Shelton Mutengwa"}]},{id:"40178",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:23030,totalCrossrefCites:81,totalDimensionsCites:146,abstract:null,book:{id:"3060",slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"60074",title:"Pollen Germination in vitro",slug:"pollen-germination-in-vitro",totalDownloads:2759,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Pollen germination in vitro is a reliable method to test the pollen viability. It also addresses many basic questions in sexual reproduction and particularly useful in wide hybridization. Many pollen germination medium ranging from simple sugars to complex one having vitamins, growth regulators, etc. in addition to various minerals have been standardized to germinate pollen artificially. The different media, successful pollen germination methods, procedures from pollen germination studies with wheat, rye, brinjal, pigeonpea and its wild relatives are discussed.",book:{id:"6659",slug:"pollination-in-plants",title:"Pollination in Plants",fullTitle:"Pollination in Plants"},signatures:"Jayaprakash P",authors:[{id:"235465",title:"Dr.",name:"Jayaprakash",middleName:null,surname:"P",slug:"jayaprakash-p",fullName:"Jayaprakash P"}]},{id:"62376",title:"Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development",slug:"genotype-environment-interaction-a-prerequisite-for-tomato-variety-development",totalDownloads:2297,totalCrossrefCites:1,totalDimensionsCites:6,abstract:"Tomato (Solanum lycopersicum L.) is the second most important vegetable crop in the world due to its high level of nutrition particularly in vitamins and antioxidants. It is grown in several ecologies of the world due to its adaptability and ease of cultivation. Besides field conditions, tomatoes are grown in controlled environments which range from hydroponics and simple high tunnel structures to highly automated screen houses in advanced countries. However, the yield and quality of the fruits are highly influenced by the environment. This results in unpredictable performances in different growing environments in terms of quality, a phenomenon known as genotype by environment (G × E) interaction which confounds selection efficiency. Various approaches are employed by plant breeders to evaluate and address the challenges posed by genotype by environment interaction. This chapter discusses various field and controlled environments for growing tomatoes and the effect of these environments on the performance of the crop. The various types of genotype × environment interactions and their effect of the tomato plant are discussed. Finally, efforts are made to suggest ways and methods of mitigating the confounding effects of genotype × environment interaction including statistical approaches.",book:{id:"6422",slug:"recent-advances-in-tomato-breeding-and-production",title:"Recent Advances in Tomato Breeding and Production",fullTitle:"Recent Advances in Tomato Breeding and Production"},signatures:"Michael Kwabena Osei, Benjamin Annor, Joseph Adjebeng-\nDanquah, Agyemang Danquah, Eric Danquah, Essie Blay and Hans\nAdu-Dapaah",authors:[{id:"204223",title:"Dr.",name:"Agyemang",middleName:null,surname:"Danquah",slug:"agyemang-danquah",fullName:"Agyemang Danquah"},{id:"217531",title:"M.Sc.",name:"Michael Kwabena",middleName:null,surname:"Osei",slug:"michael-kwabena-osei",fullName:"Michael Kwabena Osei"},{id:"217760",title:"Dr.",name:"Joseph",middleName:null,surname:"Adjebeng-Danquah",slug:"joseph-adjebeng-danquah",fullName:"Joseph Adjebeng-Danquah"},{id:"217768",title:"MSc.",name:"Benjamin",middleName:null,surname:"Annor",slug:"benjamin-annor",fullName:"Benjamin Annor"},{id:"247378",title:"Dr.",name:"Eric Y.",middleName:null,surname:"Danquah",slug:"eric-y.-danquah",fullName:"Eric Y. Danquah"},{id:"248095",title:"Prof.",name:"Essie",middleName:null,surname:"Blay",slug:"essie-blay",fullName:"Essie Blay"},{id:"248096",title:"Prof.",name:"Hans",middleName:null,surname:"Adu-Dapaah",slug:"hans-adu-dapaah",fullName:"Hans Adu-Dapaah"}]},{id:"45153",title:"Irrigation of Sandy Soils, Basics and Scheduling",slug:"irrigation-of-sandy-soils-basics-and-scheduling",totalDownloads:5600,totalCrossrefCites:4,totalDimensionsCites:10,abstract:null,book:{id:"3357",slug:"crop-production",title:"Crop Production",fullTitle:"Crop Production"},signatures:"Mohamed S. Alhammadi and Ali M. Al-Shrouf",authors:[{id:"78245",title:"Dr.",name:"Mohamed",middleName:"Salman",surname:"Alhammadi",slug:"mohamed-alhammadi",fullName:"Mohamed Alhammadi"},{id:"159904",title:"Mr.",name:"Ali",middleName:null,surname:"Al-Shrouf",slug:"ali-al-shrouf",fullName:"Ali Al-Shrouf"}]}],onlineFirstChaptersFilter:{topicId:"29",limit:6,offset:0},onlineFirstChaptersCollection:[{id:"81888",title:"Reducing Soil Compaction from Equipment to Enhance Agricultural Sustainability",slug:"reducing-soil-compaction-from-equipment-to-enhance-agricultural-sustainability",totalDownloads:16,totalDimensionsCites:0,doi:"10.5772/intechopen.104489",abstract:"The compaction of agricultural soils cannot be solved, only managed. As a compressible media, soil travel without causing some collapse of the existing structure is impossible. If left uncorrected, farmers can see up to a 50% reduction in yield from long-term compaction. This chapter will describe the effects of soil compaction on the environment, crop quality, and economic sustainability. The base causes will be examined, along with the engineering designs for vehicles that minimize the problem. The tracks versus tires debate will be thoroughly discussed, and the advantages and disadvantages of each system will be detailed. It will be shown that although tires represent the likely current best economic option for vehicle support, the potential of tracks to reduce compaction has been fully exploited. The advantages of four-wheel drive vehicles in reducing soil compaction will be shown, along with the mitigation potential of independently driven wheels and active soil interaction feedback loops. The design of crop production tillage equipment and tillage tool working points will be explored, along with the concept of critical tillage depth. Equipment for compaction relief will also be discussed, as will the sustainable agricultural protocols of cover crops, crop rotation, and controlled traffic farming.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Michael M. Boland, Young U. Choi, Daniel G. Foley, Matthew S. Gobel, Nathan C. Sprague, Santiago Guevara-Ocana, Yury A. Kuleshov and Robert M. Stwalley III"},{id:"81378",title:"Sustainability-Based Review of Irrigation Schemes Performance for Sustainable Crop Production in Nigeria",slug:"sustainability-based-review-of-irrigation-schemes-performance-for-sustainable-crop-production-in-nig",totalDownloads:31,totalDimensionsCites:0,doi:"10.5772/intechopen.103980",abstract:"Irrigated agriculture has been identified as an important practice to achieving food security and socio-economic development in the face of rapid population growth and climatic uncertainties. In northern Nigeria, irrigation has long been identified as the key to achieving the much-desired increase in food production to meet the ever-increasing population. However, the existing irrigation schemes encountered several challenges coming from different dimensions including economic, social, environmental, institutional and technological. To attain sustainable crop production, this paper attempts to uncover the underline challenges confronting irrigation schemes in northern Nigeria that cut across sustainability pillars. The findings revealed that irrigation schemes contributed immensely toward achieving food security and improving the wellbeing of rural dwellers. However, the huge investment in large- and medium-scale irrigation schemes have resulted in massive economic losses. This could be attributed to their under-utilization, poor management and abandonment although few ones are performing remarkably well. The study recommends the need to adopt new water allocation and application methods that can improve water use efficiency, users-managers join approach (participatory), effective and competent institutions which include improved monitoring, evaluation and surveillance systems, frequent policy review to suit the situation, law enforcement, and timely sensitization and awareness campaigns.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Nura Jafar Shanono, Nura Yahaya Usman, Mu’azu Dantala Zakari, Habibu Ismail, Shehu Idris Umar, Sunusi Abubakar Amin and Nuraddeen Mukhtar Nasidi"},{id:"81274",title:"Toward the Recent Advances in Nutrient Use Efficiency (NUE): Strategies to Improve Phosphorus Availability to Plants",slug:"toward-the-recent-advances-in-nutrient-use-efficiency-nue-strategies-to-improve-phosphorus-availabil",totalDownloads:43,totalDimensionsCites:0,doi:"10.5772/intechopen.102595",abstract:"Achieving high nutrient use efficiency (NUE) and high crop productivity has become a challenge with increased global demand for food, depletion of natural resources, and deterioration of environmental conditions. Higher NUE by plants could reduce fertilizer input costs, decrease the rate of nutrient losses, and enhance crop yields. Nitrogen and Phosphorus are the most limiting nutrients for crop production in many of the world’s agricultural areas, and their efficient use is important for the economic sustainability of cropping systems. Furthermore, the dynamic nature of N and P in soil-plant systems creates a unique and challenging environment for its efficient management. Although numerous fertilizer recommendation methods have been proposed to improve NUE, technologies and innovative management practices are still lacking. Therefore, maximizing crop phosphorus (P) use efficiency (PUE) would be helpful in reducing the use of inorganic phosphorus fertilizers and their escape in the environment for sustainable agriculture. Improvement of PUE in cropping systems can be achieved through two main strategies: optimizing agronomic practice and breeding nutrient efficient crop cultivars that improves P-acquisition and -utilization efficiency. These strategies are needed for future food security and sustainable agriculture. The major revised points are the following: concept of NUE, application of nutrient stewardship, cereal-legume intercropping, regulating soil pH, etc., for enhancing phyto-availability of P and breeding P-efficient crop cultivars that can produce more biomass with lesser P costs and that acquire more P in P-stress condition. These approaches consider economic, social, and environmental dimensions essential to sustainable agricultural systems and afford a suitable context for specific NUE indicators.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Addisu Ebbisa"},{id:"81179",title:"Crop Diversification an Effective Strategy for Sustainable Agriculture Development",slug:"crop-diversification-an-effective-strategy-for-sustainable-agriculture-development",totalDownloads:49,totalDimensionsCites:0,doi:"10.5772/intechopen.102635",abstract:"Sustainable agricultural practices involve a variety of approaches. The most important approached for sustainable agriculture development is crop diversification. It allowing the farmers to employ biological cycles to minimize inputs, conserve the resource base, maximize yields and also reduce the risk due to ecological and environmental factors. It serves as an important opportunity to augment income and employment generation for rural communities. Crop diversification promotes the interaction of beneficial soil bacteria, interrupts the disease cycle, and reduces the quantity of weeds. Crop diversification boosts land-use efficiency and crop output by improving the physical and chemical qualities of soil. Crop diversification shows a lot of scope to alleviating the problems such as resurgence of insects-pests and weeds, soil degradation, environmental pollution, soil salinity, decline farm profit and climate change. Crop diversification through crop intensification system enhanced the net returns, B:C ratio, and overall system productivity of a farm. In order to achieve the benefits of crop diversification farmers are shifting from low value low yielding crops to high value high yielding crops. Thus, crop diversification has the sound capacity for achieving the goal of nutritional security, income growth, food security, employment generation and sustainable agriculture development.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Anamika Barman, Priyanka Saha, Shashank Patel and Anurag Bera"},{id:"80867",title:"Potential Applications of Rhizobacteria as Eco-Friendly Biological Control, Plant Growth Promotion and Soil Metal Bioremediation",slug:"potential-applications-of-rhizobacteria-as-eco-friendly-biological-control-plant-growth-promotion-an",totalDownloads:66,totalDimensionsCites:0,doi:"10.5772/intechopen.102657",abstract:"Modern agriculture has an immense problem in the depletion of agricultural productivity owing to a variety of biotic and abiotic stresses. Agriculture’s sustainability and safety are dependent on ecologically friendly practices. Plant rhizobia have been proven to have an important role in disease control, as well as promoting plant growth, productivity, and biomass. Rhizobacteria are soil bacteria that live on the root surface and either directly or indirectly contribute to plant development. Rhizobia are used to induce mediated immune resistance through the manufacture of lytic enzymes, antibiotics, phytoalexins, phytohormone, metabolites. It supports the growth of plants through nitrogen fixation, nutrient enrichment, phosphate solubilization and phytohormone synthesis. In addition, it supports plants during different stresses such as temperature, osmotic, heavy metal and oxidative stress. Plant growth-promoting rhizobacteria have the ability to control heavy metal pollution of soils as well as enhancing plant growth in these soils. Efficient bioremediation is possible by using rhizobacterial inoculants, still, the distribution and functioning of microbes in the rhizosphere need to be fully explored. This review focuses on the effectiveness, biomonitoring processes and function in promoting plant development. Rhizobia application can be considered an alternative method for the improvement of biodiversity, agriculture, and the environment.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Nafeesa Farooq Khan, Aatifa Rasool, Sheikh Mansoor, Sana Saleem, Tawseef Rehman Baba, Sheikh Maurifatul Haq, Sheikh Aafreen Rehman, Charles Oluwaseun Adetunji and Simona Mariana Popescu"},{id:"80653",title:"Heavy Metal Contamination in Vegetables and Their Toxic Effects on Human Health",slug:"heavy-metal-contamination-in-vegetables-and-their-toxic-effects-on-human-health",totalDownloads:119,totalDimensionsCites:1,doi:"10.5772/intechopen.102651",abstract:"Vegetables are a prevalent nutrition for people all over the world because they are high in important nutrients, antioxidants, and metabolites that function as buffers for acidic compounds created during digestion. Vegetables, on the other hand, absorbed both vital and poisonous substances through the soil. Possible human health concerns, including as cancer and renal damage, have been linked to the consumption of heavy metal-contaminated vegetables (HMs). Heavy metals like Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb, and Hg were found in high concentrations in popular vegetables such as Amaranthus tricolour L., Chenopodium album L., Spinacia oleracea, Coriandrum sativum, Solanum lycopersicum, and Solanum melongena. The toxicity, fortification, health hazard, and heavy metals sources grown in soil are detailed in this review study.",book:{id:"11357",title:"Sustainable Crop Production - Recent Advances",coverURL:"https://cdn.intechopen.com/books/images_new/11357.jpg"},signatures:"Seema Manwani, Vanisree C.R., Vibha Jaiman, Kumud Kant Awasthi, Chandra Shekhar Yadav, Mahipal Singh Sankhla, Pritam P. Pandit and Garima Awasthi"}],onlineFirstChaptersTotal:7},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}},{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}}]},series:{item:{id:"13",title:"Veterinary Medicine and Science",doi:"10.5772/intechopen.73681",issn:"2632-0517",scope:"Paralleling similar advances in the medical field, astounding advances occurred in Veterinary Medicine and Science in recent decades. These advances have helped foster better support for animal health, more humane animal production, and a better understanding of the physiology of endangered species to improve the assisted reproductive technologies or the pathogenesis of certain diseases, where animals can be used as models for human diseases (like cancer, degenerative diseases or fertility), and even as a guarantee of public health. Bridging Human, Animal, and Environmental health, the holistic and integrative “One Health” concept intimately associates the developments within those fields, projecting its advancements into practice. This book series aims to tackle various animal-related medicine and sciences fields, providing thematic volumes consisting of high-quality significant research directed to researchers and postgraduates. It aims to give us a glimpse into the new accomplishments in the Veterinary Medicine and Science field. By addressing hot topics in veterinary sciences, we aim to gather authoritative texts within each issue of this series, providing in-depth overviews and analysis for graduates, academics, and practitioners and foreseeing a deeper understanding of the subject. Forthcoming texts, written and edited by experienced researchers from both industry and academia, will also discuss scientific challenges faced today in Veterinary Medicine and Science. In brief, we hope that books in this series will provide accessible references for those interested or working in this field and encourage learning in a range of different topics.",coverUrl:"https://cdn.intechopen.com/series/covers/13.jpg",latestPublicationDate:"June 29th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:3,paginationItems:[{id:"19",title:"Animal Science",coverUrl:"https://cdn.intechopen.com/series_topics/covers/19.jpg",isOpenForSubmission:!0,editor:{id:"259298",title:"Dr.",name:"Edward",middleName:null,surname:"Narayan",slug:"edward-narayan",fullName:"Edward Narayan",profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",biography:"Dr. Edward Narayan graduated with Ph.D. degree in Biology from the University of the South Pacific and pioneered non-invasive reproductive and stress endocrinology tools for amphibians - the novel development and validation of non-invasive enzyme immunoassays for the evaluation of reproductive hormonal cycle and stress hormone responses to environmental stressors. \nDr. Narayan leads the Stress Lab (Comparative Physiology and Endocrinology) at the University of Queensland. A dynamic career research platform which is based on the thematic areas of comparative vertebrate physiology, stress endocrinology, reproductive endocrinology, animal health and welfare, and conservation biology. \nEdward has supervised 40 research students and published over 60 peer reviewed research.",institutionString:null,institution:{name:"University of Queensland",institutionURL:null,country:{name:"Australia"}}},editorTwo:null,editorThree:null},{id:"20",title:"Animal Nutrition",coverUrl:"https://cdn.intechopen.com/series_topics/covers/20.jpg",isOpenForSubmission:!0,editor:{id:"175967",title:"Dr.",name:"Manuel",middleName:null,surname:"Gonzalez Ronquillo",slug:"manuel-gonzalez-ronquillo",fullName:"Manuel Gonzalez Ronquillo",profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",biography:"Dr. Manuel González Ronquillo obtained his doctorate degree from the University of Zaragoza, Spain, in 2001. He is a research professor at the Faculty of Veterinary Medicine and Animal Husbandry, Autonomous University of the State of Mexico. He is also a level-2 researcher. He received a Fulbright-Garcia Robles fellowship for a postdoctoral stay at the US Dairy Forage Research Center, Madison, Wisconsin, USA in 2008–2009. He received grants from Alianza del Pacifico for a stay at the University of Magallanes, Chile, in 2014, and from Consejo Nacional de Ciencia y Tecnología (CONACyT) to work in the Food and Agriculture Organization’s Animal Production and Health Division (AGA), Rome, Italy, in 2014–2015. He has collaborated with researchers from different countries and published ninety-eight journal articles. He teaches various degree courses in zootechnics, sheep production, and agricultural sciences and natural resources.\n\nDr. Ronquillo’s research focuses on the evaluation of sustainable animal diets (StAnD), using native resources of the region, decreasing carbon footprint, and applying meta-analysis and mathematical models for a better understanding of animal production.",institutionString:null,institution:{name:"Universidad Autónoma del Estado de México",institutionURL:null,country:{name:"Mexico"}}},editorTwo:null,editorThree:null},{id:"28",title:"Animal Reproductive Biology and Technology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/28.jpg",isOpenForSubmission:!0,editor:{id:"177225",title:"Prof.",name:"Rosa Maria Lino Neto",middleName:null,surname:"Pereira",slug:"rosa-maria-lino-neto-pereira",fullName:"Rosa Maria Lino Neto Pereira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bS9wkQAC/Profile_Picture_1624519982291",biography:"Rosa Maria Lino Neto Pereira (DVM, MsC, PhD and) is currently a researcher at the Genetic Resources and Biotechnology Unit of the National Institute of Agrarian and Veterinarian Research (INIAV, Portugal). She is the head of the Reproduction and Embryology Laboratories and was lecturer of Reproduction and Reproductive Biotechnologies at Veterinary Medicine Faculty. She has over 25 years of experience working in reproductive biology and biotechnology areas with a special emphasis on embryo and gamete cryopreservation, for research and animal genetic resources conservation, leading research projects with several peer-reviewed papers. Rosa Pereira is member of the ERFP-FAO Ex situ Working Group and of the Management Commission of the Portuguese Animal Germplasm Bank.",institutionString:"The National Institute for Agricultural and Veterinary Research. Portugal",institution:null},editorTwo:null,editorThree:null}]},overviewPageOFChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}}]},overviewPagePublishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",biography:"Rita Payan Carreira earned her Veterinary Degree from the Faculty of Veterinary Medicine in Lisbon, Portugal, in 1985. She obtained her Ph.D. in Veterinary Sciences from the University of Trás-os-Montes e Alto Douro, Portugal. After almost 32 years of teaching at the University of Trás-os-Montes and Alto Douro, she recently moved to the University of Évora, Department of Veterinary Medicine, where she teaches in the field of Animal Reproduction and Clinics. Her primary research areas include the molecular markers of the endometrial cycle and the embryo–maternal interaction, including oxidative stress and the reproductive physiology and disorders of sexual development, besides the molecular determinants of male and female fertility. She often supervises students preparing their master's or doctoral theses. She is also a frequent referee for various journals.",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}]},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}]},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",biography:"Naceur M’HAMDI is Associate Professor at the National Agronomic Institute of Tunisia, University of Carthage. He is also Member of the Laboratory of genetic, animal and feed resource and member of Animal science Department of INAT. He graduated from Higher School of Agriculture of Mateur, University of Carthage, in 2002 and completed his masters in 2006. Dr. M’HAMDI completed his PhD thesis in Genetic welfare indicators of dairy cattle at Higher Institute of Agronomy of Chott-Meriem, University of Sousse, in 2011. He worked as assistant Professor of Genetic, biostatistics and animal biotechnology at INAT since 2013.",institutionString:null,institution:null}]},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",biography:"Juan Carlos Gardón Poggi received University degree from the Faculty of Agrarian Science in Argentina, in 1983. Also he received Masters Degree and PhD from Córdoba University, Spain. He is currently a Professor at the Catholic University of Valencia San Vicente Mártir, at the Department of Medicine and Animal Surgery. He teaches diverse courses in the field of Animal Reproduction and he is the Director of the Veterinary Farm. He also participates in academic postgraduate activities at the Veterinary Faculty of Murcia University, Spain. His research areas include animal physiology, physiology and biotechnology of reproduction either in males or females, the study of gametes under in vitro conditions and the use of ultrasound as a complement to physiological studies and development of applied biotechnologies. Routinely, he supervises students preparing their doctoral, master thesis or final degree projects.",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}]}]},openForSubmissionBooks:{paginationCount:6,paginationItems:[{id:"11475",title:"Food Security Challenges and Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11475.jpg",hash:"090302a30e461cee643ec49675c811ec",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 5th 2022",isOpenForSubmission:!0,editors:[{id:"292145",title:"Dr.",name:"Muhammad",surname:"Haseeb Ahmad",slug:"muhammad-haseeb-ahmad",fullName:"Muhammad Haseeb Ahmad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11450",title:"Environmental Impacts of COVID-19 Pandemic on the World",coverURL:"https://cdn.intechopen.com/books/images_new/11450.jpg",hash:"a58c7b02d07903004be70f744f2e1835",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"63465",title:"Prof.",name:"Mohamed Nageeb",surname:"Rashed",slug:"mohamed-nageeb-rashed",fullName:"Mohamed Nageeb Rashed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11477",title:"Public Economics - New Perspectives and Uncertainty",coverURL:"https://cdn.intechopen.com/books/images_new/11477.jpg",hash:"a8e6c515dc924146fbd2712eb4e7d118",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 27th 2022",isOpenForSubmission:!0,editors:[{id:"414400",title:"Dr.",name:"Habtamu",surname:"Alem",slug:"habtamu-alem",fullName:"Habtamu Alem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11457",title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",hash:"8df7150b01ae754024c65d1a62f190d9",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"317087",title:"Dr.",name:"Pavel",surname:"Samec",slug:"pavel-samec",fullName:"Pavel Samec"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11474",title:"Quality of Life Interventions - Magnitude of Effect and Transferability",coverURL:"https://cdn.intechopen.com/books/images_new/11474.jpg",hash:"5a6bcdaf5ee144d043bcdab893ff9e1c",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 7th 2022",isOpenForSubmission:!0,editors:[{id:"245319",title:"Ph.D.",name:"Sage",surname:"Arbor",slug:"sage-arbor",fullName:"Sage Arbor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11473",title:"Social Inequality - Structure and Social Processes",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",hash:"cefab077e403fd1695fb2946e7914942",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"July 13th 2022",isOpenForSubmission:!0,editors:[{id:"313341",title:"Ph.D.",name:"Yaroslava",surname:"Robles-Bykbaev",slug:"yaroslava-robles-bykbaev",fullName:"Yaroslava Robles-Bykbaev"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:14,paginationItems:[{id:"82457",title:"Canine Hearing Management",doi:"10.5772/intechopen.105515",signatures:"Peter M. Skip Scheifele, Devan Marshall, Stephen Lee, Paul Reid, Thomas McCreery and David Byrne",slug:"canine-hearing-management",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"82285",title:"Parvovirus Vectors: The Future of Gene Therapy",doi:"10.5772/intechopen.105085",signatures:"Megha Gupta",slug:"parvovirus-vectors-the-future-of-gene-therapy",totalDownloads:4,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81793",title:"Canine parvovirus-2: An Emerging Threat to Young Pets",doi:"10.5772/intechopen.104846",signatures:"Mithilesh Singh, Rajendran Manikandan, Ujjwal Kumar De, Vishal Chander, Babul Rudra Paul, Saravanan Ramakrishnan and Darshini Maramreddy",slug:"canine-parvovirus-2-an-emerging-threat-to-young-pets",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"81271",title:"The Diversity of Parvovirus Telomeres",doi:"10.5772/intechopen.102684",signatures:"Marianne Laugel, Emilie Lecomte, Eduard Ayuso, Oumeya Adjali, Mathieu Mével and Magalie Penaud-Budloo",slug:"the-diversity-of-parvovirus-telomeres",totalDownloads:38,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Recent Advances in Canine Medicine",coverURL:"https://cdn.intechopen.com/books/images_new/11580.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"79209",title:"Virtual Physiology: A Tool for the 21st Century",doi:"10.5772/intechopen.99671",signatures:"Carmen Nóbrega, Maria Aires Pereira, Catarina Coelho, Isabel Brás, Ana Cristina Mega, Carla Santos, Fernando Esteves, Rita Cruz, Ana I. Faustino-Rocha, Paula A. Oliveira, João Mesquita and Helena Vala",slug:"virtual-physiology-a-tool-for-the-21st-century",totalDownloads:153,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78849",title:"Application of Vermicompost Fertilizer in Aquaculture Nutrition: Review",doi:"10.5772/intechopen.100326",signatures:"Sonnia Nzilani Musyoka and Rita Nairuti",slug:"application-of-vermicompost-fertilizer-in-aquaculture-nutrition-review",totalDownloads:71,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Animal Nutrition - Annual Volume 2022",coverURL:"https://cdn.intechopen.com/books/images_new/11416.jpg",subseries:{id:"20",title:"Animal Nutrition"}}},{id:"78543",title:"Pulmonary Vein: Embryology, Anatomy, Function and Disease",doi:"10.5772/intechopen.100051",signatures:"Chan I-Ping and Hsueh Tung",slug:"pulmonary-vein-embryology-anatomy-function-and-disease",totalDownloads:182,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78564",title:"Anatomy of the Rhesus Monkey (Macaca mulatta): The Essentials for the Biomedical Researcher",doi:"10.5772/intechopen.99067",signatures:"Christophe Casteleyn and Jaco Bakker",slug:"anatomy-of-the-rhesus-monkey-macaca-mulatta-the-essentials-for-the-biomedical-researcher",totalDownloads:348,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"77999",title:"Bronchus-Associated Lymphoid Tissue (BALT) Histology and Its Role in Various Pathologies",doi:"10.5772/intechopen.99366",signatures:"Tuba Parlak Ak",slug:"bronchus-associated-lymphoid-tissue-balt-histology-and-its-role-in-various-pathologies",totalDownloads:212,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}},{id:"78242",title:"Genomic Instability and Cyto-Genotoxic Damage in Animal Species",doi:"10.5772/intechopen.99685",signatures:"María Evarista Arellano-García, Olivia Torres-Bugarín, Maritza Roxana García-García, Daniel García-Flores, Yanis Toledano-Magaña, Cinthya Sofia Sanabria-Mora, Sandra Castro-Gamboa and Juan Carlos García-Ramos",slug:"genomic-instability-and-cyto-genotoxic-damage-in-animal-species",totalDownloads:150,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Updates on Veterinary Anatomy and Physiology",coverURL:"https://cdn.intechopen.com/books/images_new/10665.jpg",subseries:{id:"19",title:"Animal Science"}}}]},subseriesFiltersForOFChapters:[{caption:"Animal Nutrition",value:20,count:1,group:"subseries"},{caption:"Animal Science",value:19,count:13,group:"subseries"}],publishedBooks:{paginationCount:12,paginationItems:[{type:"book",id:"9883",title:"Biosensors",subtitle:"Current and Novel Strategies for Biosensing",coverURL:"https://cdn.intechopen.com/books/images_new/9883.jpg",slug:"biosensors-current-and-novel-strategies-for-biosensing",publishedDate:"May 5th 2021",editedByType:"Edited by",bookSignature:"Luis Jesús Villarreal-Gómez and Ana Leticia Iglesias",hash:"028f3e5dbf9c32590183ac4b4f0a2825",volumeInSeries:11,fullTitle:"Biosensors - Current and Novel Strategies for Biosensing",editors:[{id:"126286",title:"Dr.",name:"Luis",middleName:"Jesús",surname:"Villarreal-Gómez",slug:"luis-villarreal-gomez",fullName:"Luis Villarreal-Gómez",profilePictureURL:"https://mts.intechopen.com/storage/users/126286/images/system/126286.jpg",institutionString:null,institution:{name:"Autonomous University of Baja California",institutionURL:null,country:{name:"Mexico"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",slug:"biomedical-signal-and-image-processing",publishedDate:"April 14th 2021",editedByType:"Edited by",bookSignature:"Yongxia Zhou",hash:"22b87a09bd6df065d78c175235d367c8",volumeInSeries:10,fullTitle:"Biomedical Signal and Image Processing",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou",profilePictureURL:"https://mts.intechopen.com/storage/users/259308/images/system/259308.jpeg",institutionString:"University of Southern California",institution:{name:"University of Southern California",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9973",title:"Data Acquisition",subtitle:"Recent Advances and Applications in Biomedical Engineering",coverURL:"https://cdn.intechopen.com/books/images_new/9973.jpg",slug:"data-acquisition-recent-advances-and-applications-in-biomedical-engineering",publishedDate:"March 17th 2021",editedByType:"Edited by",bookSignature:"Bartłomiej Płaczek",hash:"75ea6cdd241216c9db28aa734ab34446",volumeInSeries:9,fullTitle:"Data Acquisition - Recent Advances and Applications in Biomedical Engineering",editors:[{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",institutionString:"University of Silesia",institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9905",title:"Biometric Systems",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9905.jpg",slug:"biometric-systems",publishedDate:"February 10th 2021",editedByType:"Edited by",bookSignature:"Muhammad Sarfraz",hash:"c730560dd2e3837a03407b3a86b0ef2a",volumeInSeries:8,fullTitle:"Biometric Systems",editors:[{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",institutionString:"Kuwait University",institution:{name:"Kuwait University",institutionURL:null,country:{name:"Kuwait"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8622",title:"Peptide Synthesis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8622.jpg",slug:"peptide-synthesis",publishedDate:"December 18th 2019",editedByType:"Edited by",bookSignature:"Jaya T. Varkey",hash:"de9fa48c5248dbfb581825b8c74f5623",volumeInSeries:0,fullTitle:"Peptide Synthesis",editors:[{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",institutionString:"St. Teresa’s College",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7497",title:"Computer Vision in Dentistry",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7497.jpg",slug:"computer-vision-in-dentistry",publishedDate:"September 18th 2019",editedByType:"Edited by",bookSignature:"Monika Elzbieta Machoy",hash:"1e9812cebd46ef9e28257f3e96547f6a",volumeInSeries:7,fullTitle:"Computer Vision in Dentistry",editors:[{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8633",title:"Novel Diagnostic Methods in Ophthalmology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8633.jpg",slug:"novel-diagnostic-methods-in-ophthalmology",publishedDate:"September 4th 2019",editedByType:"Edited by",bookSignature:"Anna Nowinska",hash:"da2c90e8db647ead30504defce3fb5d3",volumeInSeries:6,fullTitle:"Novel Diagnostic Methods in Ophthalmology",editors:[{id:"261466",title:"Dr.",name:"Anna",middleName:"Karolina",surname:"Nowińska",slug:"anna-nowinska",fullName:"Anna Nowińska",profilePictureURL:"https://mts.intechopen.com/storage/users/261466/images/system/261466.jpeg",institutionString:"Medical University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7437",title:"Nanomedicines",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7437.jpg",slug:"nanomedicines",publishedDate:"February 13th 2019",editedByType:"Edited by",bookSignature:"Muhammad Akhyar Farrukh",hash:"0e1f5f6258f074c533976c4f4d248568",volumeInSeries:5,fullTitle:"Nanomedicines",editors:[{id:"63182",title:"Dr.",name:"Muhammad Akhyar",middleName:null,surname:"Farrukh",slug:"muhammad-akhyar-farrukh",fullName:"Muhammad Akhyar Farrukh",profilePictureURL:"https://mts.intechopen.com/storage/users/63182/images/system/63182.png",institutionString:"Forman Christian College",institution:{name:"Forman Christian College",institutionURL:null,country:{name:"Pakistan"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6843",title:"Biomechanics",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6843.jpg",slug:"biomechanics",publishedDate:"January 30th 2019",editedByType:"Edited by",bookSignature:"Hadi Mohammadi",hash:"85132976010be1d7f3dbd88662b785e5",volumeInSeries:4,fullTitle:"Biomechanics",editors:[{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",institutionURL:null,country:{name:"Canada"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7560",title:"Non-Invasive Diagnostic Methods",subtitle:"Image Processing",coverURL:"https://cdn.intechopen.com/books/images_new/7560.jpg",slug:"non-invasive-diagnostic-methods-image-processing",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Mariusz Marzec and Robert Koprowski",hash:"d92fd8cf5a90a47f2b8a310837a5600e",volumeInSeries:3,fullTitle:"Non-Invasive Diagnostic Methods - Image Processing",editors:[{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",institutionString:"University of Silesia",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7218",title:"OCT",subtitle:"Applications in Ophthalmology",coverURL:"https://cdn.intechopen.com/books/images_new/7218.jpg",slug:"oct-applications-in-ophthalmology",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Michele Lanza",hash:"e3a3430cdfd6999caccac933e4613885",volumeInSeries:2,fullTitle:"OCT - Applications in Ophthalmology",editors:[{id:"240088",title:"Prof.",name:"Michele",middleName:null,surname:"Lanza",slug:"michele-lanza",fullName:"Michele Lanza",profilePictureURL:"https://mts.intechopen.com/storage/users/240088/images/system/240088.png",institutionString:'University of Campania "Luigi Vanvitelli"',institution:{name:'University of Campania "Luigi Vanvitelli"',institutionURL:null,country:{name:"Italy"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6692",title:"Medical and Biological Image Analysis",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6692.jpg",slug:"medical-and-biological-image-analysis",publishedDate:"July 4th 2018",editedByType:"Edited by",bookSignature:"Robert Koprowski",hash:"e75f234a0fc1988d9816a94e4c724deb",volumeInSeries:1,fullTitle:"Medical and Biological Image Analysis",editors:[{id:"50150",title:"Prof.",name:"Robert",middleName:null,surname:"Koprowski",slug:"robert-koprowski",fullName:"Robert Koprowski",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002aYTYNQA4/Profile_Picture_1630478535317",institutionString:null,institution:{name:"University of Silesia",institutionURL:null,country:{name:"Poland"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Biotechnology - Biosensors, Biomaterials and Tissue Engineering",value:9,count:1},{group:"subseries",caption:"Bioinspired Technology and Biomechanics",value:8,count:2},{group:"subseries",caption:"Bioinformatics and Medical Informatics",value:7,count:9}],publicationYearFilters:[{group:"publicationYear",caption:"2021",value:2021,count:4},{group:"publicationYear",caption:"2019",value:2019,count:5},{group:"publicationYear",caption:"2018",value:2018,count:3}],authors:{paginationCount:148,paginationItems:[{id:"165328",title:"Dr.",name:"Vahid",middleName:null,surname:"Asadpour",slug:"vahid-asadpour",fullName:"Vahid Asadpour",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/165328/images/system/165328.jpg",biography:"Vahid Asadpour, MS, Ph.D., is currently with the Department of Research and Evaluation, Kaiser Permanente Southern California. He has both an MS and Ph.D. in Biomedical Engineering. He was previously a research scientist at the University of California Los Angeles (UCLA) and visiting professor and researcher at the University of North Dakota. He is currently working in artificial intelligence and its applications in medical signal processing. In addition, he is using digital signal processing in medical imaging and speech processing. Dr. Asadpour has developed brain-computer interfacing algorithms and has published books, book chapters, and several journal and conference papers in this field and other areas of intelligent signal processing. He has also designed medical devices, including a laser Doppler monitoring system.",institutionString:"Kaiser Permanente Southern California",institution:null},{id:"169608",title:"Prof.",name:"Marian",middleName:null,surname:"Găiceanu",slug:"marian-gaiceanu",fullName:"Marian Găiceanu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/169608/images/system/169608.png",biography:"Prof. Dr. Marian Gaiceanu graduated from the Naval and Electrical Engineering Faculty, Dunarea de Jos University of Galati, Romania, in 1997. He received a Ph.D. (Magna Cum Laude) in Electrical Engineering in 2002. Since 2017, Dr. Gaiceanu has been a Ph.D. supervisor for students in Electrical Engineering. He has been employed at Dunarea de Jos University of Galati since 1996, where he is currently a professor. Dr. Gaiceanu is a member of the National Council for Attesting Titles, Diplomas and Certificates, an expert of the Executive Agency for Higher Education, Research Funding, and a member of the Senate of the Dunarea de Jos University of Galati. He has been the head of the Integrated Energy Conversion Systems and Advanced Control of Complex Processes Research Center, Romania, since 2016. He has conducted several projects in power converter systems for electrical drives, power quality, PEM and SOFC fuel cell power converters for utilities, electric vehicles, and marine applications with the Department of Regulation and Control, SIEI S.pA. (2002–2004) and the Polytechnic University of Turin, Italy (2002–2004, 2006–2007). He is a member of the Institute of Electrical and Electronics Engineers (IEEE) and cofounder-member of the IEEE Power Electronics Romanian Chapter. He is a guest editor at Energies and an academic book editor for IntechOpen. He is also a member of the editorial boards of the Journal of Electrical Engineering, Electronics, Control and Computer Science and Sustainability. Dr. Gaiceanu has been General Chairman of the IEEE International Symposium on Electrical and Electronics Engineering in the last six editions.",institutionString:'"Dunarea de Jos" University of Galati',institution:{name:'"Dunarea de Jos" University of Galati',country:{name:"Romania"}}},{id:"4519",title:"Prof.",name:"Jaydip",middleName:null,surname:"Sen",slug:"jaydip-sen",fullName:"Jaydip Sen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4519/images/system/4519.jpeg",biography:"Jaydip Sen is associated with Praxis Business School, Kolkata, India, as a professor in the Department of Data Science. His research areas include security and privacy issues in computing and communication, intrusion detection systems, machine learning, deep learning, and artificial intelligence in the financial domain. He has more than 200 publications in reputed international journals, refereed conference proceedings, and 20 book chapters in books published by internationally renowned publishing houses, such as Springer, CRC press, IGI Global, etc. Currently, he is serving on the editorial board of the prestigious journal Frontiers in Communications and Networks and in the technical program committees of a number of high-ranked international conferences organized by the IEEE, USA, and the ACM, USA. He has been listed among the top 2% of scientists in the world for the last three consecutive years, 2019 to 2021 as per studies conducted by the Stanford University, USA.",institutionString:"Praxis Business School",institution:null},{id:"320071",title:"Dr.",name:"Sidra",middleName:null,surname:"Mehtab",slug:"sidra-mehtab",fullName:"Sidra Mehtab",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y00002v6KHoQAM/Profile_Picture_1584512086360",biography:"Sidra Mehtab has completed her BS with honors in Physics from Calcutta University, India in 2018. She has done MS in Data Science and Analytics from Maulana Abul Kalam Azad University of Technology (MAKAUT), Kolkata, India in 2020. Her research areas include Econometrics, Time Series Analysis, Machine Learning, Deep Learning, Artificial Intelligence, and Computer and Network Security with a particular focus on Cyber Security Analytics. Ms. Mehtab has published seven papers in international conferences and one of her papers has been accepted for publication in a reputable international journal. She has won the best paper awards in two prestigious international conferences – BAICONF 2019, and ICADCML 2021, organized in the Indian Institute of Management, Bangalore, India in December 2019, and SOA University, Bhubaneswar, India in January 2021. Besides, Ms. Mehtab has also published two book chapters in two books. Seven of her book chapters will be published in a volume shortly in 2021 by Cambridge Scholars’ Press, UK. Currently, she is working as the joint editor of two edited volumes on Time Series Analysis and Forecasting to be published in the first half of 2021 by an international house. Currently, she is working as a Data Scientist with an MNC in Delhi, India.",institutionString:"NSHM College of Management and Technology",institution:null},{id:"226240",title:"Dr.",name:"Andri Irfan",middleName:null,surname:"Rifai",slug:"andri-irfan-rifai",fullName:"Andri Irfan Rifai",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/226240/images/7412_n.jpg",biography:"Andri IRFAN is a Senior Lecturer of Civil Engineering and Planning. He completed the PhD at the Universitas Indonesia & Universidade do Minho with Sandwich Program Scholarship from the Directorate General of Higher Education and LPDP scholarship. He has been teaching for more than 19 years and much active to applied his knowledge in the project construction in Indonesia. His research interest ranges from pavement management system to advanced data mining techniques for transportation engineering. He has published more than 50 papers in journals and 2 books.",institutionString:null,institution:{name:"Universitas Internasional Batam",country:{name:"Indonesia"}}},{id:"314576",title:"Dr.",name:"Ibai",middleName:null,surname:"Laña",slug:"ibai-lana",fullName:"Ibai Laña",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314576/images/system/314576.jpg",biography:"Dr. Ibai Laña works at TECNALIA as a data analyst. He received his Ph.D. in Artificial Intelligence from the University of the Basque Country (UPV/EHU), Spain, in 2018. He is currently a senior researcher at TECNALIA. His research interests fall within the intersection of intelligent transportation systems, machine learning, traffic data analysis, and data science. He has dealt with urban traffic forecasting problems, applying machine learning models and evolutionary algorithms. He has experience in origin-destination matrix estimation or point of interest and trajectory detection. Working with large volumes of data has given him a good command of big data processing tools and NoSQL databases. He has also been a visiting scholar at the Knowledge Engineering and Discovery Research Institute, Auckland University of Technology.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"314575",title:"Dr.",name:"Jesus",middleName:null,surname:"L. Lobo",slug:"jesus-l.-lobo",fullName:"Jesus L. Lobo",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/314575/images/system/314575.png",biography:"Dr. Jesús López is currently based in Bilbao (Spain) working at TECNALIA as Artificial Intelligence Research Scientist. In most cases, a project idea or a new research line needs to be investigated to see if it is good enough to take into production or to focus on it. That is exactly what he does, diving into Machine Learning algorithms and technologies to help TECNALIA to decide whether something is great in theory or will actually impact on the product or processes of its projects. So, he is expert at framing experiments, developing hypotheses, and proving whether they’re true or not, in order to investigate fundamental problems with a longer time horizon. He is also able to design and develop PoCs and system prototypes in simulation. He has participated in several national and internacional R&D projects.\n\nAs another relevant part of his everyday research work, he usually publishes his findings in reputed scientific refereed journals and international conferences, occasionally acting as reviewer and Programme Commitee member. Concretely, since 2018 he has published 9 JCR (8 Q1) journal papers, 9 conference papers (e.g. ECML PKDD 2021), and he has co-edited a book. He is also active in popular science writing data science stories for reputed blogs (KDNuggets, TowardsDataScience, Naukas). Besides, he has recently embarked on mentoring programmes as mentor, and has also worked as data science trainer.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"103779",title:"Prof.",name:"Yalcin",middleName:null,surname:"Isler",slug:"yalcin-isler",fullName:"Yalcin Isler",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRyQ8QAK/Profile_Picture_1628834958734",biography:"Yalcin Isler (1971 - Burdur / Turkey) received the B.Sc. degree in the Department of Electrical and Electronics Engineering from Anadolu University, Eskisehir, Turkey, in 1993, the M.Sc. degree from the Department of Electronics and Communication Engineering, Suleyman Demirel University, Isparta, Turkey, in 1996, the Ph.D. degree from the Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, Turkey, in 2009, and the Competence of Associate Professorship from the Turkish Interuniversity Council in 2019.\n\nHe was Lecturer at Burdur Vocational School in Suleyman Demirel University (1993-2000, Burdur / Turkey), Software Engineer (2000-2002, Izmir / Turkey), Research Assistant in Bulent Ecevit University (2002-2003, Zonguldak / Turkey), Research Assistant in Dokuz Eylul University (2003-2010, Izmir / Turkey), Assistant Professor at the Department of Electrical and Electronics Engineering in Bulent Ecevit University (2010-2012, Zonguldak / Turkey), Assistant Professor at the Department of Biomedical Engineering in Izmir Katip Celebi University (2012-2019, Izmir / Turkey). He is an Associate Professor at the Department of Biomedical Engineering at Izmir Katip Celebi University, Izmir / Turkey, since 2019. In addition to academics, he has also founded Islerya Medical and Information Technologies Company, Izmir / Turkey, since 2017.\n\nHis main research interests cover biomedical signal processing, pattern recognition, medical device design, programming, and embedded systems. He has many scientific papers and participated in several projects in these study fields. He was an IEEE Student Member (2009-2011) and IEEE Member (2011-2014) and has been IEEE Senior Member since 2014.",institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"339677",title:"Dr.",name:"Mrinmoy",middleName:null,surname:"Roy",slug:"mrinmoy-roy",fullName:"Mrinmoy Roy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/339677/images/16768_n.jpg",biography:"An accomplished Sales & Marketing professional with 12 years of cross-functional experience in well-known organisations such as CIPLA, LUPIN, GLENMARK, ASTRAZENECA across different segment of Sales & Marketing, International Business, Institutional Business, Product Management, Strategic Marketing of HIV, Oncology, Derma, Respiratory, Anti-Diabetic, Nutraceutical & Stomatological Product Portfolio and Generic as well as Chronic Critical Care Portfolio. A First Class MBA in International Business & Strategic Marketing, B.Pharm, D.Pharm, Google Certified Digital Marketing Professional. Qualified PhD Candidate in Operations and Management with special focus on Artificial Intelligence and Machine Learning adoption, analysis and use in Healthcare, Hospital & Pharma Domain. Seasoned with diverse therapy area of Pharmaceutical Sales & Marketing ranging from generating revenue through generating prescriptions, launching new products, and making them big brands with continuous strategy execution at the Physician and Patients level. Moved from Sales to Marketing and Business Development for 3.5 years in South East Asian Market operating from Manila, Philippines. Came back to India and handled and developed Brands such as Gluconorm, Lupisulin, Supracal, Absolut Woman, Hemozink, Fabiflu (For COVID 19), and many more. In my previous assignment I used to develop and execute strategies on Sales & Marketing, Commercialization & Business Development for Institution and Corporate Hospital Business portfolio of Oncology Therapy Area for AstraZeneca Pharma India Ltd. Being a Research Scholar and Student of ‘Operations Research & Management: Artificial Intelligence’ I published several pioneer research papers and book chapters on the same in Internationally reputed journals and Books indexed in Scopus, Springer and Ei Compendex, Google Scholar etc. Currently, I am launching PGDM Pharmaceutical Management Program in IIHMR Bangalore and spearheading the course curriculum and structure of the same. I am interested in Collaboration for Healthcare Innovation, Pharma AI Innovation, Future trend in Marketing and Management with incubation on Healthcare, Healthcare IT startups, AI-ML Modelling and Healthcare Algorithm based training module development. I am also an affiliated member of the Institute of Management Consultant of India, looking forward to Healthcare, Healthcare IT and Innovation, Pharma and Hospital Management Consulting works.",institutionString:null,institution:{name:"Lovely Professional University",country:{name:"India"}}},{id:"310576",title:"Prof.",name:"Erick Giovani",middleName:null,surname:"Sperandio Nascimento",slug:"erick-giovani-sperandio-nascimento",fullName:"Erick Giovani Sperandio Nascimento",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0033Y00002pDKxDQAW/ProfilePicture%202022-06-20%2019%3A57%3A24.788",biography:"Prof. Erick Sperandio is the Lead Researcher and professor of Artificial Intelligence (AI) at SENAI CIMATEC, Bahia, Brazil, also working with Computational Modeling (CM) and HPC. He holds a PhD in Environmental Engineering in the area of Atmospheric Computational Modeling, a Master in Informatics in the field of Computational Intelligence and Graduated in Computer Science from UFES. He currently coordinates, leads and participates in R&D projects in the areas of AI, computational modeling and supercomputing applied to different areas such as Oil and Gas, Health, Advanced Manufacturing, Renewable Energies and Atmospheric Sciences, advising undergraduate, master's and doctoral students. He is the Lead Researcher at SENAI CIMATEC's Reference Center on Artificial Intelligence. In addition, he is a Certified Instructor and University Ambassador of the NVIDIA Deep Learning Institute (DLI) in the areas of Deep Learning, Computer Vision, Natural Language Processing and Recommender Systems, and Principal Investigator of the NVIDIA/CIMATEC AI Joint Lab, the first in Latin America within the NVIDIA AI Technology Center (NVAITC) worldwide program. He also works as a researcher at the Supercomputing Center for Industrial Innovation (CS2i) and at the SENAI Institute of Innovation for Automation (ISI Automação), both from SENAI CIMATEC. He is a member and vice-coordinator of the Basic Board of Scientific-Technological Advice and Evaluation, in the area of Innovation, of the Foundation for Research Support of the State of Bahia (FAPESB). He serves as Technology Transfer Coordinator and one of the Principal Investigators at the National Applied Research Center in Artificial Intelligence (CPA-IA) of SENAI CIMATEC, focusing on Industry, being one of the six CPA-IA in Brazil approved by MCTI / FAPESP / CGI.br. He also participates as one of the representatives of Brazil in the BRICS Innovation Collaboration Working Group on HPC, ICT and AI. He is the coordinator of the Work Group of the Axis 5 - Workforce and Training - of the Brazilian Strategy for Artificial Intelligence (EBIA), and member of the MCTI/EMBRAPII AI Innovation Network Training Committee. He is the coordinator, by SENAI CIMATEC, of the Artificial Intelligence Reference Network of the State of Bahia (REDE BAH.IA). He leads the working group of experts representing Brazil in the Global Partnership on Artificial Intelligence (GPAI), on the theme \"AI and the Pandemic Response\".",institutionString:"Manufacturing and Technology Integrated Campus – SENAI CIMATEC",institution:null},{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/1063/images/system/1063.png",biography:"Prof. Dr. Constantin Voloşencu graduated as an engineer from\nPolitehnica University of Timișoara, Romania, where he also\nobtained a doctorate degree. He is currently a full professor in\nthe Department of Automation and Applied Informatics at the\nsame university. Dr. Voloşencu is the author of ten books, seven\nbook chapters, and more than 160 papers published in journals\nand conference proceedings. He has also edited twelve books and\nhas twenty-seven patents to his name. He is a manager of research grants, editor in\nchief and member of international journal editorial boards, a former plenary speaker, a member of scientific committees, and chair at international conferences. His\nresearch is in the fields of control systems, control of electric drives, fuzzy control\nsystems, neural network applications, fault detection and diagnosis, sensor network\napplications, monitoring of distributed parameter systems, and power ultrasound\napplications. He has developed automation equipment for machine tools, spooling\nmachines, high-power ultrasound processes, and more.",institutionString:"Polytechnic University of Timişoara",institution:{name:"Polytechnic University of Timişoara",country:{name:"Romania"}}},{id:"221364",title:"Dr.",name:"Eneko",middleName:null,surname:"Osaba",slug:"eneko-osaba",fullName:"Eneko Osaba",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/221364/images/system/221364.jpg",biography:"Dr. Eneko Osaba works at TECNALIA as a senior researcher. He obtained his Ph.D. in Artificial Intelligence in 2015. He has participated in more than twenty-five local and European research projects, and in the publication of more than 130 papers. He has performed several stays at universities in the United Kingdom, Italy, and Malta. Dr. Osaba has served as a program committee member in more than forty international conferences and participated in organizing activities in more than ten international conferences. He is a member of the editorial board of the International Journal of Artificial Intelligence, Data in Brief, and Journal of Advanced Transportation. He is also a guest editor for the Journal of Computational Science, Neurocomputing, Swarm, and Evolutionary Computation and IEEE ITS Magazine.",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"275829",title:"Dr.",name:"Esther",middleName:null,surname:"Villar-Rodriguez",slug:"esther-villar-rodriguez",fullName:"Esther Villar-Rodriguez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/275829/images/system/275829.jpg",biography:"Dr. Esther Villar obtained a Ph.D. in Information and Communication Technologies from the University of Alcalá, Spain, in 2015. She obtained a degree in Computer Science from the University of Deusto, Spain, in 2010, and an MSc in Computer Languages and Systems from the National University of Distance Education, Spain, in 2012. Her areas of interest and knowledge include natural language processing (NLP), detection of impersonation in social networks, semantic web, and machine learning. Dr. Esther Villar made several contributions at conferences and publishing in various journals in those fields. Currently, she is working within the OPTIMA (Optimization Modeling & Analytics) business of TECNALIA’s ICT Division as a data scientist in projects related to the prediction and optimization of management and industrial processes (resource planning, energy efficiency, etc).",institutionString:"TECNALIA Research & Innovation",institution:{name:"Tecnalia",country:{name:"Spain"}}},{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/49813/images/system/49813.png",biography:"Prof. Dr. Javier Del Ser received his first PhD in Telecommunication Engineering (Cum Laude) from the University of Navarra, Spain, in 2006, and a second PhD in Computational Intelligence (Summa Cum Laude) from the University of Alcala, Spain, in 2013. He is currently a principal researcher in data analytics and optimisation at TECNALIA (Spain), a visiting fellow at the Basque Center for Applied Mathematics (BCAM) and a part-time lecturer at the University of the Basque Country (UPV/EHU). His research interests gravitate on the use of descriptive, prescriptive and predictive algorithms for data mining and optimization in a diverse range of application fields such as Energy, Transport, Telecommunications, Health and Industry, among others. In these fields he has published more than 240 articles, co-supervised 8 Ph.D. theses, edited 6 books, coauthored 7 patents and participated/led more than 40 research projects. He is a Senior Member of the IEEE, and a recipient of the Biscay Talent prize for his academic career.",institutionString:"Tecnalia Research & Innovation",institution:null},{id:"278948",title:"Dr.",name:"Carlos Pedro",middleName:null,surname:"Gonçalves",slug:"carlos-pedro-goncalves",fullName:"Carlos Pedro Gonçalves",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRcmyQAC/Profile_Picture_1564224512145",biography:'Carlos Pedro Gonçalves (PhD) is an Associate Professor at Lusophone University of Humanities and Technologies and a researcher on Complexity Sciences, Quantum Technologies, Artificial Intelligence, Strategic Studies, Studies in Intelligence and Security, FinTech and Financial Risk Modeling. He is also a progammer with programming experience in:\n\nA) Quantum Computing using Qiskit Python module and IBM Quantum Experience Platform, with software developed on the simulation of Quantum Artificial Neural Networks and Quantum Cybersecurity;\n\nB) Artificial Intelligence and Machine learning programming in Python;\n\nC) Artificial Intelligence, Multiagent Systems Modeling and System Dynamics Modeling in Netlogo, with models developed in the areas of Chaos Theory, Econophysics, Artificial Intelligence, Classical and Quantum Complex Systems Science, with the Econophysics models having been cited worldwide and incorporated in PhD programs by different Universities.\n\nReceived an Arctic Code Vault Contributor status by GitHub, due to having developed open source software preserved in the \\"Arctic Code Vault\\" for future generations (https://archiveprogram.github.com/arctic-vault/), with the Strategy Analyzer A.I. module for decision making support (based on his PhD thesis, used in his Classes on Decision Making and in Strategic Intelligence Consulting Activities) and QNeural Python Quantum Neural Network simulator also preserved in the \\"Arctic Code Vault\\", for access to these software modules see: https://github.com/cpgoncalves. He is also a peer reviewer with outsanding review status from Elsevier journals, including Physica A, Neurocomputing and Engineering Applications of Artificial Intelligence. Science CV available at: https://www.cienciavitae.pt//pt/8E1C-A8B3-78C5 and ORCID: https://orcid.org/0000-0002-0298-3974',institutionString:"University of Lisbon",institution:{name:"Universidade Lusófona",country:{name:"Portugal"}}},{id:"241400",title:"Prof.",name:"Mohammed",middleName:null,surname:"Bsiss",slug:"mohammed-bsiss",fullName:"Mohammed Bsiss",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/241400/images/8062_n.jpg",biography:null,institutionString:null,institution:null},{id:"276128",title:"Dr.",name:"Hira",middleName:null,surname:"Fatima",slug:"hira-fatima",fullName:"Hira Fatima",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/276128/images/14420_n.jpg",biography:"Dr. Hira Fatima\nAssistant Professor\nDepartment of Mathematics\nInstitute of Applied Science\nMangalayatan University, Aligarh\nMobile: no : 8532041179\nhirafatima2014@gmal.com\n\nDr. Hira Fatima has received his Ph.D. degree in pure Mathematics from Aligarh Muslim University, Aligarh India. Currently working as an Assistant Professor in the Department of Mathematics, Institute of Applied Science, Mangalayatan University, Aligarh. She taught so many courses of Mathematics of UG and PG level. Her research Area of Expertise is Functional Analysis & Sequence Spaces. She has been working on Ideal Convergence of double sequence. She has published 17 research papers in National and International Journals including Cogent Mathematics, Filomat, Journal of Intelligent and Fuzzy Systems, Advances in Difference Equations, Journal of Mathematical Analysis, Journal of Mathematical & Computer Science etc. She has also reviewed few research papers for the and international journals. She is a member of Indian Mathematical Society.",institutionString:null,institution:null},{id:"414880",title:"Dr.",name:"Maryam",middleName:null,surname:"Vatankhah",slug:"maryam-vatankhah",fullName:"Maryam Vatankhah",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Borough of Manhattan Community College",country:{name:"United States of America"}}},{id:"414879",title:"Prof.",name:"Mohammad-Reza",middleName:null,surname:"Akbarzadeh-Totonchi",slug:"mohammad-reza-akbarzadeh-totonchi",fullName:"Mohammad-Reza Akbarzadeh-Totonchi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Ferdowsi University of Mashhad",country:{name:"Iran"}}},{id:"414878",title:"Prof.",name:"Reza",middleName:null,surname:"Fazel-Rezai",slug:"reza-fazel-rezai",fullName:"Reza Fazel-Rezai",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"American Public University System",country:{name:"United States of America"}}},{id:"302698",title:"Dr.",name:"Yao",middleName:null,surname:"Shan",slug:"yao-shan",fullName:"Yao Shan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Dalian University of Technology",country:{name:"China"}}},{id:"125911",title:"Prof.",name:"Jia-Ching",middleName:null,surname:"Wang",slug:"jia-ching-wang",fullName:"Jia-Ching Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Central University",country:{name:"Taiwan"}}},{id:"357085",title:"Mr.",name:"P. Mohan",middleName:null,surname:"Anand",slug:"p.-mohan-anand",fullName:"P. Mohan Anand",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356696",title:"Ph.D. Student",name:"P.V.",middleName:null,surname:"Sai Charan",slug:"p.v.-sai-charan",fullName:"P.V. Sai Charan",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"357086",title:"Prof.",name:"Sandeep K.",middleName:null,surname:"Shukla",slug:"sandeep-k.-shukla",fullName:"Sandeep K. Shukla",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Indian Institute of Technology Kanpur",country:{name:"India"}}},{id:"356823",title:"MSc.",name:"Seonghee",middleName:null,surname:"Min",slug:"seonghee-min",fullName:"Seonghee Min",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Daegu University",country:{name:"Korea, South"}}},{id:"353307",title:"Prof.",name:"Yoosoo",middleName:null,surname:"Oh",slug:"yoosoo-oh",fullName:"Yoosoo Oh",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:"Yoosoo Oh received his Bachelor's degree in the Department of Electronics and Engineering from Kyungpook National University in 2002. He obtained his Master’s degree in the Department of Information and Communications from Gwangju Institute of Science and Technology (GIST) in 2003. In 2010, he received his Ph.D. degree in the School of Information and Mechatronics from GIST. In the meantime, he was an executed team leader at Culture Technology Institute, GIST, 2010-2012. In 2011, he worked at Lancaster University, the UK as a visiting scholar. In September 2012, he joined Daegu University, where he is currently an associate professor in the School of ICT Conver, Daegu University. Also, he served as the Board of Directors of KSIIS since 2019, and HCI Korea since 2016. From 2017~2019, he worked as a center director of the Mixed Reality Convergence Research Center at Daegu University. From 2015-2017, He worked as a director in the Enterprise Supporting Office of LINC Project Group, Daegu University. His research interests include Activity Fusion & Reasoning, Machine Learning, Context-aware Middleware, Human-Computer Interaction, etc.",institutionString:null,institution:{name:"Daegu Gyeongbuk Institute of Science and Technology",country:{name:"Korea, South"}}},{id:"262719",title:"Dr.",name:"Esma",middleName:null,surname:"Ergüner Özkoç",slug:"esma-erguner-ozkoc",fullName:"Esma Ergüner Özkoç",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Başkent University",country:{name:"Turkey"}}},{id:"346530",title:"Dr.",name:"Ibrahim",middleName:null,surname:"Kaya",slug:"ibrahim-kaya",fullName:"Ibrahim Kaya",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Izmir Kâtip Çelebi University",country:{name:"Turkey"}}},{id:"419199",title:"Dr.",name:"Qun",middleName:null,surname:"Yang",slug:"qun-yang",fullName:"Qun Yang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Auckland",country:{name:"New Zealand"}}}]}},subseries:{item:{id:"6",type:"subseries",title:"Viral Infectious Diseases",keywords:"Novel Viruses, Virus Transmission, Virus Evolution, Molecular Virology, Control and Prevention, Virus-host Interaction",scope:"The Viral Infectious Diseases Book Series aims to provide a comprehensive overview of recent research trends and discoveries in various viral infectious diseases emerging around the globe. The emergence of any viral disease is hard to anticipate, which often contributes to death. A viral disease can be defined as an infectious disease that has recently appeared within a population or exists in nature with the rapid expansion of incident or geographic range. This series will focus on various crucial factors related to emerging viral infectious diseases, including epidemiology, pathogenesis, host immune response, clinical manifestations, diagnosis, treatment, and clinical recommendations for managing viral infectious diseases, highlighting the recent issues with future directions for effective therapeutic strategies.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/6.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11402,editor:{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",biography:"Professor Dr. Shailendra K. Saxena is a vice dean and professor at King George's Medical University, Lucknow, India. His research interests involve understanding the molecular mechanisms of host defense during human viral infections and developing new predictive, preventive, and therapeutic strategies for them using Japanese encephalitis virus (JEV), HIV, and emerging viruses as a model via stem cell and cell culture technologies. His research work has been published in various high-impact factor journals (Science, PNAS, Nature Medicine) with a high number of citations. He has received many awards and honors in India and abroad including various Young Scientist Awards, BBSRC India Partnering Award, and Dr. JC Bose National Award of Department of Biotechnology, Min. of Science and Technology, Govt. of India. Dr. Saxena is a fellow of various international societies/academies including the Royal College of Pathologists, United Kingdom; Royal Society of Medicine, London; Royal Society of Biology, United Kingdom; Royal Society of Chemistry, London; and Academy of Translational Medicine Professionals, Austria. He was named a Global Leader in Science by The Scientist. He is also an international opinion leader/expert in vaccination for Japanese encephalitis by IPIC (UK).",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}},editorTwo:null,editorThree:null,series:{id:"6",title:"Infectious Diseases",doi:"10.5772/intechopen.71852",issn:"2631-6188"},editorialBoard:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}},{id:"188219",title:"Prof.",name:"Imran",middleName:null,surname:"Shahid",slug:"imran-shahid",fullName:"Imran Shahid",profilePictureURL:"https://mts.intechopen.com/storage/users/188219/images/system/188219.jpeg",institutionString:null,institution:{name:"Umm al-Qura University",institutionURL:null,country:{name:"Saudi Arabia"}}},{id:"214235",title:"Dr.",name:"Lynn",middleName:"S.",surname:"Zijenah",slug:"lynn-zijenah",fullName:"Lynn Zijenah",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSEJGQA4/Profile_Picture_1636699126852",institutionString:null,institution:{name:"University of Zimbabwe",institutionURL:null,country:{name:"Zimbabwe"}}},{id:"178641",title:"Dr.",name:"Samuel Ikwaras",middleName:null,surname:"Okware",slug:"samuel-ikwaras-okware",fullName:"Samuel Ikwaras Okware",profilePictureURL:"https://mts.intechopen.com/storage/users/178641/images/system/178641.jpg",institutionString:null,institution:{name:"Uganda Christian University",institutionURL:null,country:{name:"Uganda"}}}]},onlineFirstChapters:{paginationCount:1,paginationItems:[{id:"82124",title:"Assessment of Diversity, Growth Characteristics and Aboveground Biomass of Tree Species in Selected Urban Green Areas of Osogbo, Osun State",doi:"10.5772/intechopen.104982",signatures:"Omolara Aremu, Olusola O. Adetoro and Olusegun Awotoye",slug:"assessment-of-diversity-growth-characteristics-and-aboveground-biomass-of-tree-species-in-selected-u",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Forest Degradation Under Global Change",coverURL:"https://cdn.intechopen.com/books/images_new/11457.jpg",subseries:{id:"94",title:"Climate Change and Environmental Sustainability"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Dr.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:null,institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}},{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:89,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:32,numberOfPublishedChapters:318,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:141,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!0},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:113,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:106,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:19,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:5,numberOfOpenTopics:1,numberOfUpcomingTopics:1,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!0},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:15,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:null},libraryRecommendation:{success:null,errors:{},institutions:[]},route:{name:"profile.detail",path:"/profiles/280109",hash:"",query:{},params:{id:"280109"},fullPath:"/profiles/280109",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()