Although we are exposed to many chemical substances in routine daily life, the body has metabolic systems capable of detoxifying and eliminating these chemicals. Bisphenol A (BPA) is an endocrine disrupter of great concern because of its estrogenic activity, but studies have indicated no severe adverse effects in adult rodents exposed to BPA due to metabolic detoxification. BPA is metabolized by glucuronidation mediated by phase II enzymes such as UDP-glucuronosyltransferase. Numerous recent studies in rodents have indicated that maternal BPA exposure causes adverse effects in offspring. It was also shown that bisphenol analogs are efficiently absorbed via the oral route and distributed to the reproductive tract in pregnant rats, with its residue capable of crossing the placental barrier in the late stage of gestation. Both animal and human studies have demonstrated that BPA and the BPA metabolite BPA-GA are detectable in fetal and amniotic fluid, suggesting the presence of a placental transfer mechanism. In this review, we discuss the pharmacokinetics of BPA, particularly its (1) metabolism and disposition in the intestine, (2) metabolism and disposition in the liver, and (3) transfer from maternal tissues to the fetus.
Part of the book: Endocrine Disruptors