Properties of alcohols [4].
\r\n\tThis book will mainly cover work related to: (i) cells mechanosensing and mechanotransduction mechanisms (ii) computational and experimental techniques in mechanobiology, (iii) mathematical mechanobiological models of bone remodeling, (iv) bone mechano-transduction, (v) innovative tools for mechanobiology and the role of medical imaging in this field and (vi) any other proposals related to innovations, clinical application and perspectives of mechanobiology.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"0a38ccecc83b50d8b015a6dd2533049d",bookSignature:"Prof. Abdelwahed Barkaoui",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10255.jpg",keywords:"Nuclear Mechanotransduction, Mechanosensitivity, Fluids Mechanics, Multiscale Mechanobiology, Modeling Cellular Mechanics, Finite Elements Method, Bone Remodeling, Mechanics Stimulus, Multi-scale Modeling, Mechanobiology Tools, Cell Imaging, Cell-Substrate Interactions",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"July 2nd 2020",dateEndSecondStepPublish:"July 23rd 2020",dateEndThirdStepPublish:"September 21st 2020",dateEndFourthStepPublish:"December 10th 2020",dateEndFifthStepPublish:"February 8th 2021",remainingDaysToSecondStep:"9 months",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:"Assistant director of LERMA laboratory, head of mechanical discipline at ECINE and coordinator of the ECINE study program accreditation committee, a member of the editorial board of several international scientific journals, also a member of the American Society of Mechanical (ASME) Engineers European Society of Biomechanics (ESB) and the International Society of Biomechanics (ISB).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"320631",title:"Dr.",name:"Abdelwahed",middleName:null,surname:"Barkaoui",slug:"abdelwahed-barkaoui",fullName:"Abdelwahed Barkaoui",profilePictureURL:"https://mts.intechopen.com/storage/users/320631/images/system/320631.jpg",biography:"Abdelwahed Barkaoui is an associate professor of Mechanical Engineering at International University of Rabat. He obtained his University habilitation from university of Tunis El Manar-Tunisia in 2017 and his PhD from university of Orleans-France 2012. He has a master's degree in mechanics obtained from the INSA of Lyon-France. He held a position of director of the department of sciences and techniques of engineers and was a Member of the Scientific Advisory Board of the Preparatory Institute for Engineering Studies of El Manar. Currently, Dr. Barkaoui is an assistant director of LERMA laboratory, head of mechanical discipline at ECINE and coordinator of the ECINE study program accreditation committee. His research mainly concerns problems in biomechanics, mechanobiology and biomedical engineering. He is a member of the editorial board of several international scientific journals as Series on biomechanics (2019-), Frontiers in Bioengineering and Biotechnology “biomechanics” (2017-), The Open Biomedical Engineering (2019-), EC Orthopedics (2017-) and Reviewer for several international journals known in the field of biomechanics and mechanics (Scientific Reports (nuture.com), Engineering Fracture Mechanics, Biomechanics and Modeling in Mechanobiology, etc). He is also a member of the American Society of Mechanical (ASME) Engineers European Society of Biomechanics (ESB) and the International Society of Biomechanics (ISB). He has published more than 60 papers in international journals, books, and conferences.",institutionString:"International University of Rabat",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"International University of Rabat",institutionURL:null,country:{name:"Morocco"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"11",title:"Engineering",slug:"engineering"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"280415",firstName:"Josip",lastName:"Knapic",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/280415/images/8050_n.jpg",email:"josip@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copy-editing and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"872",title:"Organic Pollutants Ten Years After the Stockholm Convention",subtitle:"Environmental and Analytical Update",isOpenForSubmission:!1,hash:"f01dc7077e1d23f3d8f5454985cafa0a",slug:"organic-pollutants-ten-years-after-the-stockholm-convention-environmental-and-analytical-update",bookSignature:"Tomasz Puzyn and Aleksandra Mostrag-Szlichtyng",coverURL:"https://cdn.intechopen.com/books/images_new/872.jpg",editedByType:"Edited by",editors:[{id:"84887",title:"Dr.",name:"Tomasz",surname:"Puzyn",slug:"tomasz-puzyn",fullName:"Tomasz Puzyn"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"70150",title:"Alcohol Contribution over Conventional Fuel",doi:"10.5772/intechopen.89084",slug:"alcohol-contribution-over-conventional-fuel",body:'High-carbon bioalcohol with higher cetane number and higher vitality thickness than the prevalently looked higher alcohols makes it an appealing fuel for diesel engines [1]. Studies are quickly developing on high-yield biocombination of higher alcohols from glucose and lignocellulosic biomass feedstock utilizing built smaller scale creatures like
As of late higher alcohols have accumulated enthusiasm among the specialist sowing to their higher vitality thickness, higher cetane number, better mix dependability and less hygroscopic nature when contrasted with other generally considered lower alcohols like ethanol, methanol. Increment long of the carbon chains additionally improves the start nature of alcohol atoms. The term “higher alcohol” more often than not alludes to the arrangement of straight chain alcohols containing at least four carbon iotas, viz. butanol (C4), pentanol (C5), hexanol (C6), octanol (C8), dodecanol (C12), phytol (C20) and so on. Anyway propanol (C3) is additionally incorporated into this examination, as this three-carbon alcohol is used as a dissolvable to tie lower alcohols with diesel and moreover as a blending portion with diesel fuel in diesel engine [7]. Table 1 presents a relationship of physical and substance properties of some lower and higher alcohols with diesel. It might be gotten from the table that higher alcohols (when appeared differently in relation to bring down alcohols like methanol and ethanol) have increasingly unmistakable potential outcomes to supersede fossil diesel totally or to some degree. Higher alcohols can mix with diesel with no stage detachment which is credited to their high carbon content, low extremity and less hygroscopic nature [8]. Subsequently no co-solvents or emulsifying operators would be required to keep up mix dependability when higher alcohols are utilized. The development of long carbon chain and the nonappearance of branches in liquor give high calorific regard, thickness and cetane number while sparing self-lighting credits less penchant to knock [9]. Higher alcohols have less dangerous movement on materials used in the fuel transport. Higher the water content in the alcohols, higher the ruinous action is higher alcohols are less hygroscopic and thusly can be less dangerous. Moreover alcohols with high subnuclear burdens are known to be less ruinous. Flashpoints of higher alcohols are very high which makes them more secure to store, handle and convey in the current circulation foundation. The lower vapor weights of higher alcohols likewise results in lower evaporative discharges. In spite of the fact that more drawn out chain alcohols have less oxygen content, they can in any case upgrade the premixed burning stage with their generally longer start delay permitting adequate blending of air/fuel and furthermore improve the dissemination ignition stage. In addition, alcohols with longer carbon chains consume lesser essentialness in the midst of its age when appeared differently in relation to other lower alcohols since the regular method of isolating far reaching macromolecules can stop prior [10]. The use of higher alcohols was before frustrated by high age costs, gainful use in sustenance industry and compelled creation from nonoil resources [11]. The latest decade has seen a reestablished energy for higher alcohols (as pragmatic vehicle fills) which resuscitated many research social events and bio-development associations to grow the yield of higher alcohols like butanol and pentanol from cellulose by flow development structures using new strains of
Properties of alcohols [4].
Diesel engines are imperative gear in open transportation, rock solid hardware, control age, agrarian and modern hardware attributable to their higher fuel-change profitability, higher power yield, higher torque limit, higher sturdiness, and higher trustworthiness than gas motors. Moreover they radiate lesser carbon monoxide (CO), hydro carbons (HC) and carbon dioxide (CO2) floods than diesel motors [16]. The utilization of fossil diesel in diesel motors passes on high NOx (nitrogen oxides) and buildup radiation that are unpleasant to both regular and human prosperity [17]. Diesel fumes is named harm causing to people by the International association for research on infection (IARC) in perspective on satisfactory evidence that its presentation is connected with an extended peril of lung threatening development while:
Soot outflows can cause cardiovascular illnesses
NOx present in diesel fumes is a central reason for exhaust cloud
Ground level ozone
Corrosive downpour
Debilitated structure disorder
Diesel engines offer un-paralleled fuel conversion efficiency, high torque capability at low engine speeds and durability.
Diesel engines are widely employed prime-movers for public transit systems, agricultural equipment, industrial implementations, power generation, construction and heavy machinery because of its un-matched fuel conversion efficiency, durability and torque capability [18]. The performance of diesel engines is usually higher than that of a gasoline engine of similar size. While the current state-of-the-art diesel engines are typically turbocharged with cooled EGR, equipped with common rail direct injection (CRDI) and after-treatment for soot and NOx, a larger population of diesel engines sold in agricultural and construction equipment during the last few decades in India include naturally aspirated stationary diesel engines [19]. These engines are widely used in the Indian agricultural sector to drive siphon sets to supply water for water system purposes [20]. The present quantities of these diesel driven siphon sets in the nation is about 14.42 million. As indicated by a study completed by the Indian Petroleum Conservation Research Association (PCRA), the yearly generation of these diesel driven siphon sets is 1.5 million with a normal yearly development of 7%. It is important to note that Indian agricultural sector recorded a consumption of 6 million metric tons (MMT) of diesel, which is about 8.55% of India’s total diesel consumption (69 MMT) in the year 2012–2013. This statistic implies that a large population of farmers in India is severely exposed to the toxic diesel exhaust from these engines.
The burgeoning population, rapid industrialization and higher mobility have increased the demand and consumption of crude oil every year. The Figure 1 shows the crude oil consumption in the year 2014–2015 across the world. The International Energy Agency (IEA) has predicted that the global crude oil demand will rise to 99 million barrels per day by the year 2035. Diesel extracted from crude oil by fractional distillation faces depletion in future. There is an estimate that the reserves of crude oil are gradually depleting at the rate of 2.1% per annum. Hence it is imperative that alternative forms of diesel engine compatible fuels have to be identified to improve energy security by the way of bio-based renewable sources. Instability in crude oil prices has an impact on the economies of countries without oil reserves and is heavily dependent on import. In the past 10 years, India relied heavily on imports to meet its increasing fuel demands [21]. High crude-oil imports suggest payments in dollars and depletion of foreign reserves which affects economy. India’s domestic crude oil production plummeted for the fourth straight year in 2015–2016 which escalated India’s import dependence to 81% in the last year from 78.5% in 2015–2016. Thus substitution of even a fraction of fossil fuel with a renewable biofuel will have positive impact on both the economy and environment. It has to be noted that India’s fossil diesel consumption accounted more than that of gasoline. For instance, in 2012–2013, India consumed 69 million tons of diesel oil which is four times than that of gasoline. This consumption is primarily in transportation, industry and agriculture as shown in the graphic in Figure 2. The consumption in agriculture sector comprises tractors 17%, pump-sets for 7.5% and agriculture equipment 9.5%. All this indicates that a huge population is constantly exposed to hazardous gaseous emissions from diesel engines.
Crude oil consumption in the year 2014–2015 [
Diesel consumption in India sector-wise [
Diesel engines emits high levels of oxides of nitrogen (NOx) and particulate matter (PM) into the atmosphere which are proven to be harmful to both human and environmental health [22]. Smoke in diesel engine exhaust is carcinogenic and cause a cardio-respiratory diseases. The diesel exhaust is classified as carcinogenic and continuous exposure can increase the chances of lung cancer [23]. The nano-sized particulate matter if inhaled is capable of trans-locating to the brain through olfactory nerves and can cause inflammation at deposition sites. In an experiment subjected 10 human volunteers to dilute diesel exhaust for an hour and showed that there is a functional effect in the human brain indicating a general cortical stress response [24]. Additionally, these smoke particles are also potential inducers of oxidative stress. The human brain is considered to be very sensitive to the damages caused by oxidative stress. Long term oxidative stress is found to be associated with diseases such as Alzheimer’s and Parkinson’s that leads to reduce cognitive function [25]. Further, when pregnant women are exposed to diesel fumes, adverse effect on fetal development is reported. NOx component present in diesel exhaust is a primary reason for smog, ground level ozone (1981), acid rain and sick building syndrome. NOx causes cyanosis and pulmonary diseases [26].
Realizing a clean, affordable and safe energy future to address the growing concerns of fossil fuel dependence and the subsequent degradation of air quality by burning fossil fuels has been a challenge researchers relentlessly attempt to address [27]. Diesel engines could be perhaps fueled by a wide range of fuels like straight vegetable oil, biodiesel, biogas and bioalcohol adopting several strategies and modifications. The use of edible vegetable oils as diesel engine fuel threatens food security as the world community now embroiled in the “Fuel vs. Food” deliberation. Nonedible sources also have a concern. Their cultivation take up large land sources meant for food crop cultivation. Biodiesels are usually derived from edible and nonedible vegetable oils by transesterification which is a time consuming and expensive process. Biodiesels also presents the same concern as the vegetable oils because the feedstock they are derived from, takes up the acreage meant for the cultivation of food crop. Further the by-product of transesterification like glycerol poses another environmental challenge and has to be carefully disposed [28]. Biogas is typically a mixture of two potential greenhouse gases, methane and carbon-dioxide. Biogas is usually produced and used in as is where is basis because of the costs involved in its storage and distribution that require high pressure cylinders and safety measures to prevent leakage. Bioalcohols could be derived from both food and nonfood based feedstocks which makes them attractive [29]. Feedstock like lignocellulosic biomass which includes agricultural wastes (rice-straw, corn-stalks and sugarcane-bagasse), forestry wastes (wood-pulp, saw-mill and paper-mill rejects) and energy crops (switch grass, elephant grass and agave) that can be subjected to gasification, pyrolysis, steam reforming and bacterial fermentation to yield platform chemicals. Valorization of biomass to esteem included items and vitality is set to occur in biorefineries which could be viewed as similar to the present oil refineries [30]. For a nation like India with huge prolific grounds thriven by ordinary regular precipitation through rainstorm, there is a monstrous open door for gathering enormous amounts of lignocellulosic biomass and to ubiquitous diesel engines. The present study utilizes two such bioalcohols namely cyclohexanol and n-octanol derived from nonfood based sources to power diesel engines. Low carbon bioalcohols like methanol and ethanol which are popularly researched in gasoline engines are incompatible with diesel engines owing to their low energy density and low cetane number. Higher carbon bioalcohols like n-butanol, n-pentanol, n-hexanol, cyclohexanol and n-octanol can be appropriate possibility for diesel engine innovation. These bioalcohols can be made from glucose by development using planned littler scale living things or by getting ready lignocellulosic biomass using enzymatic hydrolysis and maturing, anaerobic digestion, gasification, pyrolysis and biocatalysis. Table 1 exhibits the properties of some bioalcohols in examination with diesel and low carbon alcohols. It will in general be considered that to be the alcohols move higher, its cetane number, low warming quality, streak point, thickness and consistency increases while its oxygen content, vapor weight, dissolvability in water and unconventionality diminishes [31]. Also, the less vapor weight and less hygroscopic nature of high carbon alcohols offer better handling and storage. As a blend component, longer alkyl carbon chains also offer better miscibility with fossil diesel without any phase separation over a period of time.
Lignocellulose is the dry plant raw material that is abundantly available on the planet earth from which biofuels could be produced by processes like enzymatic and acid hydrolysis, pyrolysis, gasification, liquefaction and anaerobic digestion. Lignocellulose is composed of lignin—(C31H34O11)n, cellulose—C6H10O5, and hemicellulose—C5H8O4. Lignin is the second most available natural material in the world after cellulose. It is a complex aromatic polymer which could be processed to produce platform chemicals for biofuel production. Lignin has the highest specific energy content among the three and constitutes up to 15–30% by weight and contains up to 40% by energy in a lignocellulosic biomass feedstock. The cellulose component is much easier to degrade and process to several platform chemicals from which high carbon alcohols like n-pentanol, n-hexanol, cyclohexanol, and n-octanol could be derived. Figure 3 shows the structure and composition of a typical lignocellulosic biomass feedstock.
Lignocellulosic biomass—Structure and composition.
The estimated global biomass production is 1.70 × 1011 tons per year. Global commercial lignin extraction is around 63 MMT (million metric tons) per year. Lignocellulosic biomass is abundant in nature and is available at low cost and could easily form a new class of second generation biofuels. The production of high carbon alcohols using catalytic synthesis could be scaled up with much of the research required in engineering the reactor, process design and economic viability.
The present study utilizes biofuels that could be possibly derived from nonfood-based feedstock. Biofuels that could be derived from biomass feedstocks using microbial production include high carbon alcohols, biodiesels, jet fuels, and biogasoline [31]. As of now, mechanical microorganisms (like
Smoke and NOx emissions in diesel engines have an inherent exchange off connection among them and in this way endeavors to limit one of them would normally bring about expanding the other. To add to this hopelessness, endeavors to decrease outflows would regularly result in misfortune in execution of the engine. This is because efficient combustion often results in high cylinder temperatures and reduces smoke but promotes NOx formation. On the other hand, lowering the combustion temperature results in incomplete combustion and favors NOx emissions but increases smoke formation and reduce engine performance. Adding oxygenated biofuels like bioalcohols to diesel reduces smoke emissions by the way of providing additional oxygen during combustion in fuel-rich zones via fuel-bound oxygen content. However this often results in higher NOx emissions. Exhaust gas recirculation (EGR) is a NOx reduction technology which involves bypassing a percentage of the combusted gases back to engine cylinder along with the intake charge that reduces peak combustion temperatures responsible for NOx formation by the way of its thermal, chemical and dilution effects. However, EGR causes a drop in engine performance as it disturbs the normal combustion process. Modifying the injection timing also affects the emission and performance characteristics. Delaying the injection up to the TDC causes low combustion temperatures and reduces NOx emissions and engine performance. Early injection improves air-fuel mixing and promotes complete combustion. This increases peak combustion temperatures and reduce NOx emissions. Hence it could be inferred that optimization of parameters like oxygenate composition in diesel, EGR and injection timing could achieve low emission and high performance in a diesel engine.
Higher alcohols are second/third era biofuels that can be gotten from lignocellulosic biomass utilizing maintainable way and absent much any dependence on sustenance crops. As run of the mill biofuels, they are equipped for tending to the two dimensional issue of natural debasement and vitality weakness. The accompanying ends can be drawn after this broad study concerning the utilization of 3-carbon propanol to 20-carbon phytol in diesel engines.
Alcohol expansion drags out the start postponement of the mix. Higher alcohol/diesel mixes show higher pinnacle chamber weights and higher pre-blended warmth discharge rates contrasted with diesel. The more extended the length of the carbon chain of the alcohol, the more ignitable the alcohol is. BTE of the engine energized with alcohols like propanol and butanol for the most part demonstrated improved execution:
Higher level of premixed burning
Low cetane number of propanol and improved shower attributes
Decline in consistency and thickness of the mixes.
BTE drops with the use of pentanol and other higher alcohols in diesel engine. Longer chain fatty alcohols like hexanol, octanol and dodecanol are prevalently utilized as surfactants to balance out lower alcohol/diesel mixes and diesel oil miniaturized scale emulsions.
NOx emissions for the most part diminished with expanding propanol or butanol substance in the mix. In any case, alcohols including pentanol and higher, expanded NOx discharges directly with their substance particularly at high loads. This variety is because of the distinction in mastery between the impacts of higher warmth of vaporization and cetane number. This fragile adjusting likewise relied upon the particular motor and its working conditions.
ASTM | American Society of Testing and Materials |
BDC | bottom dead center |
Bmep | brake mean effective pressure |
BP | brake power |
BSEC | brake-specific energy consumption |
BSFC | brake-specific fuel consumption |
BTE | brake thermal efficiency |
But | n-butanol |
CA | crank angle |
CCI | calculated cetane index |
CI | compression ignition |
CR | compression ratio |
CRDI | common rail direct injection |
EGR | exhaust gas recirculation |
Eth | ethanol |
Hex | n-hexanol |
HRR | heat release rate |
LHV | low heating value |
Meth | methanol |
MMT | million metric tons |
Oct | n-octanol |
Pen | n-pentanol |
ULSD | ultra low sulfur diesel |
With the intense contest for ground-level space within high-density urban districts, urban agriculture has taken on multiple forms and occurs in different locations, such as peri-urban farming, urban soil-based farming, indoor farming and rooftop farming [1]. Urban agriculture was initially conceptualized as a response to increasing concerns for food security within the city, with the focus on the potential for mass production within a localized food system that includes production, processing, distribution, consumption and recycling [2]. More than 30% of the food requirements of the City of Oakland are planned to be provided from within the physical limits of the city through city council’s sustainable food system [3]. However, within the complex morphology of high-density cities, the contest for space and strict land use and building controls, the large-scale contiguous spaces required for economic mass agricultural production are seldom available. Many micro-farming enterprises, however, have emerged in cities around the world as community gardens and allotment gardens [4]. Occupying small-scale, marginalized and fragmented “leftover” spaces, these occur on sites of uncertain ownership and ambiguous regulatory control.
\nA clear expression of this phenomenon is the spontaneous appearance in the last decade of more than 60 rooftop farms on underutilized flat roof spaces across the dense urban districts of Hong Kong [5]. These urban rooftop farms are composed of numerous lightweight surficial planter boxes (as opposed to the built-in planting constructions typical of green roofs) which are individually rented to the general public through community enterprise organizations or provided to relevant groups by corporate or institutional owners. Proximity to the people’s living and working spaces have made urban rooftop farms popular, with all farms reporting that they are constantly heavily oversubscribed. Farm owners have suggested that the strong demand for participation is motivated by the opportunities it provides for social interaction, passive recreation, health, education and self-achievement. This contrasts with the HKSAR Government’s recent policy initiatives for urban agriculture which are focused on economic and productive values [6]. In consequence, urban rooftop farms in Hong Kong are in an ambiguous situation between formal centralized city planning and informal community enterprise action. To understand the social benefits of rooftop farming within an urban context of contested space and extreme land value, this study looked to monetize social value through cost-benefit analysis and willingness among participants to pay for extra social benefits derived from the practice.
\nSocial value has long been a consideration within environmental justice discourses; however there has been relatively little research on the social values of urban agriculture and almost none on urban rooftop farming [7]. As with urban agriculture, the few policy debates that have occurred on urban rooftop farming have focused on the potential economic value—the monetary profits that might be generated by selling food produced within the city and generalized concerns for global food security. Around the world, however, very few large-scale commercial urban rooftop farms have been successfully established, and these have only been achieved by retrofitting rooftops with large-scale greenhouses, e.g., AeroFarms in the USA [8] and urban farmers in the Netherlands [9]. The large majority of urban rooftop farms have been small-scale social and community enterprises. In recent years, discussion about the practice has migrated onto to potential contribution to urban environment and greening [1, 10, 11, 12, 13]. Urban rooftop farms have been suggested as possible patches that might visually and ecologically link existing green spaces and corridors within an integrated green infrastructure system and help mitigate urban heat island effects [14]. It has been shown that urban rooftop farms support far higher biodiversity (some have upwards of 200 plants species) than green roofs [15].
\nOnly recently have discussions of the social values of urban rooftop farming begun to appear in the literature. Although social values are considered an important principle within broader concepts of urban sustainability, their recognition and development are lagging [16]. This is commonly attributed to the fact that social values associated with the external environment, such as green spaces and allotment gardens, are intangible and difficult to measure [17]. Social value is usually assumed to be generated through communal physical activity within a space, for example, social groups collaborating on planting activities [18]. Long return on investment makes social value hard to calculate and difficult to monetarize, metrics that are commonly required for inclusion in policy decision-making [19].
\nThrough a review of international case studies, social values of urban rooftop farming were initially investigated from three aspects: social capital theory, landscape projects and urban agriculture practices and with the aim of building a systematic framework of social values for urban rooftop farming. As Dika and Singh [20] noted, the decomposition of a broad concept into factors and indicators can improve understanding and help the policy adaptation in specific contexts.
\nIdeas of social values are based on social capital theory which focuses on balancing different social groups by creating a sense of fairness from collaboration [21]. Social group integration and empowerment are key factors discussed by scholars. Dubos [22] suggests that social capital should be considered in two forms: structural network and cognitive value. Doherty further explains that the structural network in an inclusive society should cross generations and identities and consist of the behaviour-related indices of trust, informal networking, mutual support, reciprocity and solidarity [23, 24]. At the same time, cognitive value is a significant assessment for empowered citizens which is usually obtained from increasing self-satisfaction, achievement and leadership in the society [25, 26].
\nAs an emergent landscape typology, performance measures for urban rooftop farming have yet to be developed [27]. Methods of measuring performance of built landscape have tended to assess physical objects and functional efficiency [28, 29]. Of the few approaches that have evaluated changes in social aspects, Landscape Performance Series (LPS) and Case Study Investigation (CSI) contain the most instructive framework, as they categorize recreation, health, education and food production as core social value factors that enhance sustainability in landscape projects [27].
\nIn the absence of previous research on the specific social values of urban rooftop farms, this research drew upon discussions of social values related to urban agriculture in general. This allowed indicators for an urban rooftop farming social values framework to be identified. The urban agriculture matrices framework developed by Design Trust for Public Space program in New York highlighted the significant benefits through increased physical health and social empowerment from growing vegetables [30]. Specifically, physical, mental and dietary health can be summarized from the research outcome. Social empowerment has been further supported via environmental and food education, leadership and socializing activities which are increasingly important by-products of all forms of urban agriculture. Other researchers have identified unique collective social welfare being generated through urban rooftop farming [7, 31, 32]. Tian and Jim addressed the social value of additional open spaces to the surrounding communities through multifunctional roof spaces, noting that given the limited land in highly dense cities, retrofitting urban farms to rooftops can effectively activate large numbers of vacant spaces within the city for social benefits [32]. Prior research studies have also indicated that dynamic factors are involved in the generation of social values through the practice of urban agriculture.
\nBased on these interdisciplinary research studies, a social value framework for urban rooftop farming was developed, specific to the Hong Kong context (Table 1). This allows a spectrum of social benefits of urban rooftop farming to be considered, with respect to the diverse stakeholders’ (state and individual) interests. The framework compares the social values generated by urban agriculture, green roof installations and rooftop farms; identified from published research papers; and categorized under six factors: health, education, community recreation, urban improvement, social empowerment and social group integration. Urban rooftop farming generates the greatest amount of activity across all the different social values.
\nURF social value framework | \n|||||
---|---|---|---|---|---|
Urban agriculture | \nGreen roof | \nRooftop farms | \nCategory | \nFactors | \nSocial benefits | \n
√ | \n\n | √ | \nSocial benefits | \nHealth | \nImprove physical health | \n
√ | \n\n | √ | \nImprove mental health | \n||
√ | \n\n | √ | \nExperience health habit and diet | \n||
√ | \n\n | √ | \nEducation | \nIncrease environmental awareness | \n|
√ | \n\n | √ | \nPromote sustainable living | \n||
√ | \n\n | √ | \nIncrease organic food knowledge and demand | \n||
√ | \n\n | √ | \nGain practical skills by working in urban rooftop farms | \n||
√ | \n√ | \n√ | \nCommunity recreation | \nProvide extra open space for communities | \n|
√ | \n√ | \n√ | \nProvide visual aesthetic value | \n||
√ | \n√ | \n√ | \nIncrease space using comfortableness | \n||
√ | \n√ | \n√ | \nUrban improvement | \nServe as a planning tool to fill vacant spaces in cities | \n|
\n | √ | \n√ | \nExtension of the life expectancy of roofs | \n||
\n | \n | √ | \nDiverse the multifunctions of roof spaces | \n||
\n | √ | \n√ | \nGood for urban or building retrofitting | \n||
√ | \n√ | \n√ | \nSocial empowerment | \nImprove users/residents’ life satisfaction | \n|
√ | \n\n | √ | \nEnhance community participation | \n||
√ | \n\n | √ | \nDevelop leadership | \n||
√ | \n\n | √ | \nProvide job opportunity to communities | \n||
√ | \n\n | √ | \nSocial group integration | \nEmpower marginalized groups | \n|
√ | \n\n | √ | \nEnrich aging life | \n||
√ | \n\n | √ | \nEnhance parent and children relationship | \n||
√ | \n\n | √ | \nForm social networks | \n||
√ | \n\n | √ | \nCreate social solidarity among diverse groups | \n
Social value framework for urban rooftop farming.
Within HKU’s broad-based “edible roof” initiative which examined the rooftop farming phenomenon across Hong Kong, this specific research study examined eight urban rooftop farms within Hong Kong (including enterprise, social enterprise and individually oriented modes) to determine the nature and scale of the social values that urban rooftop farms could generate.
\nHong Kong is an extreme example of high-rise high-density urban settlement, with severe contest for ground-level space, very high land values and a passive governance structure. Although HKSAR Government’s New Agricultural Policy 2014 and Hong Kong 2030+ strategic planning statement do acknowledge urban rooftop farming practices within the general concept of urban agriculture, intention has focused primarily on economic productivity, and no specific institutional, regulatory or technical support is offered to the small-scale grassroot organizations that practice farming. Despite this, more than 60 urban rooftop farms have spontaneously appeared in the city since 2008 covering some 15,000 sqm of previously underutilized roof space [5]. The majority of the farms are located on industrial or institutional buildings within the older urban districts (Figure 1). Based on a definition of the physical and operational limits of rooftop farming practices and subsequent suitability assessment of all existing buildings in the territory, the potential farmable roof spaces that might exist within the city have been estimated at approx. 595 ha [5]. Although typically small-scale and disparate, these spaces are all in close proximity to large urban populations and collectively offer an expansive opportunity for generating social value (and its attendant economic advantages) if activated for rooftop farming [33].
\nLocations of urban rooftop farms in Hong Kong, as of 2016 (data source: Mathew Pryor ongoing research and Google earth).
Physical and operational characteristics of the three modes of urban rooftop farming in Hong Kong were identified through systematic site survey and typological study (Figure 2). Social enterprise farms aim to promote social change through a sustained commercial business [34]. Social enterprises, such as City Farm and Fun n Farm, generate social impacts by renting out the planting plots to the public. Planting plots typically consist of shallow free-standing black plastic crates filled with lightweight soil, with bamboo or plastic pipe frames above supporting screen netting [33, 35]. Crops are selected and taken care of by farmers, although daily watering is undertaken by farm managers. Training courses (for different skill levels) and related social and craft activities are commonly offered. Farmers rent any number of boxes per month, depending on their ambition and commitment. All farms report extensive waiting lists. The depth of soil and exposure to wind limits species choice to some extent, but a wide range of leafy greens, climbing plants, root vegetables and herbs can be grown. Enterprise-oriented farms are operated by private companies and business or large institutions (universities, schools, hospitals) located on their own premises. Access to the farms is restricted to employees or institutional members. They are similar in physical form and nature to social enterprise farms but additionally provide leisure and social space for employees, with tables, chairs, etc. Individual rooftop farms were very small-scale and only found on residential buildings. Their form was typically more complex and less ordered, and both the form of the planter and the crop species were far more diverse. As they depend solely on the individual owner’s willingness and availability, they were seen as being more vulnerable.
\nTypological study of urban rooftop farm in Hong Kong (photo taken by Mathew Pryor and ting Wang).
Based on this understanding of the local context, the research study was structured around a participant opinion survey and semi-structured interviews with the operators from five selected farms. The survey aim was to validate the preliminary urban rooftop farming social value framework and to quantify the intangible social values from the perspective of the users, including those with and without experience of farming. Subjects were randomly selected from the five farms and from the surrounding residential communities, respectively. A total of 108 answers were collected.
\nSemi-structured interviews were conducted with farm operators from the five farms, in order to understand the monetary influence of social values in urban rooftop farming and to verify the findings from survey. Questions focused on topics such as modes of operation and costs, as well as physical arrangement and planting types. Farm cost data was used in cost-benefit analysis and “willingness to pay” based on contingent valuation methods and perception preference methods. As willingness to pay is influenced by the perceived utility, personal preference of use and socioeconomic environment of the subjects, the survey was designed to obtain the information about various degree of willingness and payments, preference of social values developed in framework and personal socioeconomic information including gender, employment, education and income levels.
\nThe majority of respondents (77%) perceived social values to be the most important benefits of urban rooftop farming, compared with environmental values (58%) and economic benefits (10%). Women and the middle-aged (30–50) were found to be the predominant users of urban rooftop farms—by both number and time. This finding was confirmed through farm membership records and observations of farm managers. Meanwhile, the majority of farm participants were from middle- to high-income groups.
\nThe perception of social values was complex, with individuals expressing degrees of perception toward the six different factors (Figure 3). However, personal socialization benefits were identified most strongly among the six factors. Health (53%) and education (62%) were the factors most perceived by respondents that directly link to the personal enhancement in social statues. Planning social welfare (40%), social group integration (40%), community recreation (35%) and social empowerment (25%) were of less importance by respondents.
\nPerception distribution.
Disparity of social benefit preferences reflects the difference between personal experience values and group conceptual values. Personal health and education are the most direct feelings obtained through daily activities; however, individuals perceive larger scale community and collective benefits indirectly. For instance, though social group integration was not perceived as very significant on the whole, the indicators for enriching the life of the aged and enhancing intergenerational relationships were perceived as highly significant because of the close personal feelings attached. “Developing leadership” and “providing job opportunities” were the two least important indicators among the social empowerment factors, in interview participants questioned “how can leadership be improved by just growing vegetables?” To some extent, this makes sense because it is hard for leadership development to be perceived by the users themselves unless there is an external instructor who guides the activity and highlights the purposes behind it. This may necessitate long-term observation of farm participation organized by experienced teams or working feedback from the employment company. At this point, there is no measurable index for conceptual benefits. In addition, the benefits of increased job opportunities for the society will only be realized when urban rooftop farming becomes a city-scale endeavor. Current rooftop farms are individually too small to be measured in the employment indicator.
\nMany respondents indicated willingness to pay for the social value experience derived from urban rooftop farming. While some were conservative about payment, “I don’t have extra time to enjoy the rooftop farms” (32%); “I cannot afford to pay or buy the service” (19%), the majority of respondents (87%) were willing to pay. The average payment reported during the survey was HK$ 220 per month/person/half square meter. In comparison with the current charge for renting a plot in an urban rooftop farm (HK$ 190), this suggested an increased perception of social values among users.
\nJust asking questions about individual payment decisions encouraged respondents to consider the benefits and the maximization of utility. Willingness to pay was found to be related significantly to the degree of understanding of urban rooftop farming, level of education and income level. Willingness to pay increased with the cognitive level of participants from “no idea” to “have participated in urban rooftop farming.” Practicing farmers were willing to pay more (HK$ 232) than those that had not previously participated (HK$ 194). Most of the respondents who are willing to pay were from higher levels of education (undergraduates and graduates), as well as higher-income groups (Figure 4).
\nSignificant factors in willingness to pay.
Apart from the multiple implications of social values in urban rooftop farming, this research also demonstrates the potential monetary influence through the application of cost-benefit analysis in comparing the marginal benefits (social values) with the existing benefits and costs (capital and recurrent). According to [25, 36], the following cost-benefit analysis components can provide an economic spectrum of social values in urban rooftop farming which can influence government decision-making and contribute to social well-being:
\nAmong the financial information obtained from operators, City Farm Kwun Tong was chosen as a prototype for this calculation due to its comprehensive operational mode and representativeness of other farms in Hong Kong. Cost-benefit analysis in the study used the basic scenario of a rooftop farm in Hong Kong. The prices and amounts were all generic estimates in order to provide the minimum costs and benefits.
\nFirst year revenues generated through urban rooftop farming were found to barely offset the costs in Hong Kong. In the prototype case, the gross costs and benefits of urban rooftop farming in the first year were HK$ 730,400 and HK$ 764,760, respectively. In subsequent years, the annual recurrent commercial benefits exceeded the annual recurrent costs HK$ 530,400, giving a benefit-cost ratio of 0.32 (234,360/7,304,000), which suggested a likely payback period of 38 months. This factors in the high initial capital cost to establish a rooftop farm which includes building retrofitting costs and the purchase of equipment. Farm managers reported that the business stabilized after the second year and revenues were expected to increase in a long term.
\nHowever, the current amount of payment is based on a narrow view of farming participation (HK$ 190 per month/person/half square meter). As suggested by the willingness to pay analysis, once participants took into account the social values derived from their farming activities, they might be willing to pay more (HK$ 220). If fees were raised to this level, it would significantly alter and increase the gross benefits (to HK$ 872,760 per year) and shorthorn the payback period (to 26 months). The results suggest that cost-benefit analysis provide a useful basis on which to reconceive the financial viability of the urban rooftop farms.
\nIn Hong Kong, formal green initiatives in the urban area have come a long way from the development of public parks in the 1970s to the promotion of green roof designs through sustainable building directives in the 2000s. However urban rooftop farming has not been formally recognized and exists still within gray areas of urban planning legislation and building control.
\nAs evidenced by these findings, the disparity of multifaceted social values aligns with previous literature on social capital theory. Cognitive values are directly related to the individuals in the society such as the effects of health and education improvement, while structure values are indirectly built through expanding network in society which needs more efforts to achieve. For instance, collective assets like the urban economy prosperity and social solidarity not only improved by mobilizing individuals through urban rooftop farming but also need more complex catalysts.
\nDifferent levels of understanding of social values have been identified within previous landscapes value research [37]. Individual perceived values in the landscape, concentrating on health and general wellbeing, have most readily been identified: collective values relating to spatial planning and resource management have been less mentioned by subjects. This disparity is also rooted in the physical nature of existing urban rooftop farming practices. According to observations made during this research, rooftop farming activity is explicitly individual due to space limitations. A large number of planting plots were arranged side by side within physically constrained roof spaces, inhibiting interaction. Participants work by themselves on individual plots while only “keeping an eye” on surrounding plots farmed by others. This mode of operation might explain the higher perception of direct personal health and education benefits. The lack of additional social space in social enterprise farms and the solitary nature of individual farms may reduce perceptions of collective social value such as engagement of the community or improvement of the urban environment.
\nPrevious research has not explored the monetary influence of social benefits, which is required for urban rooftop farming to be incorporated into urban policy-making. For instance, on average the payback period for farms is shorter than for green roofs in Hong Kong (27 months) and for ground-level urban agriculture projects (96 months) [25, 38]. The monetary influence of social values is likely to become amplified as urban density increased. Governments, as well as building owners, are likely to be more willing to invest in urban rooftop farming for both the economic benefit and social value through community sustainability.
\nA shift in the thinking about the products of urban rooftop farming from food security and urban greening to social benefits and positive support to activate urban rooftop spaces would create significant opportunities for aligning individual motivations and state interests, thereby achieving a more sustainable city. Though current urban rooftop farming is undertaken by individuals and grassroots organizations, with limited policy or technical supports from city authorities, users still perceived considerable social benefits in the form of sustainable living, environmental knowledge and enhanced relationships within social groups. Users’ willingness to pay for the experience indicates that urban rooftop farming is a passive social activity which can be enhanced by collaborative activities and by-products of farming which include talking, working side by side, standing and comparing.
\nThe implication of the multifaceted social values of rooftop farming suggests a changing perception of urban agriculture. With the increasing speed of urban densification, urban agriculture, constituted by complex social values and diverse interests from stakeholders, has the capacity to be a public good for cultural exchange and enhancing social coherence. This changing perception suggests the need for greater stakeholder support, recognition in legislation and integration with urban planning and building control processes. As an emerging urban activity, further studies are required. For instance, the higher preference for health and education as social benefits in this research requires more specific study to develop detailed instruments for those single indicators within particular groups. In addition, as this study only addressed the social values of urban rooftop farming in Hong Kong, further studies in different contexts and forms could help to expand the urban agriculture discourse.
\nThe authors would like to thank the staffs from City Farm, Rooftop Republic Urban Farming as well as an anonymous friend for their generous assistance in the data collection of this research. This research received publication fund from the University of Hong Kong Department of Architecture.
\nList of semi-structured interview questions:
When was your rooftop farm built?
How was your urban rooftop farm established? What kind of costs is included in the farm? Can you give me the rough number about the cost?
How does your farm operate on a daily basis? How many people did you hired and in what position? What kind of benefits can be earned in the urban rooftop farm? Can you give me the rough number about the benefits?
What are the difficulties you faced when setting up an urban rooftop farm in Hong Kong?
How big is your urban rooftop farm?
What kind of activities you have in your farm?
Can you estimate roughly how many people come to your rooftop farm on a regular basis?
What kind of species can you grow in your rooftop farm?
How do you think about the distribution characteristics of the participants in my questionnaire? Is it consistent with your observation every day?
How do you think about the existing result of questionnaire that shows the low perception of the collective social value in URF? Are you considering to add more public spaces or people to socialize in the future?
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5816},{group:"region",caption:"Middle and South America",value:2,count:5281},{group:"region",caption:"Africa",value:3,count:1754},{group:"region",caption:"Asia",value:4,count:10511},{group:"region",caption:"Australia and Oceania",value:5,count:906},{group:"region",caption:"Europe",value:6,count:15913}],offset:12,limit:12,total:119060},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish"},books:[{type:"book",id:"10231",title:"Proton Therapy",subtitle:null,isOpenForSubmission:!0,hash:"f4a9009287953c8d1d89f0fa9b7597b0",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10231.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10657",title:"Service Robots",subtitle:null,isOpenForSubmission:!0,hash:"5f81b9eea6eb3f9af984031b7af35588",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10657.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10662",title:"Pedagogy",subtitle:null,isOpenForSubmission:!0,hash:"c858e1c6fb878d3b895acbacec624576",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10662.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10677",title:"Topology",subtitle:null,isOpenForSubmission:!0,hash:"85eac84b173d785f989522397616124e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10677.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10678",title:"Biostatistics",subtitle:null,isOpenForSubmission:!0,hash:"f63db439474a574454a66894db8b394c",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10678.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10679",title:"Mass Production",subtitle:null,isOpenForSubmission:!0,hash:"2dae91102099b1a07be1a36a68852829",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10679.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10689",title:"Risk Management in Construction",subtitle:null,isOpenForSubmission:!0,hash:"e3805b3d2fceb9d33e1fa805687cd296",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10689.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10696",title:"Calorimetry - New Advances",subtitle:null,isOpenForSubmission:!0,hash:"bb239599406f0b731bbfd62c1c8dbf3f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10696.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10709",title:"Heart Valve Surgery",subtitle:null,isOpenForSubmission:!0,hash:"cb3479fd272d968ee7eee95ae09ea9db",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10709.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10712",title:"Thrombectomy",subtitle:null,isOpenForSubmission:!0,hash:"853e71d74c3dd5007277d3770e639d47",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10712.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10715",title:"Brain MRI",subtitle:null,isOpenForSubmission:!0,hash:"6d56c88c53776966959f41f8b75daafd",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10715.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10730",title:"Extracorporeal Membrane Oxygenation",subtitle:null,isOpenForSubmission:!0,hash:"2ac3ed12d9db14ee4bc66d7808c82295",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10730.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:25},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:9},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:9},{group:"topic",caption:"Engineering",value:11,count:24},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:2},{group:"topic",caption:"Medicine",value:16,count:44},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:213},popularBooks:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5315},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8445",title:"Dam Engineering",subtitle:"Recent Advances in Design and Analysis",isOpenForSubmission:!1,hash:"a7e4d2ecbc65d78fa7582e0d2e143906",slug:"dam-engineering-recent-advances-in-design-and-analysis",bookSignature:"Zhongzhi Fu and Erich Bauer",coverURL:"https://cdn.intechopen.com/books/images_new/8445.jpg",editors:[{id:"249577",title:"Dr.",name:"Zhongzhi",middleName:null,surname:"Fu",slug:"zhongzhi-fu",fullName:"Zhongzhi Fu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8937",title:"Soil Moisture Importance",subtitle:null,isOpenForSubmission:!1,hash:"3951728ace7f135451d66b72e9908b47",slug:"soil-moisture-importance",bookSignature:"Ram Swaroop Meena and Rahul Datta",coverURL:"https://cdn.intechopen.com/books/images_new/8937.jpg",editors:[{id:"313528",title:"Associate Prof.",name:"Ram Swaroop",middleName:null,surname:"Meena",slug:"ram-swaroop-meena",fullName:"Ram Swaroop Meena"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7031",title:"Liver Pathology",subtitle:null,isOpenForSubmission:!1,hash:"631321b0565459ed0175917f1c8c727f",slug:"liver-pathology",bookSignature:"Vijay Gayam and Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7031.jpg",editors:[{id:"273100",title:"Dr.",name:"Vijay",middleName:null,surname:"Gayam",slug:"vijay-gayam",fullName:"Vijay Gayam"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9536",title:"Education at the Intersection of Globalization and Technology",subtitle:null,isOpenForSubmission:!1,hash:"0cf6891060eb438d975d250e8b127ed6",slug:"education-at-the-intersection-of-globalization-and-technology",bookSignature:"Sharon Waller, Lee Waller, Vongai Mpofu and Mercy Kurebwa",coverURL:"https://cdn.intechopen.com/books/images_new/9536.jpg",editedByType:"Edited by",editors:[{id:"263302",title:"Dr.",name:"Sharon",middleName:null,surname:"Waller",slug:"sharon-waller",fullName:"Sharon Waller"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editedByType:"Edited by",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9629",title:"Electroencephalography",subtitle:"From Basic Research to Clinical Applications",isOpenForSubmission:!1,hash:"8147834b6c6deeeec40f407c71ad60b4",slug:"electroencephalography-from-basic-research-to-clinical-applications",bookSignature:"Hideki Nakano",coverURL:"https://cdn.intechopen.com/books/images_new/9629.jpg",editedByType:"Edited by",editors:[{id:"196461",title:"Prof.",name:"Hideki",middleName:null,surname:"Nakano",slug:"hideki-nakano",fullName:"Hideki Nakano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9524",title:"Organ Donation and Transplantation",subtitle:null,isOpenForSubmission:!1,hash:"6ef47e03cd4e6476946fc28ca51de825",slug:"organ-donation-and-transplantation",bookSignature:"Vassil Mihaylov",coverURL:"https://cdn.intechopen.com/books/images_new/9524.jpg",editedByType:"Edited by",editors:[{id:"313113",title:"Associate Prof.",name:"Vassil",middleName:null,surname:"Mihaylov",slug:"vassil-mihaylov",fullName:"Vassil Mihaylov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9280",title:"Underwater Work",subtitle:null,isOpenForSubmission:!1,hash:"647b4270d937deae4a82f5702d1959ec",slug:"underwater-work",bookSignature:"Sérgio António Neves Lousada",coverURL:"https://cdn.intechopen.com/books/images_new/9280.jpg",editedByType:"Edited by",editors:[{id:"248645",title:"Dr.",name:"Sérgio António",middleName:null,surname:"Neves Lousada",slug:"sergio-antonio-neves-lousada",fullName:"Sérgio António Neves Lousada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editedByType:"Edited by",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8158",title:"Veganism",subtitle:"a Fashion Trend or Food as a Medicine",isOpenForSubmission:!1,hash:"d8e51fc25a379e5b92a270addbb4351d",slug:"veganism-a-fashion-trend-or-food-as-a-medicine",bookSignature:"Miljana Z. Jovandaric",coverURL:"https://cdn.intechopen.com/books/images_new/8158.jpg",editedByType:"Edited by",editors:[{id:"268043",title:"Dr.",name:"Miljana Z.",middleName:"Z",surname:"Jovandaric",slug:"miljana-z.-jovandaric",fullName:"Miljana Z. Jovandaric"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"29",title:"Agronomy",slug:"agronomy",parent:{title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"},numberOfBooks:48,numberOfAuthorsAndEditors:1273,numberOfWosCitations:1034,numberOfCrossrefCitations:656,numberOfDimensionsCitations:1562,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agronomy",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editedByType:"Edited by",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9711",title:"Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production",subtitle:null,isOpenForSubmission:!1,hash:"12cf675f1e433135dd5bf5df7cec124f",slug:"pests-weeds-and-diseases-in-agricultural-crop-and-animal-husbandry-production",bookSignature:"Dimitrios Kontogiannatos, Anna Kourti and Kassio Ferreira Mendes",coverURL:"https://cdn.intechopen.com/books/images_new/9711.jpg",editedByType:"Edited by",editors:[{id:"196691",title:"Dr.",name:"Dimitrios",middleName:null,surname:"Kontogiannatos",slug:"dimitrios-kontogiannatos",fullName:"Dimitrios Kontogiannatos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9712",title:"Genetic Transformation in Crops",subtitle:null,isOpenForSubmission:!1,hash:"c111fe32d4d7e3988e4ef2fd6775a265",slug:"genetic-transformation-in-crops",bookSignature:"Kin-Ying To",coverURL:"https://cdn.intechopen.com/books/images_new/9712.jpg",editedByType:"Edited by",editors:[{id:"310646",title:"Dr.",name:"Kin-Ying",middleName:null,surname:"To",slug:"kin-ying-to",fullName:"Kin-Ying To"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8153",title:"Agronomy",subtitle:"Climate Change & Food Security",isOpenForSubmission:!1,hash:"2c01368bbeacbbedeb3681ea0c037dbe",slug:"agronomy-climate-change-food-security",bookSignature:"Amanullah",coverURL:"https://cdn.intechopen.com/books/images_new/8153.jpg",editedByType:"Edited by",editors:[{id:"178825",title:"Dr.",name:"Dr.",middleName:null,surname:"Amanullah",slug:"dr.-amanullah",fullName:"Dr. Amanullah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9345",title:"Sustainable Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"5135c48a58f18229b288f2c690257bcb",slug:"sustainable-crop-production",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Dr.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8489",title:"Drought",subtitle:"Detection and Solutions",isOpenForSubmission:!1,hash:"d7c48c817f290b0ed1e97a940a68a52b",slug:"drought-detection-and-solutions",bookSignature:"Gabrijel Ondrasek",coverURL:"https://cdn.intechopen.com/books/images_new/8489.jpg",editedByType:"Edited by",editors:[{id:"46939",title:"Prof.",name:"Gabrijel",middleName:null,surname:"Ondrasek",slug:"gabrijel-ondrasek",fullName:"Gabrijel Ondrasek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6976",title:"Transgenic Crops",subtitle:"Emerging Trends and Future Perspectives",isOpenForSubmission:!1,hash:"aeeada103a0669c03443a17648263066",slug:"transgenic-crops-emerging-trends-and-future-perspectives",bookSignature:"Muhammad Sarwar Khan and Kauser Abdulla Malik",coverURL:"https://cdn.intechopen.com/books/images_new/6976.jpg",editedByType:"Edited by",editors:[{id:"212511",title:"Prof.",name:"Muhammad Sarwar",middleName:null,surname:"Khan",slug:"muhammad-sarwar-khan",fullName:"Muhammad Sarwar Khan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8021",title:"Protecting Rice Grains in the Post-Genomic Era",subtitle:null,isOpenForSubmission:!1,hash:"da2fb173333a52251e111630fc322765",slug:"protecting-rice-grains-in-the-post-genomic-era",bookSignature:"Yulin Jia",coverURL:"https://cdn.intechopen.com/books/images_new/8021.jpg",editedByType:"Edited by",editors:[{id:"168971",title:"Dr.",name:"Yulin",middleName:null,surname:"Jia",slug:"yulin-jia",fullName:"Yulin Jia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7552",title:"Soybean",subtitle:"Biomass, Yield and Productivity",isOpenForSubmission:!1,hash:"9dc4bfbef17ec4e8b46de07238453a23",slug:"soybean-biomass-yield-and-productivity",bookSignature:"Minobu Kasai",coverURL:"https://cdn.intechopen.com/books/images_new/7552.jpg",editedByType:"Edited by",editors:[{id:"29226",title:"Dr.",name:"Minobu",middleName:null,surname:"Kasai",slug:"minobu-kasai",fullName:"Minobu Kasai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6422",title:"Recent Advances in Tomato Breeding and Production",subtitle:null,isOpenForSubmission:!1,hash:"450cb677ac2da7c8d5a582417ada3745",slug:"recent-advances-in-tomato-breeding-and-production",bookSignature:"Seloame Tatu Nyaku and Agyemang Danquah",coverURL:"https://cdn.intechopen.com/books/images_new/6422.jpg",editedByType:"Edited by",editors:[{id:"182528",title:"Dr.",name:"Seloame Tatu",middleName:null,surname:"Nyaku",slug:"seloame-tatu-nyaku",fullName:"Seloame Tatu Nyaku"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:48,mostCitedChapters:[{id:"40178",doi:"10.5772/52583",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:21098,totalCrossrefCites:46,totalDimensionsCites:101,book:{slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"33765",doi:"10.5772/37578",title:"Nutrient Solutions for Hydroponic Systems",slug:"nutrient-solutions-for-hydroponic-systems",totalDownloads:70992,totalCrossrefCites:4,totalDimensionsCites:41,book:{slug:"hydroponics-a-standard-methodology-for-plant-biological-researches",title:"Hydroponics",fullTitle:"Hydroponics - A Standard Methodology for Plant Biological Researches"},signatures:"Libia I. Trejo-Téllez and Fernando C. Gómez-Merino",authors:[{id:"113365",title:"Dr.",name:"Libia I.",middleName:null,surname:"Trejo-Téllez",slug:"libia-i.-trejo-tellez",fullName:"Libia I. Trejo-Téllez"},{id:"113414",title:"Dr.",name:"Fernando C.",middleName:null,surname:"Gómez-Merino",slug:"fernando-c.-gomez-merino",fullName:"Fernando C. Gómez-Merino"}]},{id:"45745",doi:"10.5772/56824",title:"Current Advances on Genetic Resistance to Rice Blast Disease",slug:"current-advances-on-genetic-resistance-to-rice-blast-disease",totalDownloads:4098,totalCrossrefCites:16,totalDimensionsCites:37,book:{slug:"rice-germplasm-genetics-and-improvement",title:"Rice",fullTitle:"Rice - Germplasm, Genetics and Improvement"},signatures:"Xueyan Wang, Seonghee Lee, Jichun Wang, Jianbing Ma, Tracy\nBianco and Yulin Jia",authors:[{id:"168971",title:"Dr.",name:"Yulin",middleName:null,surname:"Jia",slug:"yulin-jia",fullName:"Yulin Jia"}]}],mostDownloadedChaptersLast30Days:[{id:"40178",title:"Molecular Markers and Marker-Assisted Breeding in Plants",slug:"molecular-markers-and-marker-assisted-breeding-in-plants",totalDownloads:21104,totalCrossrefCites:46,totalDimensionsCites:101,book:{slug:"plant-breeding-from-laboratories-to-fields",title:"Plant Breeding from Laboratories to Fields",fullTitle:"Plant Breeding from Laboratories to Fields"},signatures:"Guo-Liang Jiang",authors:[{id:"158810",title:"Dr.",name:"Guo-Liang",middleName:null,surname:"Jiang",slug:"guo-liang-jiang",fullName:"Guo-Liang Jiang"}]},{id:"70658",title:"Factors Affecting Yield of Crops",slug:"factors-affecting-yield-of-crops",totalDownloads:1104,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"agronomy-climate-change-food-security",title:"Agronomy",fullTitle:"Agronomy - Climate Change & Food Security"},signatures:"Tandzi Ngoune Liliane and Mutengwa Shelton Charles",authors:[{id:"313819",title:"Dr.",name:"Liliane",middleName:null,surname:"Tandzi",slug:"liliane-tandzi",fullName:"Liliane Tandzi"},{id:"314316",title:"Prof.",name:"Charles Shelton",middleName:null,surname:"Mutengwa",slug:"charles-shelton-mutengwa",fullName:"Charles Shelton Mutengwa"}]},{id:"48142",title:"Wastes in Building Materials Industry",slug:"wastes-in-building-materials-industry",totalDownloads:3129,totalCrossrefCites:9,totalDimensionsCites:13,book:{slug:"agroecology",title:"Agroecology",fullTitle:"Agroecology"},signatures:"Marinela Barbuta, Roxana Dana Bucur, Sorin Mihai Cimpeanu, Gigel Paraschiv and Daniel Bucur",authors:[{id:"50794",title:"Prof.",name:"Daniel",middleName:"G",surname:"Bucur",slug:"daniel-bucur",fullName:"Daniel Bucur"}]},{id:"71592",title:"Vermicomposting: An Effective Option for Recycling Organic Wastes",slug:"vermicomposting-an-effective-option-for-recycling-organic-wastes",totalDownloads:671,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"organic-agriculture",title:"Organic Agriculture",fullTitle:"Organic Agriculture"},signatures:"Tamanreet Kaur",authors:[{id:"317164",title:"Dr.",name:"Tamanreet",middleName:null,surname:"Kaur",slug:"tamanreet-kaur",fullName:"Tamanreet Kaur"}]},{id:"68927",title:"Nano-Fertilizers for Sustainable Crop Production under Changing Climate: A Global Perspective",slug:"nano-fertilizers-for-sustainable-crop-production-under-changing-climate-a-global-perspective",totalDownloads:1090,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Muhammad Aamir Iqbal",authors:[{id:"249866",title:"Dr.",name:"Muhammad Aamir",middleName:null,surname:"Iqbal",slug:"muhammad-aamir-iqbal",fullName:"Muhammad Aamir Iqbal"}]},{id:"60074",title:"Pollen Germination in vitro",slug:"pollen-germination-in-vitro",totalDownloads:1824,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"pollination-in-plants",title:"Pollination in Plants",fullTitle:"Pollination in Plants"},signatures:"Jayaprakash P",authors:[{id:"235465",title:"Dr.",name:"Jayaprakash",middleName:null,surname:"P",slug:"jayaprakash-p",fullName:"Jayaprakash P"}]},{id:"53055",title:"Semiochemicals and Their Potential Use in Pest Management",slug:"semiochemicals-and-their-potential-use-in-pest-management",totalDownloads:4160,totalCrossrefCites:8,totalDimensionsCites:12,book:{slug:"biological-control-of-pest-and-vector-insects",title:"Biological Control of Pest and Vector Insects",fullTitle:"Biological Control of Pest and Vector Insects"},signatures:"Hamadttu Abdel Farag El-Shafie and Jose Romeno Faleiro",authors:[{id:"192142",title:"Dr.",name:"Hamadttu",middleName:null,surname:"El-Shafie",slug:"hamadttu-el-shafie",fullName:"Hamadttu El-Shafie"}]},{id:"68945",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:565,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"60072",title:"The CRISPR/Cas9 System for Crop Improvement: Progress and Prospects",slug:"the-crispr-cas9-system-for-crop-improvement-progress-and-prospects",totalDownloads:1131,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"next-generation-plant-breeding",title:"Next Generation Plant Breeding",fullTitle:"Next Generation Plant Breeding"},signatures:"Kah-Yung Bernard Leong, Yee-Han Chan, Wan Muhamad Asrul Nizam Wan Abdullah, Swee-Hua Erin Lim and Kok-Song Lai",authors:[{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim"},{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai"},{id:"240491",title:"Mr.",name:"Kah-Yung Bernard",middleName:"Kah Yung",surname:"Leong",slug:"kah-yung-bernard-leong",fullName:"Kah-Yung Bernard Leong"},{id:"240494",title:"Ms.",name:"Yee-Han",middleName:null,surname:"Chan",slug:"yee-han-chan",fullName:"Yee-Han Chan"},{id:"240495",title:"Mr.",name:"Wan Muhamad Asrul Nizam",middleName:null,surname:"Wan Abdullah",slug:"wan-muhamad-asrul-nizam-wan-abdullah",fullName:"Wan Muhamad Asrul Nizam Wan Abdullah"}]},{id:"62376",title:"Genotype × Environment Interaction: A Prerequisite for Tomato Variety Development",slug:"genotype-environment-interaction-a-prerequisite-for-tomato-variety-development",totalDownloads:1341,totalCrossrefCites:1,totalDimensionsCites:5,book:{slug:"recent-advances-in-tomato-breeding-and-production",title:"Recent Advances in Tomato Breeding and Production",fullTitle:"Recent Advances in Tomato Breeding and Production"},signatures:"Michael Kwabena Osei, Benjamin Annor, Joseph Adjebeng-\nDanquah, Agyemang Danquah, Eric Danquah, Essie Blay and Hans\nAdu-Dapaah",authors:[{id:"204223",title:"Dr.",name:"Agyemang",middleName:null,surname:"Danquah",slug:"agyemang-danquah",fullName:"Agyemang Danquah"},{id:"217531",title:"M.Sc.",name:"Michael Kwabena",middleName:null,surname:"Osei",slug:"michael-kwabena-osei",fullName:"Michael Kwabena Osei"},{id:"217760",title:"Dr.",name:"Joseph",middleName:null,surname:"Adjebeng-Danquah",slug:"joseph-adjebeng-danquah",fullName:"Joseph Adjebeng-Danquah"},{id:"217768",title:"MSc.",name:"Benjamin",middleName:null,surname:"Annor",slug:"benjamin-annor",fullName:"Benjamin Annor"},{id:"247378",title:"Dr.",name:"Eric Y.",middleName:null,surname:"Danquah",slug:"eric-y.-danquah",fullName:"Eric Y. Danquah"},{id:"248095",title:"Prof.",name:"Essie",middleName:null,surname:"Blay",slug:"essie-blay",fullName:"Essie Blay"},{id:"248096",title:"Prof.",name:"Hans",middleName:null,surname:"Adu-Dapaah",slug:"hans-adu-dapaah",fullName:"Hans Adu-Dapaah"}]}],onlineFirstChaptersFilter:{topicSlug:"agronomy",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"profile.detail",path:"/profiles/260481/mario-stanziano",hash:"",query:{},params:{id:"260481",slug:"mario-stanziano"},fullPath:"/profiles/260481/mario-stanziano",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()