Countries with the highest antibiotic consumption in the world.
\r\n\tIn this book, the different factors of liquefaction, the field methods and laboratory tests to identify a potentially liquefiable soil aim to be reviewed; in addition with history cases (ground behavior during the occurrence of an earthquake, state of stress, deformation, shear strength, flow, etc.).
\r\n\tA very important aspect of this topic is the presentation of the different constructive techniques used to ground improvement (vibrocompaction, dynamic compaction, jet grouting, chemical injection, replacement, etc.), placing special emphasis on those constructive methods used to solve problems on structures already located in areas of low relative density with liquefaction potential, where the installation of monitoring and control equipment is also required (tiltmeters, piezometers, topographic points, seismographs, pressure cells, etc.).
Escherichia coli is one of the most studied bacteria in the world and is arguably the best understood of all model microorganisms [1]. In the context of human and animal ecology, this microorganism participates as both a commensal of the gut, being one the first bacterial species to colonize it right after birth [2], and one of the most important human and animal pathogens, being able to cause intestinal and extra-intestinal infections. In humans, E. coli is the most frequent cause of urinary tract infections and has been identified as the causative agent of disease in practically every anatomical site of the human body, causing appendicitis, pneumonia, bloodstream, gastrointestinal infections, skin abscesses, intra-amniotic and puerperal infection in pregnant women, meningitis and endocarditis. Furthermore, E. coli can cause both community-acquired infections and health care-related infections, and is able to cause disease in all age groups.
Since the introduction of penicillin in the 1940s, which started the era of antibiotics, these agents have been recognized as one of the greatest advances in modern medicine and a turning point in human history. In 1900, infectious disease was a leading cause of death; in 2000, infectious diseases were responsible for only a small percentage of deaths in developed nations [3]. Unfortunately for humans, bacteria have evolved different mechanisms that have rendered them resistant to antibiotics, to the point that since not long ago antimicrobial resistance has become a global threat to public health systems worldwide.
The ability of bacteria to develop resistance against antibiotics began soon after their introduction, as penicillin resistance by S. aureus was identified just a few years after its introduction in hospitalized patients [4]. In the case of E. coli, resistance against antibiotics has been steadily increasing since the first reported cases and, due to its impact in human health, is now included, along with the rest of the Enterobacteriaceae family, in the World Health Organization’s (WHO) list of the 12 families of bacteria that pose the greatest threat to human health [5].
The contribution of E. coli to the antimicrobial resistance phenomenon should be analyzed under two different, but complementary, contexts that at some point meet in one common issue: a broad impact on human health. These two perspectives include the increasing number of infections worldwide caused by multidrug-resistant E. coli strains per se and the ability of this bacterium to transmit its genetic-resistant traits to other bacteria. E. coli has evolved these two attributes that have made this microorganism such a key player in the antibiotic resistance pandemic due to its ease of transmission among humans and from animals to humans via the fecal-oral route. Secondly, the microorganism’s ability to colonize the gut of humans and animals allow it to be in close interaction with an abounding number of different bacteria, interaction that grant E. coli the duality to behave as a donor of genetic material to other bacteria and the ability to acquire resistance genes from other microorganisms.
This chapter describes the human actions that have contributed to the development of E. coli resistance to antibiotics, including the major impact of hygiene on the transmission and maintenance of its multidrug-resistant strains, and the known mechanisms developed by this organism to resist the actions of commonly used antibiotics.
The emergence of antibacterial resistance in E. coli and other bacteria is multifactorial, but has paralleled the incorporation of these agents into the therapeutic arsenal in human and veterinary medicine. Data show that E. coli present the highest rates of resistance against those antibiotics that have been in use the longest time [6], as is evidenced by the high resistance rate worldwide against sulfonamides [7], whose use in humans started in the 1930s and its first E. coli-resistant clones were identified as early as 1950 [6]. Additionally, it is of no coincidence that those regions of the world with the highest consumption of antibiotics are low- to mid-income countries (Table 1), whose antibiotic-resistant rates are higher than those found in high-income nations.
Country | Daily doses per 1000 inhabitants/day (% of total) [8] |
---|---|
Mongolia | 64.4 |
Iran | 38.8 |
Turkey | 38.2 |
Sudan | 35.3 |
Serbia | 31.6 |
Montenegro | 29.3 |
Romania | 28.5 |
Countries with the highest antibiotic consumption in the world.
Antibiotic resistance (AR) is largely believed to be the sole result of human activity and antibiotic chemotherapy; however, genomic studies of human bacterial commensals and environmental bacteria have revealed the presence of considerable numbers of resistance determinants within their genomes [9] that were not acquired from horizontal transmission and predated the clinical introduction of antibiotics. This type of AR is known as intrinsic resistance and provides a selective benefit for the producing strains by inhibiting or eliminating other bacteria competing for resources. Intrinsic resistance differentiates from the newly developed extrinsic antibiotic resistance in that in the former there is no contribution of human activities and the latter is mainly driven by antibiotic selection pressure [10]. In the current era of increasing AR and lack of new antibacterial agents, the study of intrinsic resistance becomes highly attractive as a new mechanism to counteract bacterial resistance, as inhibition of elements that comprise the intrinsic resistome renders bacteria hyper-susceptible to antibiotics [11]. In the case of Gram-negative bacteria, like E. coli, two major contributors to the bacterium intrinsic resistance are its outer membrane, which is impermeable to many molecules, and its expression of numerous efflux pumps, that effectively reduce the intracellular concentration of certain antibiotics [12].
The acquired, or extrinsic, and continuously increasing resistance of E. coli to antibiotics is already considered a major public health problem around the world. In 2018, more than half of the Escherichia coli isolates reported to the European Centre for Disease Prevention and Control were resistant to at least one antimicrobial group under surveillance, and combined resistance to several antimicrobial groups was frequent [13]; in the United States in 2017, the national prevalence of extended spectrum β-lactamases (ESBL)-producing E. coli strains isolated from urinary tract infections (UTI) was 15.7%, whereas levofloxacin and trimethoprim-sulfamethoxazole-resistant rates were ≥24% among all isolates [14]. In developing countries the situation worsens, as reported by national surveillance data from Mexico, China and Turkey, where E. coli-resistant strains has been shown to have a prevalence >40% to cephalosporins, quinolones and trimethoprim/sulfamethoxazole (TSX), drugs widely used around the world to empirically treat bacterial infections (Table 2).
Country | Resistance rates (%) | ||
---|---|---|---|
Cephalosporins | Quinolones | TSX | |
Mexico [15] | 54.4 | 59.0 | 62.1 |
China [16] | 52.4 | 69.8 | ND |
Turkey [17] | 40.7 | 47.2 | 58.0 |
Escherichia coli antibiotic resistance rates to different antibiotics.
ND: not done.
During 1945, just a few years after the introduction into clinical practice of penicillin, Alexander Fleming warned the world about antibiotic overuse, warning that became reality a few years later when the first S. aureus strain was reported to be resistant to penicillin. Several human activities have been identified as key drivers of the current AR crisis, but it has been demonstrated that the overuse of antibiotics clearly influences the evolution of resistance [18]. The reported actions that have led to the overuse of antibiotics are multifactorial and include different players in different industries such as the health, the livestock and the pharmaceutical industries. Examples of these actions comprise inappropriate prescription of antibiotics by healthcare providers, extensive use of antibiotics in livestock and fish farming, patients not following antibiotic treatment regimes, poor hygiene, bacterial mutations and lack of new antibiotics developed [19].
One of the most significant factors that have contributed to the current antibacterial resistance crisis is the rapid evolution of bacteria under selective antibiotic pressure, since a continuous interaction between any given antibiotic and bacteria is an important aspect for the increase in multidrug-resistant strains [20]. Unfortunately, overuse and inappropriate prescription of these drugs are two large contributors to such issue. In any given antibiotic treatment against a bacterial infection, susceptible bacteria will be killed; if properly targeted, the pathogenic microorganism will be eradicated; however, along infecting bacteria, those members of the individual’s microbiota, sensitive to the antibiotic in use, will also be wiped out. In case resistant microorganisms exist, either belonging to the normal microbiota or the pathogenic microorganisms being targeted, these survivors will replicate and will become the prevailing strain within the respective anatomical site.
The discovery and use of antibiotics have revolutionized the field of medicine and saved millions of lives each year; unfortunately, seen as the “miracle drug,” healthcare providers and patients around the world have abused their use. Despite the marked increase of infections caused by multidrug-resistant bacteria around the world, the global response to this crisis has been inadequate, as people not only continue to misuse antibiotics but have continuously increased their abuse. Using a global database of antibiotic sales, Klein et al. [21] found that the antibiotic consumption rate around the world increased dramatically from 11.3 daily doses/1000 inhabitants per day to 15.7, an increase of 39%, between 2000 and 2015. In this same study, it was reported that the mean antibiotic consumption rate was primarily driven by the consumption in low- and mid-income countries, as no coincidence present the highest prevalence of multi drug-resistant bacteria-related infections. To make matters worse, the consumption of last-resort antibiotics such as carbapenems and colistin is also on the rise [21], situation that is consistent with the appearance of E. coli-resistant strains to these agents. To date, resistance of this organism to carbapenems is rare, with its prevalence depending on the area of the world under study, but not exceeding 3% [22]. However, in the future, an increase of resistance to this agent might be seen in E. coli, as the enzymes responsible for its hydrolysis, and thus inactivation, carbapenemases, are encoded mainly on plasmids, and are highly transmissible [23].
A key contributor to the increasing selective pressure of antibiotics is their overprescription. Recent data indicates that over 70% of prescribed antibiotics by primary care providers in the United States are inappropriate, the majority of which are for acute respiratory tract infections [24]; unfortunately, this rate of antibiotic misuse is probably a situation found in most countries. Coincidently, ciprofloxacin, one of the two most likely antibiotic to be prescribed inappropriately [24] is one to which E. coli present the highest rates of resistance around the world [15, 16, 17].
In addition to the contribution of the abuse of antibiotics to the selection of resistance, Zhang et al. [25] found epidemiological evidence that antibiotic resistance and E. coli diarrheagenic virulence phenotypes might be partially linked. They found that subjects with diarrhea had more frequent use of antibiotics before their onset of symptoms, linkage that might be explained as antibiotics might disrupt the intestinal microbiota, allowing overgrowth of resistant pathogens [25].
Antibiotics are used in livestock to treat clinical disease, to prevent and control common disease events, and to enhance animal growth [26]. Unfortunately, this use of antibiotics has favored spread and persistence of resistant bacteria in humans by means of two different mechanisms: (a) human ingestion of antibiotics by means of the antibiotic-contaminated meat that enters the body and induces selective pressure on the host’s microbiota and (b) resistant bacteria found in the gut of food animals are transmitted to humans via contaminated meat.
When livestock are treated or are provided with antibiotics, these agents exercise the same selective pressure on their microbiota as when humans ingest these drugs; thus, overuse of antibiotics on food animals has led to a high colonization rate of intestinal bacteria, including members of the Enterobacteriaceae family, such as E. coli and Klebsiella spp., that become resistant to different antimicrobials. Different studies around the world have shown that ready-to-eat animal products are contaminated with E. coli strains resistant to different kinds of antibiotics, mainly to β-lactams by means of the bacterial production of extended spectrum β-lactamases (ESBL) [27, 28]. These studies show that animal meat contaminated with E. coli-resistant strains is far more prevalent in developing than in developed nations, probably due to different hygiene habits; German studies have reported a prevalence of ESBL-contaminated meat of 24.1% [27], whereas in Mexico this prevalence has been reported to be above 60.0% [28]. E. coli strains isolated in meat have also shown resistance to other antibiotics, including to last-resort ones such as carbapenems [29] and colistin [30]. If this contaminated meat is ingested undercooked by humans, gut colonization is likely, establishing a reservoir for future antibiotic-resistant infections, as Ruppé et al. have shown that people with high gut colonization rates of ESBL-producing E. coli strains present higher risk to develop urinary tract infections with these clones than patients with no ESBL gut colonization [31].
Figure 1 shows a resumed representation of the main reservoirs, including livestock, of antibiotic-resistant E. coli and their interaction with humans.
Reservoirs of antibiotic-resistant E. coli and their interaction with humans. Arrows show the E. coli flux from the different reservoirs.
Higher consumption of antibiotics in unprivileged areas of the world plays a key role in the emergence and maintenance of antimicrobial resistance due to selective pressure by these agents on resident microbiota. However, studies have shown that inhabitants of these areas can be highly colonized with antibiotic-resistant E. coli strains despite not being in contact with antibiotics for 3–6 months [28], indicating that additional factors play important roles in the increased prevalence of AR worldwide. Global evidence suggests that elements in people’s environment such as poor waste, non-potable drinking water, housing overcrowding and lack of hygiene facilitate the development and transmission of resistant bacteria [32].
The ability of E. coli to colonize different environments, including the gut of humans and animals, has provided this organism with the evolutionary advantage to acquire antibiotic resistance traits from other bacteria within its environment, as well as to be easily transmitted via the fecal-oral route. The gut microbiota of humans can harbor more than 1000 different antibiotic-resistant genes [33] and transmission of these traits among gut commensals is a constant phenomenon. Major examples of the transference of resistance genes between environmental bacteria, including gut commensals, and human pathogens, are the blaCTX-M genes, which is the most prevalent ESBL gene in E. coli and Klebsiella spp., and the OXA-48-type carbapenem-hydrolyzing β-lactamase genes, which are increasingly reported in Enterobacteriaceae around the globe. The potential origin of the blaCTX-M genes was identified in the chromosomal DNA of various environmental Kluyvera species [34], whereas that of OXA-48 was found to originate from the waterborne, environmental Shewanella species [35].
As many antibiotic resistance genes are associated with elements such as plasmids or transposons, and while the transfer of these elements may also occur through transformation or transduction, conjugation is often considered as the most likely responsible mechanism for the transmission of these traits [36]. The aforementioned ESBL and carbapenemase genes are primary examples of resistant genes with high impact on human health that have spread between bacteria via plasmid conjugation. Studies in China [37] have demonstrated that transmission via conjugation of ESBL genes in E. coli do occur even in the food chain, situation that partially explain the high fecal prevalence of ESBL-producing E. coli around the world.
The gut of humans and animals is a major reservoir of antibiotic-resistant E. coli and shedding of these strains through the feces of colonized individuals, livestock and domestic animals allows them to reach humans via contaminated water and food (see Figure 1). Human fecal colonization by antibiotic-resistant E. coli strains present the highest rates in deprived areas of the world, situation that begins since birth. Whereas in high-income nations the prevalence of E. coli strains resistant to antibiotics colonizing the gastrointestinal system of neonates is low [38], in low-income countries the prevalence of E. coli strains resistant to antibiotics such as tetracycline, ampicillin and trimethoprim/sulfamethoxazole exceeds 50% [39]. Fecal colonization of humans by resistant E. coli is on the rise around the world since the mid-2000s and the situation has worsened as fecal colonization by strains resistant to last-resource antibiotics, such as colistin, has been recently reported in different countries [40, 41]. As the prevalence of fecal colonization by these E. coli strains increase, so will the number of human infections caused by them, as it has been previously shown that fecal colonization with resistant microorganisms increases the risk factor of developing urinary tract infections by a factor of 13.0 [31].
Antibiotic consumption has contributed to the selection of resistance and is largely accepted as one of the major drivers of AR development; however, the high prevalence of antibiotic resistance around the world, especially in low- and mid-income countries, can be more likely attributed to the dissemination and maintenance of resistant clones via poor sanitation and lack of hygiene habits [32]. Ingestion of contaminated food and water, close contact with colonized animals and household members and abundance of flies are factors that contribute to the transmission of kl E. coli strains. As these conditions are considerably less frequent in developed areas of the world, this situation partially explains the reduced prevalence of these strains in these nations. However, due to the current globalization, resistant strains can easily be transmitted from one country to another. In a large cohort study of Dutch travelers to regions of the world with high prevalence of ESBL-producing bacteria, 34.3% subjects who were ESBL negative before travel had acquired these clones during their time abroad, with the highest number of acquisitions being among those who traveled to southern Asia, and remained colonized at 12 months after return [42]. Additionally, this same study showed that the estimated probability of onward transmission within households was 12%. Similar results were reported in a study in Spain, in which up to 66% of the isolates from patients with ESBL-producing E. coli infections were indistinguishable from those isolated from fecal samples from their household members [43]. These results indicate that acquisition of E. coli-resistant clones during travel is high and that transmission between household members can maintain such clones in the community for long periods of time.
As anthropogenic activities largely shape the resistome of different environments, transmission of resistant genes between bacteria in a community can be influenced by its contamination with human and animal feces and its impact is largely driven not by the presence of resistant bacteria but rather from the presence of human-related mobile resistance genes [44]. If poor sanitation, manifested by fecal contamination, of a given community is the key to transmit and maintain resistant clones, the reduction of antibiotic consumption will not be sufficient to control antimicrobial resistance. Thus, strategies to control the AR pandemic should also include improving sanitation conditions in all parts of the world.
Few microorganisms have shown the ability to develop resistance to as many classes of antibiotics as the Enterobacteriaceae. Of the large list of bacterial genus that belong to this family, E. coli is only surpassed by Klebsiella in the number of human infections associated to multidrug-resistant bacteria [15, 16, 17, 27] and the past two decades have witnessed major increases in the emergence and spread of E. coli resistance strains to major classes of antibiotics such as β-lactams, quinolones, aminoglycosides, sulfonamides and fosfomycin. Unfortunately, this resistance has spread to last resource antibiotic classes such as the polymyxins and carbapenems. The following sections will briefly described the resistance mechanisms developed by E. coli against one of the major antibiotic groups currently used in the treatment against this organism: the β-lactams.
Antibiotics belonging to the β-lactams class share a common feature: a three-carbon and one-nitrogen ring (beta-lactam ring), which is the molecular constituent responsible for the bacteriolytic mechanism of action of these agents against bacteria. β-Lactams act by inhibiting the bacterial synthesis of peptidoglycan, a vital constituent of the microorganism cell wall. The targets for the actions of beta-lactam antibiotics are known as penicillin-binding proteins (PBPs).
Bacteria have evolved different mechanisms of resistance against β-lactams: (a) Inactivation of these agents by the production of beta-lactamases; (b) decreased penetration of the antibiotic to the target site; (c) alteration of target site PBPs; and (d) efflux from the periplasmic space through specific pumping mechanism. However, in the case of E. coli, resistance to these antibiotics is mediated by the production of a group of enzymes referred as the “β-lactamases.” These enzymes are ancient compounds, currently exceeding 2800 unique proteins, which emerged from environmental sources [45].
To date, β-lactamases are usually classified based on functional or structural criteria. Currently, the most widely used classification for these enzymes is the Ambler structural classification, which is based on sequence similarity, and separates these proteins into four classes: the classes A, C, and D of serine-β-lactamases and the class B of metallo-β-lactamases [46].
Gram-negative bacteria have evolved the production of different β-lactamases; in the case of E. coli, the most important ones from the medical point of view are the extended spectrum β-lactamases (ESBL), AmpC β-lactamases (AmpC) and the carbapenemases. Each of these groups of enzymes presents different spectrum of hydrolytic activity, thus presenting resistance to different types of β-lactams, as shown in Table 3.
β-Lactamase | Spectrum of activity | Inhibition by β-lactamase inhibitors | Activity against broad-spectrum cephalosporins |
---|---|---|---|
ESBL | Penicillins First to third generation cephalosporins Monobactams | Yes | No |
AmpC | Penicillins First to third generation cephalosporins Monobactams | No | Yes |
Carbapenemases New Delhi metallo-β-lactamase | All β-lactams except aztreonam | No | Yes |
Carbapenem-hydrolyzing oxacillinase-48 | All β-lactams except broad spectrum cephalosporins | No | Weak |
Spectrum of activity of the major types of β-lactamases produced by Escherichia coli.
Among the β-lactamases, ESBL are worthy of the attention of the scientific and medical community over the last decades because of their increasing prevalence as cause of antibiotic-resistant infections around the world. These enzymes can be produced by any member of the Enterobacteriaceae, but Klebsiella spp. and E coli are the predominant ESBL-producing genus.
ESBL belong mostly to class A of the Ambler classification, are generally plasmid encoded and confer resistance to those bacteria that produce them to penicillins, first-, second-, and third-generation cephalosporins and monobactams (e.g., aztreonam), but cannot hydrolyze cephamycins (cefoxitin) or carbapenems (imipenem, meropenem), and are inhibited by β-lactamase inhibitors such as clavulanic acid, tazobactam and sulbactam [47].
When ESBL were first identified, most ESLB-related infections were caused by strains producing the TEM and SHV types. However, since then, ESBL CTX-M has emerged as the predominant type, both in humans and animals, in commensal organisms and in pathogenic strains and in community and healthcare-associated infections. Since the first isolation of SHV- and TEM-producing strains, more than 100 different variants of each type have been described and all have arisen from the original strains; contrary to the SHV and TEM types, CTX-M groups seem to have originated from the chromosomally encoded ESBL genes from different Kluyvera species [48].
HSV, TEM and CTX-M show different hydrolytic activities against different β-lactams. When first identified, SHV β-lactamases proved its activity against penicillins and first generation cephalosporins; as of today, the three sub-groups used to classify this group of enzymes present different antibiotic resistance phenotypes: (a) subgroup 2b hydrolyze penicillins and early cephalosporins (cephaloridine and cephalothin) and are strongly inhibited by clavulanic acid and tazobactam; (b) subgroup 2br are broad-spectrum β-lactamases that acquired resistance to clavulanic acid; and (c) subgroup 2be comprises ESBL that can also hydrolyze one or more oxyimino β-lactams (cefotaxime, ceftazidime, and aztreonam) [49]. In the case of TEM β-lactamases, the bacteria carrying these genes are able to hydrolyze penicillin and first generation cephalosporins such as cephaloridine; furthermore, TEM-1 is able to hydrolyze ampicillin at a greater rate than carbenicillin, oxacillin, or cephalothin, and has negligible activity against extended-spectrum cephalosporins [50]. Finally, CTX-M enzymes have the property of having potent hydrolytic activity against cefotaxime, with CTX-M-producing microorganisms showing cefotaxime MICs in the resistant range (>64 μg/ml), while ceftazidime MICs are usually in the apparently susceptible range (2 to 8 μg/ml); however, some CTX-M-type ESBLs may actually hydrolyze ceftazidime and confer resistance to this cephalosporin; aztreonam MICs are variable. CTX-M-type β-lactamases hydrolyze cefepime with high efficiency [50].
The exponential global increase in the number of infections caused by ESBL-producing strains has coincided with the appearance of the CTX-M genes. When originally reported, these strains were predominantly found in three geographic areas: South America, the Far East, and Eastern Europe. However, due to the extremely transferable plasmids which harbor blaCTX-M genes [49], with a frequency of transmission from 10−7 to 10−2 per donor cell [48], these strains are now increasingly reported as cause of human infections in every continent, to the point that it could be speculated that CTX-M-type ESBLs are now the most frequent ESBL type worldwide [50]. An additional factor that has been suggested as a key contributor to the dissemination of these clones is the frequent co-existence of blaCTX-M with genes conferring resistance to other classes of antibiotics like fluoroquinolones and aminoglycosides, situation that might lead to high rates of co-selection [51].
To date, over 150 CTX-M types have been identified and described (
One of the key players in the global dissemination of CTX-M-15-producing E. coli strains is clone ST131. A study performed in E. coli ST131 strains isolated between 2002 and 2004, before de ESBL pandemic, showed that only 2% of those strains carried the CTX-M-15 gene [55]; almost two decades later, ST131 is one of the main clones isolated in the worldwide spread of ESBL-producing E. coli [56], particularly subclone H30Rx [57]. How this E. coli clone went from being a non-factor in the global ESBL transmission to a key player is probably multifactorial. Although ST131 strains are not considered hypervirulent, most of them show the presence of fluoroquinolone-resistant genes, they have the ability to be persistent gut colonizers even in the absence of antibiotic exposure, a condition that precedes some infections such as those in the urinary tract, and can be easily transmitted between people of all ages [58]. All of these factors have allowed this clone to be successful human pathogen, even before the spread of the ESBL genes; however, the acquisition by ST131 strains of the CTX-M-15 plasmid has made this E. coli lineage an even more successful pathogen and has probably exasperated the spread of such clone [59] and the rapid global spread of CTX-M-15-producing E. coli.
Although the production of class A extended spectrum β-lactamases is the most common mechanism of resistance in E. coli against β-lactam agents, class C β-lactamases, or AmpC, can also confer those strains that produce them the ability to inactivate some of these compounds. Similar to ESBL, AmpC-producing organisms hydrolyze amino- and ureidopenicillins, oxyimino-β-lactams such as ceftazidime, ceftiofur, and aztreonam, but contrary to the former enzymes, AmpC also inactivates broad and extended-spectrum cephalosporins such as cephamycins (cefoxitin) and are not inhibited by β-lactamase inhibitors such as clavulanic acid. Neither ESBL nor AmpC confer bacteria resistance to carbapenems.
Originally, AmpC were described as chromosomally encoded enzymes and were detected in a few bacterial species such as Enterobacter cloacae, Citrobacter freundii, Serratia marcescens, Acinetobacter spp., Aeromonas spp. and Pseudomonas aeruginosa [60]. As the use of β-lactamase inhibitors increased among the population, dissemination of AmpC genes among bacterial species began by means of horizontal travel through plasmids, phenomenon that led to the appearance of AmpC-resistant traits in bacteria that previously lacked such genes or expressed them at low levels, such as E. coli, Klebsiella spp. and Shigella spp. [60].
In E. coli, the subject of this chapter, resistance by AmpC can be plasmid encoded or due to the overexpression of the chromosomal AmpC genes. Contrary to the AmpC enzymes of other members of the Enterobacteriaceae, such as Enterobacter spp. and Citrobacter freundii, that of E. coli exhibits a non-inducible phenotype that is constitutive and its production depends on either the strength of the ampC promoter [61], the presence of >1 copy of the ampC gene, the incorporation of a stronger promoter sequence as part of an insertion element or by the acquisition of a strong promoter of other bacterial species [62]. As stated before, this organism can carry ampC genes either chromosomally or in plasmids; however, the latter is being recognized as the major threat since plasmid-encoded AmpC are easily transferable between bacterial species, can cause nosocomial outbreaks, is associated with multidrug resistance and, in combination with porin loss, may lead to resistance to carbapenems [63].
Bacterial resistance to β-lactams is a major public health problem around the world. Although ESBL production clearly exceeds AmpC production as the major cause of β-lactam resistance, the later enzymes are now being recognized as a growing problem in different members of the Enterobacteriaceae, including E. coli, as evidenced by the increasing number of these strains being reported across the globe. Sources of AmpC-producing E. coli strains include livestock [64], the environment [65], as colonizers of the human gut [66] and as cause of human infections. The prevalence of these strains isolated as causative agents of human infections varies, ranging from 2.0% reported in a Portuguese hospital [67] to 16.7% from three university hospitals in Iran [68] to 29.0% from five referral hospitals in Sudan [69].
When comparing the epidemiology of today’s AmpC-producing E. coli to that of ESBL-producing bacteria of two decades ago, they present several common features: high gut colonization in both animals and humans, reduced prevalence as cause of human infections, environmental contamination by these multidrug-resistant strains, higher isolation of both types of β-lactamase-producing strains in developing countries and their ability to be transmitted via plasmids among different bacterial species. As these two types of β-lactamase-producing strains behave similarly, it would be of no surprise to witness in the near future a booming increase of reports of infections caused by AmpC-producing strains, as witness two decades ago with ESBL. To make matter worse, infectious disease specialists are starting to see an increase of cases of E. coli strains that co-express ESBL and AmpC genes, complicating antimicrobial treatment even further. Different reports in India [70, 71] have shown that co-expression of blaESBL and blaAmpC genes by E. coli strains isolated from different human infections is not uncommon, thus continuous monitoring of these resistance patterns is a necessity that will help prevent the further spread of these multidrug-resistant microorganisms.
Since ESBL- and AmpC-producing E. coli are increasingly being reported as cause of severe infections, carbapenems represent in many cases the last option for effective treatment against these infections. Nevertheless, with an increasing consumption of these agents, carbapenem-resistant strains, particularly Klebsiella spp. and in a lesser degree E. coli, have become a public health concern, particularly in the hospital setting. Carbapenems bind to penicillin-binding proteins and induce spheroplast formation and cell lysis without filament formation. The carbapenems include four agents: imipenem, meropenem, ertapenem and doripenem.
As in the case of ESBL- and AmpC-producing Enterobacteriaceae, reports from different countries show that resistance to carbapenems has been constantly increasing in the last few years, becoming a public health problem. In Europe, 11 countries have reported an increase in the number of infections caused by carbapenemase-producing Enterobacteriaceae in the period from 2015 to 2018 [72] and in China, Tian et al. [73] have reported an increase in the prevalence of carbapenemase-producing E. coli from 0% in 2011 to 1.9% in 2017.
The reported carbapenemases in E. coli primarily include Klebsiella pneumoniae carbapenemases (KPC), metallo-β-lactamases (MBL), including the VIM, IMP, GIM and NDM type, and oxacillin-hydrolyzing metallo-β-lactamases (OXA) [74]; however, different reports around the world have shown that the predominant types in E. coli are of the New Delhi metallo-β-lactamase (NDM-1) and carbapenem-hydrolyzing oxacillinase-48 (OXA-48) types [73, 75, 76].
The New Delhi metallo-β-lactamase (NDM-1) and closely related enzymes are a group of zinc-requiring metallo-β-lactamases capable of hydrolyzing a broad range of β-lactams including all penicillins, cephalosporins and carbapenems, just sparing monobactams, and are among the most recently identified carbapenemases. The gene encoding these enzymes, blaNDM, has been identified on bacterial chromosomes and plasmids [77]; however, in the case of E. coli, blaNDM is mainly plasmid encoded with only few strains carrying it chromosomally [78].
NDM-1 was first identified in 2008 in India, a country that has been pointed out as the primary reservoir of NDM strains [77], followed by the Balkan states [79] and the Middle East [80]. From these three spots, blaNDM-1-carrying bacterial strains have spread around the world, mainly due to the ability of the carrying microorganisms to horizontally transfer the carbapenemase resistance trait via plasmids. An additional factor that has contributed to the worldwide dissemination of NDM-1-producing strains is the frequent co-existence of the blaNDM-1 gene on plasmids carrying additional antibiotic resistance genes, situation that has allowed the plasmid-carrying strains to thrive under environments of antibiotic selective pressure.
Since the first report of NDM-1, over 20 NDM variants have been reported; however, in E. coli, NDM-1, followed by NDM-5, are the predominant variants in human infections in different parts of the world [81, 82]. Surprisingly, in a study by Shen et al. [83] published in 2018, the highest prevalence in the human gut and livestock was of the NMD-5 variant, suggesting a possible shift from NDM-1 to NDM-5 in the community in China. An additional, and important finding of this study, was the identification, albeit small, of NDM-5 E. coli strains that co-express colistin resistance genes, mcr-1, in the gut of healthy individuals, situation that if not properly controlled might contribute to the future dissemination of E. coli strains that are resistant to last resource antibiotics.
As with any other β-lactamase, OXA-48 hydrolyzes β-lactam antibiotics, including carbapenemases, but paradoxically spares broad-spectrum cephalosporins. OXA-48 genes were originally traced to the aquatic bacterium Shewanella oneidensis, but further studies now trace its origin to Shewanella xiamenensis [84]. Since the first description in Europe of OXA-48-carrying Enterobacteriaceae, several variants have been reported, including OXA-162, OXA-163, OXA-181, OXA-204, OXA-232, OXA244 and OXA-245.
Mainly found in Klebsiella species, reports on the detection of blaoxa-carrying E. coli have increased in the last 3 years in different parts of the world, being reported in studies in Myanmar [85], the United States [86] and Thailand [87]. In all three studies, the isolated strains were co-expressing blaOXA-48 or its variants and blaNDM5. Oxa-48-carrying E. coli strains have also been isolated in Europe, between January and October 2019, 134 cases of E. coli strains carrying the OXA-48 variant OXA-244 were isolated from clinical samples in Germany; this same variant was further identified in 119 E. coli strains isolated from other European countries [88]. The source and route of transmission of these strains is currently unclear.
As carbapenems are considering in many clinical instances as a last resource antibiotic, worldwide monitoring on the prevalence of E. coli carrying resistant traits against these agents should be continuously performed in order to prevent the spread of these strains, situation that can jeopardize even further the current antibiotic resistance crisis.
The ability of Escherichia coli to colonize the gut of humans and animals, thus facilitating its transmission via the fecal-oral route, and its ability to transmit and uptake antibiotic resistance genes via plasmids to and from other bacteria have made this organism a key target in the fight against antimicrobial resistance. As discussed in this chapter, E. coli has evolved different mechanisms to fight off the action of antibiotics, and in many cases a single strain can carry resistance genes to distinct classes of these agents, thus complicating treatment.
The emergence of antibiotic resistance has been shown to be multifactorial, but all elements coincide in a major topic: antibiotic over abuse, both in human and veterinary medicine. The establishment of antibiotic stewardship programs is a major necessity in all nations as a way to reduced antibiotic resistance. However, as the spread and maintenance of E. coli-resistant traits among humans and between animals and humans is driven by additional, and probably more difficult to tackle, social issues such as lack of hygiene, lack of drinking water and house overcrowding, these factors must be taken care of in order to truly impact antibiotic resistance.
The author declares no conflict of interest.
An implementation of smart healthcare solutions can improve the quality of patient care to enhanced patient treatments. These kinds of solutions enable healthcare professionals to deliver the needed and adjusted medical treatment in a smarter and faster way [1]. With the increasing world population, the well-known conventional patient-doctor relationship has lost its effectiveness [2]. Hence, smart healthcare becomes very important and can be implemented at all levels in an organization or society starting from tracking vital signs in the elderly to temperature monitoring for babies. In other terms, smart healthcare technologies are not an end in itself [3]. With the implementation of healthcare technologies, organizations can create efficient workflows to ensure a high-quality in-patient treatment. This ambition is only achieved when technologies are put into use and fully utilized. The focus should therefore be in ensuring efficient use of both existing and new technologies [4, 5].
\nHealthcare technology is an interdisciplinary discipline that links technology and medical/clinical with a focus on developing new diagnostic and treatment methods [6]. Healthcare technology covers a number of technologies, such as medical technology, pharmacology, and biotechnology [7].
\nThe World Health Organization (WHO) has defined and described healthcare technology as the use of medicine, vaccines, procedures and systems—with the associated knowledge and skills—to address a health problem or improve quality of life [8]. Healthcare technology can be defined as technologies used to improve human health [9, 10]. The definition of health technology can be based on the WHO’s definition of health: “Health is not just freedom of disease, but maximum physical, mental and social well-being”
At the same time, one can apply a holistic approach to technology that covers technology, organization, knowledge, and product [12]. A user-oriented technology solution helps to maintain or even develop welfare services [13].
\nSmart healthcare feeds friendly hospital that enables patients and preferred partner in using hospital services with the best and newest health technology [14]. This means that hospitals must focus on developing services that motivate the use of healthcare technologies and focus on optimizing the workflows at clinics [15]. A better basis is needed, because without a better basis there cannot be a continuous focus on optimizing the internal processes and the ongoing support and maintenance of health technology and infrastructure [16]. Almost every hospital has the ambition to have effective use of health technology at the highest international level. The ambition to ensure efficient use of healthcare technology is all about how hospitals contribute locally and regionally to increase the quality of patient treatment and realize efficiency enhancements through health technology [17]. Therefore, healthcare technology plays a central role in supporting hospitals. Investing in healthcare technology has huge benefits. Realizing the need gains benefits through increased technology support and utilizing the experience gained at the individual hospitals. This means consistently developing and optimizing the task solution and patient treatment with health technology [18]. Services must be relevant and based on the needs of hospitals. The implementation should be based on deep knowledge, task solving, and priorities [19]. For effective and efficient use of health technology, it requires the greatest possible use of existing technology before developing new technologies with the necessary support for the users’ daily lives through qualified and efficient support. The journey toward becoming more efficient and therefore not to forget requires a common center and not a local branch. This means a constant balance for local needs, the overall gains for the region, and the ongoing standardization and follow-up [19].
\nResearch in new technology is developing rapidly in the health field. Six of the potential technologies to change the way we understand and safeguard human health is listed as follows [20].
\nIn term the telemedicine covers a broad concept [21]. This includes treatment and monitoring in patients’ own home, for example, through apps, video consultations, and automatic measuring equipment. Most municipalities over the world and regions are investing heavily in these technologies at the moment [22].
\nPhysiotherapists over video can do multi-patient exercises at once, and patients with severe wounds can consult remotely [23]. And people with heart problems can automatically get monitored blood pressure and distance activity. Even though the technology is in use there is still a long way to go [23].
\nHowever, telemedicine solutions do not work as intended [24]. In a small case study, a research team has shown a markedly increased mortality among patients treated via telemedicine [25].
\nNowadays, robots are used for surgeries when doing operation as gastric bypass, uterus, kidney, bladder, prostate, and colon. The advantage is that the robot surgery can be performed without opening the stomach up and the patient can leave the hospital earlier than with open surgery [26]. At the same time, the robot can see the body in 3-D; it is more flexible and has more precision. The result is less blood loss, fewer infections, less scars, shorter hospitalization, and fewer pains [27].
\nAmong young people, but it also spread quickly in the country’s nursing home, where the elderly also had the pleasure and benefit of the machine, because it was both entertaining and good training—a concept called exergaming, exercise and gaming [28, 29].
\nSince then, gaming technology has really gained momentum in healthcare. Today, games are used, among other things, for rehabilitation after cerebral hemorrhage and for the care of dementia, which through reversal play with old family pictures can get cognitive training and become calmer [30, 31].
\nImagine a home where it is being registered online every time you open the refrigerator door. The floor is pressure sensitive and can follow your walk around the house. In the potted plants, there are small sensors that measure every time you water the plant, and when you turn on the light, it is logged [32].
\nFor some, it sounds like a dystopic surveillance society. But for others, there are great opportunities to prevent hospital admissions among the elderly. The technology has huge potential. For example, pneumonia and urinary tract infections in the elderly can be traced in their everyday rhythms. If one can measure as soon as a breach of the patient ordinary routine occurs, treatment can put in much faster [33].
\nThese days, the body and technology are becoming closer and closer together. The so-called wearables—small pieces of electronics that you carry on the body, for example, in the form of clocks, glasses, or even electronic skin—can become the major revolution in the health world [34].
\nToday wearables are used to collect all sorts of data about your body: sleep rhythm, pulse, location, and, among other things, how much you exercise [35]. In the future, it will be even more comprehensive: reading insulin levels, anticipating ovulation, or monitoring how much sun you get.
\nHealth technology needs to be adapted to the users. Two basic elements of telescopic health must be present before it works: firstly, the technology must work, and secondly, the technology must be available to the many patient groups that need it. It is not the technology itself that is interesting, but what technology can be used for.
\nThere is one basic element of telecommunications health. The technology must be applicable to all the many patient groups, disease groups, and populations that need it, and where it can contribute valuable to health, safety, cohesion, learning, and quality of life [36].
\nThe patient, or the user, is thus the focal point. There is nothing new in that and it has been a good custom in healthcare and health technology for many years. But the demographic development of the Western world requires even more action than before to put action behind the words. Hence, a lot is needed to achieve a well-functioning telecommunications health when technology is ready.
\nOne of the pieces in this great puzzle is about “usability.” It must be easy, safe, useful and motivating for users to use the technology. The technology user interface must be intuitive and tailored to the specific user group, and when needed, the right effort must be organized to equip users to apply the technology properly. Human factors are an important part of health technology [37].
\n“Human factors” are becoming an increasingly important part as more and more patients with psychiatric disorders are being treated through technology [38]. Three aspects in particular are important in designing telecommunications health solutions, namely:
setting precise goals;
following and monitoring; and
giving feedback and promoting motivation [39].
Algorithms are already being researched, which can detect stress on the basis of voting, and early warning score (EWS) and mobile applications are being tested which, by means of individually adapted questions, can help schizophrenic patients maintain reality and achieve greater security [40].
\nThe technology itself is not interesting? Yes and no. It is only because of the many impressive technological achievements that it is even possible to create new value for patients, citizens, and communities. But the technologies only get value when they are realized for effective and usable health solutions. This includes competent involvement of human factors when developing, designing, and implementing telescopic health solutions [41].
\nHealth technology is rapidly evolving and embracing many areas and aspects where both public and private actors are at stake [42]. New terminologies and the development of new technology are constantly demanding health education programs [43, 44]. But there should also be a focus on the meeting between the health professional, the citizen, and the health technology. Furthermore, new technology requires a new set of skills, namely health and eHealth literacy. The concept of eHealth literacy is introduced and defined as the ability to seek, find, understand, and appraise health information from electronic sources and apply the knowledge gained to addressing or solving a health problem [45]. Health literacy refers to accessing, understanding, and using information to make health decisions [10].
\nIn Denmark, telecommunication is a commonly used technology. For example, the purpose of Patient@home is to develop welfare technology for the benefit of patients, the health sector, and society as a whole. Patient@home supports a general development toward more outpatient treatments and expansions to own home followed by home-monitored treatment, care, and/or rehabilitation. The goal of this is fewer and shorter hospital admissions as well as the development of new welfare technology, which in the long term can create jobs, exports, and growth in society. Patient empowerment is a central focus of Patient@home [46]. It is intended that a user-driven development of technologies is in progress so that the patient is supported in taking responsibility for their own health and treatment and at the same time makes it possible to be a patient in their own home [47].
\nFinland is one of the world’s leading countries in terms of health and welfare technology, and it needs to benefit the world [48, 49].
\nFinland is at the top of the world in terms of IT skills. This is reflected in a well-developed healthcare sector, where virtual reality, cloud-based data platforms, medicine robots, sensor systems, and more, which belongs to everyday life. Today, Finland ranks as the world’s third strongest country in health technology, and health technology is the country’s largest tech export product [49].
\nThe world faces convincing health challenges in an increased demand and fewer resources. Personal health technology enables a personalized, engaging, preventive, predictive effort in the field of prevention, diagnosis and monitoring, treatment, and assistive technology [50].
\nImplementation of welfare technology stands high on all municipalities’ agenda. Society is challenged by increasing life expectancy, fewer “warm hands,” and greater demands for charitable services [51].
\nWhen a patient is affected by illness or mister functioning, there is a need for rapid and effective efforts to resume an independent life, and, therefore, welfare technology is an optimal tool that can both contribute to training, support, and compensation and thereby help to promote the rehabilitation process. We already have the technologies.
\nThe challenge is to put them in play in everyday life for the benefit of both patient’s and healthcare professionals.
\nThere must not be health technology for the sake of health technology. The technology must be a need to and not nice to have the because it is something that gives value, either for healthcare professionals or patients- and very much for both healthcare professionals and patients. The staff’s knowledge and motivation are crucial for a good implementation.
\nDoes the healthcare professional not have the necessary knowledge of how a technology works, loses the face, seems unprofessional, and the technology is not being used? Instead, the staff should be thoroughly dressed so that they can safely operate and, not least, facilitate the citizens to use the technology [52].
\nPatients can seek their knowledge in the future and have less need to get the healthcare professionals’ expert knowledge. What they need is to be facilitated in how they use their knowledge and move on. Health professionals will change from being some who have the expertise to be someone who facilitates patients in using health technology [53].
\nHealthcare professionals’ motivation and engagement are also important to focus on in the implementation phase if they need to be adaptable and open to learning. Learn to take the new technologies, learn how to use them, and learn the new working methods that come with you.
\n\n
Experience of doubtful necessity
Implementation of welfare technology requires change in the organization. One of the most for achieving this change is that healthcare professionals experience the changes as compelling necessary. Does that mean that there must be an order from management that now they will use the technologies? No, the experience must come from the healthcare professionals themselves. Healthcare professionals must be able to see the benefits of using the technologies; for example, they can avoid heavy lifting with lifts and thus prevent many colleagues from being sick due to back problems [54].
If we can go to point out such things in collaboration with the healthcare professionals, so they can see that there is actually a scam here, they get an experience of imperative necessity. At the same time, it is important that we avoid self-satisfaction and “as we always have done.” If we fall into it, then there is no change.
Compose a working group
Next step is to put together a working group of motivated healthcare professionals who have an experience of imperative necessity and who wants changes. The workgroup should preferably consist of healthcare professionals, but there must also be a management level that can go in and take the organization and allocate the necessary resources, as well as being a technologist, with an overview of what technologies does the organization have and what they can used for. The working group must be present, where things happen.
Vision and strategy
The task of the working group is now to set the road. They must formulate the visions and strategies for where they are heading and how they will achieve the goal: to implement welfare technology. A strategy that ensures that staff feel safe using technology and taking it into service must be formulated.
It requires a clear vision and a clear strategy which are to be communicated internally within the working group and which are then communicated easily and clearly to the entire organization. These are not only for the healthcare professionals but also for the patients who come in as they may be able to use it when they get home [55].
Short-term goals against the goal
It is important that during the process that the workgroup can set some short-term goals that lead the organization toward the long-term goal: implementing welfare technology. The staff wants to experience and momentum and not get the whole change at once. There may be small instructional videos that present the solutions along the way or walked in living labs where staff can do things, so they are not used to using a new technology for the first time on a citizen, thus appearing insecure and unprofessional in working situation [56].
Give the healthcare professionals some resources and opportunities to practice, for example, in a living lab in a living room, safely and without being hurt because you do not know which button to press.
Consolidation via success stories
Finally, the technology must be consolidated by emphasizing all the small success stories that have been underway in the implementation phase. The healthcare professionals and patients must be able and encouraged to share and experience each other’s successor so that everyone can see that the technology can be used and that it works [57].
Healthcare technology is facing major challenges in relation to both human and financial resources. Therefore, there is a need for innovation. In the area of health and care, it is all about finding solutions where the technology makes us better able to service the patients remotely to free up resources, so that the patients achieve a much greater freedom and independence when the technology allows them to carry out several tasks from home via the technology themselves.
\nYou have been successfully unsubscribed.
",metaTitle:"Unsubscribe Successful",metaDescription:"You have been successfully unsubscribed.",metaKeywords:null,canonicalURL:"/page/unsubscribe-successful",contentRaw:'[{"type":"htmlEditorComponent","content":""}]'},components:[{type:"htmlEditorComponent",content:""}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5775},{group:"region",caption:"Middle and South America",value:2,count:5238},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10409},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15805}],offset:12,limit:12,total:118374},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:26},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5247},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1152",title:"Reconstructive Surgery",slug:"reconstructive-surgery",parent:{title:"Surgery",slug:"surgery"},numberOfBooks:7,numberOfAuthorsAndEditors:219,numberOfWosCitations:79,numberOfCrossrefCitations:47,numberOfDimensionsCitations:113,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"reconstructive-surgery",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8853",title:"Breast Cancer and Breast Reconstruction",subtitle:null,isOpenForSubmission:!1,hash:"5947d4ba7ac1e9c39c9083e89201275c",slug:"breast-cancer-and-breast-reconstruction",bookSignature:"Luis Tejedor, Susana Gómez Modet, Lachezar Manchev and Arli Aditya Parikesit",coverURL:"https://cdn.intechopen.com/books/images_new/8853.jpg",editedByType:"Edited by",editors:[{id:"81170",title:"Dr.",name:"Luis",middleName:null,surname:"Tejedor",slug:"luis-tejedor",fullName:"Luis Tejedor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5428",title:"Designing Strategies for Cleft Lip and Palate Care",subtitle:null,isOpenForSubmission:!1,hash:"20bcf2aa877c04447d31d6e0db2e437e",slug:"designing-strategies-for-cleft-lip-and-palate-care",bookSignature:"Mazen Ahmad Almasri",coverURL:"https://cdn.intechopen.com/books/images_new/5428.jpg",editedByType:"Edited by",editors:[{id:"150413",title:"Dr.",name:"Mazen Ahmad",middleName:null,surname:"Almasri",slug:"mazen-ahmad-almasri",fullName:"Mazen Ahmad Almasri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3283",title:"Skin Grafts",subtitle:null,isOpenForSubmission:!1,hash:"51201608d5c5d7ff6f47e5afd2abdb9f",slug:"skin-grafts",bookSignature:"Madhuri Gore",coverURL:"https://cdn.intechopen.com/books/images_new/3283.jpg",editedByType:"Edited by",editors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"984",title:"Current Concepts in Plastic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"46fb663adfdfb9ceeb2df2013b08038f",slug:"current-concepts-in-plastic-surgery",bookSignature:"Francisco J. Agullo",coverURL:"https://cdn.intechopen.com/books/images_new/984.jpg",editedByType:"Edited by",editors:[{id:"49319",title:"Dr.",name:"Frank",middleName:null,surname:"Agullo",slug:"frank-agullo",fullName:"Frank Agullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"943",title:"Bone Grafting",subtitle:null,isOpenForSubmission:!1,hash:"9afab8beeb4879b2751907783a3de842",slug:"bone-grafting",bookSignature:"Alessandro Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/943.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1007",title:"Xenotransplantation",subtitle:null,isOpenForSubmission:!1,hash:"45fde91777f91583197a5b5dfecb207a",slug:"xenotransplantation",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/1007.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1305",title:"Advances in Endoscopic Surgery",subtitle:null,isOpenForSubmission:!1,hash:"84236c28c671a83f6cd1cd8bb84d873f",slug:"advances-in-endoscopic-surgery",bookSignature:"Cornel Iancu",coverURL:"https://cdn.intechopen.com/books/images_new/1305.jpg",editedByType:"Edited by",editors:[{id:"33183",title:"Prof.",name:"Cornel",middleName:null,surname:"Iancu",slug:"cornel-iancu",fullName:"Cornel Iancu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"33456",doi:"10.5772/30442",title:"Basic Knowledge of Bone Grafting",slug:"basic-knowledge-of-bone-grafting",totalDownloads:27429,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Nguyen Ngoc Hung",authors:[{id:"82591",title:"Prof.",name:"Nguyen",middleName:null,surname:"Ngoc Hung",slug:"nguyen-ngoc-hung",fullName:"Nguyen Ngoc Hung"}]},{id:"33460",doi:"10.5772/31149",title:"Congenital Pseudarthrosis of the Tibia: Combined Pharmacologic and Surgical Treatment Using Biphosphonate Intravenous Infusion and Bone Morphogenic Protein with Periosteal and Cancellous Autogenous Bone Grafting, Tibio-Fibular Cross Union, Intramedullary",slug:"treatment-of-congenital-pseudarthrosis-with-periosteal-and-cancellous-bone-grafting-",totalDownloads:3003,totalCrossrefCites:4,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Dror Paley",authors:[{id:"85789",title:"Dr.",name:"Dror",middleName:null,surname:"Paley",slug:"dror-paley",fullName:"Dror Paley"}]},{id:"39014",doi:"10.5772/51852",title:"Treatment of Leg Chronic Wounds with Dermal Substitutes and Thin Skin Grafts",slug:"treatment-of-leg-chronic-wounds-with-dermal-substitutes-and-thin-skin-grafts",totalDownloads:3144,totalCrossrefCites:0,totalDimensionsCites:6,book:{slug:"skin-grafts",title:"Skin Grafts",fullTitle:"Skin Grafts"},signatures:"Silvestro Canonico, Ferdinando Campitiello, Angela Della Corte, Vincenzo Padovano and Gianluca Pellino",authors:[{id:"68551",title:"Dr.",name:"Gianluca",middleName:null,surname:"Pellino",slug:"gianluca-pellino",fullName:"Gianluca Pellino"},{id:"157129",title:"Prof.",name:"Silvestro",middleName:null,surname:"Canonico",slug:"silvestro-canonico",fullName:"Silvestro Canonico"},{id:"157133",title:"Dr.",name:"Ferdinando",middleName:null,surname:"Campitiello",slug:"ferdinando-campitiello",fullName:"Ferdinando Campitiello"},{id:"165428",title:"Dr.",name:"Angela",middleName:null,surname:"Della Corte",slug:"angela-della-corte",fullName:"Angela Della Corte"},{id:"165429",title:"Dr.",name:"Vincenzo",middleName:null,surname:"Padovano",slug:"vincenzo-padovano",fullName:"Vincenzo Padovano"}]}],mostDownloadedChaptersLast30Days:[{id:"53788",title:"Surgical Techniques for Treatment of Unilateral Cleft Lip",slug:"surgical-techniques-for-treatment-of-unilateral-cleft-lip",totalDownloads:3042,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Mustafa Chopan, Lohrasb Sayadi and Donald R. Laub",authors:[{id:"67264",title:"Dr.",name:"Donald",middleName:"R",surname:"Laub Jr.",slug:"donald-laub-jr.",fullName:"Donald Laub Jr."},{id:"189368",title:"Mr.",name:"Mustafa",middleName:null,surname:"Chopan",slug:"mustafa-chopan",fullName:"Mustafa Chopan"},{id:"189370",title:"Mr.",name:"Lorasb",middleName:null,surname:"Sayadi",slug:"lorasb-sayadi",fullName:"Lorasb Sayadi"}]},{id:"53858",title:"Surgical Strategy of Cleft Palate Repair and Nasometric Results",slug:"surgical-strategy-of-cleft-palate-repair-and-nasometric-results",totalDownloads:1249,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Norifumi Nakamura and Masahiro Tezuka",authors:[{id:"72560",title:"Prof.",name:"Norifumi",middleName:null,surname:"Nakamura",slug:"norifumi-nakamura",fullName:"Norifumi Nakamura"},{id:"189479",title:"Dr.",name:"Masahiro",middleName:null,surname:"Tezuka",slug:"masahiro-tezuka",fullName:"Masahiro Tezuka"}]},{id:"67059",title:"Oncoplastic Surgery in Breast Cancer",slug:"oncoplastic-surgery-in-breast-cancer",totalDownloads:392,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"breast-cancer-and-breast-reconstruction",title:"Breast Cancer and Breast Reconstruction",fullTitle:"Breast Cancer and Breast Reconstruction"},signatures:"Atallah David, Moubarak Malak and Abdallah Abdallah",authors:[{id:"219535",title:"Associate Prof.",name:"David",middleName:null,surname:"Atallah",slug:"david-atallah",fullName:"David Atallah"},{id:"221488",title:"Dr.",name:"Malak",middleName:null,surname:"Moubarak",slug:"malak-moubarak",fullName:"Malak Moubarak"},{id:"299454",title:"Dr.",name:"Abdallah",middleName:null,surname:"Abdallah",slug:"abdallah-abdallah",fullName:"Abdallah Abdallah"}]},{id:"54055",title:"Cleft Lip and Palate Patients: Diagnosis and Treatment",slug:"cleft-lip-and-palate-patients-diagnosis-and-treatment",totalDownloads:1864,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Letizia Perillo, Fabrizia d’Apuzzo, Sara Eslami and Abdolreza\nJamilian",authors:[{id:"171777",title:"Prof.",name:"Abdolreza",middleName:null,surname:"Jamilian",slug:"abdolreza-jamilian",fullName:"Abdolreza Jamilian"},{id:"173044",title:"Prof.",name:"Letizia",middleName:null,surname:"Perillo",slug:"letizia-perillo",fullName:"Letizia Perillo"},{id:"197679",title:"Dr.",name:"Sara",middleName:null,surname:"Eslami",slug:"sara-eslami",fullName:"Sara Eslami"},{id:"198961",title:"MSc.",name:"Fabrizia",middleName:null,surname:"D'Apuzzo",slug:"fabrizia-d'apuzzo",fullName:"Fabrizia D'Apuzzo"}]},{id:"33481",title:"Tuberous Breast: Clinical Evaluation and Surgical Treatment",slug:"tuberous-breast-clinical-evaluation-and-surgical-treatment",totalDownloads:13769,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"current-concepts-in-plastic-surgery",title:"Current Concepts in Plastic Surgery",fullTitle:"Current Concepts in Plastic Surgery"},signatures:"Giovanni Zoccali and Maurizio Giuliani",authors:[{id:"75465",title:"Prof.",name:"Maurizio",middleName:null,surname:"Giuliani",slug:"maurizio-giuliani",fullName:"Maurizio Giuliani"},{id:"76973",title:"Dr.",name:"Giovanni",middleName:null,surname:"Zoccali",slug:"giovanni-zoccali",fullName:"Giovanni Zoccali"}]},{id:"33456",title:"Basic Knowledge of Bone Grafting",slug:"basic-knowledge-of-bone-grafting",totalDownloads:27425,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Nguyen Ngoc Hung",authors:[{id:"82591",title:"Prof.",name:"Nguyen",middleName:null,surname:"Ngoc Hung",slug:"nguyen-ngoc-hung",fullName:"Nguyen Ngoc Hung"}]},{id:"33455",title:"Introduction",slug:"introduction1",totalDownloads:1630,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"bone-grafting",title:"Bone Grafting",fullTitle:"Bone Grafting"},signatures:"Alessandro Rozim Zorzi and João Batista de Miranda",authors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"},{id:"84386",title:"Prof.",name:"João",middleName:null,surname:"Batista de Miranda",slug:"joao-batista-de-miranda",fullName:"João Batista de Miranda"}]},{id:"53715",title:"Cleft Lip and Palate in the Dog: Medical and Genetic Aspects",slug:"cleft-lip-and-palate-in-the-dog-medical-and-genetic-aspects",totalDownloads:6438,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Enio Moura and Cláudia Turra Pimpão",authors:[{id:"91097",title:"Prof.",name:"Enio",middleName:null,surname:"Moura",slug:"enio-moura",fullName:"Enio Moura"},{id:"194711",title:"Dr.",name:"Cláudia",middleName:null,surname:"Pimpão",slug:"claudia-pimpao",fullName:"Cláudia Pimpão"}]},{id:"42570",title:"Polyethylene Surgical Drape Dressing for Split Thickness Skin Graft Donor Areas",slug:"polyethylene-surgical-drape-dressing-for-split-thickness-skin-graft-donor-areas",totalDownloads:1564,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"skin-grafts",title:"Skin Grafts",fullTitle:"Skin Grafts"},signatures:"Madhuri A. Gore, Kabeer Umakumar and Sandhya P. Iyer",authors:[{id:"157243",title:"Dr.",name:"Madhuri",middleName:null,surname:"Gore",slug:"madhuri-gore",fullName:"Madhuri Gore"}]},{id:"53918",title:"Epidemiology of Cleft Lip and Palate",slug:"epidemiology-of-cleft-lip-and-palate",totalDownloads:2032,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"designing-strategies-for-cleft-lip-and-palate-care",title:"Designing Strategies for Cleft Lip and Palate Care",fullTitle:"Designing Strategies for Cleft Lip and Palate Care"},signatures:"Mairaj K. Ahmed, Anthony H. Bui and Emanuela Taioli",authors:[{id:"188212",title:"Dr.",name:"Mairaj K.",middleName:null,surname:"Ahmed",slug:"mairaj-k.-ahmed",fullName:"Mairaj K. Ahmed"},{id:"194367",title:"Dr.",name:"Emanuela",middleName:null,surname:"Taioli",slug:"emanuela-taioli",fullName:"Emanuela Taioli"},{id:"203416",title:"Dr.",name:"Anthony",middleName:null,surname:"Bui",slug:"anthony-bui",fullName:"Anthony Bui"}]}],onlineFirstChaptersFilter:{topicSlug:"reconstructive-surgery",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/263499/yousif-a-abdul-hussien",hash:"",query:{},params:{id:"263499",slug:"yousif-a-abdul-hussien"},fullPath:"/profiles/263499/yousif-a-abdul-hussien",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()