Carbon-containing compounds revealed by Sample Analysis at Mars (SAM) aboard of Curiosity rover: thiophenic, aromatic and aliphatic molecules in Mojave target.
\\n\\n
IntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\\n\\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\\n\\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\\n\\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\\n\\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\\n\\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\\n\\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\\n\\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\\n\\nFeel free to share this news on social media and help us mark this memorable moment!
\\n\\n\\n"}]',published:!0,mainMedia:{caption:"",originalUrl:"/media/original/237"}},components:[{type:"htmlEditorComponent",content:'
After years of being acknowledged as the world's leading publisher of Open Access books, today, we are proud to announce we’ve successfully launched a portfolio of Open Science journals covering rapidly expanding areas of interdisciplinary research.
\n\n\n\nIntechOpen was founded by scientists, for scientists, in order to make book publishing accessible around the globe. Over the last two decades, this has driven Open Access (OA) book publishing whilst levelling the playing field for global academics. Through our innovative publishing model and the support of the research community, we have now published over 5,700 Open Access books and are visited online by over three million academics every month. These researchers are increasingly working in broad technology-based subjects, driving multidisciplinary academic endeavours into human health, environment, and technology.
\n\nBy listening to our community, and in order to serve these rapidly growing areas which lie at the core of IntechOpen's expertise, we are launching a portfolio of Open Science journals:
\n\nAll three journals will publish under an Open Access model and embrace Open Science policies to help support the changing needs of academics in these fast-moving research areas. There will be direct links to preprint servers and data repositories, allowing full reproducibility and rapid dissemination of published papers to help accelerate the pace of research. Each journal has renowned Editors in Chief who will work alongside a global Editorial Board, delivering robust single-blind peer review. Supported by our internal editorial teams, this will ensure our authors will receive a quick, user-friendly, and personalised publishing experience.
\n\n"By launching our journals portfolio we are introducing new, dedicated homes for interdisciplinary technology-focused researchers to publish their work, whilst embracing Open Science and creating a unique global home for academics to disseminate their work. We are taking a leap toward Open Science continuing and expanding our fundamental commitment to openly sharing scientific research across the world, making it available for the benefit of all." Dr. Sara Uhac, IntechOpen CEO
\n\n"Our aim is to promote and create better science for a better world by increasing access to information and the latest scientific developments to all scientists, innovators, entrepreneurs and students and give them the opportunity to learn, observe and contribute to knowledge creation. Open Science promotes a swifter path from research to innovation to produce new products and services." Alex Lazinica, IntechOpen founder
\n\nIn conclusion, Natalia Reinic Babic, Head of Journal Publishing and Open Science at IntechOpen adds:
\n\n“On behalf of the journal team I’d like to thank all our Editors in Chief, Editorial Boards, internal supporting teams, and our scientific community for their continuous support in making this portfolio a reality - we couldn’t have done it without you! With your support in place, we are confident these journals will become as impactful and successful as our book publishing program and bring us closer to a more open (science) future.”
\n\nWe invite you to visit the journals homepage and learn more about the journal’s Editorial Boards, scope and vision as all three journals are now open for submissions.
\n\nFeel free to share this news on social media and help us mark this memorable moment!
\n\n\n'}],latestNews:[{slug:"webinar-introduction-to-open-science-wednesday-18-may-1-pm-cest-20220518",title:"Webinar: Introduction to Open Science | Wednesday 18 May, 1 PM CEST"},{slug:"step-in-the-right-direction-intechopen-launches-a-portfolio-of-open-science-journals-20220414",title:"Step in the Right Direction: IntechOpen Launches a Portfolio of Open Science Journals"},{slug:"let-s-meet-at-london-book-fair-5-7-april-2022-olympia-london-20220321",title:"Let’s meet at London Book Fair, 5-7 April 2022, Olympia London"},{slug:"50-books-published-as-part-of-intechopen-and-knowledge-unlatched-ku-collaboration-20220316",title:"50 Books published as part of IntechOpen and Knowledge Unlatched (KU) Collaboration"},{slug:"intechopen-joins-the-united-nations-sustainable-development-goals-publishers-compact-20221702",title:"IntechOpen joins the United Nations Sustainable Development Goals Publishers Compact"},{slug:"intechopen-signs-exclusive-representation-agreement-with-lsr-libros-servicios-y-representaciones-s-a-de-c-v-20211123",title:"IntechOpen Signs Exclusive Representation Agreement with LSR Libros Servicios y Representaciones S.A. de C.V"},{slug:"intechopen-expands-partnership-with-research4life-20211110",title:"IntechOpen Expands Partnership with Research4Life"},{slug:"introducing-intechopen-book-series-a-new-publishing-format-for-oa-books-20210915",title:"Introducing IntechOpen Book Series - A New Publishing Format for OA Books"}]},book:{item:{type:"book",id:"8631",leadTitle:null,fullTitle:"Prevention, Detection and Management of Oral Cancer",title:"Prevention, Detection and Management of Oral Cancer",subtitle:null,reviewType:"peer-reviewed",abstract:"Up to 70% of oral cancers are preceded by premalignant oral lesions, such as persistent red or white patches in the mouth. Survival rates for oral cancer can be improved through early detection. It is therefore essential that oral health professionals such as dentists, dental hygienists, dental therapists, and oral health therapists understand the importance of conducting a thorough oral screening examination for malignant and potentially malignant lesions as part of their routine clinical assessments, even in younger populations considered at lower risk for oral cancer. Key features of the book include: laser treatment techniques ,human genome sequencing, early detection and multidisciplinary approach ,management strategies and mechanisms of proliferation and energy metabolism in oral cancer.",isbn:"978-1-78984-503-7",printIsbn:"978-1-78984-502-0",pdfIsbn:"978-1-78984-604-1",doi:"10.5772/intechopen.79314",price:119,priceEur:129,priceUsd:155,slug:"prevention-detection-and-management-of-oral-cancer",numberOfPages:114,isOpenForSubmission:!1,isInWos:null,isInBkci:!1,hash:"29a41c9f35ed7ff5e5ab0b3f7e548f28",bookSignature:"Sivapatham Sundaresan",publishedDate:"December 11th 2019",coverURL:"https://cdn.intechopen.com/books/images_new/8631.jpg",numberOfDownloads:5544,numberOfWosCitations:0,numberOfCrossrefCitations:3,numberOfCrossrefCitationsByBook:0,numberOfDimensionsCitations:6,numberOfDimensionsCitationsByBook:0,hasAltmetrics:0,numberOfTotalCitations:9,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 5th 2018",dateEndSecondStepPublish:"June 26th 2018",dateEndThirdStepPublish:"August 25th 2018",dateEndFourthStepPublish:"November 13th 2018",dateEndFifthStepPublish:"January 12th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6",editedByType:"Edited by",kuFlag:!1,featuredMarkup:null,editors:[{id:"187272",title:"Dr.",name:"Sivapatham",middleName:null,surname:"Sundaresan",slug:"sivapatham-sundaresan",fullName:"Sivapatham Sundaresan",profilePictureURL:"https://mts.intechopen.com/storage/users/187272/images/system/187272.jpeg",biography:"Dr. S. Sundaresan has been working in the field of cancer chemoprevention, cancer immunotherapy, and tumor marker detection. Translational research (TR) has been described as translating research into medical practice and translating science into better healthcare. Translational research on tumor biomarkers has successfully promoted the development of tumor treatment and has brought new hope for cancer patients. It is important to direct cancer research on diagnosis and treatment toward applying fundamental research findings to the clinic as soon as possible, and applying novel tumor molecular markers to early diagnosis, targeted therapy, and individualized treatment. Focused medical treatment should be given through the analysis of new tumor biomarkers and appropriate treatments. Dr. S. Sundaresan has been working with oral cancer and cancer biomarkers. There are newer molecular markers that are of clinical significance and they need to be studied in various populations. The administration of indoles and triterpenes for preventive and curative effects was studied in laboratory animals. Dr. S. Sundaresan’s research study also demonstrates interferon beta synergistically works with chemotherapeutic drug cisplatin for liver, breast, and cervix cancer cells.",institutionString:"SRM Institute of Science and Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"SRM Institute of Science and Technology",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"1081",title:"Head & Neck Oncology",slug:"head-and-neck-oncology"}],chapters:[{id:"67124",title:"Introductory Chapter: Head and Neck Cancer",doi:"10.5772/intechopen.86272",slug:"introductory-chapter-head-and-neck-cancer",totalDownloads:873,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:null,signatures:"Sivapatham Sundaresan and Paliarasu Rajapriya",downloadPdfUrl:"/chapter/pdf-download/67124",previewPdfUrl:"/chapter/pdf-preview/67124",authors:[{id:"187272",title:"Dr.",name:"Sivapatham",surname:"Sundaresan",slug:"sivapatham-sundaresan",fullName:"Sivapatham Sundaresan"}],corrections:null},{id:"64030",title:"Laser Dental Treatment Techniques",doi:"10.5772/intechopen.80029",slug:"laser-dental-treatment-techniques",totalDownloads:1124,totalCrossrefCites:2,totalDimensionsCites:3,hasAltmetrics:0,abstract:"Dental laser technologies are one of the most rapidly developing areas in the modern technology. When the laser was discovered in the 1960s, it was classified as a solution in search of a problem, and today, laser technology is applied in many different areas. It basically remained a field of research. Typically in the most frequent dental surgery, the caries therapy was frequently compared to most types of lasers; the conventional mechanical drills are still superior, particularly CW or long-pulse lasers. Only laser systems capable of providing ultrashort pulses might be an alternative to mechanical drills. The number of laser applications is enormous, and it is not possible to explain all of them here. In this chapter, the development of suitable application units for laser radiation and other topics of interest in dentistry including laser treatment of soft tissue as well as laser welding of dental bridges and dentures are discussed. In some of these areas, research has been very successful. However, many clinical studies and extensive engineering effort still remain to be done in order to achieve satisfactory results.",signatures:"Zahra Jassim Mohammed Al Timimi and Mohammed Saleem Ismail Alhabeel",downloadPdfUrl:"/chapter/pdf-download/64030",previewPdfUrl:"/chapter/pdf-preview/64030",authors:[{id:"261753",title:"Dr.",name:"Zahra",surname:"Al Timimi",slug:"zahra-al-timimi",fullName:"Zahra Al Timimi"},{id:"275719",title:"Dr.",name:"Mohammed Saleem",surname:"Ismail Alhabeel",slug:"mohammed-saleem-ismail-alhabeel",fullName:"Mohammed Saleem Ismail Alhabeel"}],corrections:null},{id:"63395",title:"The Impact of Sequencing Human Genome on Drug Design to Treat Oral Cancer",doi:"10.5772/intechopen.80231",slug:"the-impact-of-sequencing-human-genome-on-drug-design-to-treat-oral-cancer",totalDownloads:866,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Of all the known cancers, oral cancer is the most preventable and it is the second most deadly cancer after the breast cancer. Out of 609,640 deaths of overall cancers, 13,500 died of oral cancer. In spite of this enormous increase in loss of life, there are no useful drugs to treat oral cancer. Sequencing human genome identifies with precision and accuracy the specific mutations responsible for causing oral cancer. In this chapter, a novel approach to design drugs to attack mutated genes in squamous cell carcinoma responsible for causing oral cancer is proposed. Alkylating aziridines attack single-stranded DNA shutting off genes. Using dinitrobenzamide dye as a carrier for aziridine, we successfully made a novel class of drugs (CB 1954) which shuts off gene of a solid tumor, Walker Carcinoma 256, in rats. We translated the animal work in humans by using quinone as a carrier for aziridines making AZQ (US Patent 4,146,622) for attacking glioblastoma for treating brain cancer in humans. We propose to search for a carrier for aziridines to attack squamous cell carcinomas to treat oral cancer. Ethical issues are discussed. Since tobacco smoking causes oral cancer, it is the most preventable disease.",signatures:"Abdul Hameed Khan",downloadPdfUrl:"/chapter/pdf-download/63395",previewPdfUrl:"/chapter/pdf-preview/63395",authors:[{id:"262416",title:"Dr.",name:"Abdul Hameed",surname:"Khan",slug:"abdul-hameed-khan",fullName:"Abdul Hameed Khan"}],corrections:null},{id:"63725",title:"Early Detection and Multidisciplinary Approach to Oral Cancer Patients",doi:"10.5772/intechopen.81126",slug:"early-detection-and-multidisciplinary-approach-to-oral-cancer-patients",totalDownloads:1179,totalCrossrefCites:1,totalDimensionsCites:2,hasAltmetrics:0,abstract:"“Oral cancer” is a term usually describing oral cavity and oropharyngeal malign tumors. The most histologic type of carcinoma is squamous cell carcinoma, seen in oral and oropharyngeal region with the incidence of 90%. Prevention or early diagnosis of premalignant and oral cancer requires increased public awareness and educating practitioners to be skillful in identifying oropharyngeal region pathology. To prevent oral cancers, the etiological factors should be known, and measures must be taken according to those factors. Premalignant lesions are leukoplakia, lichen planus in oral and cutaneous form, erythroplakia, stomatitis nicotina, and submucous fibrosis. Premalignant lesions should be treated, if possible, or followed up on carefully. To date, there are many clinical, histopathological, radiological, and optical techniques to diagnose or capture precancerous and oral cancer lesions early. The routine management of oral cancers is firstly surgical resection with or without postoperative adjuncts and other therapies such as the use of postoperative chemoradiation and radiation. Successful treatment of oral cancer patients is a complex issue that requires a multidisciplinary approach, including oral and maxillofacial surgeons, oral and maxillofacial radiologists, ENT specialists, medical and radiological oncologists, prosthodontists, dentists, speech therapists, supportive care experts, and also pathologists or, if possible, oral and maxillofacial pathologists.",signatures:"Nihat Akbulut and Ahmet Altan",downloadPdfUrl:"/chapter/pdf-download/63725",previewPdfUrl:"/chapter/pdf-preview/63725",authors:[{id:"262769",title:"Dr.",name:"Nihat",surname:"Akbulut",slug:"nihat-akbulut",fullName:"Nihat Akbulut"},{id:"268500",title:"Dr.",name:"Ahmet",surname:"Altan",slug:"ahmet-altan",fullName:"Ahmet Altan"}],corrections:null},{id:"64185",title:"Management Strategies for Oral Cancer Subsites",doi:"10.5772/intechopen.81555",slug:"management-strategies-for-oral-cancer-subsites",totalDownloads:595,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,abstract:"Oral cancers are the most common cancers in India, especially in males. This can be attributed primarily to consumption of tobacco and areca related products. Surgery is the mainstay of treatment for oral cancers with subtle subsite-specific nuances. The oral cavity starts at the mucocutaneous junction of the lips (the vermilion border) extending posteriorly to the junction of the hard and soft palate superiorly, anterior fauces laterally and the junction of the anterior two-thirds and posterior third of the tongue inferiorly. The oral cavity is lined by stratified squamous epithelium of varying degrees of keratinization. Primary tumors of the oral cavity may be derived from the mucosa, salivary glands, neurovascular tissues, bone or dental tissues. Over 90% of malignant tumors of the oral cavity are squamous cell carcinomas. There are certain basic principles of oncology, those hold true, despite the disease subsite and pathology. Stage I and II disease should be dealt with single modality treatment, whereas Stage III and IV warrant combined modality approach. Choice of modality (surgical versus non-surgical), depends on intent of treatment, chances of cure, accessibility and resectability of disease, impact on quality of life and patient’s general health profile.",signatures:"Neeti Kapre Gupta, Monica Mahajan and Apeksha Hore",downloadPdfUrl:"/chapter/pdf-download/64185",previewPdfUrl:"/chapter/pdf-preview/64185",authors:[{id:"262822",title:"Dr.",name:"Neeti",surname:"Kapre",slug:"neeti-kapre",fullName:"Neeti Kapre"},{id:"271870",title:"Dr.",name:"Monica",surname:"Mahajan",slug:"monica-mahajan",fullName:"Monica Mahajan"},{id:"271871",title:"Dr.",name:"Apeksha",surname:"Hore",slug:"apeksha-hore",fullName:"Apeksha Hore"}],corrections:null},{id:"67847",title:"The Mechanisms of Proliferation and Energy Metabolism in Oral Cancer",doi:"10.5772/intechopen.87091",slug:"the-mechanisms-of-proliferation-and-energy-metabolism-in-oral-cancer",totalDownloads:909,totalCrossrefCites:0,totalDimensionsCites:1,hasAltmetrics:0,abstract:"Human oral squamous cell carcinoma (HOSCC) is the most common head and neck malignant neoplasm. Therapy is generally performed in multidisciplinary approach that used chemotherapy, radiotherapy, and surgery against patients with oral cancer; however, we cannot avoid dysfunction due to its side effects or surgical defects, and it significantly impacts the postoperative quality of life, unfortunately. Therefore, a better understanding of the molecular mechanisms driving oral carcinogenesis may lead to new diagnostic and therapeutic approaches to this disease and improve the prognosis of HOSCC patients. Cancer cells process a fundamental change in its bioenergetics metabolism from normal cells on an altered glucose and lipid metabolism. Recent insights into tumor metabolism have further revealed that oncogenic signaling pathways directly promote metabolic reprogramming to upregulate biosynthesis of lipids, carbohydrates, protein, DNA, and RNA, leading to enhanced growth of tumors. Therefore, targeting cell metabolism has become a novel direction for drug development in oncology. Moreover, molecular mechanisms causing these metabolic changes are just starting to be unraveled. This chapter presents recent findings on molecular markers that have been involved in the mechanisms of proliferation and energy metabolism of oral cancer and in addition provides new perspectives on oral cancer diagnosis and treatments.",signatures:"Masakatsu Fukuda and Hideaki Sakashita",downloadPdfUrl:"/chapter/pdf-download/67847",previewPdfUrl:"/chapter/pdf-preview/67847",authors:[{id:"93675",title:"Dr.",name:"Masakatsu",surname:"Fukuda",slug:"masakatsu-fukuda",fullName:"Masakatsu Fukuda"},{id:"94455",title:"Prof.",name:"Hideaki",surname:"Sakashita",slug:"hideaki-sakashita",fullName:"Hideaki Sakashita"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},subseries:null,tags:null},relatedBooks:[{type:"book",id:"7015",title:"Translational Research in Cancer",subtitle:null,isOpenForSubmission:!1,hash:"cb3276a0256cf8258f16ca0a61386cde",slug:"translational-research-in-cancer",bookSignature:"Sivapatham Sundaresan and Yeun-Hwa Gu",coverURL:"https://cdn.intechopen.com/books/images_new/7015.jpg",editedByType:"Edited by",editors:[{id:"187272",title:"Dr.",name:"Sivapatham",surname:"Sundaresan",slug:"sivapatham-sundaresan",fullName:"Sivapatham Sundaresan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"753",title:"Oral Cancer",subtitle:null,isOpenForSubmission:!1,hash:"3522b4b1ab940a627874585e3c900572",slug:"oral-cancer",bookSignature:"Kalu U. E. Ogbureke",coverURL:"https://cdn.intechopen.com/books/images_new/753.jpg",editedByType:"Edited by",editors:[{id:"82914",title:"Dr.",name:"Kalu",surname:"Ogbureke",slug:"kalu-ogbureke",fullName:"Kalu Ogbureke"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"739",title:"Head and Neck Cancer",subtitle:null,isOpenForSubmission:!1,hash:"b991f9065cc730a2efb5a16a17d1911e",slug:"head-and-neck-cancer",bookSignature:"Mark Agulnik",coverURL:"https://cdn.intechopen.com/books/images_new/739.jpg",editedByType:"Edited by",editors:[{id:"92840",title:"Dr.",name:"Mark",surname:"Agulnik",slug:"mark-agulnik",fullName:"Mark Agulnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"822",title:"Updates in the Understanding and Management of Thyroid Cancer",subtitle:null,isOpenForSubmission:!1,hash:"454230084e5c154ebdec2a486857ee8a",slug:"updates-in-the-understanding-and-management-of-thyroid-cancer",bookSignature:"Thomas J. Fahey",coverURL:"https://cdn.intechopen.com/books/images_new/822.jpg",editedByType:"Edited by",editors:[{id:"68385",title:"Dr.",name:"Thomas J.",surname:"Fahey",slug:"thomas-j.-fahey",fullName:"Thomas J. Fahey"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4533",title:"Contemporary Issues in Head and Neck Cancer Management",subtitle:null,isOpenForSubmission:!1,hash:"e96b4ccf113fcb383f3e3f05c7bc3322",slug:"contemporary-issues-in-head-and-neck-cancer-management",bookSignature:"Loredana G. Marcu",coverURL:"https://cdn.intechopen.com/books/images_new/4533.jpg",editedByType:"Edited by",editors:[{id:"85953",title:"Prof.",name:"Loredana",surname:"Marcu",slug:"loredana-marcu",fullName:"Loredana Marcu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5755",title:"Head and Neck Cancer",subtitle:"Diagnosis and Management of",isOpenForSubmission:!1,hash:"b24fa372d58f381ff1747f9ee2d22d30",slug:"diagnosis-and-management-of-head-and-neck-cancer",bookSignature:"Zuhre Akarslan",coverURL:"https://cdn.intechopen.com/books/images_new/5755.jpg",editedByType:"Edited by",editors:[{id:"171887",title:"Prof.",name:"Zühre",surname:"Akarslan",slug:"zuhre-akarslan",fullName:"Zühre Akarslan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7883",title:"Knowledges on Thyroid Cancer",subtitle:null,isOpenForSubmission:!1,hash:"ca8fba20f9035b1c568531850cc4fb59",slug:"knowledges-on-thyroid-cancer",bookSignature:"Omer Engin",coverURL:"https://cdn.intechopen.com/books/images_new/7883.jpg",editedByType:"Edited by",editors:[{id:"63481",title:"Dr.",name:"Omer",surname:"Engin",slug:"omer-engin",fullName:"Omer Engin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10791",title:"Oral Cancer",subtitle:"Current Concepts and Future Perspectives",isOpenForSubmission:!1,hash:"d5feb836870aef4d30893f10898e7791",slug:"oral-cancer-current-concepts-and-future-perspectives",bookSignature:"Gokul Sridharan",coverURL:"https://cdn.intechopen.com/books/images_new/10791.jpg",editedByType:"Edited by",editors:[{id:"82453",title:"Dr.",name:"Gokul",surname:"Sridharan",slug:"gokul-sridharan",fullName:"Gokul Sridharan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"73639",slug:"corrigendum-to-single-photon-emission-computed-tomography-spect-radiopharmaceuticals",title:"Corrigendum to: Single-Photon Emission Computed Tomography (SPECT) Radiopharmaceuticals",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/73639.pdf",downloadPdfUrl:"/chapter/pdf-download/73639",previewPdfUrl:"/chapter/pdf-preview/73639",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/73639",risUrl:"/chapter/ris/73639",chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]}},chapter:{id:"73033",slug:"single-photon-emission-computed-tomography-spect-radiopharmaceuticals",signatures:"Syed Ali Raza Naqvi and Muhammad Babar Imran",dateSubmitted:"May 13th 2019",dateReviewed:"July 22nd 2020",datePrePublished:"August 21st 2020",datePublished:"January 7th 2021",book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",fullName:"Syed Ali Raza Naqvi",slug:"syed-ali-raza-naqvi",email:"drarnaqvi@gmail.com",position:null,institution:{name:"Government College University, Faisalabad",institutionURL:null,country:{name:"Pakistan"}}},{id:"302793",title:"Dr.",name:"Muhammad Babar",middleName:null,surname:"Imran",fullName:"Muhammad Babar Imran",slug:"muhammad-babar-imran",email:"muhammadbabarimran@yahoo.com",position:null,institution:null}]},book:{id:"7769",title:"Medical Isotopes",subtitle:null,fullTitle:"Medical Isotopes",slug:"medical-isotopes",publishedDate:"January 7th 2021",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"12182",leadTitle:null,title:"Obesity",subtitle:null,reviewType:"peer-reviewed",abstract:"This book will be a self-contained collection of scholarly papers targeting an audience of practicing researchers, academics, PhD students and other scientists. The contents of the book will be written by multiple authors and edited by experts in the field.",isbn:null,printIsbn:null,pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,isSalesforceBook:!1,isNomenclature:!1,hash:"e0506d158487e430f40ed7d0ffbedfe8",bookSignature:"",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/12182.jpg",keywords:null,numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 7th 2022",dateEndSecondStepPublish:"March 28th 2022",dateEndThirdStepPublish:"May 27th 2022",dateEndFourthStepPublish:"August 15th 2022",dateEndFifthStepPublish:"October 14th 2022",dateConfirmationOfParticipation:null,remainingDaysToSecondStep:"2 months",secondStepPassed:!0,areRegistrationsClosed:!0,currentStepOfPublishingProcess:1,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:null},relatedBooks:[{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"R. Mauricio",surname:"Barría",slug:"r.-mauricio-barria",fullName:"R. Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9500",title:"Recent Advances in Bone Tumours and Osteoarthritis",subtitle:null,isOpenForSubmission:!1,hash:"ea4ec0d6ee01b88e264178886e3210ed",slug:"recent-advances-in-bone-tumours-and-osteoarthritis",bookSignature:"Hiran Amarasekera",coverURL:"https://cdn.intechopen.com/books/images_new/9500.jpg",editedByType:"Edited by",editors:[{id:"67634",title:"Dr.",name:"Hiran",surname:"Amarasekera",slug:"hiran-amarasekera",fullName:"Hiran Amarasekera"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophile",surname:"Theophanides",slug:"theophile-theophanides",fullName:"Theophile Theophanides"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"75055",title:"Life on Mars: Clues, Evidence or Proof?",doi:"10.5772/intechopen.95531",slug:"life-on-mars-clues-evidence-or-proof-",body:'
As it is known, Mars is the fourth and the last of the inner and rocky planets of our Solar system. Beyond the “Red Planet”, it extends the belt of asteroids just before the giant Jupiter and the other gaseous external planets of the system. It has a mass: 6.417 x 1023 Kg, a density of 3,940 g/cm3, equatorial diameter of 6,792 Km and a mean temperature of −63°C, a distance from Sol of 228,000,000 km.
Mars orbits the Sun at an average distance of 230 million km and its revolution period is about 687 days; while his solar day is a little longer than ours: 24 hours, 37 minutes and 23 seconds. The Martian axial inclination is 25.19°, which is similar to that of Earth. Due to the discrete eccentricity of its orbit of 0.093, its distance from Earth to opposition can range between about 100 and about 56 million kilometers; only Mercury has a higher eccentricity in the Solar System. However, Mars used to follow a much more circular orbit: about 1.35 million years ago its eccentricity was equivalent to 0.002, which is much lower than the current Earth’s. Mars has an eccentricity cycle of 96,000 Earth years compared to Earth’s 100,000. Over the past 35,000 years, Martian orbit has become increasingly eccentric due to the gravitational influences of other planets, and the closest point between Earth and Mars will continue to decline over the future time.
The planet is enveloped by a thin atmosphere dominated by the gas carbon dioxide as the 95.3% of the whole. The other chemical elements with their respective rates are: nitrogen (2.7%), Argon (1.6%) and oxygen–carbon monoxide-water steam (0.4%). The weakness of the Martian atmosphere and the lack of a magnetic field do not allow any effective defence against ultraviolet radiations and solar winds.
The environmental and geological history of early Mars is mostly written in its rocks, in their composition and morphological/structural signatures. The first few billion years of Mars’ geologic history records surface environments considerably different than the surface today, prompting a succession of coordinated surface and orbiter missions over the past two decades aimed ultimately at determining if Mars ever had an early biosphere. Water is the sine qua non for all life as we understand it and, therefore, past missions have sought environments where water was abundant and possibly long-lived [1, 2].
Mars was formed 4.6 billion years ago, with a history similar to the other three Terrestrial-type planets, i.e. as a result of the condensation of the solar nebula, most probably silicates. Due to the upper distance from the Sun from Earth, during the initial phase of formation in Mars’ orbit there was a higher concentration of elements with low boiling points, such as chlorine, phosphorus and sulfur, probably driven away from the inner orbits by the strong solar wind of the young Sun [3].
During the first Martian Era, known as Noachian period, 4.1–3.7 Gys ago, its environment, that had formed, was moderately similar to the one on present Earth. Liquid water was widespread in a neutral environment, volcanic activity and heat flow more vigorous, and atmospheric pressure and temperature were higher than today. Morphological evidences are represented by river delta and river meanders, drainage networks and lakes; such morphologies are accompanied by the occurrence of consistent sedimentary, layered deposits. These conditions may have favoured the spread of life on the surface of Mars [4]. In this period the planet was subject to intense late bombardment, to which Earth was also a victim. In fact, about 60% of the surface has markers dating back to that era, particularly impact craters. The largest of these is located in the northern hemisphere and has a diameter of about 10,000 km, almost half the circumference of the planet. The formation of this crater is probably due to the impact with a big asteroid, which left a deep depression (the Boreal Basin), covering about 40% of the planet, brutally changing the history and environment of planet [5]. Eloquents morphological rest of such big impacts are extensive water flow formations in the Tharsis region; a region subject, towards the end of the era to a very active volcanism and flooded, by a large amount of water.
Slowly, in just over a billion and a half years, Mars went from a warm and humid phase characteristic of the Noachian to that of a cold and on-surface arid planet observable today. This transitional phase occurred during the Hesperian; a period characterized by continuation of intense volcanic activity (like those of Olympus Mons), deposition of evaporitic sedimentary sequences, and catastrophic floods that dug immense canals along the surface [6]. The continuous eruptions brought large amounts of sulphur dioxide and hydrogen sulfide to the surface, changing the large expanses of liquid water into small basins of high acidity water due to the sulphuric acid that formed. Although the disappearance of rivers and lakes is generally considered attributable towards the end of this era, recent dating on Gale Crater outcroppings open up the existence of water lake about billion years ago, during the Amazonian era [7].
One era, this last, from about 3 billion years ago to today, that is characterized by a poor period of meteor bombardment and by a continuation of cold and arid climatic conditions, until today. Conditions producing surface aridity and deepening of water tables, whose existence has been proven by recent space missions.
In fact, the Martian poles are covered with water ice and permafrost layer extends to latitudes of about 60°, and large amounts of water are believed to be trapped under the thick Martian cryosphere [8]. The formation of Valles Marineris and its spill channels and sink holes, shows that during the early stages of Mars’ history there was a large amount of liquid water. The presence of large amount of ground water and ice in the south pole of Mars was confirmed by the European Mars Express probe in January 2004 and by MARSIS radar near the Chryse Planitia region. Radar analyses conducted from 2012 to 2015 by Mars Express revealed presence of liquid salt water under the southern ice cap. In 2015, based on the MRO’s monitoring, NASA announced evidence that liquid salt water flows on the surface of Mars in the form of small streams [9].
Recent data of spatial missions and in particular of NASA rovers instrumentation proved on Gale crater the existence of lacustrine and intertidal deltas deposits (Figure 1), presence of all the life elements, occurrence of complex organic molecules, sedimentary structures similar to terrestrial microbialites and the existence of an environment favorable to microbial life [1, 10, 11].
Pictures show the landing site of NASA Curiosity rover, at GaleCrater, located near the Martian Equator; a site where intertidal and lacustrine clayey deposit have been found, as well as organic molecules and microstructures resembling microbialtes and terrestrial algae have been found. Below: a geological sketching of the ancient lake deposits (from NASA reports, modified).
Stromatolite-like structures were also found by NASA rovers Opportunity, Spirit and Curiosity on the laminated Martian outcroppings of Meridiani Planum [12, 13, 14, 15, 16, 17, 18]. These findings have given strength to the hypothesis of stromatolites presence [19], that could be probably quite widespread from the Noachian to the Hesperian geological era of Martian life.
The search for life on Mars, either in the present or in the past history of the “Red Planet”, has been the main motivation behind research programs since the 1970s. The first images, highlighting the evidence for past liquid water on Mars, were carried out by orbital images from Mariner 9 [20]. Then, Mars Observer Camera and Mars Reconnaissance Orbiter [21] provided new images of past fluvial networks on its surface, long time ago.
In fact, the claim of this question stems from the early debates that arose from the Vikings’ LR experiments until their recent re-analysis [84]. We can also recall as in 2004, the Phoenix space probe showed the existence of an ice-cemented ground in the northern plains of Mars combined with the presence of perchlorates normally used in terrestrial metabolic pathways of a large number of microorganisms [22, 23, 24]. So, perchlorates, found in the ground ice of Mars, is a putative bio-signature resulting by a possible microbial activity on Mars [25] and could suggest a chemosynthetic activity carried out by bacteria on the planet surface, a short time ago [26].
Our knowledge about this topic has been increased considerably as a result of recent NASA missions, Opportunity, Spirit and Curiosity, located at Meridiani Planum, Gusev and Gale Craters, respectively. The Curiosity rover landed inside the Aeolis Crater, informally known as Gale Crater, on August 2012 with a complex set of scientific instruments (MSL), able to detect chemical and mineralogical soil composition, environmental data, and record panoramic and microscopic images of high accuracy, obtaining subsequently several thousands of images. Hence, the MSL scientists discovered a fluvial-lacustrine sequence and fine grained sedimentary rocks containing clay and hydrated minerals, deposited inside an almost neutral lake. These deposits were, then, subjected to two post-genetic more acidic phases, revealing that they contain the elements necessary for life, e.g., H, O, S, C, N, P, and also including Fe, Mg and Mn suitable to support a possible Martian biosphere based on chemolithoautotrophy [1]. In addition, life, if it existed, must have left visible traces of its activity and presence in the sediments, i.e., the rocks, that are now photographed by rovers. Furthermore, microbes and microalgae are the first step on the evolutionary scale of life on Earth and stromatolites are the oldest evidence for them, stretching back at least 3.5 billion years. Hence, these are the structures that may be present if life ever existed on Mars comparable to Earth [19].
The presence of extraterrestrial microorganisms and, in particular, of cyanobacteria, well known as the main builders of terrestrial stromatolites, has been suggested by many authors beginning from the famous discovery of Martian meteorite ALH84001 [27]. This biological approach was further confirmed by some intriguing images of the Martian surface sent by rover Opportunity on 2010, showing a set of rocks partially covered by a dark shiny patina, close to the terrestrial “Desert Varnish” probably formed by the same bacteria that built stromatolites on the Earth [28]. The latest finding is the discovery in CL1 carbonaceous Martian chondrite of some microfossils very close to terrestrial cyanobacteria [29]. All these hypotheses were strengthened by some studies about extremophiles as desert cyanobacteria of the genus Chroccocidiopsis living in extremely hot and cold deserts that sheds a new light on the possible history of Martian microbial life [30, 31]. In particular, it has been pointed out the important role of Cyanobacteria in the formation of organo-sedimentary rocks as one of the most successful and widespread forms of life on Earth [32] because of their great morphological variability and their bio-stabilization capacity on sun-light exposed sedimentary surfaces, but also in environments characterized by extremely low energy light. In this way, the recent discovery of a new photopigment, found within terrestrial stromatolites and named Chlorophyll f, that can absorb light of even lower photon energy until 720 nm [33], suggests that cyanobacteria could alive also in extreme environments as on Mars. Generally, these microorganisms occupy a very broad range of environments including waters of widely different chemistry and composition so that their involvement in sedimentation processes is equally varied [34]. Cyanobacteria, including more than 2000 species [35], as composite microbial associations, dominate microbial mats and are ubiquitous, leaving successful records in sediments and sedimentary rocks.
Morphological study of images reveals evidence of widespread occurrence of micro, meso, and macro structures recalling for some authors early terrestrial forms of life; such as the “blueberries”, concretions possibly induced by chemolithoautotrophic bacteria [10, 36, 37]. These strange and complex structures, for which abiological explanation it’s hard to find, have strong morphological parallels with terrestrial microbialites/stromatolites [14, 15, 16, 18], a conclusion that seems to be supported by morphometric approaches [12, 13]. Other possible biogenic structures have been observed on Mars, recalling those of terrestrial silica deposits in hydrothermal environments [38, 39] or typical structures, known as Microbially Induced Sedimentary Structures (MISS) and generated by microbial mats of intertidal environments [14]. Despite the many observations, mutually supporting a possible microbialite hypothesis, they do not prove the presence of fossil life on Mars, because biologic explanations for their terrestrial counterparts and for their contained microbial structures are often deeply controversial. In fact, such organo-sedimentary structures are sediments, and despite having unusual features at meso and macroscales, somewhere contain controversial microbial remnants of micrometric dimensions; while complex and larger structures, as are evolved and more evident microfossils (generally larger than 0.1 mm) or macrofossils (centimetric) are generally more obvious and indisputable. Finally, in the Martian atmosphere it has been detected traces of methane and formaldehyde, changing seasonally and supporting evidences on the potential habitability of Mars [40].
At Pahrump Hill (Mojave and Mojave 2 targets, at Sols 809 and 880) a large number of light-toned lozenge-shaped pervasive microstructures having dimensions and shape comparable to rice grains (nicknamed here as “rice grain”) were found and regarded by NASA as pseudomorphic sulfate crystals resulting from occasional lake evaporation [7]. In this location, Curiosity detected mineral assemblage suggest, paradoxically, both oxidizing (hematite) and reducing (magnetite) environments, as well as acidic (diagenetic and/or authigenic jarosite) and neutral (apatite) conditions; findings difficult to explain as having an abiological origin and more compatible with a biological origin.
In this work we hypothesize that among the structures imaged by Curiosity at Mojave targets some are suggestive of bacterially mediated reactions or are the remnants of fossilized life forms, and which also agrees with the organic molecules detected just on such target (Table 1).
Methanethiol (CH4S) |
Dimethyl sulfide (C2H6S) |
Thiophene (C4H4S) |
Methylthiophenes (C5H6S) |
Benzothiophene (C8H6S) |
Carbon-chain molecules with 1 to 5 carbons |
Benzene (C6H6) |
Chlorobenzene (C6H5Cl) |
Alkylbenzenes/benzoate ion (C8H9/C7H5O−) |
Toluene/tropylium ion (C7H8/C7H7+) |
Naphthalene (C10H8) |
Carbon-containing compounds revealed by Sample Analysis at Mars (SAM) aboard of Curiosity rover: thiophenic, aromatic and aliphatic molecules in Mojave target.
Hence, the objective of this study was to investigate the microstructures observed at Sols 809 and 880 (Mojave and Mojave 2 targets; the same site on successive paths) in order to determine their possible biogenicity. These structures were described by NASA as lozenge shaped, pseudomorphic minerals (https://www.nasa.gov./jpl/msl/pia19077).
First, we studied the morphology of microstructures with reference to possible parallels with primitive terrestrial forms of life, such as stromatolites/microbialites, microfossils and/or algae, taking in account previous similar possible finds observed by Martian rovers. Parallels emerged by a systematic image analysis, considering terrestrial similar forms and sedimentary processes, both syn-genetic and post-genetic, in a given environment.
Second, we morphometrically analyzed the lozenge-shaped structures, here called “rice grains” (Figure 2), observed at the same targets, in order to investigate if their microstructures are compatible to sulphate crystals (Gypsum, Jarosite) as well to other minerals contained in these outcroppings or to primitive terrestrial forms of life.
A set of amplified image samplings (rover image MAHLI, taken at Sol 809) showing chaotically arranged whitish forms, many of which are bezel or fusiform-shaped bodies. Such structures were interpreted by NASA as lozenge-shaped crystals (report PIA 19077; central image). Samplings were obtained by using contrast adjustments of 40% (above) and 30% (below), and the more appropriate luminosity, case by case.
The study was based on Mahli (Mars Hand Lens Imager), ChemCam and Mastacam images uploaded on NASA web site (https://mars.nasa.gov/msl/multimedia/raw-images), and especially those from the Sols range 750–1400. A selection of images (Table 2) was made which were considered particularly interesting and have been morphologically analyzed in detail by amplification and color/brightness/contrast modifications, in order to evaluate possible comparison to analogous terrestrial form of life. In particular, Mahli employs a macro lens color camera able to focus on targets at working distances of 2.1 cm to infinity, with a maximum resolution of about 14 μm/pixel. We have used a scale for Mahli images using the relation between motor count and the pixel dimension values provided by NASA and whose pixels are in the range from 20 μm to 30 μm. Consequently, the dimensions of microstructures analyzed in this article are, at least, about 10 time higher than image resolution.
Figure | Section | Type | Sol | Source |
---|---|---|---|---|
4 | A,B | Terrestrial: Stromatolite | — | Web site |
C | Mars: Concretions | 767 | Curiosity | |
D | Mars: Concretions | 871 | Curiosity | |
E,F | Mars: Concretions | 758 | Curiosity | |
5 | A′B′ | Terrestrial: Microbiolites | — | Web site |
A | Mars: Laminate structures | 890 | Curiosity | |
B | Mars: Laminate structures | 810 | Curiosity | |
6 | A,D,F | Mars: Filaments | 871 | Curiosity |
B | Mars: Filaments | 758 | Curiosity | |
C,E | Mars: Filaments | 899 | Curiosity | |
G | Mars: Filaments | 598 + 715 | Opportunity | |
H,I | Mars: Filaments | 780 | Curiosity | |
2 | All | Mars: ‘rice grains’ | 809 | Curiosity |
8 | All | Mars: ‘rice grains’ | 880 | Curiosity |
9 | Up, Lw L | Mars: Various morphologies | 880 | Curiosity |
Up inset | Terrestrial: | — | G. Bianciardi | |
Lw R | Dasycladales-Epimastopora(f) | — | Web site | |
10 | A,B,D,E | Mars: ‘conical bodies’ (f) | 1103 | Opportunity |
C | Terrestrial: Dasyclad (f) | — | Web site | |
11 | A,B,C,L,G | Terrestrial: Dasyclad fragments(f) | — | Web site |
D,E,F,H,I,M | Mars: Shell fragments (f) | 1273 | Curiosity | |
O,Q | Mars ‘rice grains’ | 880 | Curiosity | |
12 | 1 | Terrestrial: Stromatolite filaments (f) | [63] | |
2 | Terrestrial: | — | [41] | |
3 | Terrestrial: | — | G. Bianciardi | |
4 | Terrestrial: Gypsum | — | V. Rizzo | |
5 | Terrestrial: Jarosite | — | (jarosite4138d, www.dakotamatrix.com) | |
6 | Terrestrial: Feldspar | — | (1200px-granite-phenocrysts, it.wikipedia.org) | |
14 | A,B,C | Mars: Filaments | 880 | Curiosity |
D | Mars: Filaments | — | Opportunity | |
L | Terrestrial: Algae and Cianobacters | — | A. Munneke | |
15 | — | Terrestrial: tubular septate bodies | — | Hong Hua |
16 | 1–15 | Terrestrial: Euglena | — | Hong Hua |
A,B | Mars: ‘rice grains’ | 880 |
List of terrestrial and Martian images used in the analysis of putative microalgae on Mars. (Abbreviations: Up = Upper, Lw = Lower, R = Right, L = Left, F = Fossil).
The purpose of this section was to investigate quantitatively the features referred by NASA as light toned lozenge-shaped microstructures (Figure 2). This investigation determined, using a series of metrics, including degree of dispersion, variability in lengths and widths, length/width ratio, fit of lengths to a log-normal distribution, fit of orientations to a rectangular distribution, and morphological analysis, the similarity between the “rice grains” and various abiotic mineral deposits and terrestrial life forms. In particular: images of Gypsum and Jarosite crystals, an image of Feldspar phenocrysts, and a population of terrestrial
Each image was magnified to clearly reveal the objects of interest. Images were manipulated using brightness, contrast, sharpening and edge detection to optimize the appearance of the objects and to establish their boundaries. A grid of squares was then superimposed over each image to establish a number of sample fields. Each of the “rice grains”, with at least 50% of its area within a sample field, was measured. Various relative measures based on degree of variation, ratios, fit to various distributions and proportions exhibiting a specific morphology, were used because scale measures were not always available for all images or those that were quoted were unreliable.
The following data were obtained from each sample field containing “rice grains”: (1) total number of profiles, (2) the maximum length of each profile in relative units, (3) the width of each profile taken at the midpoint, (4) the orientation of each profile, measured as the angle between the horizontal and a line drawn along the maximum length of the profile, (5) the proportion of the profiles which had a fusiform shape and (6) the proportion which exhibited a degree of flexibility or curvature relative to a straight line drawn connecting the two ends of the profile. A number of metrics based on the profiles were analyzed and compared: (1) spatial pattern, i.e., whether the profiles were distributed at random, uniformly, or were clustered, (2) degree of variation in length and width, measured as the coefficient of variation (CV) (3) size frequency distribution of lengths, (4) size frequency distribution of orientations, (5) overall shape of the profiles, i.e., whether fusiform or not fusiform and whether a degree of curvature was present. A Poisson distribution was fitted to the objects from all images. If the objects were distributed at random, then, the probability (P) that the fields contain various numbers of profiles is given by the Poisson distribution [45]. The variance (V) of a Poisson distribution is equal to its mean (M) and hence, the V/M ratio is unity for a random distribution. The V/M ratio can, therefore, be used as an index of “dispersion”, uniform distributions having a V/M ratio less than unity and clustered distributions greater than unity. In addition, profile diameters and orientations were used to construct size class-frequency distributions. Two statistical models were fitted to these distributions: (1) a log-normal distribution [46], often used to describe the size distributions of plant populations [47, 48] and (2) a rectangular distribution, to test whether the objects exhibited any preference with regard to orientation. Goodness-of-fit to the various models was tested using the Kolmogorov–Smirnov (KS) test. To study the similarities among the ten images, the data were analyzed using Principal Components Analysis (PCA). The analyses were carried out using the images as variables and the various metrics as defining features. The result of PCA is a scatter plot of the images in relation to the extracted Principal Components (PC) in which the distance between the images reflects their relative similarity or dissimilarity based on the defining metrics. To correlate the location of an image on a PC axis with the specific metrics, correlations (Pearson’s ‘r’) were calculated between the values of each metric from each image and the factor loadings of the case relative to the PC1 and PC2. For example, a significant correlation between a specific metric and PC1 would identify that feature as particularly important in determining the separation of cases along PC1.
“Rice grains” images were enlarged 10 x by Paint Shop software in order to reach the final size of the sample.
Top: From a Martian sample (rover image MAHLI, taken at Sol 809, “rice grains”), a single “rice grain” is enlarged, a canny filter is applied and the negative obtained. Bottom: the log log plot is a straight line (p < 0.01): the “rice grain” owns a fractal structure or self-similarity, its exponent is the fractal dimension.
Images were then loaded on paint.net software (https://www.getpaint.net/download.html) in order to extract the specimen of interest. The extracted image was loaded on Digital Image Magnifier (Nikolao Strikos, https://sourceforge.net/projects/digitalimagemag/) in order to apply a Canny edge filter to the image, fixed Sigma, High and Low thresholds were used.
A negative of the skeletonized image was then obtained. The skeletonized image was loaded on Benoit Fractal Analysis software (https://www.trusoft-international.com/) in order to evaluate the Fractal Dimension of the image: Fractal dimension, D0, a measure of the space-filling properties of a structure, was calculated on the skeletonized images by the box-counting method. Briefly, each image was covered by nets of square boxes (from 5 to 100 pixels) and the amount of boxes containing any part of the outline was counted. A log–log graph was plotted on the side length of the square against the number of outline-containing squares, the slope of the linear segment of the graph representing the local fractal dimension of the image (Figure 3). The linearity of the log log plot was assessed by the Pearson’s correlation test, in order to demonstrate that the “rice grains” owns a fractal structure and fractal dimension may be performed. Variance analysis was used in order to compare fractal dimension of the Martian “rice grains” vs. the mineral (abiologic) gypsum or versus
Curiosity landed on a flat plain (the Bradbury landing site) to the North of Mount Sharp in August 2012. Subsequently, the rover travelled to reach the extensive strata of a lacustrine sedimentary sequence at the base of Mount Sharp (around Sol 750), detecting along this track a heterogeneous assemblage of sedimentary rocks, representing a fluvial-deltaic-lacustrine environment (the Yellowknife Bay formation). The basal Sheepbed and Gillepsie members of the Yellowknife formation are characterized by silts and mudstones showing mutual unconformity; such sediments were deposited in an intertidal region of a shallow lacustrine environment, representing the latest stage of transport and deposition of fan sediments inside Gale Crater lake [1].
In the first part of the Curiosity survey, interesting chemical and structural data emerged. Hence, with reference to the Sheepbed formation, at John Klein and Cumberland sites, SAM detected organic chemicals referable to molecules of chlorobenzene as well as the occurrence of all the chemical components of life [49]. Very interesting structures and morphologies were also observed, in addition to the many already cited, possible microbialites on the Sheepbed mudstone and structures recalling terrestrial microscopic induced by sedimentary structures, known as MISS, locally present as “erosional remnants,” “pocket,” “mat chips, “roll ups,” “desiccation cracks,” and “gas domes” [14]. Other possible microbially induced structures were also observed at this site, e,g., burst bubbles, filaments, mini-atolls, oncoids, domes and many other atypical sedimentary structures known as microbialitic [17, 39, 50], and some of which resemble stromatolites of the “Conophyton” type [18]. However, the morphology together with the chemical data mutually support the presence of ancient life, even if analyzed individually, they suggest alternative abiotic interpretations. For this reason, they will be individually considered, according to the criteria established by Astrobiology Field Laboratory (AFL) at http://mepag.jpl.nasa.gov/reports/index.html, as “possible biosignatures”.
All previous described putative organosedimentary macrostructures were not observed when Curiosity moved away from the intertidal zone and entered (at Pahrump Hills location) a clay sedimentary sequence, the Murray formation at the base of the Mount Sharp. This was an area well investigated by the rover between Sols 750 and 930, and where deposits of mudstone and siltstone outcrops reveal a very thin, sub-millimetric lamination, proving the occurrence of a hydrodynamically stable environment. Particularly worthy of attention are the very thin laminated outcroppings which contain a few widely distributed aggregated harder structures [51], some up to several cm in size (Figures 4 and 5). Such dendritic, nodular and laminate concretions, comparable to the host rocks, show notable Mg-enhancement and a strong depletion of other major elements [52].
Concretions found on the Murray Formation, Mars (C-F) in comparison to some Permian lacustrine terrestrial stromatolites (frames A,B; from:
The two upper images (taken at the same outcropping, at sols 810 and 890), show irregularly hardened lamination. This case (irregularly developed in layers) is conceptually similar to those shown on
Chemical results indicate that the Gale Crater sediments were strongly influenced by early, subaqueous diagenetic reactions that produced, and sometimes filled a variety of pore types [53]. Since some sulfur was also detected in a dendritic feature, Mg occurrence was likely to be associated with a MgSO4 phase: a mineral present as precipitated cement within sediment pores [2] and an indicator of a local very acid environment, confined to the hardest structures and, intriguingly, in a target (Mojave) where organic molecules, such as kerogen and one of its polyaromatic fragments (thiophene), were found [54]. Considering the lack of contact with host sediment, these harder structures appear not to be transported/deposited elements but diagenetic structures, formed after sediment deposition. In fact, the two step heating experiments made by Martin to date K-Ar ages of primary (at 930°C) and secondary (at 500°C) mineralogical components at Mojave 2 target gave respectively 4.07 +/− 0.03 Ga (associated to detrital plagioclase of lake sediments) and 2.12 +/− 0.36 Ga (associated to sulphates and other secondary components of the diagenetic structures including the “rice grain”). Such data also suggest a post 3 Ga aqueous phase occurred in Gale Crater, at a time after surface fluvial activity on Mars was thought to have largely ceased [7].
Hence, at the landing site of Gale Crater, conditions for the evolution of Martian life beginning with chemotrophic and anaerobic bacteria and which survive in fossilized traces has been hypothesized [11]. Moreover, chemical and textural data testify to the presence of almost neutral lake water and to considerable diagenetic variations in pH [52]. The latter may suggest in very locally confined areas, that the acid micro-environment could also be attributed to microbial activity. Hence, the presence of elongated and curved filaments inside these structures and on their surface both in terrestrial stromatolites and Martian samples is particularly noteworthy (Figures 6 and 7).
These images show a series of filamentous/elongated microstructures taken by MAHLI (H,I) and ChemCham (A-B) in the hard concretion of the Murray Formation, in comparison to other Martian filamentous structures taken by Opportunity rover (G). The selected elongated microstructures (arrows and yellow circles are in relief in all frames); they show cross sections of 0.09–0.3 mm and regularly septate interspaces (more evident in G, H and I), forming elongated sinuous (D-I) and intertwined structures (E-I). On note the lateral discordance, from a laminated setting to a more chaotic structure (C), common for terrestrial microbialites.
Harder septate filaments forming thin laminae (Murray Formation; Sols 1416–1418). Images show a series of filaments (as shown in sub-frames) having transverse dimension ranging from 50 to 150 microns. Such filaments stand out from the rock and show a sequence of aligned harder segments, having septate bodies. Their shapes are often sinuous, several millimeters long; in the above images they are in relief, orientated NW-SE, thus determining, due to their hardness, serrated contact between the laminae (white lines).
The harder structures may result from small grain aggregates, randomly dispersed, preferably along diverging alignments from scattered points. As a consequence, they assume several unusual shapes, forming lumps and nodules, and occasionally branched and/or overlapping bodies (called “dendritic”; [55]). The same structures also occur in the laminated sequences typically forming irregular crusts and emerging nodules, marked by an irregular scabrous surface, typical of stromatolites (known as “cerebrotic”) and thrombolytic crusts. In these structures and on their surface, both in terrestrial and Martian samples, elongated and curved filaments are sometimes noted (Figures 6 and 7); most noteworthy, the elongated structures of Martian samples, occasionally exhibit regular septate forms (Figures 6–9).
Such dendritic, nodular and laminate concretions have been investigated in detail by the NASA scientific team [52]. They found, comparable to the host rocks, notable Mg-enhancement and a strong depletion of other major elements; nickel also being reported by ChemCam. Since some sulfur was also detected in a dendritic feature, they interpreted the Mg occurrence as of the presence of MgSO4 phase; a mineral present as precipitated cement within sediment pores [2], and hence an indicator of a local very acid environment and confined to the hardest structures.
Information regarding the dimensions of such structures, their shape and their layering, in relation to the sedimentary environment and their possible origin, are particularly important. Structures appear to be embedded within sediments of a quite aqueous environment and lack net contacts. Despite their random form and distribution, they show common features and appear as irregular aggregates, composed of globular and/or linear structures, affecting groups of laminae.
The dimension of these aggregates, their unusual structure and distribution and the lacking of net contact with the host sediments, that’suggests that they are not transported/deposited elements, but that their formation was inside the sediment, after deposition, due to local cementation and/or grain rearrangement; conditions likely to be present during diagenesis and still existing in lake waters. In fact, chemical results indicate that Gale Crater sediments were strongly influenced by early, subaqueous diagenetic reactions that produced, and sometimes filled, a variety of pore types [49, 53]. Chemical and textural data indicate almost neutral lake water, while considerable local variations in pH [52]; so, they may suggest micro-environments and related microstructures generated by microbial activity and/or to the presence of local organic material. In addition, at the Mojave target site, traces of thiophene were found by the NASA scientific team, one of the main elements of kerogen; an organic compound that may be related to bacterial metabolism associated with terrestrial microbialites and, commonly, used as one of the main criteria to assess the biogenicity of putative Archean stromatolites [54, 56]. Particularly worthy of attention, both internally and externally, terrestrial stromatolites and Martian samples, both show elongated and curved filaments (Figures 6 and 7).
Occurrence of filamentous structures, detectable by a different color and tone variation, normally appear to be formed by septate bodies having transversal dimensions of 0.05–0.3 mm (Figures 6 and 7). These structures are more evident on amplified/slightly blurred images of Martian sediments and on clean/abraded surfaces. Occasionally, they are more resistant and in relief, conditioning the shape of the laminar surface and their mutual contacts (Figure 7). They were observed, both as single features as well as intertwined structures and cover the rock surface resulting in a “woven” texture. Similar settings (Figure 6, frame G) have been investigated in previous work and interpreted, by visual and numerical approaches on a consistent number of terrestrial sampling analogues, as microbial/stromatolitic structures [12, 13, 17].
MAHLI images taken at Sol 869 show that the lenticular lozenge-shaped “rice grains” observed on brushed surfaces at Sols 809 and 880 (Mojave target), not only occur “on the surface” as harder and whitish structure, but massively affect the entire outcrop, covering about 50% of the lithological mass. Previously, these structures have been interpreted as mineral deposits, e.g. of Gypsum or Jarosite (NASA reports), but subsequently, due to the lack of sufficient amount of crystal, they were interpreted as pseudo-morphic crystals originating from amorphous substances.
In particular, the mineralogical composition of Mojave 2 (Sol 880) shows, in respect to the previous investigated rocks, a variation in mineral composition, exhibiting significant amounts of amorphous material (54%) and minor amount of Plagioclase (24%), Magnetite (4%), Hematite (4%), Jarosite (4%), Phyllosilicates (5%) and Fluorapatite (5%). Such data paradoxically suggest the coexistence of both oxidising (Hematite) and reducing (Magnetite) environments, as well as acidic (Jarosite) and neutral (Fluorapatite) components. Chemical data of this sample suggests the following composition: SiO2 (49%), FeO (16%), MgO (4%) CaO (4%) and Al2O3 (11%), together with other minor components, including Magnetite and Phosphorous [2].
Some of these minor components and minerals, such as Apatite, Magnetite, Ni, Zn and Br (from Curiosity APXS results; in [7]), found at Mojave target, on Earth are generally associated with microbial activity and stromatolites [50, 57] and suggested by AFL report as possible biosignature [58].
Given the lack of mineralogical (CheMin) or chemical (APXS) evidence for calcium sulphates in the Mojave 2 sample (Sol 880), it was assumed that these lenticular bodies represent, on the basis of their morphology, i.e., lenticular gypsum crystals laths, light color compared with the host rock, and penetration vertically into the bedrock, crystals laths that were formed syndepositionally with the Murray mudstone and were later re-dissolved by post depositional fluid flow, forming pseudo-morphic microcrystalline or amorphous substance of unknown composition [2, 7].
It should be noted that the occurrence of microbially precipitated fluorapatite is reported in Jurassic phosphate stromatolites by Sànchez [57] and it is also known that biomineralization processes could give Biologically Induced Mineralization (BIM) and Biologically Controlled Mineralization (BCM), where magnetite is one of major components [59]. Moreover, such structures were found in association with the previously described problematic diagenetic features [55, 60, 61], and hence, a number of controversial features are suggestive of possible biogenic shapes.
Morphological analysis of MAHLI images at sols 809 and 889 (at Mojave1 and Mojave2, respectively) reveal that the “lozenge-shaped sulphates” [51] show chaotic, mainly fusiform/filiform, septate, curved shape; some of which are in relief and resemble terrestrial microalgae (Figures 8 and 9).
Morphological interpretation of some of the “rice grains” on an amplified MAHLI image (Sol 880). One can see repetitive curved (C), overlapping (O), fusiform (F), conical (Cn), very curved (VC), ring-shaped (R), curved/fusiform (C/F) shapes and therefore showing significant differences from the expected regular appearance of crystals. Note the presence of shapes (R and Cn types) which we have interpreted as possible transverse sections of conical bodies.
Highlighting the most common forms observed in MAHLI images at Sols 809 and 880. The amplified image in the center shows the following types: elongated/curved body (1), occasionally septate (frame left on the top; see dashed line), lenticular/curved (2), holed conical (3) and possible transverse sections of previous type bodies (4). Examining possible terrestrial analogues, such microstructures are similar to terrestrial Dasycladales, Euglenoid, or giant filamentous cyanobacteria, rather than crystals. Please note that, the shapes are unambiguously identified by the large number of colored pixels contained.
In particular, considering their shape and dimension, we investigated the structural similarities with Dasycladales algae, giant filamentous Cyanobacteria or Euglenoids. This biological interpretation could be supported by the occurrence of two adjacent ‘bright’ bodies, present in the same image (Sol 880; Figure 9, features 3 and 4). Occurrence in the same target of spherical cross sections (having sharp inner surface and irregular outer edge), could be related to other cones, although less evident and in small amounts (Figure 8, Cn and R features). Another conical body, photographed by Opportunity at Meridiani Planum, shows a differentiated skeletal structure in transverse section (a conical thallus?), and possible regular radial laterals attached (of aspondyl type? Figure 10). In addition, images at Sol 1273 show transverse and oblique sections of a tube-like bodies associated with regularly jagged discontinuities of their shells (Figure 11; features 1–3). Hence, the variety of shapes, present which include septate filamentous structures, is of great biological interest and do not suggest crystal-type structures; and are worthy of morphometric investigation (Table 2, Figure 12), the results of which are reported in the following section.
Different conical bodies, detected at Meridiani Planum by Opportunity; possible biological remnant of fossils “incertae sedis”. These microscopic cones have littler bigger dimension. On the top (frames A, B) the cone has similar size and shows an internal zoned structure of a possible algal stem (C), having a number of lateral structures (arrows), resembling (far, not confirmed) terrestrial Dasycladales laterals side. Below (D, E) the cracked cone is littler bigger and show a collar.
Comparison of a Dasycladales limestone (b/n pictures) to Martian putative fossils, at Sols 880 (frames O-R) and 1273 (frames D-F, H,I,M). Resembling (far, not confirmed) features of terrestrial Dasycladales include millimetric dimensions, a calcareous (conical or tube-like) stem, occasionally having regular discontinuity (frame G; from [
Fossil and living terrestrial algae together with mineral crystals used to compare with the “rice grains” in
The metric data for each image is summarized in the upper section of Figure 13. There was considerable variation in all metrics among images with the exception of the fit of lengths to a log-normal distribution, the KS tests suggesting that this distribution fitted the objects of interest in all images. V/M ratio varied from a maximum value of 1.08 (Jar-1) indicating a random distribution of profiles, to a minimum of 0.32 (Euglena) suggesting the majority of profiles exhibit a degree of uniformity in their distribution. Variation in length and width also varied among images being least in the Martian sample and Terrestrial Euglena and greatest in the alga Gymnocodium. Length/width ratios were greatest for Gymnocodium and least for the three gypsum crystal samples. Significant departures from a rectangular distribution, suggesting orientation specificity, were observed in the Mars sample and also by the stromatolite algal filaments, Gymnocodium, Jarosite and feldspar phenocrysts. The percentage of profiles exhibiting a fusiform shape or a degree of curvature also varied among images being generally greatest for the Mars sample and the terrestrial microalgae and least for the mineral deposits.
Results of Euclidean morphometric investigation on “rice grains”. On the top (A) the plot shows results of Euclidean morphometry analysis, differences and similarities, between the 10 images analyzed: PC1 against PC2 (Eug = Euglena, Gyp 1–3 Images of gypsum crystals, FD = Feldspar phenocrysts, Gym = Gymnocodium, Jar1 - Jar2 = Jarosite crystals, SA = Stromatolite algal filaments). Below (B), comparison of fractal dimension values (Mars, “rice grains” vs. Gypsum (P < 0.01) and vs. Euglena viridis (P = n.s.)). Its fractal dimension permit to distinguish them from the mineral negative control, while it is not possible to distinguish the Martian features from the biologic control, perfectly superimposable among them.
A PCA of the data resulted in the extraction of two Principal Components (PC’s) accounting for 96% of the total variance (PC1 = 77%, PC2 = 19%) indicating that separation of images along PC1 is more significant than along PC2. A plot of the 10 images in relation to PC1 and PC2 is shown in Figure 13 with significant correlations between the factor loadings of the images on the PC and the various metrics. Figure 13 shows: (1) that the three images of gypsum crystals (G1–3) have very similar metrics and form a distinct cluster not closely related to the Mars sample or to any of the investigated algae, (2) neither feldspar phenocrysts nor jarosite crystals are closely related to the Mars sample (3) Gymnocodium (Gym) and the Stromatolite Algal filaments (SA) are more closely related to the gypsum crystals in their metrics than Euglena (Eug) and (4) of the studied microalgae. Correlations between factor loadings and the various metrics suggest, the proportion of profiles with a fusiform shape, the proportion of curved profiles and the degree of variation in profile widths are all significantly correlated with PC1 and PC2 and, therefore, are the most important of the metrics distinguishing among images, the Martian sample and terrestrial Euglena displaying the most consistent widths and having a greater proportion of fusiform and curved profiles than the mineral deposits and other terrestrial microalgae.
Fractal analysis data are summarized in Figure 13, bottom, B. Fractal dimension of the Martian “rice grains” is lower than the one of the negative control, gypsum, with high statistical significance (p < 0.01). Vice versa, fractal dimension of the Martian “rice grains” overlaps the one of the unicellular alga
The first presence of organic matter on the Red Planet was revealed, even if initially misunderstood, by the Viking’s pyrolysis gas chromatography–mass spectrometry (GC–MS) analysis of Martian regolith [64]. More recently, the presence of chloromethane and dichloromethane, as markers of organic matter on Mars, were confirmed by SAM on Curiosity [65]. Since the Viking landers, organic matter has been repeatedly detected in Martian meteorites [66]. Hence, Curiosity rover drilled into the three-billion-year-old mudstones from four areas in Gale Crater and especially at Mojave and Cumberland sites, revealing many organic compounds, including thiophenic, aromatic, and aliphatic compounds, that were released at temperatures from 500° to 820°C [67], and reported in Table 1. The variety of different carbon-containing compounds provides evidence of possible macromolecules in the Martian regolith. Interpreting their presence, we can recall the kerogens observed on Mars: they are a type of organic molecule that can be easily associated with life (stromatolites), but, viceversa, it is also present in carbon-rich meteorites, in interplanetary dust particles, and in igneous rocks, where life is not present. Nevertheless, the thiophenes observed on Mars, should be strongly suggestive of life [68], being easily explained as a result of biologically related sulfur incorporation into organic matter during early diagenesis.
Moreover, it has been suggested that biominerals could be important indicators of life and thus could play an important role in the search for past or present life on Mars as on Earth [58, 69, 70]. Organic components themselves (Kerogene and Tiophene) are often associated with biominerals and are believed to play crucial roles in both pre-biotic and biotic reactions. They have been found in the fossil record that date back to the Precambrian and were used on Earth as evidence of the biogenicity of Archean stromatolites [56].
On Mars, and in particular at Mojave targets, morphological observations of dendritic, nodular and laminated, harder structures (and complex organics, as well biominerals occurrence), may suggest a common origin, and may represent possible developmental stages of a single entity. Their variable dimensions, scattered distribution, and uncommon shape, show the same morphology as terrestrial microbialites. In this frame, noteworthy are the small nodular and encrusting microbialites, which are found in a wide range of lacustrine environments and in thin laminated mudstone, and they have been attributed to moderate wave agitation [71]; convincing parallels being visible, in the lake stromatolites of the West Germany lower Permian (Lauterecken Formation); as well as examples of stromatolites in nodular settings, forming larger cemented complexes known in current alkaline (pH > 9) fresh lakes (Salda Lake, Turkey).
In this context, the irregular shapes assumed by the harder structures containing complex organics and biominerals most likely represent a results of bacterial or microalgae extracellular polymeric substances, according to an organic mineralization process present during diagenesis.
The spatial development of stromatolites is important in interpreting their eventual structures. Hence, the basic structure of microbialitic sediments are essentially laminar (in plane), nodular (balls or lumps) and/or elongated (linear). These structures can also merge, respectively resulting in stromatolites, thrombolites, dendrolites and with ever-larger combinations providing all the typical known morphologies. The observed structures and morphologies, shown in Figures 4–11 and all of those described to date in various studies, are all typical of microbialitic world.
In general, the complexity and distinctiveness of biological structures increase with size and degree of biological evolution. There is still controversy on Earth regarding the biogenicity of some primordial microscopic structures and specialists attempt to solve these problems using instrumental insights and further laboratory investigations. These problems are generally related to the presence of possible very ancient microbial structures, having micrometric or sub-micrometric dimensions. Indeed, microfossils, with a size of hundreds of microns, are more complex and distinctive, and on Earth other investigations are usually not necessary to recognize their biogenic nature.
In terms of “relevance for morphological recognition of biogenic structures”, three domains could be distinguished: microbes, microfossils and fossils. Although doubts have often been expressed about the visual unambiguity of Martian microstructures, the described morphologies here described and related to putative “microalgae” should be considered unambiguous. In fact, the Mahli images that we have analyzed most frequently have pixels in the range 20–30 microns. For example, Figure 9 (taken at Sol 880) which contain the lozenge-shaped bodies and the “cornucopia”, have a pixel dimension of about 25 microns whereas the analyzed objects have millimetric or submillimetric dimensions and contain hundreds of colored pixels. As consequence, a single septate partition of the elongated structure shown in Figure 9 (frame 1), having a dimension of about 0.1 mm, contains more than 16 colored pixels, which enables the septate structures to be unambigously observed.
Such filamentous segmented structures, having a cross section of 0.09–0.30 mm, are common in Martian sediments and have been described in previous papers [16, 72, 73]. In general, we can state that septate filament-like structures are frequent in terrestrial algal-like biota and that the Martian structures, that we have highlighted, are morphologically similar to a wide range of terrestrial counterparts (i.e., Epimastopora green alga; Figure 14).
Septate filament-like structures are biological “in principle” on Earth given a large number of algal structures having similar shape but different dimensions. On the left, three examples of different biota. Frames on the right represent Martian samples of similar structures. Right on the top (A), an enlarged cutting of Sol 880 image showing hard filament, in relief and septate. Frame B represent a reproduction of filamentous structure described on
The fossil record of septate bodies and the filaments are abundant, and are mainly characteristic of three big groups, i.e. Oscillatoriopsis, Megathrix, and those phosphatized tubular fossils (Figure 15) in the Ediacaran Weng’an Biota [74]. Oscillatoriopsis is characterized by unbranched, unsheathed, uniserate cellular trichome. The cells are uniform in length and diameter within the same trichome with no constrictions at the cell boundaries. Butterfield [75] recognized four species of Oscillatoriopsis according to their diameter, i.e., O. vermiformis Schopf, 1968, 1–3 μm;
Microphotographs of a set of tubular septate-likes bodies thin sections, comparable to Martian samples. Frames A and B:
Megathrix, however, are tubular microfossils typically less than 100 μm wide and several hundred μm long. These tubes, rarely branched, are characterized by evenly spaced transverse cross-walls which are complete or incomplete. Complete cross-walls are corrugated or flat and most are regularly intercalated with incomplete cross-walls. Incomplete cross-walls are flatter or less strongly corrugated than the complete examples and they have central perforations typically of similar size within the same specimen, although the perforation size may vary between specimens. Liu et al. [74] described five species of tubular microfossils from the Ediacaran Doushantuo Formation at Weng’an, Guizhou Province, South China. They also have complete and incomplete cross-walls [76]. However, the diameter of the Doushantuo species (mostly 100 μm – 250 μm in diameter) is much greater than Megathrix longus Yin L. and they all have flat rather than corrugated cross-walls. Of the five Doushantuo species, Ramitubus increscens Liu P. [74] and
Moreover, morphometric investigations suggest a PCA and fractal dimensions of the “rice grains” with an affinity far from the mineral deposits studied such as gypsum, jarosite, and feldspar phenocrysts. In effect, phenocrysts are euhedral and angular whereas many of the Martian deposits are fusiform and exhibit a degree of curvature. However, some gypsum and jarosite crystals exhibit a more fusiform shape but only a small proportion exhibited a degree of curvature which itself is regarded as a microbial biosignature [73].
Structural features of Euglenae (from Loeblich and Tappan [
Morphometric comparisons of “rice grains” with Euglena and Dasycladales have also been investigated, due to their morphological affinity. The fossil record of Euglena, however is rare [78, 79, 80] and only a fossil, called Moyenia, has been recorded from Late Ordovician non-marine deposits. This record was suggested by Colbath & Grenfell to be a possible fossil pellicle (cell wall) of a euglenid, based on their surface morphology, whereby the spiral pattern of ridges on the pellicle resembles that of some photoautotrophic euglenids in Monomorphina Mereschkowsky, 1877 [81]. Figure 6 is particularly interesting and the cone present could easily be accepted as a fossil but given its incomplete preservation, it could be similar to a portion of Cloudina, a small shell fossil, or an example of other conotubular fossils (Figure 16). We emphasise, however, that the degree of variation in profile, width and shape and the degree of curvature of the profiles, both criteria highlighted by Williams [73] with consistency in width and curvature, are indicative of biogenicity and fractal analysis clearly confirms that the “rice grains” cannot be identified with mineral abiological structure as the gypsum, a result with a high statistical significance (p < 0.01).
Nevertheless, our conclusion in this paper concerning the analyzed Martian microstructures is not that they can be identified with the terrestrial species described but that the characteristics of shape and degree of complexity, make it probable that on Mars, 2.2 billion years ago, there were complex life forms, analogous to terrestrial eukaryotic cells. From a biological point of view, it is not unlikely that similar forms of life, with so many structural similarities, have developed independently on two different planets.
Results presented in this article can easily be interpreted as a phenomenon of evolutionary convergence, a phenomenon which is extremely widespread in terrestrial life forms. We can recall mammals and octopuses having camera-like eyes with an iris, a lens and a retina or the wings of bats and birds or the shape of sharks and dolphins: analogous environments producing the “same” shapes and structures without any evolutionary linkage. There no any problem for what concerns the time and the environment, on Earth, and, respectively, on Mars. Age of 2.2 billion years ago on Mars it is the same age in which complex, eukaryotic, cells, appeared on Earth, so there is no any problem for the time that could be need on Mars to produce those type of cells. No any problem, also, for the environment: the Earth aging 2.2–2.5 Gy ago is the one at the time of the oxygen crisis and of the “snowball Earth” [82], an anoxic and cold Earth as Mars of that age.
Will never be able to definitively prove the existence of life on the Red Planet? The search for definitively proving the presence of life on Mars is one of the outstanding scientific challenges of our time [69, 83, 84]. We have described in this paper how the Curiosity landed region was clearly demonstrated as a fluvial-deltaic-lacustrine environment [2]. There are strong evidences that the whole surface of early Mars was habitable and several biomarkers were found (including microbialite/stromatolite-like structures and
Nevertheless we need complex approaches for conclusively establish the presence of life [58] (NASA MEPAG’s program at http://mepag.jpl.nasa.gov/reports/index.html), and, in particular, when tests need to be performed by rovers or landers in a planet hundred million kilometers far from Earth. E.g., we can recall the lot of papers supporting the presence of stromatolites on Mars by morphological approaches, as also here discussed.
The meaning of the possible presence of stromatolites on Mars is enormous. Stromatolites result from the activity of different microbial communities and not the product of a single microorganism, suggesting a real ecosystem on the planet if the presence of stromatolites should be definitively proved. But the morphology of stromatolites as indicator of biogenicity may be ambiguous, similar shapes can be produced by both abiotic and biotic processes [87]. In effect, geologists on Earth needs to study macro-, micro- and ultramicroscopic details of the putative stromatolites, as well as their geochemistry, Raman spectroscopy of their constituents, additional chemical, mineralogical (e.g. magnetite and pirite) and isotopic ratios analysis of redox-sensitive heavy elements (mainly of C, Fe, S, N, Mo, Cu, U, Ce), together which the sedimentological, stratigraphic and palaeoenvironmental context examined [69, 88, 89], to arrive at a reasonable conclusion about the biotic or abiotic origin of the hypothesized biostructures. Much more, the presence of carbonaceous matter (e.g., kerogen, bitumen, molecular biomarkers) in the same area needs to be evaluated, together which their isotopic compositions, drilling meters below the surface in order to collect organics that had no destroyed by the UV flux of the Sun in the present-day Mars. Analysis that involve the use of traditional tested technology, as well new experimental and miniaturized biosensors for “in situ” testing. Not a simple work, so it’s not strange that till today it was not possible to reach unanimous agreement among astrobiologists concerning the presence of life on the Red Planet. However, we feel that the next Mars missions by NASA and ESA, together which Mars Sample Return missions, should be able to reach the goal.
On Mars, at Gale Crater, a past environment favourable to life and for a broad span of geological time, has been discovered by various authors [1, 2, 49], as well as the occurrence of many micro, meso and macrostructures similar to terrestrial stromatolites, microbialites and algae [18, 50]. All these items are suggestive of possible biological parallels between Earth and Mars. In the present paper, we show morphological and morphometric analyses of the whitish millimetric shapes (we nicknamed “rice grains”), detected by the rover Curiosity at sols 809 and 880 (Mojave target) in the lacustrine Murray Formation (attributed to pseudomorph crystals of sulfate by previous Authors, [7]). Specimen which are incompatibile to Gypsum, Jarosite, or Feldspar crystals, but show a high shape affinity to life forms such as the Euglenoids. Hence, the microstructures investigated in this study, together with chemical and mineralogical converging data of the outcropping where they are embedded, suggest the possible existence of microbial, and/or little more complex life forms, in the past history of Mars.
We thank Filippo Barattolo, Professor at University of Naples (IT) and Joan Bucur, Professor at Department of Geology of Babes-Bolyai University (RO) for the support given in the analysis of algal-like biota and in excluding Dasycladales attribution. We are particularly grateful to Prof. Munneke, Professor at Friederich-Alexander University of North Bayern, for providing us the images of the terrestrial septate filaments shown on Figure 15. This work would not have been possible without NASA”s images and data availability, for which we are grateful.
The utilization of renewable resources in the field of polymer synthesis has gained a great deal of attention due to the growing public concerns for the environmental concerns and the sustainable development [1, 2]. Epoxidized soybean oil (ESO) is the bio-based product from the epoxidation of soybean oil with hydrogen peroxide and either acetic or formic acid obtained by converting the double bonds into epoxy groups, which is non-toxic and of higher chemical reactivity [3]. It is mainly used as a green plasticizer for many plastics currently [4]. Meanwhile it has also attracted an increasing attention as a green epoxy resin utilizing the reactive epoxy groups into both the monomer synthesis and the polymer preparation due to its low cost, little toxicity, and large production, which imply its great potential in industrial process [5].
ESO can be converted by different kinds of reactions with co-monomers and/or initiators [6]. Permanent network that comes from the directing cross-linking of ESO and hardeners endows ESO with great stability, superior mechanical properties and satisfying chemical resistance, which make the products competitive among a variety of materials. In addition, the chemical modification of ESO has gained more and more attention in recent years. Introducing hydroxyl groups to make polyols for polyurethanes synthesis is one of the most important chemical modification methods [7]. Acrylated epoxidized soybean oil (AESO) obtained by ring opening esterification between acrylic acid and ESO is of high reactivity for thermal and UV initiated polymerization [8, 9]. This chapter reviews the applications of ESO and its derivatives for the preparation of a series of bio-based polymeric materials.
Functional amines are widely used as curing agents for generating epoxy resin. For ESO, a series of amines used as curing agents are listed in Table 1 and the reaction scheme between ESO and amine is shown in Figure 1. Most of the researchers focused on the investigation of the cross-linking process of partially bio-based polymers because of the unsatisfying properties of fully bio-based ones. Three main methods can be applied to improve the properties of ESO-based thermosets, which are using commercial curing agents, adding commercial epoxy resins to ESO, and adding other materials to make composites [10, 11, 12].
No. | Epoxy resin | Hardener |
---|---|---|
1 | ESO | Triethylene glycol diamine (TGD) [13, 14] |
2 | ESO | Triethylenetetramine (TETA) [10, 13, 15, 16, 17, 18] |
3 | ESO | Diethylenetriamine (DETA) [10, 15] |
4 | ESO | Jeffamine D-230 [10] |
5 | ESO | Jeffamine T-403 [10] |
6 | ESO | Jeffamine EDR-148 [10] |
7 | ESO + diglycidyl ether of bisphenol A (DGEBA) | TETA [11, 12, 19] |
8 | ESO + DGEBA | DETA [11, 12] |
9 | ESO + DGEBA | Jeffamine D-230 [11] |
10 | ESO + DGEBA | Jeffamine T-403 [11] |
11 | ESO + DGEBA | Jeffamine EDR-148 [11] |
12 | ESO + DGEBA | Linear polyethylenimine [12] |
13 | ESO, ESO + DGEBA | Dicyandiamide (DICY) [20] |
14 | ESO [21] | Decamethylene diamine, succinic anhydride |
15 | ESO + DGEBA | Isophorone diamine(IPDA) [22] |
Amines for curing ESO and ESO composites.
The curing process between ESO and amine curing agent [
The curing processes of ESO or the mixture of ESO and commercial epoxy resin have been investigated, and some of these systems have been made into composites through adding fibers [10, 11, 12, 14], clay [16, 18] and other reinforcement [19]. Viscoelastic properties, mechanical properties and many other analyses have been studied to evaluate their applicability to be used in industry. The partially bio-based polymers show great potential to replace fully petroleum-based polymers in many areas according to the testing results. Glass-transition (Tg) and viscoelastic properties of amine-cured ESO can be enhanced by increasing the amount of triethylenetetramine (TETA) or triethylene glycol diamine (TGD). TETA endows the polymer with similar viscoelastic properties to a commercial rubber and a higher Tg than TGD does [13]. In this respect, the biopolymers made from ESO and amines have great potential to replace some synthetic rubbers or plastics [13, 14]. Besides, the quasi-static and dynamic compressive properties of the cured products based on ESO and amines and the corresponding composites reinforced by clay have also been investigated to develop compressive one-dimensional stress-strain material models [15, 16]. Solid freeform fabrication method has been applied to the preparation of ESO-based composites and proved to be a suitable method for this kind of curing system [10, 11, 12]. ESO/TETA/clay composites show controllable biodegradability, low cost, good thermal and mechanical properties, and these properties indicates that the composites may work as alternative to petroleum-based polymers in the field of insulation materials and coating materials [18]. For clay-reinforced composites based on commercial epoxy resin the addition of ESO can enhance the impact strengths [22]. More interestingly, the product from ESO and TETA can be made into an ion-exchange resin through hydrolysis [17]. Usually, epoxy groups in the internal of the long aliphatic chain exhibits much poorer reactivity than those terminal epoxy groups. Due to this fact, the reported curing processes of ESO usually needs higher temperature and longer time than commercial petroleum-based epoxy resin, such as bisphenol A epoxy resin. However, the combination of the hardener, dicyandiamide (DICY), and the accelerator, carbonyldiimidazole (CDI), can make the gelation of ESO occur within 13 min at 190°C [20]. Moreover, the gelation of the mixture of ESO and DGEBA is achieved with the aid of DICY and CDI within 3 min at 160°C [20].
Fully or high bio-based polymers are also attractive to researchers owing to people’s strong attention to environment concerns. A series of fully bio-based elastomers have been synthesized through the ring-opening reaction between ESO and a bio-based amine hardener, decamethylene diamine, and they can be cross-linked by further reaction with another bio-based anhydride hardener, succinic anhydride [21]. These fully bio-based elastomers have great potential to replace some petroleum-based rubbers in engineering because of their good damping property, low water absorption and weak degradability in phosphate buffer solution [21].
Anhydrides, which are less toxic than amines, are another kind of mainly-used hardeners (Table 2). The structure of anhydride-cured ESO is shown in Figure 2.
No. | Epoxy resin | Hardener |
---|---|---|
1 | ESO | Maleopimaric acid (MPA) [24, 25] |
2 | ESO | Methyltetrahydrophthalic anhydride (MTHPA) [34, 35] |
3 | ESO + DGEBA | MTHPA [22, 36] |
4 | ESO [37, 38, 39, 40], ESO + DGEBA [41, 42] | Methylhexahydropthalic anhydride (MHHPA) |
6 | ESO | Maleic anhydride (MAL) [43, 44] |
7 | ESO | Phthalic anhydride [45] |
8 | ESO | Nadic methyl anhydride [46] |
9 | ESO | maleinized polybutadiene (MMPBD) [47] |
10 | ESO [30] | terpene-based acid anhydride (TPAn), maleinated linseed oil, hexahydrophthalic anhydride |
11 | ESO [44] | hexahydrophthalic anhydride (CH), MAL, succinic anhydride (SUC), dodecenylsuccinic anhydride (DDS) |
12 | ESO [26, 27, 28, 33], ESO + DGEBA [48] | Sebacic acid |
13 | ESO [33] | Adipic acid, 1,12-dodecanedicarboxylic acid, sebacic acid |
14 | ESO [32] | Citric acid, carboxylic acid functionalized MWCNTs |
15 | ESO [49], ESO + epoxidized linseed oil (ELO) [50] | Carboxyl-terminated polyester |
16 | ESO | Dicarboxyl terminated oligomeric poly(butylene succinate) [51] |
17 | ESO | Dicarboxyl-terminated polymide1010 oligomers [23] |
18 | ESO + ELO | Phosphorylated castor oil [31] |
Anhydride and acid for curing ESO and ESO composites.
The curing process between ESO and dicarboxylic acids or anhydrides [
The investigation of green anhydride curing agents is one of the research priorities. Maleopimaric acid (MPA), which comes from rosin acid, has been used for ESO curing to obtain new polymeric thermosets with a high bio-based content [24, 25]. The total heat release is only 31.7 kJ/mol epoxy group. Compared with its petroleum-based analogues, MPA endows the polymer with larger breaking elongation, higher storage modulus and better thermal stability. Sebacic acid is another bio-based curing agent for ESO in lab. A fully bio-based composite with highly improved thermal and mechanical properties can be produced through interaction between sebacic-cured ESO and PLA [26, 27]. What’s more, sebacic acid-cured ESO can be applied in the field of superhydrophobic materials to make a sustainable and biodegradable superhydrophobic material [28, 29]. Other bio-based chemicals, such as terpene [30], vegetable oils [30, 31] and citric acid [32], are all the optional raw material for green curing agents. A terpene-based acid anhydride has been found to endow ESO with higher Tg, higher tensile strength and greater modulus than maleinated linseed oil and hexahydrophthalic anhydride do [30]. But maleinated linseed oil makes the thermoset easier to biodegrade [30]. Biodegradable and biocompatible elastomers, which may be competitive in the field of implantable materials, can be obtained by curing ESO and Epoxidized linseed oil (ELO) with phosphorylated castor oil [31]. Carboxylic acid functionalized MWCNTs are always used as the filler for fully bio-based ESO/citric acid system [32]. The produced composites with good mechanical properties and high bio-based content may be applied in the field of industry [32]. Physical tests of fully sustainable polymers obtained from curing ESO with different dicarboxylic acids show the decreases of Tg and elongation at break, and the increases of tensile strength and Young’s modulus with the increasing of chain-length of the curing agents [33]. In this respect, besides bio-based micromolecular chemicals, bio-based dicarboxyl-terminated polymers are also able to work as green curing agents for ESO to make fully bio-based polymers [23]. Polymer curing agents with long chain length can avoid the short, brittle and amorphous cross-link structures which may be the reason for the poor performance of ESO-based thermosets [23].
Like the situation occurring in amine-cured systems, anhydride-cured ESO with a high bio-based content usually cannot exhibit excellent properties as petroleum-based polymers do. In order to overcome this deficiency, ESO usually works together with some petroleum-based chemicals. For this kind of complicated reaction systems, many factors are worth investigations. We are going to discuss this kind of reaction systems in terms of the properties of epoxides, the addition of commercial curing agents, the influence of the catalysts and the incorporation of fillers.
The internal epoxy rings in ESO exhibits lower reactivity than terminal ones do and the epoxy equivalent weight of ESO is usually higher than commercial epoxy resins. The addition of ESO in the mixture of DGEBA and ESO results in the increase of peak exothermic temperature, and activation energy and the decrease of enthalpy of reaction [36, 48]. Tensile strength, modulus, fracture toughness, impact strength, storage modulus (E′) in the glassy state and Tg of the cured products decrease because of the addition of ESO [36, 41]. Besides, the thermal and mechanical properties of the cured products has a positive correlation with the epoxide content of ESO [35].
Aside from the alteration of epoxides, the properties of the cured products can be enhanced with the aid of commercial curing agents. Bio-based foams based on methyltetrahydrophthalic anhydride (MTHPA)-cured ESO show similar mechanical properties to synthetic epoxy foams and the contents of ESO can be larger than 55 wt%, which indicates that this kind of green foams can be valuable alternative for commercial epoxy foams [34]. Polymers with anhydride groups [47] and dicarboxylic acids [49, 50, 51] are also able to work as curing agents for ESO. The carboxylic acid-terminated polyesters can work with ESO to produce green pressure-sensitive adhesives, which are environmentally friendly [50], thermal stable and with flame retardance [49]. In this kind of curing systems, the molecular weight of the polymer curing agents obviously have a great influence on the curing process and the physical properties of the cured bio-based products [51]. One of the remarkable advantages of bio-based polymers is their potential biodegradability. Lower crosslink density usually means higher biodegradability for ESO-based thermosets [40]. The cross-link density of the cured product reaches maximum at stoichiometric ratio between ESO and hardener [45].
Not only the properties of the main reactants, but the loading and type of the catalyst have a great influence on the on the curing process [38] final polymers [39]. The curing kinetics of ESO/methyl hexahydrophthalic anhydride (MHHPA) system show a significantly autocatalytic characteristic and ESO with 1.5 phr (parts per hundreds of resin) of 2-ethyl-4-methylimidazole (EMI) catalyst is a recommended composition for ESO/MHHPA system to be cured effectively at relative low temperature and short time [38].
ESO-based thermosets can also be used as good matrixes for organoclays [22, 35], organo-montmorillonite clay [37], proteins [46], regenerated cellulose [30] and other fillers. These works show that the thermal and mechanical properties of the composites can be improved significantly with the addition of different fillers.
Besides adding curing agents, ESO can also be cross-linked only by initiators, as shown in Figure 3. Fluoroantimonic acid hexahydrate (HSbF6·6H2O) [6] and boron trifluoride diethyl etherate (BF3·OEt2) [52, 53, 54] are commonly employed to initiate the ring-opening polymerization of ESO. As the special macromolecular structure and mechanical properties, the products have the potential to be made into hydrogels and applied in the areas of personal and health care [6, 53]. Besides, the cross-linked ESO initiated by BF3·OEt2 can be used to synthesize bio-based surfactants, which can help produce microbubbles effectively [54] and may take the place of petroleum-based detergents and surfactants [55].
Chain-growth polymerization of ESO under initiators [
Besides the curing, introducing hydroxyl groups is one of the most important chemical modification of ESO. Hydroxyl groups are functional groups that can be compatible with matrixes through hydrogen bonding or can be able to covalently bond with matrixes using some active chemicals [56].
Bio-based polyols with two or more hydroxyl groups can be synthesized from ESO by epoxy ring opening applying different approaches (see Figure 4). Ring opening reagents mainly include in mono-functional amines, alcohols (such as methanol, ethylene glycol, propylene glycol or butanol), acids (such as acrylic acid, acetic acid, phosphoric acid, fatty acids, carboxylic acid, hexanoic acids, or octanoic acids), thioethers or ketones [57, 58, 59, 60, 61, 62, 63, 64]. Lewis acid is known as a kind of useful initiator for the hydroxyl reaction with epoxides. ESO-based polyether polyols are capable to be prepared by Lewis acids catalyzing ring opening with propylene glycol [60]. After that, the ESO-based polyether polyols with higher molecular weight can be cured with phenolic, melamine and other conventional crosslinkers to give reasonable film properties [65]. Besides, ESO phosphate ester polyols have been synthesized by using super phosphoric acid phosphorylated ESO, which is able to be incorporated in bake coatings with excellent performance [62]. A series of methoxylated soybean oil polyols (MSOLs) have been prepared with different hydroxyl functionalities by the ring opening of ESO with methanol [66]. These polyols have been applied to synthesize the environmentally friendly vegetable-oil-based polyurethane dispersions (PUDs) with very promising properties. Thioglycolic acid (TGA) bearing thiol and carboxylic acid as two different functional groups, glycolic acid (GA) containing hydroxyl and carboxyl functionality and methyl ester of thioglycolic acid (TGAME) have been also used as ring opening agents of ESO to synthesize novel bio-based polyols [57, 67]. Using TGA and GA, the epoxy rings are opened by the carboxylic acid group, while the epoxy rings are opened by the thiol group primarily when using TGAME. In addition, polyols obtained by ring opening with TGA have higher molecular weight comparing to GA and TGAME. That is because some of the thiol groups of TGA initially remain intact and then are involved in ring opening of other epoxy groups resulting in chain coupling [57, 67].
Epoxy ring opening reactions with various ring opening reagents [
There are some side reactions occurring during the ring-opening of ESO epoxide groups, and these side reactions often depend on reaction parameters [68, 69]. A substantial degree of oligomerization due to oxirane-oxirane, and oxirane-hydroxyl reaction will take place in the presence of phosphoric acid. It is possible to synthesize ESO-based polyols having varying hydroxyl content and phosphate-ester functionality by controlling the type and amount of polar solvent and phosphoric acid content [70]. Inter-esterification or intermolecular ether formation are also observed as side reactions, depending on the molar proportion of the hydrogen donor [68]. Different catalysts for the ring opening of the epoxide groups in ESO have been evaluated in many works. The most common catalysts are sulfuric acid, p-toluenesulfonic acid, perchloric acid, tetrafluoroboric acid (HBF4) and activated clays. HBF4 have been found to produce polyols with a higher OH content, and lower viscosity than other catalysts in the ring opening reaction of ESO with methanol [69]. And, triflic acid is a very effective catalyst for preparing ESO polyether polyols [60]. As alcohol concentration relative to ESO is reduced, higher molecular weight polyether polyols can be produced in a controlled way [60].
Currently, vegetable oils-based polyols are gradually replacing petroleum-based hydroxyl for preparing PUs, which are considered as sustainable and environmentally friendly polymers from biomass industry [5]. ESO based polyols can be co-polymerized with some commercial isocyanates, such as toluene di-isocyanate (TDI), methylene-4,49-diphenyldiisocyanate (MDI) or others, to obtain bio-based PUs with useful properties, including enhanced hydrolytic and thermal stability, as shown in Figure 5.
Synthesis of soybean-oil-based PUs [
The structure-property relationships between ESO based polyols and PUs have been extensively investigated. Several factors have important influences on the properties of the PUs, such as chemical structure of the segment, chemical composition, hydroxyl group position, hydroxyl values of polyols and cross-linking densities of the PUs networks [71]. The structure and properties of PUs prepared from halogenated as well as non-halogenated soybean polyols with commercial isocyanates have been studied which shows that brominated polyols and their corresponding PUs have the highest densities and Tg while their thermal stabilities are lowest. Chlorinated polyols have comparable glass transition and strength to brominated polyols, somewhat higher than the methoxy-containing and hydrogenated polyols [69]. Besides, the NCO/OH mole ratios also show effects on the properties of the PUs networks that the cross-linking densities, Tg, and tensile strengths deteriorate as the NCO/OH ratios decrease and glassy polymers can be produced when the NCO/OH ratio is between 0.8 and 1.05 [72]. The studies on polyurethane resins from a blend of glycerol and polyol show that the increasing of Tg caused by the incorporation of glycerol into soy polyols obviously enhances the rigidity of PUs [73]. The polyurethanes elastomers synthesized from ESO based polyols obtained by ring opening with Ricinoleic acid (RA) and sebacic acid with citric acid as the cross-linker display biocompatibility and biodegradability and are very suitable for bone tissue engineering [74].
Furthermore, ESO is able to be effectively converted to carbonated soybean oil (CSBO) containing five-membered cyclic carbonates by reacting with carbon dioxide in the presence of tetra-butylammonium bromide at 110°C in high yield [75]. Then, CSBO can easily react with diamines to give the corresponding non-isocyanate polyurethane networks(NIPUs), and the thermal and mechanical properties of NIPUs can be well adjusted and controlled by changing the CSBO/amine ratio [76].
AESO is commercially-manufactured derivative of ESO and has been extensively used in coatings, resins and composites. The acid-catalyzed synthesis process of AESO is shown in Figure 6. The acid catalyst promotes the formation of an oxonium ion, which can be stabilized by local epoxide group. And the ring-opening reaction happened between acrylic acid and the oxonium ion. Inhibitor is needed in this reaction to prevent polymerization of vinyl groups. The acrylation reaction has a first-order dependence on the concentration of epoxy groups, but the rate constant increases with the decreasing of epoxides per fatty acid due to steric hindrance and the stabilization effect of local epoxide group on oxonium groups [77].
Mechanism of AESO synthesis [
Through reversible addition-fragmentation chain transfer (RAFT) polymerization, AESO can be made into a hyper-branched bio-based polymer without macro-gelation [8, 79]. The conversion of vinyl is usually over 50%, which indicates that it is possible for multifunctional renewable feed stocks to be made into bio-based thermoplastics polymers at a high conversion without gelation [8].
Most of the researches focused on the cross-linking reaction of AESO through free radical polymerization. Like the ESO, the cross-linked homopolymers from AESO also have the shortage that the polymers exhibit poor mechanical properties [80]. One of the common methods used to enhance its mechanical properties is adding reinforcements to make polymer composites. There are many polar groups in the structure of AESO, including C〓O, ▬OH and epoxy groups. These polar groups provide the possibility for the formation of hydrogen bonds between AESO and fillers [80]. Thermoplastic polyurethane [81], microcrystalline cellulose (MCC) [80] and cellulose fiber [82] are the common reinforcements worth investigation for poly(acrylated epoxidized soybean oil)(PAESO). The interaction between PAESO and polyurethane can be enhanced by the formation of hydrogen bonds between hydrophilic functional groups from both of the two components which give rise to the result of improving the toughness and increasing the elongation of PAESO [81]. As a green filler, microcrystalline cellulose will increase the density, hardness, flexural strength and modulus of the material without decreasing the bio-based content [80]. Cellulose-reinforced PAESO can also be successfully made into bio-based foams with enhanced mechanical properties, which shows the great potential to replace petroleum-based foams [82].
Another common way to adjust the properties of AESO-based materials is the incorporation of co-monomers. Styrene [83, 84, 85, 86], N-vinyl-2-pyrrolidone (NVP) [64, 87], 3-isopropenyldimethylbenzyl isocyanate (TMI) [88], isocyanatoethyl methacrylate (IEM) [88], 1,6-hexanediol diacrylate [89], divinylbenzene [86, 89] and unsaturated polyester [90, 91, 92, 93, 94] are widely used as co-monomers for AESO. The diblock copolymers based on AESO and styrene are able to work as an additive for asphalt to modify the rheological performance so that the corresponding stiffness, elasticity and rutting resistance of the asphalt can be substantially improved [83]. The copolymer based on AESO and styrene can also be reinforced by natural fibers [84] and denim [85] to obtain bio-based composites for structural applications, such as roof structure and safety helmets. Due to the toxicity of styrene, styrene-free polymers become more attractive recently. NVP is an alternative to styrene in the synthesis of copolymer based on AESO, and the corresponding hemp fibers (HFs) composites exhibit superior static and dynamic mechanical properties [64]. As both AESO and HFs contains ▬OH groups in their structures, the addition of isophorone diisocyanate, whose isocyanate groups can react with ▬OH groups, to the AESO/HFs/NVP system can improve the properties by working as both a cross-linker and a coupling agent [87]. Accordingly, TMI and IEM bringing both C〓C double bonds and isocyanate groups into the reaction systems may also be good co-monomers for AESO/HFs system. Besides the free radical polymerization of vinyl groups, the reactions between isocyanate groups and the ▬OH groups of AESO and HFs also occurred at the same time in this bio-based polymer composite systems [88]. Consequently, the crosslinking density and interfacial reaction between reinforcement and the matrix can be improved significantly, leading to the enhancement of storage modulus, Tg and water resistance. As a nonvolatile and nonhazardous chemical, AESO is a suitable replacement for styrene in unsaturated polyester (UPE) resin to obtain hybrid polymer networks [90, 91, 92, 93, 94]. The UPE with unsaturated sites works as the co-monomer for AESO, and the final products usually exhibit comparable properties to correspondingly styrene-based products. The combination of a variety of co-monomers may provide AESO based copolymers with more possibilities. The thermosets based on the combination of AESO, styrene and divinylbenzene can be the potential replacements for commercial electronic materials [86]. The combination of AESO, 1,6-hexanediol diacrylate and divinylbenzene is able to make into the matrix for bacterial cellulose nanocomposite foams and the properties of the composites can be tailored by adjusting the compositions [89].
Although petroleum-based co-monomers can bring excellent properties, the decrease of the bio-based content is still not expected. Functional bio-based co-monomers are desired in consequence. Isosorbide can be used to synthesize a bio-based co-monomer for AESO through the reaction with methacrylate anhydride [95]. The product, isosorbide-methacrylate (IM), which has stiff structure, endows the bio-based networks with ideal thermal and mechanical properties. Similarly, rosin is also a bio-based raw material with a rigid molecular structure. Its derivative, N-dehydroabietic acrylamide (DHA-AM), can enhance the storage modulus, Tg, thermal stability, tensile strength and hydrophobicity of AESO/DHA-AM thermosets [96]. Methacrylated lauric acid (MLAU) is another bio-based reactive diluent for AESO. The mixture exhibits a suitable viscosity for liquid molding techniques to get AESO based thermoset specimens with low densities and Tg around room temperature [97].
AESO has been widely applied in the UV curing systems for their lower volatility and relatively higher reactivity of C〓C bonds which are able to conduct free-radical polymerization in the presence of functional initiator. In general, residual internal stress in the UV-curing coating film often leads to poor adhesion with substrate. AESO can be used to synthesize cured films with reduced internal stress and its flexible triglyceride structure can improve adhesion [9]. UV-curable materials based on AESO have been found many applications like coatings, adhesives and composite materials [98]. As petroleum-based fiber composites often swell after water absorption resulting in deterioration of mechanical properties, the dried distillers grains (DDGS)-flax mat coated with AESO polymerized by UV light with the initiation of irgacure 819 shows improved water resistance property [99]. Besides, AESO-based UV-cured PUDs with higher functionality can be used in textiles printing. Different content of AESO based UV-curable PUDs pigment prints adhesive have been successfully synthesized with isophorone diisocyanate (IPDI), poly(caprolactone glycol) and 2-hydroxyethyl methacrylate, and all UV-curing films have excellent thermal stability [98]. With the increasing of AESO content, the color strength of printed fabrics can be enhanced correspondingly. Conversely, the increasing of UV radiation time shows positive impact on the color fastness [100]. UV-curable, AESO-based organic shape-stabilized phase change materials also can be obtained by UV technique with enhanced thermal performance, decreased melting and freezing temperature, which verify the promising application of UV-curable material for thermal energy storage [100].
However, the existing of soft long aliphatic chains usually results in low mechanical or thermal properties and some rigid compounds are often added as the co-monomers to improve the performances of AESO-based UV-curable materials. Acrylate acid is one of the most common-used petroleum-based rigid compounds. The performances of AESO-based UV curable coating materials by using petroleum-based hyper-branched acrylates (HBAs) as co-photo-polymerization monomer, using acrylated sucrose (AS) as tougheners and using tetra-hydrofurfural acrylate (THFA) as reactive diluents show the increased coating hardness, adhesion, modulus, solvent resistance and glass transition temperature [101]. Nowadays, many researchers are devoted to exploit bio-based co-monomers to develop high bio-based content UV-curable coatings. Monomer acrylated betulin (AB) synthesized from botulin [102], unsaturated monomer (named IG) synthesized from itaconic acid and glycidyl methacrylate [103], monomers (named EM2G and EM3G) synthesized from eugenol via a thiol-ene reaction and epoxide ring-opening reaction [104] have been all evaluated to be successfully used with AESO matrix polymer and have great potential to improve the properties of UV curable coating. Coating films containing AB from 5 to 10 wt% contents have better modulus of elasticity, tensile strength, abrasion resistance and hardness, higher Tg and lower strain at break value, while the transmittance of the cured films is reduced with increasing AB loading, especially for wavelengths below 650 nm. In comparison, the polycyclic structure of betulin imposes a more rigid structure on AESO matrix polymer to enhance the applied performance [102]. In the presence of irgacure 184 as initiator, a series of UV-cured coatings without any solvent can be successfully prepared with IG (EM2G or EM3G) and AESO, and EM2G and EM3G show higher reactivity when copolymerized with AESO. The introduction of IG, EM2G and EM3G in the UV-curing system results in significantly improved mechanical and thermal properties as well as coating performances such as hardness, flexibility, adhesion, solvent resistance [103, 104].
ESO is initially used as a plasticizer in industry for poly(vinyl chloride) chlorinated (PVC) rubber, and poly(vinyl alcohol) (PVA) emulsions to improve stability and flexibility [105, 106], and ESO is also considered to be potential nontoxic biocompatible plasticizers for poly(3-hydroxybutyrate) (PHB) and polylactic acid (PLA) when combined with other plasticizers [107, 108, 109]. Moreover, it is an interesting trend to prepare composites of ESO or its homo-polymers with other materials because of their special properties. A double network composites with ESO and a di-hydrocoumarin derived network can been synthesized with toughening effect, which make the ESO-based polymer possible to be applied in the fields of coatings and films [110]. The composites of cross-linked ESO and acrylic monolith [111] or poly(lactic acid) [112] apparently exhibit much larger Young’s modulus and tensile strength than ESO homo-polymer and can work as shape memory materials, which makes ESO a potential component for manufacture of intelligent polymer materials.
Interestingly, the long chain alkane fatty acid residues in ESO can give the composites hydrophobicity, so cross-linked ESO can also work as a water-resistant film for paper that the obtained composites may be competitive in the field of packaging considering their good properties [113]. An efficient method has been reported for the formation of cellulose-based materials grafting with poly epoxidized soybean oil (PESO) with controllable hydrophobic properties [114] 1–2. A kind of PESO coated paper composites with good water-resistant property have been obtained via in situ polymerization of ESO on the surface of the paper cellulose fibers [113].
This chapter summarizes the most recent advances in the application of ESO and its derivatives for preparation of bio-based polymeric materials. The multiple reactive epoxy groups from triglycerides of unsaturated fatty acids imply its great potential in the bio-based polymer preparation fields with controllable biodegradability, thermal and mechanical properties. ESO can crosslink directly with variety curing agents to form permanent network, or to introducing reactive function groups by chemical modifications. Two most important modifications are introducing hydroxyl groups and esterification to produce acrylates. Based on these, varieties of new polymeric materials have been prepared recently from ESO and derivatives that exhibit industrially viable thermos-physical and mechanical properties and thus may find many possible applications. It is believed that ESO based compounds will gain continuously strong interest and allow new developments both in academic and industrial points of view.
The authors are grateful to the National Key Research and Development Program of China (Grant no. 2016YFB0302701), the National Natural Science Foundation of China (Grant no. 21676083), the Shanghai Rising-Star Program (Grant no. 16QB140130), the Fundamental Research Funds for the Central Universities, and the 111 Project (B08021).
The authors have declared that no conflict of interest exists.
Customer Satisfaction is of paramount importance at IntechOpen and we take all complaints very seriously. Our Authors, their institutions, and other purchasers, if dissatisfied with the service provided, or the product purchased, can file a written complaint to IntechOpen, 5 Princes Gate Court, London, SW7 2QJ, UK or via the following e-mail address: info@intechopen.com.
',metaTitle:"Customer Complaints",metaDescription:"Our authors, their institutions and other purchasers, if unsatisfied with the service provided or the product purchased, can file a written complaint at IN TECH d.o.o offices at Janeza Trdine 9, 51000 Rijeka, Croatia, or via the following e-mail address: info@intechopen.com.",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\\n\\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\\n\\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\\n\\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\\n\\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Receipt of complaints will be acknowledged in writing and Intech Limited will respond fully to concerns within 15 business days.
\n\nCustomers have the right to terminate the contract without giving any reason (written notice of termination). The deadline for said termination is fourteen (14) days from the date of receipt of goods. Returns are at the expense of the Customer and must be made within the fourteen (14) days from the date of the written notice of termination. Intech Limited will process refunds to the Customer without undue delay.
\n\nIn the event that the Publisher ships damaged or misbound copies of products, or duplicate or incorrect copies of the products are received by the Customer, the Publisher will accept returns at the Publisher's expense, provided notice of such damaged or incorrect shipment is given to the Publisher within fourteen (14) working days from the date of receipt.
\n\nPublishing errors, including but not limited to typographical errors, having no significant effect on the editorial content or design characteristics of the products, cannot be considered a reason for rejecting payment or, as the case may be, modifying the agreed price.
\n\nAt the Publisher's request, the customer should provide evidence of the damaged or incorrect shipment. The Publisher will refund or ship the ordered products without delays.
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{},profiles:[{id:"58592",title:"Dr.",name:"Arun",middleName:null,surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/58592/images/1664_n.jpg",biography:"Arun K. Shanker is serving as a Principal Scientist (Plant Physiology) with the Indian Council of Agricultural Research (ICAR) at the Central Research Institute for Dryland Agriculture in Hyderabad, India. He is working with the ICAR as a full time researcher since 1993 and has since earned his Advanced degree in Crop Physiology while in service. He has been awarded the prestigious Member of the Royal Society of Chemistry (MRSC), by the Royal Society of Chemistry, London in 2015. Presently he is working on systems biology approach to study the mechanism of abiotic stress tolerance in crops. His main focus now is to unravel the mechanism of drought and heat stress response in plants to tackle climate change related threats in agriculture.",institutionString:null,institution:{name:"Indian Council of Agricultural Research",country:{name:"India"}}},{id:"4782",title:"Prof.",name:"Bishnu",middleName:"P",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/4782/images/system/4782.jpg",biography:"Bishnu P. Pal is Professor of Physics at Mahindra École\nCentrale Hyderabad India since July 1st 2014 after retirement\nas Professor of Physics from IIT Delhi; Ph.D.’1975 from IIT\nDelhi; Fellow of OSA and SPIE; Senior Member IEEE;\nHonorary Foreign Member Royal Norwegian Society for\nScience and Arts; Member OSA Board of Directors (2009-\n11); Distinguished Lecturer IEEE Photonics Society (2005-\n07).",institutionString:null,institution:{name:"Indian Institute of Technology Delhi",country:{name:"India"}}},{id:"69653",title:"Dr.",name:"Chusak",middleName:null,surname:"Limsakul",slug:"chusak-limsakul",fullName:"Chusak Limsakul",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Prince of Songkla University",country:{name:"Thailand"}}},{id:"23804",title:"Dr.",name:"Hamzah",middleName:null,surname:"Arof",slug:"hamzah-arof",fullName:"Hamzah Arof",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/23804/images/5492_n.jpg",biography:"Hamzah Arof received his BSc from Michigan State University, and PhD from the University of Wales. Both degrees were in electrical engineering. His current research interests include signal processing and photonics. Currently he is affiliated with the Department of Electrical Engineering, University of Malaya, Malaysia.",institutionString:null,institution:{name:"University of Malaya",country:{name:"Malaysia"}}},{id:"41989",title:"Prof.",name:"He",middleName:null,surname:"Tian",slug:"he-tian",fullName:"He Tian",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"East China University of Science and Technology",country:{name:"China"}}},{id:"33351",title:null,name:"Hendra",middleName:null,surname:"Hermawan",slug:"hendra-hermawan",fullName:"Hendra Hermawan",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/33351/images/168_n.jpg",biography:null,institutionString:null,institution:{name:"Institut Teknologi Bandung",country:{name:"Indonesia"}}},{id:"11981",title:"Prof.",name:"Hiroshi",middleName:null,surname:"Ishiguro",slug:"hiroshi-ishiguro",fullName:"Hiroshi Ishiguro",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRglaQAC/Profile_Picture_1626411846553",biography:"Hiroshi Ishiguro is an award-winning roboticist and innovator. As the Director of the Intelligent Robotics Laboratory, which is part of the Department of Systems Innovation in the Graduate School of Engineering Science at Osaka University, Japan, Ishiguro concentrates on making robots that are similar as possible to humans to understand the human species. A notable project of his laboratory is the Actroid, a humanoid robot with a lifelike appearance and observable behavior such as facial movements. (Sources: http://www.geminoid.jp/en/index.html, https://en.wikipedia.org/wiki/Hiroshi_Ishiguro)",institutionString:null,institution:{name:"Osaka University",country:{name:"Japan"}}},{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"National Chiayi University",country:{name:"Taiwan"}}},{id:"61581",title:"Dr.",name:"Joy Rizki Pangestu",middleName:null,surname:"Djuansjah",slug:"joy-rizki-pangestu-djuansjah",fullName:"Joy Rizki Pangestu Djuansjah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/61581/images/237_n.jpg",biography:null,institutionString:null,institution:{name:"University of Technology Malaysia",country:{name:"Malaysia"}}},{id:"94249",title:"Prof.",name:"Junji",middleName:null,surname:"Kido",slug:"junji-kido",fullName:"Junji Kido",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Yamagata University",country:{name:"Japan"}}},{id:"12009",title:"Dr.",name:"Ki Young",middleName:null,surname:"Kim",slug:"ki-young-kim",fullName:"Ki Young Kim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12009/images/system/12009.jpg",biography:"Http://m80.knu.ac.kr/~doors",institutionString:null,institution:{name:"National Cheng Kung University",country:{name:"Taiwan"}}},{id:"132595",title:"Prof.",name:"Long",middleName:null,surname:"Wang",slug:"long-wang",fullName:"Long Wang",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Peking University",country:{name:"China"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:6630},{group:"region",caption:"Middle and South America",value:2,count:5913},{group:"region",caption:"Africa",value:3,count:2404},{group:"region",caption:"Asia",value:4,count:12563},{group:"region",caption:"Australia and Oceania",value:5,count:1009},{group:"region",caption:"Europe",value:6,count:17575}],offset:12,limit:12,total:12563},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"1",sort:"dateEndThirdStepPublish",src:"EDCMP"},books:[{type:"book",id:"11254",title:"Optical Coherence Tomography",subtitle:null,isOpenForSubmission:!0,hash:"a958c09ceaab1fc44c1dd0a817f48c92",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11254.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11436",title:"Beauty",subtitle:null,isOpenForSubmission:!0,hash:"0e15ba86bab1a64f950318f3ab2584ed",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11436.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11438",title:"Fake News in the Era of Pandemics",subtitle:null,isOpenForSubmission:!0,hash:"bc9e4cab86c76f35cd70b39086d9b69e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11438.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11472",title:"21st Century Slavery",subtitle:null,isOpenForSubmission:!0,hash:"b341f3fc3411ced881e43ce007a892b8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11472.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11473",title:"Social Inequality",subtitle:null,isOpenForSubmission:!0,hash:"20307129f7fb39aa443d5449acb6a784",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11473.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11546",title:"Smart and Sustainable Transportation",subtitle:null,isOpenForSubmission:!0,hash:"e8ea27a1ff85cde00efcb6f6968c20f8",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11546.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11554",title:"Information Systems Management",subtitle:null,isOpenForSubmission:!0,hash:"3134452ff2fdec020663f241c7a9a748",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11554.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11605",title:"Bamboo",subtitle:null,isOpenForSubmission:!0,hash:"378d957561b27c86b750a9c7841a5d18",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11605.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11616",title:"Foraging",subtitle:null,isOpenForSubmission:!0,hash:"955b60bb658c8d1a09dd4efc9bf6674b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11616.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11632",title:"Updated Research on Bacteriophages",subtitle:null,isOpenForSubmission:!0,hash:"d34dfa0d5d10511184f97ddaeef9936b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11632.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11649",title:"Carnivora",subtitle:null,isOpenForSubmission:!0,hash:"cfe96fa2ecf64b22057163f9896dc476",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11649.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11650",title:"Aquifers",subtitle:null,isOpenForSubmission:!0,hash:"2a7acb5c7fbf3f244aefa79513407b5e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/11650.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:36},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:7},{group:"topic",caption:"Chemistry",value:8,count:16},{group:"topic",caption:"Computer and Information Science",value:9,count:15},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:31},{group:"topic",caption:"Environmental Sciences",value:12,count:7},{group:"topic",caption:"Immunology and Microbiology",value:13,count:7},{group:"topic",caption:"Materials Science",value:14,count:10},{group:"topic",caption:"Mathematics",value:15,count:6},{group:"topic",caption:"Medicine",value:16,count:95},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:2},{group:"topic",caption:"Neuroscience",value:18,count:7},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:9},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:7},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:31},{group:"topic",caption:"Technology",value:24,count:1}],offset:12,limit:12,total:314},popularBooks:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9808",title:"Contemporary Topics in Patient Safety",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"fb6371607c2c6c02c6a2af8892765aba",slug:"contemporary-topics-in-patient-safety-volume-1",bookSignature:"Stanislaw P. Stawicki and Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/9808.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9544",title:"Global Trade in the Emerging Business Environment",subtitle:null,isOpenForSubmission:!1,hash:"fb8cb09b9599246add78d508a98273d5",slug:"global-trade-in-the-emerging-business-environment",bookSignature:"Muhammad Mohiuddin, Jingbin Wang , Md. Samim Al Azad and Selim Ahmed",coverURL:"https://cdn.intechopen.com/books/images_new/9544.jpg",editors:[{id:"418514",title:"Dr.",name:"Muhammad",middleName:null,surname:"Mohiuddin",slug:"muhammad-mohiuddin",fullName:"Muhammad Mohiuddin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4387},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9974",title:"E-Learning and Digital Education in the Twenty-First Century",subtitle:null,isOpenForSubmission:!1,hash:"88b58d66e975df20425fc1dfd22d53aa",slug:"e-learning-and-digital-education-in-the-twenty-first-century",bookSignature:"M. Mahruf C. Shohel",coverURL:"https://cdn.intechopen.com/books/images_new/9974.jpg",publishedDate:"May 18th 2022",numberOfDownloads:3385,editors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11001",title:"Density Functional Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"82d53383af78ab41eb982086c02fb2bb",slug:"density-functional-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Daniel Glossman-Mitnik",coverURL:"https://cdn.intechopen.com/books/images_new/11001.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1875,editors:[{id:"198499",title:"Dr.",name:"Daniel",middleName:null,surname:"Glossman-Mitnik",slug:"daniel-glossman-mitnik",fullName:"Daniel Glossman-Mitnik"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10356",title:"Natural Medicinal Plants",subtitle:null,isOpenForSubmission:!1,hash:"943e56ccaaf19ff696d25aa638ae37d6",slug:"natural-medicinal-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/10356.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3842,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"11752",title:"Natural Drugs from Plants",subtitle:null,isOpenForSubmission:!1,hash:"a0a83c0822608ef7592bf16a5ed0ada4",slug:"natural-drugs-from-plants",bookSignature:"Hany A. El-Shemy",coverURL:"https://cdn.intechopen.com/books/images_new/11752.jpg",publishedDate:"May 11th 2022",numberOfDownloads:3008,editors:[{id:"54719",title:"Prof.",name:"Hany",middleName:null,surname:"El-Shemy",slug:"hany-el-shemy",fullName:"Hany El-Shemy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10251",title:"Plankton Communities",subtitle:null,isOpenForSubmission:!1,hash:"e11e441ca2d2d5f631b1b4704505cfb6",slug:"plankton-communities",bookSignature:"Leonel Pereira and Ana Marta Gonçalves",coverURL:"https://cdn.intechopen.com/books/images_new/10251.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1109,editors:[{id:"279788",title:"Dr.",name:"Leonel",middleName:null,surname:"Pereira",slug:"leonel-pereira",fullName:"Leonel Pereira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",isOpenForSubmission:!1,hash:"79944fc8fbbaa329aed6fde388154832",slug:"animal-feed-science-and-nutrition-production-health-and-environment",bookSignature:"Amlan Kumar Patra",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",publishedDate:"May 18th 2022",numberOfDownloads:1010,editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10584",title:"Engineered Wood Products for Construction",subtitle:null,isOpenForSubmission:!1,hash:"421757c56a3735986055250821275a51",slug:"engineered-wood-products-for-construction",bookSignature:"Meng Gong",coverURL:"https://cdn.intechopen.com/books/images_new/10584.jpg",publishedDate:"April 28th 2022",numberOfDownloads:3918,editors:[{id:"274242",title:"Dr.",name:"Meng",middleName:null,surname:"Gong",slug:"meng-gong",fullName:"Meng Gong"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9670",title:"Current Trends in Wheat Research",subtitle:null,isOpenForSubmission:!1,hash:"89d795987f1747a76eee532700d2093d",slug:"current-trends-in-wheat-research",bookSignature:"Mahmood-ur-Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9670.jpg",publishedDate:"May 11th 2022",numberOfDownloads:1654,editors:[{id:"185476",title:"Dr.",name:"Mahmood-ur-Rahman",middleName:null,surname:"Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-ur-Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9032",title:"Corporate Social Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"f609bf3251d7cc7bae0099a4374adfc3",slug:"corporate-social-responsibility",bookSignature:"Beatrice Orlando",coverURL:"https://cdn.intechopen.com/books/images_new/9032.jpg",publishedDate:"March 16th 2022",numberOfDownloads:7686,editors:[{id:"232969",title:"Prof.",name:"Beatrice",middleName:null,surname:"Orlando",slug:"beatrice-orlando",fullName:"Beatrice Orlando"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10681",title:"Biodegradation Technology of Organic and Inorganic Pollutants",subtitle:null,isOpenForSubmission:!1,hash:"9a6e10e02788092872fd249436898e97",slug:"biodegradation-technology-of-organic-and-inorganic-pollutants",bookSignature:"Kassio Ferreira Mendes, Rodrigo Nogueira de Sousa and Kamila Cabral Mielke",coverURL:"https://cdn.intechopen.com/books/images_new/10681.jpg",publishedDate:"April 20th 2022",numberOfDownloads:3444,editors:[{id:"197720",title:"Ph.D.",name:"Kassio",middleName:null,surname:"Ferreira Mendes",slug:"kassio-ferreira-mendes",fullName:"Kassio Ferreira Mendes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"10522",title:"Coding Theory",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"6357e1dd7d38adeb519ca7a10dc9e5a0",slug:"coding-theory-recent-advances-new-perspectives-and-applications",bookSignature:"Sudhakar Radhakrishnan and Sudev Naduvath",coverURL:"https://cdn.intechopen.com/books/images_new/10522.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"26327",title:"Dr.",name:"Sudhakar",middleName:null,surname:"Radhakrishnan",slug:"sudhakar-radhakrishnan",fullName:"Sudhakar Radhakrishnan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10821",title:"Automation and Control",subtitle:"Theories and Applications",isOpenForSubmission:!1,hash:"18463c2291ba306c4dcbabd988227eea",slug:"automation-and-control-theories-and-applications",bookSignature:"Elmer P. Dadios",coverURL:"https://cdn.intechopen.com/books/images_new/10821.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"111683",title:"Prof.",name:"Elmer P.",middleName:"P.",surname:"Dadios",slug:"elmer-p.-dadios",fullName:"Elmer P. Dadios"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11348",title:"Mutagenesis and Mitochondrial-Associated Pathologies",subtitle:null,isOpenForSubmission:!1,hash:"001972b3c5b49367314b13025a449232",slug:"mutagenesis-and-mitochondrial-associated-pathologies",bookSignature:"Michael Fasullo and Angel Catala",coverURL:"https://cdn.intechopen.com/books/images_new/11348.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"258231",title:"Dr.",name:"Michael",middleName:"Thomas",surname:"Fasullo",slug:"michael-fasullo",fullName:"Michael Fasullo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"11123",title:"Epoxy-Based Composites",subtitle:null,isOpenForSubmission:!1,hash:"c1c5447cf3b9d6c7688276ac30e80de6",slug:"epoxy-based-composites",bookSignature:"Samson Jerold Samuel Chelladurai, Ramesh Arthanari and M.R.Meera",coverURL:"https://cdn.intechopen.com/books/images_new/11123.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"247421",title:"Dr.",name:"Samson Jerold Samuel",middleName:null,surname:"Chelladurai",slug:"samson-jerold-samuel-chelladurai",fullName:"Samson Jerold Samuel Chelladurai"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10632",title:"Theory and Practice of Tunnel Engineering",subtitle:null,isOpenForSubmission:!1,hash:"7ba17749f9d0b6a62d584a3c320a1f49",slug:"theory-and-practice-of-tunnel-engineering",bookSignature:"Hasan Tosun",coverURL:"https://cdn.intechopen.com/books/images_new/10632.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"79083",title:"Prof.",name:"Hasan",middleName:null,surname:"Tosun",slug:"hasan-tosun",fullName:"Hasan Tosun"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10906",title:"Fungal Reproduction and Growth",subtitle:null,isOpenForSubmission:!1,hash:"f84de0280d54f3b52e3e4585cff24ac1",slug:"fungal-reproduction-and-growth",bookSignature:"Sadia Sultan and Gurmeet Kaur Surindar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/10906.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"176737",title:"Dr.",name:"Sadia",middleName:null,surname:"Sultan",slug:"sadia-sultan",fullName:"Sadia Sultan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10914",title:"Effective Elimination of Structural Racism",subtitle:null,isOpenForSubmission:!1,hash:"f6a2562646c0fd664aca8335bc3b3e69",slug:"effective-elimination-of-structural-racism",bookSignature:"Erick Guerrero",coverURL:"https://cdn.intechopen.com/books/images_new/10914.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"294761",title:"Dr.",name:"Erick",middleName:null,surname:"Guerrero",slug:"erick-guerrero",fullName:"Erick Guerrero"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,isOpenForSubmission:!1,hash:"2d66af42fb17d0a6556bb9ef28e273c7",slug:"animal-reproduction",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10940",title:"Plant Hormones",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"5aae8a345f8047ed528914ff3491f643",slug:"plant-hormones-recent-advances-new-perspectives-and-applications",bookSignature:"Christophe Hano",coverURL:"https://cdn.intechopen.com/books/images_new/10940.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10207",title:"Sexual Abuse",subtitle:"An Interdisciplinary Approach",isOpenForSubmission:!1,hash:"e1ec1d5a7093490df314d7887e0b3809",slug:"sexual-abuse-an-interdisciplinary-approach",bookSignature:"Ersi Kalfoğlu and Sotirios Kalfoglou",coverURL:"https://cdn.intechopen.com/books/images_new/10207.jpg",editedByType:"Edited by",publishedDate:"May 25th 2022",editors:[{id:"68678",title:"Dr.",name:"Ersi",middleName:null,surname:"Kalfoglou",slug:"ersi-kalfoglou",fullName:"Ersi Kalfoglou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"476",title:"Social Responsibility",slug:"social-responsibility",parent:{id:"79",title:"Sustainable Development",slug:"business-management-and-economics-sustainable-development"},numberOfBooks:2,numberOfSeries:0,numberOfAuthorsAndEditors:48,numberOfWosCitations:10,numberOfCrossrefCitations:8,numberOfDimensionsCitations:17,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicId:"476",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6950",title:"Education, Human Rights and Peace in Sustainable Development",subtitle:null,isOpenForSubmission:!1,hash:"c506ccaf514e5544d61c96a601753ad9",slug:"education-human-rights-and-peace-in-sustainable-development",bookSignature:"Maigul Nugmanova, Heimo Mikkola, Alexander Rozanov and Valentina Komleva",coverURL:"https://cdn.intechopen.com/books/images_new/6950.jpg",editedByType:"Edited by",editors:[{id:"290871",title:"Dr.",name:"Maigul",middleName:null,surname:"Nugmanova",slug:"maigul-nugmanova",fullName:"Maigul Nugmanova"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2205",title:"Globalization and Responsibility",subtitle:null,isOpenForSubmission:!1,hash:"46d98262d7d3b53c695cd7bc87f00040",slug:"globalization-and-responsibility",bookSignature:"Zlatan Delic",coverURL:"https://cdn.intechopen.com/books/images_new/2205.jpg",editedByType:"Edited by",editors:[{id:"31746",title:"Dr.",name:"Zlatan",middleName:null,surname:"Delic",slug:"zlatan-delic",fullName:"Zlatan Delic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,seriesByTopicCollection:[],seriesByTopicTotal:0,mostCitedChapters:[{id:"37642",doi:"10.5772/37573",title:"Globalization, Democracy, and Government Spending in Sub-Saharan Africa: Evidence from Panel Data",slug:"globalization-democracy-and-government-spending",totalDownloads:2219,totalCrossrefCites:2,totalDimensionsCites:6,abstract:null,book:{id:"2205",slug:"globalization-and-responsibility",title:"Globalization and Responsibility",fullTitle:"Globalization and Responsibility"},signatures:"Samuel Adams and Daniel Sakyi",authors:[{id:"12870",title:"Dr.",name:"Samuel",middleName:null,surname:"Adams",slug:"samuel-adams",fullName:"Samuel Adams"},{id:"138923",title:"Dr.",name:"Daniel",middleName:null,surname:"Sakyi",slug:"daniel-sakyi",fullName:"Daniel Sakyi"}]},{id:"68932",doi:"10.5772/intechopen.86916",title:"Archaeological Sites, Cultural Heritage, and Sustainable Development in the Republic of Kazakhstan",slug:"archaeological-sites-cultural-heritage-and-sustainable-development-in-the-republic-of-kazakhstan",totalDownloads:622,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"This paper addresses the problem of protecting and preserving archaeological sites from the Bronze Age through the Medieval Period (ca. 2500 BC–1500 CE) as part of sustainable development that includes such economic and social benefits as (1) promoting national status; (2) integrating archaeological sites into the Silk Route narrative; (3) developing tourism related to historic and cultural heritage; and (4) creating a citizenry that values its cultural and historic resources in the face of rapid economic development and changing natural and cultural landscapes. Two UNESCO World Heritage sites will be discussed briefly: Otrar and the surrounding oasis, a medieval complex of sites along the Great Silk Route, and Tamgaly, a petroglyph and archaeological reserve. These two UNESCO World Heritage archaeological sites or preserves will be contrasted with the Talgar Iron Age sites (400 BC–100 CE) situated in a rapidly changing landscape due to economic development and infrastructure (pipelines, railways, roads, and housing) about 12–15 km east of the major city of Almaty. The goal of this article is to discuss the complexity of the entangled sectors of cultural and historic preservation, economic development, tourism, and global transnational heritage within the framework of sustainability.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"Claudia Chang",authors:[{id:"296402",title:"Dr.",name:"Claudia",middleName:null,surname:"Chang",slug:"claudia-chang",fullName:"Claudia Chang"}]},{id:"71206",doi:"10.5772/intechopen.91053",title:"Uprising and Human Rights Abuses in Southern Cameroon-Ambazonia",slug:"uprising-and-human-rights-abuses-in-southern-cameroon-ambazonia",totalDownloads:875,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"In 2016, lawyers, teachers and students in the two Anglophone regions initially led demonstrations and strikes, which eventually involved a wider section of the population. This mobilization was against their marginalization by the Francophone-dominated government in which they were chronically under-represented in all aspects of national life: political appointments and professional training and had been treated as second-class citizens since their reunification. They argued that their vibrant economic and political institutions had been completely erased, and their education and judicial systems had been undermined and degraded. Activists spread videos that show security forces abusing human rights (by suppressing peaceful gatherings, beating, harassing, arresting and killing protesters, burning their houses, schools and hospitals) in order to produce a counter-narrative to the ‘official story’ that main-stream media had been producing. We collected and analyzed 30 videos to better appreciate the human rights abuses. The videos provide information that cannot be provided by other types of data. They are used as ‘proofs of facts’ and they contain much more visual information on bodily movement and acoustic data. The videos show appalling images not just of how French-speaking soldiers tortured Anglophones but also their inability to communicate with them adequately although they share the same country.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"Nanche Billa Robert",authors:[{id:"285893",title:"Dr.",name:"Nanche Billa",middleName:null,surname:"Robert",slug:"nanche-billa-robert",fullName:"Nanche Billa Robert"}]},{id:"72435",doi:"10.5772/intechopen.92705",title:"Police Education in the United Kingdom: Challenges and Future Directions",slug:"police-education-in-the-united-kingdom-challenges-and-future-directions",totalDownloads:1078,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter outlines the historical development of police education in the United Kingdom, more precisely in England and Wales, and highlights new strategies and planning for the professional development of the police. There is a plethora of research carried out regarding professionalism in policing to meet the needs and challenges of the twenty-first century. Considering the recent developments in police education and training, this chapter mainly discusses three newly introduced routes for recruitment and education of police constables under the Policing Education Qualifications Framework (PEQF), namely Police Constable Degree Apprenticeship (PCDA), Degree Holder Entry Programme (DHEP), and Pre-Join Degree (PJD). Higher education institutions (HEIs), in partnership with the police forces, are providing professional qualifications for policing as a graduate level profession. Though they have made remarkable progress in developing police education programmes, they are facing various challenges in implementing the qualification framework. This chapter also explores pedagogical aspects of police education including the effectiveness and contrast between different forms of teaching and learning. While featuring the challenges and prospects of the new police education programmes, this chapter also outlines different aspects of partnership for delivering these professional qualification programmes.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"M. Mahruf C. Shohel, Gias Uddin, Julian Parker-McLeod and Daniel Silverstone",authors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"},{id:"319810",title:"Mr.",name:"Gias",middleName:null,surname:"Uddin",slug:"gias-uddin",fullName:"Gias Uddin"},{id:"321004",title:"Dr.",name:"Julian",middleName:null,surname:"Parker-McLeod",slug:"julian-parker-mcleod",fullName:"Julian Parker-McLeod"},{id:"321005",title:"Dr.",name:"Daniel",middleName:null,surname:"Silverstone",slug:"daniel-silverstone",fullName:"Daniel Silverstone"}]},{id:"37643",doi:"10.5772/38861",title:"Globalization and Chagas Disease",slug:"globalization-and-chagas-disease",totalDownloads:1826,totalCrossrefCites:0,totalDimensionsCites:2,abstract:null,book:{id:"2205",slug:"globalization-and-responsibility",title:"Globalization and Responsibility",fullTitle:"Globalization and Responsibility"},signatures:"João Carlos Pinto Dias and José Rodrigues Coura",authors:[{id:"75739",title:"Prof.",name:"José Rodrigues",middleName:null,surname:"Coura",slug:"jose-rodrigues-coura",fullName:"José Rodrigues Coura"},{id:"120233",title:"Prof.",name:"Joao",middleName:null,surname:"Dias",slug:"joao-dias",fullName:"Joao Dias"}]}],mostDownloadedChaptersLast30Days:[{id:"68136",title:"Globalization of the Cruise Industry: A Tale of Ships Part II - Asia Post 1994",slug:"globalization-of-the-cruise-industry-a-tale-of-ships-part-ii-asia-post-1994",totalDownloads:890,totalCrossrefCites:1,totalDimensionsCites:1,abstract:"Cruising has grown over 7% a year since 1980. Sustained rapid expansion in North America, followed by local expansion in Europe and Asia, has made cruising a global industry, with 365 ships and estimated sales of $37.8 US billion (CIN, 2017). This global development has been fueled by innovation and introduction of market changing resident ships appealing to the mass traveler which were quickly matched by competitors, establishment of industry and port marketing organizations, awareness of cruising as a vacation option, and availability of suitable port and berthing facilities. When these four conditions coexisted the industry experienced rapid growth. Since 1966, the cruise industry has developed from a Miami-centered industry to a global industry centered in North America, Europe, Asia, and Australia/New Zealand. Given the high cost of state-of-the-art ships, their deployment is a good indication of industry’s confidence in market growth. This chapter chronicles the development of the Asian cruise industry from 1994 through 2017. Data from Cruise Industry News Annual Reports (CIN) and Berlitz Complete Guide to Cruising and Cruise Ships (Ward) are examined and conclusions are drawn.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"Andrew O. Coggins",authors:[{id:"229658",title:"Prof.",name:"Andrew",middleName:null,surname:"Coggins Jr",slug:"andrew-coggins-jr",fullName:"Andrew Coggins Jr"}]},{id:"72435",title:"Police Education in the United Kingdom: Challenges and Future Directions",slug:"police-education-in-the-united-kingdom-challenges-and-future-directions",totalDownloads:1078,totalCrossrefCites:2,totalDimensionsCites:2,abstract:"This chapter outlines the historical development of police education in the United Kingdom, more precisely in England and Wales, and highlights new strategies and planning for the professional development of the police. There is a plethora of research carried out regarding professionalism in policing to meet the needs and challenges of the twenty-first century. Considering the recent developments in police education and training, this chapter mainly discusses three newly introduced routes for recruitment and education of police constables under the Policing Education Qualifications Framework (PEQF), namely Police Constable Degree Apprenticeship (PCDA), Degree Holder Entry Programme (DHEP), and Pre-Join Degree (PJD). Higher education institutions (HEIs), in partnership with the police forces, are providing professional qualifications for policing as a graduate level profession. Though they have made remarkable progress in developing police education programmes, they are facing various challenges in implementing the qualification framework. This chapter also explores pedagogical aspects of police education including the effectiveness and contrast between different forms of teaching and learning. While featuring the challenges and prospects of the new police education programmes, this chapter also outlines different aspects of partnership for delivering these professional qualification programmes.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"M. Mahruf C. Shohel, Gias Uddin, Julian Parker-McLeod and Daniel Silverstone",authors:[{id:"94099",title:"Dr.",name:"M. Mahruf C.",middleName:null,surname:"Shohel",slug:"m.-mahruf-c.-shohel",fullName:"M. Mahruf C. Shohel"},{id:"319810",title:"Mr.",name:"Gias",middleName:null,surname:"Uddin",slug:"gias-uddin",fullName:"Gias Uddin"},{id:"321004",title:"Dr.",name:"Julian",middleName:null,surname:"Parker-McLeod",slug:"julian-parker-mcleod",fullName:"Julian Parker-McLeod"},{id:"321005",title:"Dr.",name:"Daniel",middleName:null,surname:"Silverstone",slug:"daniel-silverstone",fullName:"Daniel Silverstone"}]},{id:"73702",title:"Approaches to Analysis of Interstate Cooperation",slug:"approaches-to-analysis-of-interstate-cooperation",totalDownloads:604,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"At the present day cultural diplomacy plays a rather important role in the development of international relations and world politics. This concept is receiving increasing attention from various countries, international and non-governmental organizations and other actors. This trend exists due to a number of reasons, such as the desire of states to create a positive image of their country, the expansion of international cooperation, changes in the global and domestic political situation, the protection of national interests, the prevention of conflicts between states, etc. Cultural diplomacy, beyond historical precedents, consists of a relatively new practice of a country’s foreign policy, which has traditionally focused on trade and security and defense issues. It is true that in European countries there are institutions of cultural foreign relations since the beginning of the century, but in the last decade the issues, related to the projection of the international image of countries, have become more important.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"Alexander Rozanov, Maria Ivanchenko, Alexandra Baranova, Elena N. Antonova, Mikhail Smirnov, Olga Belyaeva, Maria Ilicheva, Ludmila Ilicheva, Maria Krotovskaya, Tatiana Grabovich, Zaru Utekova, Dmitry Medvedev, Natalya Ogneva, Furat Al-Mutairi, Elvira Shishlo, Amina Surpkelova, Irina Kopachevskaya, Irina Sokurova, Yulia Borisova, Fernando Joao, Artyom Pakulskikh, Polina Chernova, Alexandra Khramova, Oksana Gryuk, Jesus Yaniz Gonzalez, Valentina Komleva, Alina Papsheva and Arkadi Bessonov",authors:[{id:"233092",title:"Dr.",name:"Alexander",middleName:null,surname:"Rozanov",slug:"alexander-rozanov",fullName:"Alexander Rozanov"},{id:"312194",title:"Prof.",name:"Valentina",middleName:"Vycheslavovna",surname:"Komleva",slug:"valentina-komleva",fullName:"Valentina Komleva"},{id:"312195",title:"Ms.",name:"Alexandra",middleName:null,surname:"Baranova",slug:"alexandra-baranova",fullName:"Alexandra Baranova"},{id:"312196",title:"Dr.",name:"Furat",middleName:null,surname:"Al Mutairi",slug:"furat-al-mutairi",fullName:"Furat Al Mutairi"},{id:"312197",title:"Ms.",name:"Maria",middleName:null,surname:"Ivanchenko",slug:"maria-ivanchenko",fullName:"Maria Ivanchenko"},{id:"312198",title:"Associate Prof.",name:"Arkadi",middleName:null,surname:"Bessonov",slug:"arkadi-bessonov",fullName:"Arkadi Bessonov"},{id:"312199",title:"Ms.",name:"Alina",middleName:null,surname:"Papsheva",slug:"alina-papsheva",fullName:"Alina Papsheva"},{id:"312200",title:"Prof.",name:"Ludmila",middleName:null,surname:"Ilicheva",slug:"ludmila-ilicheva",fullName:"Ludmila Ilicheva"},{id:"312201",title:"Ph.D. Student",name:"Aleksandra",middleName:null,surname:"Khramova",slug:"aleksandra-khramova",fullName:"Aleksandra Khramova"},{id:"316768",title:"Dr.",name:"Maria",middleName:null,surname:"Ilicheva",slug:"maria-ilicheva",fullName:"Maria Ilicheva"},{id:"317753",title:"Dr.",name:"Oksana",middleName:null,surname:"Gryuk",slug:"oksana-gryuk",fullName:"Oksana Gryuk"}]},{id:"71206",title:"Uprising and Human Rights Abuses in Southern Cameroon-Ambazonia",slug:"uprising-and-human-rights-abuses-in-southern-cameroon-ambazonia",totalDownloads:875,totalCrossrefCites:1,totalDimensionsCites:2,abstract:"In 2016, lawyers, teachers and students in the two Anglophone regions initially led demonstrations and strikes, which eventually involved a wider section of the population. This mobilization was against their marginalization by the Francophone-dominated government in which they were chronically under-represented in all aspects of national life: political appointments and professional training and had been treated as second-class citizens since their reunification. They argued that their vibrant economic and political institutions had been completely erased, and their education and judicial systems had been undermined and degraded. Activists spread videos that show security forces abusing human rights (by suppressing peaceful gatherings, beating, harassing, arresting and killing protesters, burning their houses, schools and hospitals) in order to produce a counter-narrative to the ‘official story’ that main-stream media had been producing. We collected and analyzed 30 videos to better appreciate the human rights abuses. The videos provide information that cannot be provided by other types of data. They are used as ‘proofs of facts’ and they contain much more visual information on bodily movement and acoustic data. The videos show appalling images not just of how French-speaking soldiers tortured Anglophones but also their inability to communicate with them adequately although they share the same country.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"Nanche Billa Robert",authors:[{id:"285893",title:"Dr.",name:"Nanche Billa",middleName:null,surname:"Robert",slug:"nanche-billa-robert",fullName:"Nanche Billa Robert"}]},{id:"72097",title:"Towards Global Peace and Sustainability: Role of Education in Peace-Building in the Great Lakes Region of Sub-Saharan Africa",slug:"towards-global-peace-and-sustainability-role-of-education-in-peace-building-in-the-great-lakes-regio",totalDownloads:671,totalCrossrefCites:0,totalDimensionsCites:0,abstract:"The Great Lakes Region of sub-Saharan Africa is well known for being volatile and turbulent in terms of peace and stability. For over 60 years, almost all countries in the region have experienced some kind of political and social turmoil such as civil war, coup de tat, and genocides. In 1960, the first democratically elected Congolese prime minister was assassinated. There were unprecedented social and political havoc in a nearby “other Congo” characterized by power struggle between various political and ethnic factions in the post-independence Congo Brazzaville. In Burundi and Rwanda, ethnic tensions between the Tutsi and Hutu engulfed the developmental dreams of nationalist freedom fighters until 2015. Though arguably stable, Tanzania has experienced its own share of socio-political messy including the 1998 Mwembechai and 2001 Pemba massacres. Efforts to build a sense of sustainable peace and development based on mutual understanding and socio-political harmony has brought limited success. In all these countries, the missing link in building sustainable peace and security has been a lack of education. The chapter intends to fill this gap by critically analyzing the potential role of basic education, especially pre-primary and early grades education, in sustainable peace-building in the sub-Saharan context.",book:{id:"6950",slug:"education-human-rights-and-peace-in-sustainable-development",title:"Education, Human Rights and Peace in Sustainable Development",fullTitle:"Education, Human Rights and Peace in Sustainable Development"},signatures:"Laurent Gabriel Ndijuye and Pambas Basil Tandika",authors:[{id:"301740",title:"Dr.",name:"Laurent Gabriel",middleName:null,surname:"Ndijuye",slug:"laurent-gabriel-ndijuye",fullName:"Laurent Gabriel Ndijuye"},{id:"319403",title:"Dr.",name:"Pambas Basilius",middleName:null,surname:"Tandika",slug:"pambas-basilius-tandika",fullName:"Pambas Basilius Tandika"}]}],onlineFirstChaptersFilter:{topicId:"476",limit:6,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},subscriptionForm:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[],offset:0,limit:8,total:null},allSeries:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:10,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:1,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],testimonialsList:[{id:"6",text:"It is great to work with the IntechOpen to produce a worthwhile collection of research that also becomes a great educational resource and guide for future research endeavors.",author:{id:"259298",name:"Edward",surname:"Narayan",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/259298/images/system/259298.jpeg",slug:"edward-narayan",institution:{id:"3",name:"University of Queensland",country:{id:null,name:"Australia"}}}},{id:"13",text:"The collaboration with and support of the technical staff of IntechOpen is fantastic. The whole process of submitting an article and editing of the submitted article goes extremely smooth and fast, the number of reads and downloads of chapters is high, and the contributions are also frequently cited.",author:{id:"55578",name:"Antonio",surname:"Jurado-Navas",institutionString:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRisIQAS/Profile_Picture_1626166543950",slug:"antonio-jurado-navas",institution:{id:"720",name:"University of Malaga",country:{id:null,name:"Spain"}}}}]},series:{item:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261",scope:"Modern physiology requires a comprehensive understanding of the integration of tissues and organs throughout the mammalian body, including the cooperation between structure and function at the cellular and molecular levels governed by gene and protein expression. While a daunting task, learning is facilitated by identifying common and effective signaling pathways mediated by a variety of factors employed by nature to preserve and sustain homeostatic life. \r\nAs a leading example, the cellular interaction between intracellular concentration of Ca+2 increases, and changes in plasma membrane potential is integral for coordinating blood flow, governing the exocytosis of neurotransmitters, and modulating gene expression and cell effector secretory functions. Furthermore, in this manner, understanding the systemic interaction between the cardiovascular and nervous systems has become more important than ever as human populations' life prolongation, aging and mechanisms of cellular oxidative signaling are utilised for sustaining life. \r\nAltogether, physiological research enables our identification of distinct and precise points of transition from health to the development of multimorbidity throughout the inevitable aging disorders (e.g., diabetes, hypertension, chronic kidney disease, heart failure, peptic ulcer, inflammatory bowel disease, age-related macular degeneration, cancer). With consideration of all organ systems (e.g., brain, heart, lung, gut, skeletal and smooth muscle, liver, pancreas, kidney, eye) and the interactions thereof, this Physiology Series will address the goals of resolving (1) Aging physiology and chronic disease progression (2) Examination of key cellular pathways as they relate to calcium, oxidative stress, and electrical signaling, and (3) how changes in plasma membrane produced by lipid peroxidation products can affect aging physiology, covering new research in the area of cell, human, plant and animal physiology.",coverUrl:"https://cdn.intechopen.com/series/covers/10.jpg",latestPublicationDate:"May 14th, 2022",hasOnlineFirst:!0,numberOfPublishedBooks:11,editor:{id:"35854",title:"Prof.",name:"Tomasz",middleName:null,surname:"Brzozowski",slug:"tomasz-brzozowski",fullName:"Tomasz Brzozowski",profilePictureURL:"https://mts.intechopen.com/storage/users/35854/images/system/35854.jpg",biography:"Prof. Dr. Thomas Brzozowski works as a professor of Human Physiology and is currently Chairman at the Department of Physiology and is V-Dean of the Medical Faculty at Jagiellonian University Medical College, Cracow, Poland. His primary area of interest is physiology and pathophysiology of the gastrointestinal (GI) tract, with the major focus on the mechanism of GI mucosal defense, protection, and ulcer healing. He was a postdoctoral NIH fellow at the University of California and the Gastroenterology VA Medical Center, Irvine, Long Beach, CA, USA, and at the Gastroenterology Clinics Erlangen-Nuremberg and Munster in Germany. He has published 290 original articles in some of the most prestigious scientific journals and seven book chapters on the pathophysiology of the GI tract, gastroprotection, ulcer healing, drug therapy of peptic ulcers, hormonal regulation of the gut, and inflammatory bowel disease.",institutionString:null,institution:{name:"Jagiellonian University",institutionURL:null,country:{name:"Poland"}}},editorTwo:null,editorThree:null},subseries:{paginationCount:7,paginationItems:[{id:"10",title:"Animal Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/10.jpg",editor:{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",biography:"Catrin Rutland is an Associate Professor of Anatomy and Developmental Genetics at the University of Nottingham, UK. She obtained a BSc from the University of Derby, England, a master’s degree from Technische Universität München, Germany, and a Ph.D. from the University of Nottingham. She undertook a post-doctoral research fellowship in the School of Medicine before accepting tenure in Veterinary Medicine and Science. Dr. Rutland also obtained an MMedSci (Medical Education) and a Postgraduate Certificate in Higher Education (PGCHE). She is the author of more than sixty peer-reviewed journal articles, twelve books/book chapters, and more than 100 research abstracts in cardiovascular biology and oncology. She is a board member of the European Association of Veterinary Anatomists, Fellow of the Anatomical Society, and Senior Fellow of the Higher Education Academy. Dr. Rutland has also written popular science books for the public. https://orcid.org/0000-0002-2009-4898. www.nottingham.ac.uk/vet/people/catrin.rutland",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"306970",title:"Mr.",name:"Amin",middleName:null,surname:"Tamadon",slug:"amin-tamadon",fullName:"Amin Tamadon",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002oHR5wQAG/Profile_Picture_1623910304139",institutionString:null,institution:{name:"Bushehr University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}},{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null},{id:"245306",title:"Dr.",name:"María Luz",middleName:null,surname:"Garcia Pardo",slug:"maria-luz-garcia-pardo",fullName:"María Luz Garcia Pardo",profilePictureURL:"https://mts.intechopen.com/storage/users/245306/images/system/245306.png",institutionString:null,institution:{name:"Miguel Hernandez University",institutionURL:null,country:{name:"Spain"}}},{id:"283315",title:"Prof.",name:"Samir",middleName:null,surname:"El-Gendy",slug:"samir-el-gendy",fullName:"Samir El-Gendy",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRduYQAS/Profile_Picture_1606215849748",institutionString:null,institution:{name:"Alexandria University",institutionURL:null,country:{name:"Egypt"}}}]},{id:"11",title:"Cell Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/11.jpg",editor:{id:"133493",title:"Prof.",name:"Angel",middleName:null,surname:"Catala",slug:"angel-catala",fullName:"Angel Catala",profilePictureURL:"https://mts.intechopen.com/storage/users/133493/images/3091_n.jpg",biography:"Prof. Dr. Angel Catalá \r\nShort Biography Angel Catalá was born in Rodeo (San Juan, Argentina). He studied \r\nchemistry at the Universidad Nacional de La Plata, Argentina, where received aPh.D. degree in chemistry (Biological Branch) in 1965. From\r\n1964 to 1974, he worked as Assistant in Biochemistry at the School of MedicineUniversidad Nacional de La Plata, Argentina. From 1974 to 1976, he was a Fellowof the National Institutes of Health (NIH) at the University of Connecticut, Health Center, USA. From 1985 to 2004, he served as a Full Professor oBiochemistry at the Universidad Nacional de La Plata, Argentina. He is Member ofthe National Research Council (CONICET), Argentina, and Argentine Society foBiochemistry and Molecular Biology (SAIB). His laboratory has been interested for manyears in the lipid peroxidation of biological membranes from various tissues and different species. Professor Catalá has directed twelve doctoral theses, publishedover 100 papers in peer reviewed journals, several chapters in books andtwelve edited books. Angel Catalá received awards at the 40th InternationaConference Biochemistry of Lipids 1999: Dijon (France). W inner of the Bimbo PanAmerican Nutrition, Food Science and Technology Award 2006 and 2012, South AmericaHuman Nutrition, Professional Category. 2006 award in pharmacology, Bernardo\r\nHoussay, in recognition of his meritorious works of research. Angel Catalá belongto the Editorial Board of Journal of lipids, International Review of Biophysical ChemistryFrontiers in Membrane Physiology and Biophysics, World Journal oExperimental Medicine and Biochemistry Research International, W orld Journal oBiological Chemistry, Oxidative Medicine and Cellular Longevity, Diabetes and thePancreas, International Journal of Chronic Diseases & Therapy, International Journal oNutrition, Co-Editor of The Open Biology Journal.",institutionString:null,institution:{name:"National University of La Plata",institutionURL:null,country:{name:"Argentina"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"186048",title:"Prof.",name:"Ines",middleName:null,surname:"Drenjančević",slug:"ines-drenjancevic",fullName:"Ines Drenjančević",profilePictureURL:"https://mts.intechopen.com/storage/users/186048/images/5818_n.jpg",institutionString:null,institution:{name:"University of Osijek",institutionURL:null,country:{name:"Croatia"}}},{id:"187859",title:"Prof.",name:"Kusal",middleName:"K.",surname:"Das",slug:"kusal-das",fullName:"Kusal Das",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBDeQAO/Profile_Picture_1623411145568",institutionString:"BLDE (Deemed to be University), India",institution:null},{id:"79615",title:"Dr.",name:"Robson",middleName:null,surname:"Faria",slug:"robson-faria",fullName:"Robson Faria",profilePictureURL:"https://mts.intechopen.com/storage/users/79615/images/system/79615.png",institutionString:null,institution:{name:"Oswaldo Cruz Foundation",institutionURL:null,country:{name:"Brazil"}}},{id:"84459",title:"Prof.",name:"Valerie",middleName:null,surname:"Chappe",slug:"valerie-chappe",fullName:"Valerie Chappe",profilePictureURL:"https://mts.intechopen.com/storage/users/84459/images/system/84459.jpg",institutionString:null,institution:{name:"Dalhousie University",institutionURL:null,country:{name:"Canada"}}}]},{id:"12",title:"Human Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},{id:"13",title:"Plant Physiology",coverUrl:"https://cdn.intechopen.com/series_topics/covers/13.jpg",editor:{id:"332229",title:"Prof.",name:"Jen-Tsung",middleName:null,surname:"Chen",slug:"jen-tsung-chen",fullName:"Jen-Tsung Chen",profilePictureURL:"https://mts.intechopen.com/storage/users/332229/images/system/332229.png",biography:"Dr. Jen-Tsung Chen is currently a professor at the National University of Kaohsiung, Taiwan. He teaches cell biology, genomics, proteomics, medicinal plant biotechnology, and plant tissue culture. Dr. Chen\\'s research interests include bioactive compounds, chromatography techniques, in vitro culture, medicinal plants, phytochemicals, and plant biotechnology. He has published more than ninety scientific papers and serves as an editorial board member for Plant Methods, Biomolecules, and International Journal of Molecular Sciences.",institutionString:"National University of Kaohsiung",institution:{name:"National University of Kaohsiung",institutionURL:null,country:{name:"Taiwan"}}},editorTwo:null,editorThree:null,editorialBoard:[{id:"313856",title:"Dr.",name:"Christophe",middleName:"F.E.",surname:"Hano",slug:"christophe-hano",fullName:"Christophe Hano",profilePictureURL:"https://mts.intechopen.com/storage/users/313856/images/system/313856.png",institutionString:"University of Orléans",institution:{name:"University of Orléans",institutionURL:null,country:{name:"France"}}},{id:"33993",title:"Dr.",name:"Jose Carlos",middleName:null,surname:"Jimenez-Lopez",slug:"jose-carlos-jimenez-lopez",fullName:"Jose Carlos Jimenez-Lopez",profilePictureURL:"https://mts.intechopen.com/storage/users/33993/images/system/33993.jpg",institutionString:"Spanish National Research Council",institution:{name:"Spanish National Research Council",institutionURL:null,country:{name:"Spain"}}},{id:"191770",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"El-Esawi",slug:"mohamed-a.-el-esawi",fullName:"Mohamed A. El-Esawi",profilePictureURL:"https://mts.intechopen.com/storage/users/191770/images/system/191770.jpeg",institutionString:null,institution:{name:"Tanta University",institutionURL:null,country:{name:"Egypt"}}},{id:"247858",title:"Dr.",name:"Saddam",middleName:null,surname:"Hussain",slug:"saddam-hussain",fullName:"Saddam Hussain",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSF2aQAG/Profile_Picture_1625658281836",institutionString:null,institution:{name:"University of Agriculture Faisalabad",institutionURL:null,country:{name:"Pakistan"}}}]}]},overviewPageOFChapters:{paginationCount:52,paginationItems:[{id:"80761",title:"Extractions Methods and Biological Applications of Essential Oils",doi:"10.5772/intechopen.102955",signatures:"Sonu Kumar Mahawer, Himani, Sushila Arya, Ravendra Kumar and Om Prakash",slug:"extractions-methods-and-biological-applications-of-essential-oils",totalDownloads:1,totalCrossrefCites:null,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81545",title:"Physiochemical Properties of Essential Oils and Applications",doi:"10.5772/intechopen.104112",signatures:"Sunil Kumar Yadav",slug:"physiochemical-properties-of-essential-oils-and-applications",totalDownloads:1,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Essential Oils - Advances in Extractions and Biological Applications",coverURL:"https://cdn.intechopen.com/books/images_new/11332.jpg",subseries:{id:"15",title:"Chemical Biology"}}},{id:"81927",title:"Purinergic System in Immune Response",doi:"10.5772/intechopen.104485",signatures:"Yerly Magnolia Useche Salvador",slug:"purinergic-system-in-immune-response",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Purinergic System",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",subseries:{id:"17",title:"Metabolism"}}},{id:"80495",title:"Iron in Cell Metabolism and Disease",doi:"10.5772/intechopen.101908",signatures:"Eeka Prabhakar",slug:"iron-in-cell-metabolism-and-disease",totalDownloads:9,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Iron Metabolism - Iron a Double‐Edged Sword",coverURL:"https://cdn.intechopen.com/books/images_new/10842.jpg",subseries:{id:"17",title:"Metabolism"}}}]},overviewPagePublishedBooks:{paginationCount:27,paginationItems:[{type:"book",id:"7006",title:"Biochemistry and Health Benefits of Fatty Acids",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7006.jpg",slug:"biochemistry-and-health-benefits-of-fatty-acids",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Viduranga Waisundara",hash:"c93a00abd68b5eba67e5e719f67fd20b",volumeInSeries:1,fullTitle:"Biochemistry and Health Benefits of Fatty Acids",editors:[{id:"194281",title:"Dr.",name:"Viduranga Y.",middleName:null,surname:"Waisundara",slug:"viduranga-y.-waisundara",fullName:"Viduranga Y. Waisundara",profilePictureURL:"https://mts.intechopen.com/storage/users/194281/images/system/194281.jpg",biography:"Dr. Viduranga Waisundara obtained her Ph.D. in Food Science and Technology from the Department of Chemistry, National University of Singapore, in 2010. She was a lecturer at Temasek Polytechnic, Singapore from July 2009 to March 2013. She relocated to her motherland of Sri Lanka and spearheaded the Functional Food Product Development Project at the National Institute of Fundamental Studies from April 2013 to October 2016. She was a senior lecturer on a temporary basis at the Department of Food Technology, Faculty of Technology, Rajarata University of Sri Lanka. She is currently Deputy Principal of the Australian College of Business and Technology – Kandy Campus, Sri Lanka. She is also the Global Harmonization Initiative (GHI) Ambassador to Sri Lanka.",institutionString:"Australian College of Business & Technology",institution:null}]},{type:"book",id:"6820",title:"Keratin",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/6820.jpg",slug:"keratin",publishedDate:"December 19th 2018",editedByType:"Edited by",bookSignature:"Miroslav Blumenberg",hash:"6def75cd4b6b5324a02b6dc0359896d0",volumeInSeries:2,fullTitle:"Keratin",editors:[{id:"31610",title:"Dr.",name:"Miroslav",middleName:null,surname:"Blumenberg",slug:"miroslav-blumenberg",fullName:"Miroslav Blumenberg",profilePictureURL:"https://mts.intechopen.com/storage/users/31610/images/system/31610.jpg",biography:"Miroslav Blumenberg, Ph.D., was born in Subotica and received his BSc in Belgrade, Yugoslavia. He completed his Ph.D. at MIT in Organic Chemistry; he followed up his Ph.D. with two postdoctoral study periods at Stanford University. Since 1983, he has been a faculty member of the RO Perelman Department of Dermatology, NYU School of Medicine, where he is codirector of a training grant in cutaneous biology. Dr. Blumenberg’s research is focused on the epidermis, expression of keratin genes, transcription profiling, keratinocyte differentiation, inflammatory diseases and cancers, and most recently the effects of the microbiome on the skin. He has published more than 100 peer-reviewed research articles and graduated numerous Ph.D. and postdoctoral students.",institutionString:null,institution:{name:"New York University Langone Medical Center",institutionURL:null,country:{name:"United States of America"}}}]},{type:"book",id:"7978",title:"Vitamin A",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7978.jpg",slug:"vitamin-a",publishedDate:"May 15th 2019",editedByType:"Edited by",bookSignature:"Leila Queiroz Zepka, Veridiana Vera de Rosso and Eduardo Jacob-Lopes",hash:"dad04a658ab9e3d851d23705980a688b",volumeInSeries:3,fullTitle:"Vitamin A",editors:[{id:"261969",title:"Dr.",name:"Leila",middleName:null,surname:"Queiroz Zepka",slug:"leila-queiroz-zepka",fullName:"Leila Queiroz Zepka",profilePictureURL:"https://mts.intechopen.com/storage/users/261969/images/system/261969.png",biography:"Prof. Dr. Leila Queiroz Zepka is currently an associate professor in the Department of Food Technology and Science, Federal University of Santa Maria, Brazil. She has more than fifteen years of teaching and research experience. She has published more than 550 scientific publications/communications, including 15 books, 50 book chapters, 100 original research papers, 380 research communications in national and international conferences, and 12 patents. She is a member of the editorial board of five journals and acts as a reviewer for several national and international journals. Her research interests include microalgal biotechnology with an emphasis on microalgae-based products.",institutionString:"Universidade Federal de Santa Maria",institution:{name:"Universidade Federal de Santa Maria",institutionURL:null,country:{name:"Brazil"}}}]},{type:"book",id:"7953",title:"Bioluminescence",subtitle:"Analytical Applications and Basic Biology",coverURL:"https://cdn.intechopen.com/books/images_new/7953.jpg",slug:"bioluminescence-analytical-applications-and-basic-biology",publishedDate:"September 25th 2019",editedByType:"Edited by",bookSignature:"Hirobumi Suzuki",hash:"3a8efa00b71abea11bf01973dc589979",volumeInSeries:4,fullTitle:"Bioluminescence - Analytical Applications and Basic Biology",editors:[{id:"185746",title:"Dr.",name:"Hirobumi",middleName:null,surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki",profilePictureURL:"https://mts.intechopen.com/storage/users/185746/images/system/185746.png",biography:"Dr. Hirobumi Suzuki received his Ph.D. in 1997 from Tokyo Metropolitan University, Japan, where he studied firefly phylogeny and the evolution of mating systems. He is especially interested in the genetic differentiation pattern and speciation process that correlate to the flashing pattern and mating behavior of some fireflies in Japan. He then worked for Olympus Corporation, a Japanese manufacturer of optics and imaging products, where he was involved in the development of luminescence technology and produced a bioluminescence microscope that is currently being used for gene expression analysis in chronobiology, neurobiology, and developmental biology. Dr. Suzuki currently serves as a visiting researcher at Kogakuin University, Japan, and also a vice president of the Japan Firefly Society.",institutionString:"Kogakuin University",institution:null}]}]},openForSubmissionBooks:{paginationCount:5,paginationItems:[{id:"11576",title:"Malaria - Recent Advances, and New Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11576.jpg",hash:"5a01644fb0b4ce24c2f947913d154abe",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 26th 2022",isOpenForSubmission:!0,editors:[{id:"76041",title:"Prof.",name:"Pier Paolo",surname:"Piccaluga",slug:"pier-paolo-piccaluga",fullName:"Pier Paolo Piccaluga"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11577",title:"Tick-Borne Diseases - A Review and an Update of Knowledge on Infections in Human and Animal Population",coverURL:"https://cdn.intechopen.com/books/images_new/11577.jpg",hash:"3d72ae651ee2a04b2368bf798a3183ca",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"April 29th 2022",isOpenForSubmission:!0,editors:[{id:"51521",title:"Prof.",name:"Elisa",surname:"Pieragostini",slug:"elisa-pieragostini",fullName:"Elisa Pieragostini"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11570",title:"Influenza - New Approaches",coverURL:"https://cdn.intechopen.com/books/images_new/11570.jpg",hash:"157b379b9d7a4bf5e2cc7a742f155a44",secondStepPassed:!0,currentStepOfPublishingProcess:3,submissionDeadline:"May 10th 2022",isOpenForSubmission:!0,editors:[{id:"139889",title:"Dr.",name:"Seyyed Shamsadin",surname:"Athari",slug:"seyyed-shamsadin-athari",fullName:"Seyyed Shamsadin Athari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11569",title:"Bacterial Sexually Transmitted Infections - New Findings, Diagnosis, Treatment, and Prevention",coverURL:"https://cdn.intechopen.com/books/images_new/11569.jpg",hash:"069d6142ecb0d46d14920102d48c0e9d",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"May 31st 2022",isOpenForSubmission:!0,editors:[{id:"189561",title:"Dr.",name:"Mihaela Laura",surname:"Vica",slug:"mihaela-laura-vica",fullName:"Mihaela Laura Vica"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{id:"11568",title:"Staphylococcal Infections - Recent Advances and Perspectives",coverURL:"https://cdn.intechopen.com/books/images_new/11568.jpg",hash:"92c881664d1921c7f2d0fee34b78cd08",secondStepPassed:!1,currentStepOfPublishingProcess:2,submissionDeadline:"June 1st 2022",isOpenForSubmission:!0,editors:[{id:"59719",title:"Dr.",name:"Jaime",surname:"Bustos-Martínez",slug:"jaime-bustos-martinez",fullName:"Jaime Bustos-Martínez"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},onlineFirstChapters:{paginationCount:43,paginationItems:[{id:"81796",title:"Apoptosis-Related Diseases and Peroxisomes",doi:"10.5772/intechopen.105052",signatures:"Meimei Wang, Yakun Liu, Ni Chen, Juan Wang and Ye Zhao",slug:"apoptosis-related-diseases-and-peroxisomes",totalDownloads:5,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81723",title:"Peroxisomal Modulation as Therapeutic Alternative for Tackling Multiple Cancers",doi:"10.5772/intechopen.104873",signatures:"Shazia Usmani, Shadma Wahab, Abdul Hafeez, Shabana Khatoon and Syed Misbahul Hasan",slug:"peroxisomal-modulation-as-therapeutic-alternative-for-tackling-multiple-cancers",totalDownloads:3,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"The Metabolic Role of Peroxisome in Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81638",title:"Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends",doi:"10.5772/intechopen.103102",signatures:"Jelena Milić",slug:"aging-and-neuropsychiatric-disease-a-general-overview-of-prevalence-and-trends",totalDownloads:18,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Senescence",coverURL:"https://cdn.intechopen.com/books/images_new/10935.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81566",title:"New and Emerging Technologies for Integrative Ambulatory Autonomic Assessment and Intervention as a Catalyst in the Synergy of Remote Geocoded Biosensing, Algorithmic Networked Cloud Computing, Deep Learning, and Regenerative/Biomic Medicine: Further Real",doi:"10.5772/intechopen.104092",signatures:"Robert L. Drury",slug:"new-and-emerging-technologies-for-integrative-ambulatory-autonomic-assessment-and-intervention-as-a-",totalDownloads:10,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Autonomic Nervous System - Special Interest Topics",coverURL:"https://cdn.intechopen.com/books/images_new/10835.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81576",title:"Carotenoids in Thermal Adaptation of Plants and Animals",doi:"10.5772/intechopen.104537",signatures:"Ivan M. Petyaev",slug:"carotenoids-in-thermal-adaptation-of-plants-and-animals",totalDownloads:19,totalCrossrefCites:0,totalDimensionsCites:0,authors:[{name:"Ivan",surname:"Petyaev"}],book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81358",title:"New Insights on Carotenoid Production by Gordonia alkanivorans Strain 1B",doi:"10.5772/intechopen.103919",signatures:"Tiago P. Silva, Susana M. Paixão, Ana S. Fernandes, José C. Roseiro and Luís Alves",slug:"new-insights-on-carotenoid-production-by-gordonia-alkanivorans-strain-1b",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}},{id:"81298",title:"Roles of Extracellular Vesicles in Cancer Metastasis",doi:"10.5772/intechopen.103798",signatures:"Eman Helmy Thabet",slug:"roles-of-extracellular-vesicles-in-cancer-metastasis",totalDownloads:23,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Extracellular Vesicles - Role in Diseases, Pathogenesis and Therapy",coverURL:"https://cdn.intechopen.com/books/images_new/10796.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81290",title:"Musculoskeletal Abnormalities Caused by Cystic Fibrosis",doi:"10.5772/intechopen.104591",signatures:"Mark Lambrechts",slug:"musculoskeletal-abnormalities-caused-by-cystic-fibrosis",totalDownloads:14,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Advances in Skeletal Muscle Health and Disease",coverURL:"https://cdn.intechopen.com/books/images_new/11675.jpg",subseries:{id:"11",title:"Cell Physiology"}}},{id:"81286",title:"Potassium Derangements: A Pathophysiological Review, Diagnostic Approach, and Clinical Management",doi:"10.5772/intechopen.103016",signatures:"Sairah Sharif and Jie Tang",slug:"potassium-derangements-a-pathophysiological-review-diagnostic-approach-and-clinical-management",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Potassium in Human Health",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",subseries:{id:"12",title:"Human Physiology"}}},{id:"81246",title:"Role of Carotenoids in Cardiovascular Disease",doi:"10.5772/intechopen.102750",signatures:"Arslan Ahmad, Sakhawat Riaz, Muhammad Shahzaib Nadeem, Umber Mubeen and Khadija Maham",slug:"role-of-carotenoids-in-cardiovascular-disease",totalDownloads:27,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Carotenoids - New Perspectives and Application",coverURL:"https://cdn.intechopen.com/books/images_new/10836.jpg",subseries:{id:"13",title:"Plant Physiology"}}}]},subseriesFiltersForOFChapters:[{caption:"Plant Physiology",value:13,count:5,group:"subseries"},{caption:"Human Physiology",value:12,count:13,group:"subseries"},{caption:"Cell Physiology",value:11,count:25,group:"subseries"}],publishedBooks:{paginationCount:11,paginationItems:[{type:"book",id:"10664",title:"Animal Reproduction",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10664.jpg",slug:"animal-reproduction",publishedDate:"May 25th 2022",editedByType:"Edited by",bookSignature:"Yusuf Bozkurt and Mustafa Numan Bucak",hash:"2d66af42fb17d0a6556bb9ef28e273c7",volumeInSeries:11,fullTitle:"Animal Reproduction",editors:[{id:"90846",title:"Prof.",name:"Yusuf",middleName:null,surname:"Bozkurt",slug:"yusuf-bozkurt",fullName:"Yusuf Bozkurt",profilePictureURL:"https://mts.intechopen.com/storage/users/90846/images/system/90846.jpg",institutionString:"İskenderun Technical University",institution:{name:"İskenderun Technical University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10830",title:"Animal Feed Science and Nutrition",subtitle:"Production, Health and Environment",coverURL:"https://cdn.intechopen.com/books/images_new/10830.jpg",slug:"animal-feed-science-and-nutrition-production-health-and-environment",publishedDate:"May 18th 2022",editedByType:"Edited by",bookSignature:"Amlan Kumar Patra",hash:"79944fc8fbbaa329aed6fde388154832",volumeInSeries:10,fullTitle:"Animal Feed Science and Nutrition - Production, Health and Environment",editors:[{id:"310962",title:"Dr.",name:"Amlan",middleName:"Kumar",surname:"Patra",slug:"amlan-patra",fullName:"Amlan Patra",profilePictureURL:"https://mts.intechopen.com/storage/users/310962/images/system/310962.jpg",institutionString:null,institution:{name:"West Bengal University of Animal and Fishery Sciences",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8737",title:"Rabies Virus at the Beginning of 21st Century",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8737.jpg",slug:"rabies-virus-at-the-beginning-of-21st-century",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Sergey Tkachev",hash:"49cce3f548da548c718c865feb343509",volumeInSeries:9,fullTitle:"Rabies Virus at the Beginning of 21st Century",editors:[{id:"61139",title:"Dr.",name:"Sergey",middleName:null,surname:"Tkachev",slug:"sergey-tkachev",fullName:"Sergey Tkachev",profilePictureURL:"https://mts.intechopen.com/storage/users/61139/images/system/61139.png",institutionString:"Russian Academy of Sciences",institution:{name:"Russian Academy of Sciences",institutionURL:null,country:{name:"Russia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10496",title:"Advanced Studies in the 21st Century Animal Nutrition",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10496.jpg",slug:"advanced-studies-in-the-21st-century-animal-nutrition",publishedDate:"December 8th 2021",editedByType:"Edited by",bookSignature:"László Babinszky, Juliana Oliveira and Edson Mauro Santos",hash:"8ffe43a82ac48b309abc3632bbf3efd0",volumeInSeries:8,fullTitle:"Advanced Studies in the 21st Century Animal Nutrition",editors:[{id:"53998",title:"Prof.",name:"László",middleName:null,surname:"Babinszky",slug:"laszlo-babinszky",fullName:"László Babinszky",profilePictureURL:"https://mts.intechopen.com/storage/users/53998/images/system/53998.png",institutionString:"University of Debrecen",institution:{name:"University of Debrecen",institutionURL:null,country:{name:"Hungary"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"10497",title:"Canine Genetics, Health and Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/10497.jpg",slug:"canine-genetics-health-and-medicine",publishedDate:"June 2nd 2021",editedByType:"Edited by",bookSignature:"Catrin Rutland",hash:"b91512e31ce34032e560362e6cbccc1c",volumeInSeries:7,fullTitle:"Canine Genetics, Health and Medicine",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",editedByType:"Edited by",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",hash:"13aaddf5fdbbc78387e77a7da2388bf6",volumeInSeries:6,fullTitle:"Animal Reproduction in Veterinary Medicine",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral",profilePictureURL:"https://mts.intechopen.com/storage/users/25600/images/system/25600.jpg",institutionString:"Independent Researcher",institution:{name:"Harran University",institutionURL:null,country:{name:"Turkey"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9081",title:"Equine Science",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9081.jpg",slug:"equine-science",publishedDate:"September 23rd 2020",editedByType:"Edited by",bookSignature:"Catrin Rutland and Albert Rizvanov",hash:"ac415ef2f5450fa80fdb9cf6cf32cd2d",volumeInSeries:5,fullTitle:"Equine Science",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8460",title:"Reproductive Biology and Technology in Animals",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/8460.jpg",slug:"reproductive-biology-and-technology-in-animals",publishedDate:"April 15th 2020",editedByType:"Edited by",bookSignature:"Juan Carlos Gardón Poggi and Katy Satué Ambrojo",hash:"32ef5fe73998dd723d308225d756fa1e",volumeInSeries:4,fullTitle:"Reproductive Biology and Technology in Animals",editors:[{id:"251314",title:"Dr.",name:"Juan Carlos",middleName:null,surname:"Gardón",slug:"juan-carlos-gardon",fullName:"Juan Carlos Gardón",profilePictureURL:"https://mts.intechopen.com/storage/users/251314/images/system/251314.jpeg",institutionString:"Catholic University of Valencia San Vicente Mártir, Spain",institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"8524",title:"Lactation in Farm Animals",subtitle:"Biology, Physiological Basis, Nutritional Requirements, and Modelization",coverURL:"https://cdn.intechopen.com/books/images_new/8524.jpg",slug:"lactation-in-farm-animals-biology-physiological-basis-nutritional-requirements-and-modelization",publishedDate:"January 22nd 2020",editedByType:"Edited by",bookSignature:"Naceur M'Hamdi",hash:"2aa2a9a0ec13040bbf0455e34625504e",volumeInSeries:3,fullTitle:"Lactation in Farm Animals - Biology, Physiological Basis, Nutritional Requirements, and Modelization",editors:[{id:"73376",title:"Dr.",name:"Naceur",middleName:null,surname:"M'Hamdi",slug:"naceur-m'hamdi",fullName:"Naceur M'Hamdi",profilePictureURL:"https://mts.intechopen.com/storage/users/73376/images/system/73376.jpg",institutionString:null,institution:null}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7144",title:"Veterinary Anatomy and Physiology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7144.jpg",slug:"veterinary-anatomy-and-physiology",publishedDate:"March 13th 2019",editedByType:"Edited by",bookSignature:"Catrin Sian Rutland and Valentina Kubale",hash:"75cdacb570e0e6d15a5f6e69640d87c9",volumeInSeries:2,fullTitle:"Veterinary Anatomy and Physiology",editors:[{id:"202192",title:"Dr.",name:"Catrin",middleName:null,surname:"Rutland",slug:"catrin-rutland",fullName:"Catrin Rutland",profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",institutionString:null,institution:{name:"University of Nottingham",institutionURL:null,country:{name:"United Kingdom"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7233",title:"New Insights into Theriogenology",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7233.jpg",slug:"new-insights-into-theriogenology",publishedDate:"December 5th 2018",editedByType:"Edited by",bookSignature:"Rita Payan-Carreira",hash:"74f4147e3fb214dd050e5edd3aaf53bc",volumeInSeries:1,fullTitle:"New Insights into Theriogenology",editors:[{id:"38652",title:"Prof.",name:"Rita",middleName:null,surname:"Payan-Carreira",slug:"rita-payan-carreira",fullName:"Rita Payan-Carreira",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRiFPQA0/Profile_Picture_1614601496313",institutionString:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},subseriesFiltersForPublishedBooks:[{group:"subseries",caption:"Animal Nutrition",value:20,count:2},{group:"subseries",caption:"Animal Reproductive Biology and Technology",value:28,count:4},{group:"subseries",caption:"Animal Science",value:19,count:5}],publicationYearFilters:[{group:"publicationYear",caption:"2022",value:2022,count:3},{group:"publicationYear",caption:"2021",value:2021,count:3},{group:"publicationYear",caption:"2020",value:2020,count:3},{group:"publicationYear",caption:"2019",value:2019,count:1},{group:"publicationYear",caption:"2018",value:2018,count:1}],authors:{paginationCount:249,paginationItems:[{id:"274452",title:"Dr.",name:"Yousif",middleName:"Mohamed",surname:"Abdallah",slug:"yousif-abdallah",fullName:"Yousif Abdallah",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/274452/images/8324_n.jpg",biography:"I certainly enjoyed my experience in Radiotherapy and Nuclear Medicine, particularly it has been in different institutions and hospitals with different Medical Cultures and allocated resources. Radiotherapy and Nuclear Medicine Technology has always been my aspiration and my life. As years passed I accumulated a tremendous amount of skills and knowledge in Radiotherapy and Nuclear Medicine, Conventional Radiology, Radiation Protection, Bioinformatics Technology, PACS, Image processing, clinically and lecturing that will enable me to provide a valuable service to the community as a Researcher and Consultant in this field. My method of translating this into day to day in clinical practice is non-exhaustible and my habit of exchanging knowledge and expertise with others in those fields is the code and secret of success.",institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"313277",title:"Dr.",name:"Bartłomiej",middleName:null,surname:"Płaczek",slug:"bartlomiej-placzek",fullName:"Bartłomiej Płaczek",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/313277/images/system/313277.jpg",biography:"Bartłomiej Płaczek, MSc (2002), Ph.D. (2005), Habilitation (2016), is a professor at the University of Silesia, Institute of Computer Science, Poland, and an expert from the National Centre for Research and Development. His research interests include sensor networks, smart sensors, intelligent systems, and image processing with applications in healthcare and medicine. He is the author or co-author of more than seventy papers in peer-reviewed journals and conferences as well as the co-author of several books. He serves as a reviewer for many scientific journals, international conferences, and research foundations. Since 2010, Dr. Placzek has been a reviewer of grants and projects (including EU projects) in the field of information technologies.",institutionString:"University of Silesia",institution:{name:"University of Silesia",country:{name:"Poland"}}},{id:"35000",title:"Prof.",name:"Ulrich H.P",middleName:"H.P.",surname:"Fischer",slug:"ulrich-h.p-fischer",fullName:"Ulrich H.P Fischer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/35000/images/3052_n.jpg",biography:"Academic and Professional Background\nUlrich H. P. has Diploma and PhD degrees in Physics from the Free University Berlin, Germany. He has been working on research positions in the Heinrich-Hertz-Institute in Germany. Several international research projects has been performed with European partners from France, Netherlands, Norway and the UK. He is currently Professor of Communications Systems at the Harz University of Applied Sciences, Germany.\n\nPublications and Publishing\nHe has edited one book, a special interest book about ‘Optoelectronic Packaging’ (VDE, Berlin, Germany), and has published over 100 papers and is owner of several international patents for WDM over POF key elements.\n\nKey Research and Consulting Interests\nUlrich’s research activity has always been related to Spectroscopy and Optical Communications Technology. Specific current interests include the validation of complex instruments, and the application of VR technology to the development and testing of measurement systems. He has been reviewer for several publications of the Optical Society of America\\'s including Photonics Technology Letters and Applied Optics.\n\nPersonal Interests\nThese include motor cycling in a very relaxed manner and performing martial arts.",institutionString:null,institution:{name:"Charité",country:{name:"Germany"}}},{id:"341622",title:"Ph.D.",name:"Eduardo",middleName:null,surname:"Rojas Alvarez",slug:"eduardo-rojas-alvarez",fullName:"Eduardo Rojas Alvarez",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/341622/images/15892_n.jpg",biography:null,institutionString:null,institution:{name:"University of Cuenca",country:{name:"Ecuador"}}},{id:"215610",title:"Prof.",name:"Muhammad",middleName:null,surname:"Sarfraz",slug:"muhammad-sarfraz",fullName:"Muhammad Sarfraz",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/215610/images/system/215610.jpeg",biography:"Muhammad Sarfraz is a professor in the Department of Information Science, Kuwait University, Kuwait. His research interests include optimization, computer graphics, computer vision, image processing, machine learning, pattern recognition, soft computing, data science, and intelligent systems. Prof. Sarfraz has been a keynote/invited speaker at various platforms around the globe. He has advised/supervised more than 110 students for their MSc and Ph.D. theses. He has published more than 400 publications as books, journal articles, and conference papers. He has authored and/or edited around seventy books. Prof. Sarfraz is a member of various professional societies. He is a chair and member of international advisory committees and organizing committees of numerous international conferences. He is also an editor and editor in chief for various international journals.",institutionString:"Kuwait University",institution:{name:"Kuwait University",country:{name:"Kuwait"}}},{id:"32650",title:"Prof.",name:"Lukas",middleName:"Willem",surname:"Snyman",slug:"lukas-snyman",fullName:"Lukas Snyman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/32650/images/4136_n.jpg",biography:"Lukas Willem Snyman received his basic education at primary and high schools in South Africa, Eastern Cape. He enrolled at today's Nelson Metropolitan University and graduated from this university with a BSc in Physics and Mathematics, B.Sc Honors in Physics, MSc in Semiconductor Physics, and a Ph.D. in Semiconductor Physics in 1987. After his studies, he chose an academic career and devoted his energy to the teaching of physics to first, second, and third-year students. After positions as a lecturer at the University of Port Elizabeth, he accepted a position as Associate Professor at the University of Pretoria, South Africa.\r\n\r\nIn 1992, he motivates the concept of 'television and computer-based education” as means to reach large student numbers with only the best of teaching expertise and publishes an article on the concept in the SA Journal of Higher Education of 1993 (and later in 2003). The University of Pretoria subsequently approved a series of test projects on the concept with outreach to Mamelodi and Eerste Rust in 1993. In 1994, the University established a 'Unit for Telematic Education ' as a support section for multiple faculties at the University of Pretoria. In subsequent years, the concept of 'telematic education” subsequently becomes well established in academic circles in South Africa, grew in popularity, and is adopted by many universities and colleges throughout South Africa as a medium of enhancing education and training, as a method to reaching out to far out communities, and as a means to enhance study from the home environment.\r\n\r\nProfessor Snyman in subsequent years pursued research in semiconductor physics, semiconductor devices, microelectronics, and optoelectronics.\r\n\r\nIn 2000 he joined the TUT as a full professor. Here served for a period as head of the Department of Electronic Engineering. Here he makes contributions to solar energy development, microwave and optoelectronic device development, silicon photonics, as well as contributions to new mobile telecommunication systems and network planning in SA.\r\n\r\nCurrently, he teaches electronics and telecommunications at the TUT to audiences ranging from first-year students to Ph.D. level.\r\n\r\nFor his research in the field of 'Silicon Photonics” since 1990, he has published (as author and co-author) about thirty internationally reviewed articles in scientific journals, contributed to more than forty international conferences, about 25 South African provisional patents (as inventor and co-inventor), 8 PCT international patent applications until now. Of these, two USA patents applications, two European Patents, two Korean patents, and ten SA patents have been granted. A further 4 USA patents, 5 European patents, 3 Korean patents, 3 Chinese patents, and 3 Japanese patents are currently under consideration.\r\n\r\nRecently he has also published an extensive scholarly chapter in an internet open access book on 'Integrating Microphotonic Systems and MOEMS into standard Silicon CMOS Integrated circuitry”.\r\n\r\nFurthermore, Professor Snyman recently steered a new initiative at the TUT by introducing a 'Laboratory for Innovative Electronic Systems ' at the Department of Electrical Engineering. The model of this laboratory or center is to primarily combine outputs as achieved by high-level research with lower-level system development and entrepreneurship in a technical university environment. Students are allocated to projects at different levels with PhDs and Master students allocated to the generation of new knowledge and new technologies, while students at the diploma and Baccalaureus level are allocated to electronic systems development with a direct and a near application for application in industry or the commercial and public sectors in South Africa.\r\n\r\nProfessor Snyman received the WIRSAM Award of 1983 and the WIRSAM Award in 1985 in South Africa for best research papers by a young scientist at two international conferences on electron microscopy in South Africa. He subsequently received the SA Microelectronics Award for the best dissertation emanating from studies executed at a South African university in the field of Physics and Microelectronics in South Africa in 1987. In October of 2011, Professor Snyman received the prestigious Institutional Award for 'Innovator of the Year” for 2010 at the Tshwane University of Technology, South Africa. This award was based on the number of patents recognized and granted by local and international institutions as well as for his contributions concerning innovation at the TUT.",institutionString:null,institution:{name:"University of South Africa",country:{name:"South Africa"}}},{id:"317279",title:"Mr.",name:"Ali",middleName:"Usama",surname:"Syed",slug:"ali-syed",fullName:"Ali Syed",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/317279/images/16024_n.png",biography:"A creative, talented, and innovative young professional who is dedicated, well organized, and capable research fellow with two years of experience in graduate-level research, published in engineering journals and book, with related expertise in Bio-robotics, equally passionate about the aesthetics of the mechanical and electronic system, obtained expertise in the use of MS Office, MATLAB, SolidWorks, LabVIEW, Proteus, Fusion 360, having a grasp on python, C++ and assembly language, possess proven ability in acquiring research grants, previous appointments with social and educational societies with experience in administration, current affiliations with IEEE and Web of Science, a confident presenter at conferences and teacher in classrooms, able to explain complex information to audiences of all levels.",institutionString:null,institution:{name:"Air University",country:{name:"Pakistan"}}},{id:"75526",title:"Ph.D.",name:"Zihni Onur",middleName:null,surname:"Uygun",slug:"zihni-onur-uygun",fullName:"Zihni Onur Uygun",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/75526/images/12_n.jpg",biography:"My undergraduate education and my Master of Science educations at Ege University and at Çanakkale Onsekiz Mart University have given me a firm foundation in Biochemistry, Analytical Chemistry, Biosensors, Bioelectronics, Physical Chemistry and Medicine. After obtaining my degree as a MSc in analytical chemistry, I started working as a research assistant in Ege University Medical Faculty in 2014. In parallel, I enrolled to the MSc program at the Department of Medical Biochemistry at Ege University to gain deeper knowledge on medical and biochemical sciences as well as clinical chemistry in 2014. In my PhD I deeply researched on biosensors and bioelectronics and finished in 2020. Now I have eleven SCI-Expanded Index published papers, 6 international book chapters, referee assignments for different SCIE journals, one international patent pending, several international awards, projects and bursaries. In parallel to my research assistant position at Ege University Medical Faculty, Department of Medical Biochemistry, in April 2016, I also founded a Start-Up Company (Denosens Biotechnology LTD) by the support of The Scientific and Technological Research Council of Turkey. Currently, I am also working as a CEO in Denosens Biotechnology. The main purposes of the company, which carries out R&D as a research center, are to develop new generation biosensors and sensors for both point-of-care diagnostics; such as glucose, lactate, cholesterol and cancer biomarker detections. My specific experimental and instrumental skills are Biochemistry, Biosensor, Analytical Chemistry, Electrochemistry, Mobile phone based point-of-care diagnostic device, POCTs and Patient interface designs, HPLC, Tandem Mass Spectrometry, Spectrophotometry, ELISA.",institutionString:null,institution:{name:"Ege University",country:{name:"Turkey"}}},{id:"246502",title:"Dr.",name:"Jaya T.",middleName:"T",surname:"Varkey",slug:"jaya-t.-varkey",fullName:"Jaya T. Varkey",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/246502/images/11160_n.jpg",biography:"Jaya T. Varkey, PhD, graduated with a degree in Chemistry from Cochin University of Science and Technology, Kerala, India. She obtained a PhD in Chemistry from the School of Chemical Sciences, Mahatma Gandhi University, Kerala, India, and completed a post-doctoral fellowship at the University of Minnesota, USA. She is a research guide at Mahatma Gandhi University and Associate Professor in Chemistry, St. Teresa’s College, Kochi, Kerala, India.\nDr. Varkey received a National Young Scientist award from the Indian Science Congress (1995), a UGC Research award (2016–2018), an Indian National Science Academy (INSA) Visiting Scientist award (2018–2019), and a Best Innovative Faculty award from the All India Association for Christian Higher Education (AIACHE) (2019). She Hashas received the Sr. Mary Cecil prize for best research paper three times. She was also awarded a start-up to develop a tea bag water filter. \nDr. Varkey has published two international books and twenty-seven international journal publications. She is an editorial board member for five international journals.",institutionString:"St. Teresa’s College",institution:null},{id:"250668",title:"Dr.",name:"Ali",middleName:null,surname:"Nabipour Chakoli",slug:"ali-nabipour-chakoli",fullName:"Ali Nabipour Chakoli",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/250668/images/system/250668.jpg",biography:"Academic Qualification:\r\n•\tPhD in Materials Physics and Chemistry, From: Sep. 2006, to: Sep. 2010, School of Materials Science and Engineering, Harbin Institute of Technology, Thesis: Structure and Shape Memory Effect of Functionalized MWCNTs/poly (L-lactide-co-ε-caprolactone) Nanocomposites. Supervisor: Prof. Wei Cai,\r\n•\tM.Sc in Applied Physics, From: 1996, to: 1998, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Determination of Boron in Micro alloy Steels with solid state nuclear track detectors by neutron induced auto radiography, Supervisors: Dr. M. Hosseini Ashrafi and Dr. A. Hosseini.\r\n•\tB.Sc. in Applied Physics, From: 1991, to: 1996, Faculty of Physics & Nuclear Science, Amirkabir Uni. of Technology, Tehran, Iran, Thesis: Design of shielding for Am-Be neutron sources for In Vivo neutron activation analysis, Supervisor: Dr. M. Hosseini Ashrafi.\r\n\r\nResearch Experiences:\r\n1.\tNanomaterials, Carbon Nanotubes, Graphene: Synthesis, Functionalization and Characterization,\r\n2.\tMWCNTs/Polymer Composites: Fabrication and Characterization, \r\n3.\tShape Memory Polymers, Biodegradable Polymers, ORC, Collagen,\r\n4.\tMaterials Analysis and Characterizations: TEM, SEM, XPS, FT-IR, Raman, DSC, DMA, TGA, XRD, GPC, Fluoroscopy, \r\n5.\tInteraction of Radiation with Mater, Nuclear Safety and Security, NDT(RT),\r\n6.\tRadiation Detectors, Calibration (SSDL),\r\n7.\tCompleted IAEA e-learning Courses:\r\nNuclear Security (15 Modules),\r\nNuclear Safety:\r\nTSA 2: Regulatory Protection in Occupational Exposure,\r\nTips & Tricks: Radiation Protection in Radiography,\r\nSafety and Quality in Radiotherapy,\r\nCourse on Sealed Radioactive Sources,\r\nCourse on Fundamentals of Environmental Remediation,\r\nCourse on Planning for Environmental Remediation,\r\nKnowledge Management Orientation Course,\r\nFood Irradiation - Technology, Applications and Good Practices,\r\nEmployment:\r\nFrom 2010 to now: Academic staff, Nuclear Science and Technology Research Institute, Kargar Shomali, Tehran, Iran, P.O. Box: 14395-836.\r\nFrom 1997 to 2006: Expert of Materials Analysis and Characterization. Research Center of Agriculture and Medicine. Rajaeeshahr, Karaj, Iran, P. O. Box: 31585-498.",institutionString:"Atomic Energy Organization of Iran",institution:{name:"Atomic Energy Organization of Iran",country:{name:"Iran"}}},{id:"248279",title:"Dr.",name:"Monika",middleName:"Elzbieta",surname:"Machoy",slug:"monika-machoy",fullName:"Monika Machoy",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/248279/images/system/248279.jpeg",biography:"Monika Elżbieta Machoy, MD, graduated with distinction from the Faculty of Medicine and Dentistry at the Pomeranian Medical University in 2009, defended her PhD thesis with summa cum laude in 2016 and is currently employed as a researcher at the Department of Orthodontics of the Pomeranian Medical University. She expanded her professional knowledge during a one-year scholarship program at the Ernst Moritz Arndt University in Greifswald, Germany and during a three-year internship at the Technical University in Dresden, Germany. She has been a speaker at numerous orthodontic conferences, among others, American Association of Orthodontics, European Orthodontic Symposium and numerous conferences of the Polish Orthodontic Society. She conducts research focusing on the effect of orthodontic treatment on dental and periodontal tissues and the causes of pain in orthodontic patients.",institutionString:"Pomeranian Medical University",institution:{name:"Pomeranian Medical University",country:{name:"Poland"}}},{id:"252743",title:"Prof.",name:"Aswini",middleName:"Kumar",surname:"Kar",slug:"aswini-kar",fullName:"Aswini Kar",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/252743/images/10381_n.jpg",biography:"uploaded in cv",institutionString:null,institution:{name:"KIIT University",country:{name:"India"}}},{id:"204256",title:"Dr.",name:"Anil",middleName:"Kumar",surname:"Kumar Sahu",slug:"anil-kumar-sahu",fullName:"Anil Kumar Sahu",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/204256/images/14201_n.jpg",biography:"I have nearly 11 years of research and teaching experience. I have done my master degree from University Institute of Pharmacy, Pt. Ravi Shankar Shukla University, Raipur, Chhattisgarh India. I have published 16 review and research articles in international and national journals and published 4 chapters in IntechOpen, the world’s leading publisher of Open access books. I have presented many papers at national and international conferences. I have received research award from Indian Drug Manufacturers Association in year 2015. My research interest extends from novel lymphatic drug delivery systems, oral delivery system for herbal bioactive to formulation optimization.",institutionString:null,institution:{name:"Chhattisgarh Swami Vivekanand Technical University",country:{name:"India"}}},{id:"253468",title:"Dr.",name:"Mariusz",middleName:null,surname:"Marzec",slug:"mariusz-marzec",fullName:"Mariusz Marzec",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/253468/images/system/253468.png",biography:"An assistant professor at Department of Biomedical Computer Systems, at Institute of Computer Science, Silesian University in Katowice. Scientific interests: computer analysis and processing of images, biomedical images, databases and programming languages. He is an author and co-author of scientific publications covering analysis and processing of biomedical images and development of database systems.",institutionString:"University of Silesia",institution:null},{id:"212432",title:"Prof.",name:"Hadi",middleName:null,surname:"Mohammadi",slug:"hadi-mohammadi",fullName:"Hadi Mohammadi",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/212432/images/system/212432.jpeg",biography:"Dr. Hadi Mohammadi is a biomedical engineer with hands-on experience in the design and development of many engineering structures and medical devices through various projects that he has been involved in over the past twenty years. Dr. Mohammadi received his BSc. and MSc. degrees in Mechanical Engineering from Sharif University of Technology, Tehran, Iran, and his PhD. degree in Biomedical Engineering (biomaterials) from the University of Western Ontario. He was a postdoctoral trainee for almost four years at University of Calgary and Harvard Medical School. He is an industry innovator having created the technology to produce lifelike synthetic platforms that can be used for the simulation of almost all cardiovascular reconstructive surgeries. He’s been heavily involved in the design and development of cardiovascular devices and technology for the past 10 years. He is currently an Assistant Professor with the University of British Colombia, Canada.",institutionString:"University of British Columbia",institution:{name:"University of British Columbia",country:{name:"Canada"}}},{id:"254463",title:"Prof.",name:"Haisheng",middleName:null,surname:"Yang",slug:"haisheng-yang",fullName:"Haisheng Yang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/254463/images/system/254463.jpeg",biography:"Haisheng Yang, Ph.D., Professor and Director of the Department of Biomedical Engineering, College of Life Science and Bioengineering, Beijing University of Technology. He received his Ph.D. degree in Mechanics/Biomechanics from Harbin Institute of Technology (jointly with University of California, Berkeley). Afterwards, he worked as a Postdoctoral Research Associate in the Purdue Musculoskeletal Biology and Mechanics Lab at the Department of Basic Medical Sciences, Purdue University, USA. He also conducted research in the Research Centre of Shriners Hospitals for Children-Canada at McGill University, Canada. Dr. Yang has over 10 years research experience in orthopaedic biomechanics and mechanobiology of bone adaptation and regeneration. He earned an award from Beijing Overseas Talents Aggregation program in 2017 and serves as Beijing Distinguished Professor.",institutionString:"Beijing University of Technology",institution:null},{id:"255757",title:"Dr.",name:"Igor",middleName:"Victorovich",surname:"Lakhno",slug:"igor-lakhno",fullName:"Igor Lakhno",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/255757/images/system/255757.jpg",biography:"Lakhno Igor Victorovich was born in 1971 in Kharkiv (Ukraine). \nMD – 1994, Kharkiv National Medical Univesity.\nOb&Gyn; – 1997, master courses in Kharkiv Medical Academy of Postgraduate Education.\nPhD – 1999, Kharkiv National Medical Univesity.\nDSc – 2019, PL Shupik National Academy of Postgraduate Education \nLakhno Igor has been graduated from an international training courses on reproductive medicine and family planning held in Debrecen University (Hungary) in 1997. Since 1998 Lakhno Igor has worked as an associate professor of the department of obstetrics and gynecology of VN Karazin National University and an associate professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education. Since June 2019 he’s a professor of the department of obstetrics and gynecology of VN Karazin National University and a professor of the perinatology, obstetrics and gynecology department of Kharkiv Medical Academy of Postgraduate Education . He’s an author of about 200 printed works and there are 17 of them in Scopus or Web of Science databases. Lakhno Igor is a rewiever of Journal of Obstetrics and Gynaecology (Taylor and Francis), Informatics in Medicine Unlocked (Elsevier), The Journal of Obstetrics and Gynecology Research (Wiley), Endocrine, Metabolic & Immune Disorders-Drug Targets (Bentham Open), The Open Biomedical Engineering Journal (Bentham Open), etc. He’s defended a dissertation for DSc degree \\'Pre-eclampsia: prediction, prevention and treatment”. Lakhno Igor has participated as a speaker in several international conferences and congresses (International Conference on Biological Oscillations April 10th-14th 2016, Lancaster, UK, The 9th conference of the European Study Group on Cardiovascular Oscillations). His main scientific interests: obstetrics, women’s health, fetal medicine, cardiovascular medicine.",institutionString:"V.N. Karazin Kharkiv National University",institution:{name:"Kharkiv Medical Academy of Postgraduate Education",country:{name:"Ukraine"}}},{id:"89721",title:"Dr.",name:"Mehmet",middleName:"Cuneyt",surname:"Ozmen",slug:"mehmet-ozmen",fullName:"Mehmet Ozmen",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/89721/images/7289_n.jpg",biography:null,institutionString:null,institution:{name:"Gazi University",country:{name:"Turkey"}}},{id:"243698",title:"M.D.",name:"Xiaogang",middleName:null,surname:"Wang",slug:"xiaogang-wang",fullName:"Xiaogang Wang",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/243698/images/system/243698.png",biography:"Dr. Xiaogang Wang, a faculty member of Shanxi Eye Hospital specializing in the treatment of cataract and retinal disease and a tutor for postgraduate students of Shanxi Medical University, worked in the COOL Lab as an international visiting scholar under the supervision of Dr. David Huang and Yali Jia from October 2012 through November 2013. Dr. Wang earned an MD from Shanxi Medical University and a Ph.D. from Shanghai Jiao Tong University. Dr. Wang was awarded two research project grants focused on multimodal optical coherence tomography imaging and deep learning in cataract and retinal disease, from the National Natural Science Foundation of China. He has published around 30 peer-reviewed journal papers and four book chapters and co-edited one book.",institutionString:"Shanxi Eye Hospital",institution:{name:"Shanxi Eye Hospital",country:{name:"China"}}},{id:"242893",title:"Ph.D. Student",name:"Joaquim",middleName:null,surname:"De Moura",slug:"joaquim-de-moura",fullName:"Joaquim De Moura",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/242893/images/7133_n.jpg",biography:"Joaquim de Moura received his degree in Computer Engineering in 2014 from the University of A Coruña (Spain). In 2016, he received his M.Sc degree in Computer Engineering from the same university. He is currently pursuing his Ph.D degree in Computer Science in a collaborative project between ophthalmology centers in Galicia and the University of A Coruña. His research interests include computer vision, machine learning algorithms and analysis and medical imaging processing of various kinds.",institutionString:null,institution:{name:"University of A Coruña",country:{name:"Spain"}}},{id:"267434",title:"Dr.",name:"Rohit",middleName:null,surname:"Raja",slug:"rohit-raja",fullName:"Rohit Raja",position:null,profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRZkkQAG/Profile_Picture_2022-05-09T12:55:18.jpg",biography:null,institutionString:null,institution:null},{id:"294334",title:"B.Sc.",name:"Marc",middleName:null,surname:"Bruggeman",slug:"marc-bruggeman",fullName:"Marc Bruggeman",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/294334/images/8242_n.jpg",biography:"Chemical engineer graduate, with a passion for material science and specific interest in polymers - their near infinite applications intrigue me. \n\nI plan to continue my scientific career in the field of polymeric biomaterials as I am fascinated by intelligent, bioactive and biomimetic materials for use in both consumer and medical applications.",institutionString:null,institution:null},{id:"244950",title:"Dr.",name:"Salvatore",middleName:null,surname:"Di Lauro",slug:"salvatore-di-lauro",fullName:"Salvatore Di Lauro",position:null,profilePictureURL:"https://intech-files.s3.amazonaws.com/0030O00002bSF1HQAW/ProfilePicture%202021-12-20%2014%3A54%3A14.482",biography:"Name:\n\tSALVATORE DI LAURO\nAddress:\n\tHospital Clínico Universitario Valladolid\nAvda Ramón y Cajal 3\n47005, Valladolid\nSpain\nPhone number: \nFax\nE-mail:\n\t+34 983420000 ext 292\n+34 983420084\nsadilauro@live.it\nDate and place of Birth:\nID Number\nMedical Licence \nLanguages\t09-05-1985. Villaricca (Italy)\n\nY1281863H\n474707061\nItalian (native language)\nSpanish (read, written, spoken)\nEnglish (read, written, spoken)\nPortuguese (read, spoken)\nFrench (read)\n\t\t\nCurrent position (title and company)\tDate (Year)\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. Private practise.\t2017-today\n\n2019-today\n\t\n\t\nEducation (High school, university and postgraduate training > 3 months)\tDate (Year)\nDegree in Medicine and Surgery. University of Neaples 'Federico II”\nResident in Opthalmology. Hospital Clinico Universitario Valladolid\nMaster in Vitreo-Retina. IOBA. University of Valladolid\nFellow of the European Board of Ophthalmology. Paris\nMaster in Research in Ophthalmology. University of Valladolid\t2003-2009\n2012-2016\n2016-2017\n2016\n2012-2013\n\t\nEmployments (company and positions)\tDate (Year)\nResident in Ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl.\nFellow in Vitreo-Retina. IOBA. University of Valladolid\nVitreo-Retinal consultant in ophthalmology. Hospital Clinico Universitario Valladolid. Sacyl. National Health System.\nVitreo-Retinal consultant in ophthalmology. Instituto Oftalmologico Recoletas. Red Hospitalaria Recoletas. \n\t2012-2016\n2016-2017\n2017-today\n\n2019-Today\n\n\n\t\nClinical Research Experience (tasks and role)\tDate (Year)\nAssociated investigator\n\n' FIS PI20/00740: DESARROLLO DE UNA CALCULADORA DE RIESGO DE\nAPARICION DE RETINOPATIA DIABETICA BASADA EN TECNICAS DE IMAGEN MULTIMODAL EN PACIENTES DIABETICOS TIPO 1. Grant by: Ministerio de Ciencia e Innovacion \n\n' (BIO/VA23/14) Estudio clínico multicéntrico y prospectivo para validar dos\nbiomarcadores ubicados en los genes p53 y MDM2 en la predicción de los resultados funcionales de la cirugía del desprendimiento de retina regmatógeno. Grant by: Gerencia Regional de Salud de la Junta de Castilla y León.\n' Estudio multicéntrico, aleatorizado, con enmascaramiento doble, en 2 grupos\nparalelos y de 52 semanas de duración para comparar la eficacia, seguridad e inmunogenicidad de SOK583A1 respecto a Eylea® en pacientes con degeneración macular neovascular asociada a la edad' (CSOK583A12301; N.EUDRA: 2019-004838-41; FASE III). Grant by Hexal AG\n\n' Estudio de fase III, aleatorizado, doble ciego, con grupos paralelos, multicéntrico para comparar la eficacia y la seguridad de QL1205 frente a Lucentis® en pacientes con degeneración macular neovascular asociada a la edad. (EUDRACT: 2018-004486-13). Grant by Qilu Pharmaceutical Co\n\n' Estudio NEUTON: Ensayo clinico en fase IV para evaluar la eficacia de aflibercept en pacientes Naive con Edema MacUlar secundario a Oclusion de Vena CenTral de la Retina (OVCR) en regimen de tratamientO iNdividualizado Treat and Extend (TAE)”, (2014-000975-21). Grant by Fundacion Retinaplus\n\n' Evaluación de la seguridad y bioactividad de anillos de tensión capsular en conejo. Proyecto Procusens. Grant by AJL, S.A.\n\n'Estudio epidemiológico, prospectivo, multicéntrico y abierto\\npara valorar la frecuencia de la conjuntivitis adenovírica diagnosticada mediante el test AdenoPlus®\\nTest en pacientes enfermos de conjuntivitis aguda”\\n. National, multicenter study. Grant by: NICOX.\n\nEuropean multicentric trial: 'Evaluation of clinical outcomes following the use of Systane Hydration in patients with dry eye”. Study Phase 4. Grant by: Alcon Labs'\n\nVLPs Injection and Activation in a Rabbit Model of Uveal Melanoma. Grant by Aura Bioscience\n\nUpdating and characterization of a rabbit model of uveal melanoma. Grant by Aura Bioscience\n\nEnsayo clínico en fase IV para evaluar las variantes genéticas de la vía del VEGF como biomarcadores de eficacia del tratamiento con aflibercept en pacientes con degeneración macular asociada a la edad (DMAE) neovascular. Estudio BIOIMAGE. IMO-AFLI-2013-01\n\nEstudio In-Eye:Ensayo clínico en fase IV, abierto, aleatorizado, de 2 brazos,\nmulticçentrico y de 12 meses de duración, para evaluar la eficacia y seguridad de un régimen de PRN flexible individualizado de 'esperar y extender' versus un régimen PRN según criterios de estabilización mediante evaluaciones mensuales de inyecciones intravítreas de ranibizumab 0,5 mg en pacientes naive con neovascularización coriodea secunaria a la degeneración macular relacionada con la edad. CP: CRFB002AES03T\n\nTREND: Estudio Fase IIIb multicéntrico, randomizado, de 12 meses de\nseguimiento con evaluador de la agudeza visual enmascarado, para evaluar la eficacia y la seguridad de ranibizumab 0.5mg en un régimen de tratar y extender comparado con un régimen mensual, en pacientes con degeneración macular neovascular asociada a la edad. CP: CRFB002A2411 Código Eudra CT:\n2013-002626-23\n\n\n\nPublications\t\n\n2021\n\n\n\n\n2015\n\n\n\n\n2021\n\n\n\n\n\n2021\n\n\n\n\n2015\n\n\n\n\n2015\n\n\n2014\n\n\n\n\n2015-16\n\n\n\n2015\n\n\n2014\n\n\n2014\n\n\n\n\n2014\n\n\n\n\n\n\n\n2014\n\nJose Carlos Pastor; Jimena Rojas; Salvador Pastor-Idoate; Salvatore Di Lauro; Lucia Gonzalez-Buendia; Santiago Delgado-Tirado. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical\nconsequences. Progress in Retinal and Eye Research. 51, pp. 125 - 155. 03/2016. DOI: 10.1016/j.preteyeres.2015.07.005\n\n\nLabrador-Velandia S; Alonso-Alonso ML; Di Lauro S; García-Gutierrez MT; Srivastava GK; Pastor JC; Fernandez-Bueno I. Mesenchymal stem cells provide paracrine neuroprotective resources that delay degeneration of co-cultured organotypic neuroretinal cultures.Experimental Eye Research. 185, 17/05/2019. DOI: 10.1016/j.exer.2019.05.011\n\nSalvatore Di Lauro; Maria Teresa Garcia Gutierrez; Ivan Fernandez Bueno. Quantification of pigment epithelium-derived factor (PEDF) in an ex vivo coculture of retinal pigment epithelium cells and neuroretina.\nJournal of Allbiosolution. 2019. ISSN 2605-3535\n\nSonia Labrador Velandia; Salvatore Di Lauro; Alonso-Alonso ML; Tabera Bartolomé S; Srivastava GK; Pastor JC; Fernandez-Bueno I. Biocompatibility of intravitreal injection of human mesenchymal stem cells in immunocompetent rabbits. Graefe's archive for clinical and experimental ophthalmology. 256 - 1, pp. 125 - 134. 01/2018. DOI: 10.1007/s00417-017-3842-3\n\n\nSalvatore Di Lauro, David Rodriguez-Crespo, Manuel J Gayoso, Maria T Garcia-Gutierrez, J Carlos Pastor, Girish K Srivastava, Ivan Fernandez-Bueno. A novel coculture model of porcine central neuroretina explants and retinal pigment epithelium cells. Molecular Vision. 2016 - 22, pp. 243 - 253. 01/2016.\n\nSalvatore Di Lauro. Classifications for Proliferative Vitreoretinopathy ({PVR}): An Analysis of Their Use in Publications over the Last 15 Years. Journal of Ophthalmology. 2016, pp. 1 - 6. 01/2016. DOI: 10.1155/2016/7807596\n\nSalvatore Di Lauro; Rosa Maria Coco; Rosa Maria Sanabria; Enrique Rodriguez de la Rua; Jose Carlos Pastor. Loss of Visual Acuity after Successful Surgery for Macula-On Rhegmatogenous Retinal Detachment in a Prospective Multicentre Study. Journal of Ophthalmology. 2015:821864, 2015. DOI: 10.1155/2015/821864\n\nIvan Fernandez-Bueno; Salvatore Di Lauro; Ivan Alvarez; Jose Carlos Lopez; Maria Teresa Garcia-Gutierrez; Itziar Fernandez; Eva Larra; Jose Carlos Pastor. Safety and Biocompatibility of a New High-Density Polyethylene-Based\nSpherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits. Journal of Ophthalmology. 2015:904096, 2015. DOI: 10.1155/2015/904096\n\nPastor JC; Pastor-Idoate S; Rodríguez-Hernandez I; Rojas J; Fernandez I; Gonzalez-Buendia L; Di Lauro S; Gonzalez-Sarmiento R. Genetics of PVR and RD. Ophthalmologica. 232 - Suppl 1, pp. 28 - 29. 2014\n\nRodriguez-Crespo D; Di Lauro S; Singh AK; Garcia-Gutierrez MT; Garrosa M; Pastor JC; Fernandez-Bueno I; Srivastava GK. Triple-layered mixed co-culture model of RPE cells with neuroretina for evaluating the neuroprotective effects of adipose-MSCs. Cell Tissue Res. 358 - 3, pp. 705 - 716. 2014.\nDOI: 10.1007/s00441-014-1987-5\n\nCarlo De Werra; Salvatore Condurro; Salvatore Tramontano; Mario Perone; Ivana Donzelli; Salvatore Di Lauro; Massimo Di Giuseppe; Rosa Di Micco; Annalisa Pascariello; Antonio Pastore; Giorgio Diamantis; Giuseppe Galloro. Hydatid disease of the liver: thirty years of surgical experience.Chirurgia italiana. 59 - 5, pp. 611 - 636.\n(Italia): 2007. ISSN 0009-4773\n\nChapters in books\n\t\n' Salvador Pastor Idoate; Salvatore Di Lauro; Jose Carlos Pastor Jimeno. PVR: Pathogenesis, Histopathology and Classification. Proliferative Vitreoretinopathy with Small Gauge Vitrectomy. Springer, 2018. ISBN 978-3-319-78445-8\nDOI: 10.1007/978-3-319-78446-5_2. \n\n' Salvatore Di Lauro; Maria Isabel Lopez Galvez. Quistes vítreos en una mujer joven. Problemas diagnósticos en patología retinocoroidea. Sociedad Española de Retina-Vitreo. 2018.\n\n' Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor Jimeno. iOCT in PVR management. OCT Applications in Opthalmology. pp. 1 - 8. INTECH, 2018. DOI: 10.5772/intechopen.78774.\n\n' Rosa Coco Martin; Salvatore Di Lauro; Salvador Pastor Idoate; Jose Carlos Pastor. amponadores, manipuladores y tinciones en la cirugía del traumatismo ocular.Trauma Ocular. Ponencia de la SEO 2018..\n\n' LOPEZ GALVEZ; DI LAURO; CRESPO. OCT angiografia y complicaciones retinianas de la diabetes. PONENCIA SEO 2021, CAPITULO 20. (España): 2021.\n\n' Múltiples desprendimientos neurosensoriales bilaterales en paciente joven. Enfermedades Degenerativas De Retina Y Coroides. SERV 04/2016. \n' González-Buendía L; Di Lauro S; Pastor-Idoate S; Pastor Jimeno JC. Vitreorretinopatía proliferante (VRP) e inflamación: LA INFLAMACIÓN in «INMUNOMODULADORES Y ANTIINFLAMATORIOS: MÁS ALLÁ DE LOS CORTICOIDES. RELACION DE PONENCIAS DE LA SOCIEDAD ESPAÑOLA DE OFTALMOLOGIA. 10/2014.",institutionString:null,institution:null},{id:"265335",title:"Mr.",name:"Stefan",middleName:"Radnev",surname:"Stefanov",slug:"stefan-stefanov",fullName:"Stefan Stefanov",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/265335/images/7562_n.jpg",biography:null,institutionString:null,institution:null},{id:"318905",title:"Prof.",name:"Elvis",middleName:"Kwason",surname:"Tiburu",slug:"elvis-tiburu",fullName:"Elvis Tiburu",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"University of Ghana",country:{name:"Ghana"}}},{id:"336193",title:"Dr.",name:"Abdullah",middleName:null,surname:"Alamoudi",slug:"abdullah-alamoudi",fullName:"Abdullah Alamoudi",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Majmaah University",country:{name:"Saudi Arabia"}}},{id:"318657",title:"MSc.",name:"Isabell",middleName:null,surname:"Steuding",slug:"isabell-steuding",fullName:"Isabell Steuding",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"318656",title:"BSc.",name:"Peter",middleName:null,surname:"Kußmann",slug:"peter-kussmann",fullName:"Peter Kußmann",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Harz University of Applied Sciences",country:{name:"Germany"}}},{id:"338222",title:"Mrs.",name:"María José",middleName:null,surname:"Lucía Mudas",slug:"maria-jose-lucia-mudas",fullName:"María José Lucía Mudas",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}},{id:"147824",title:"Mr.",name:"Pablo",middleName:null,surname:"Revuelta Sanz",slug:"pablo-revuelta-sanz",fullName:"Pablo Revuelta Sanz",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Carlos III University of Madrid",country:{name:"Spain"}}}]}},subseries:{item:{id:"12",type:"subseries",title:"Human Physiology",keywords:"Anatomy, Cells, Organs, Systems, Homeostasis, Functions",scope:"Human physiology is the scientific exploration of the various functions (physical, biochemical, and mechanical properties) of humans, their organs, and their constituent cells. The endocrine and nervous systems play important roles in maintaining homeostasis in the human body. Integration, which is the biological basis of physiology, is achieved through communication between the many overlapping functions of the human body's systems, which takes place through electrical and chemical means. Much of the basis of our knowledge of human physiology has been provided by animal experiments. Because of the close relationship between structure and function, studies in human physiology and anatomy seek to understand the mechanisms that help the human body function. The series on human physiology deals with the various mechanisms of interaction between the various organs, nerves, and cells in the human body.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/12.jpg",hasOnlineFirst:!0,hasPublishedBooks:!0,annualVolume:11408,editor:{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma",profilePictureURL:"https://mts.intechopen.com/storage/users/195829/images/system/195829.jpg",biography:"Professor Kunihiro Sakuma, Ph.D., currently works in the Institute for Liberal Arts at the Tokyo Institute of Technology. He is a physiologist working in the field of skeletal muscle. He was awarded his sports science diploma in 1995 by the University of Tsukuba and began his scientific work at the Department of Physiology, Aichi Human Service Center, focusing on the molecular mechanism of congenital muscular dystrophy and normal muscle regeneration. His interest later turned to the molecular mechanism and attenuating strategy of sarcopenia (age-related muscle atrophy). His opinion is to attenuate sarcopenia by improving autophagic defects using nutrient- and pharmaceutical-based treatments.",institutionString:null,institution:{name:"Tokyo Institute of Technology",institutionURL:null,country:{name:"Japan"}}},editorTwo:null,editorThree:{id:"331519",title:"Dr.",name:"Kotomi",middleName:null,surname:"Sakai",slug:"kotomi-sakai",fullName:"Kotomi Sakai",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0033Y000031QtFXQA0/Profile_Picture_1637053227318",biography:"Senior researcher Kotomi Sakai, Ph.D., MPH, works at the Research Organization of Science and Technology in Ritsumeikan University. She is a researcher in the geriatric rehabilitation and public health field. She received Ph.D. from Nihon University and MPH from St.Luke’s International University. Her main research interest is sarcopenia in older adults, especially its association with nutritional status. Additionally, to understand how to maintain and improve physical function in older adults, to conduct studies about the mechanism of sarcopenia and determine when possible interventions are needed.",institutionString:null,institution:{name:"Ritsumeikan University",institutionURL:null,country:{name:"Japan"}}},series:{id:"10",title:"Physiology",doi:"10.5772/intechopen.72796",issn:"2631-8261"},editorialBoard:[{id:"213786",title:"Dr.",name:"Henrique P.",middleName:null,surname:"Neiva",slug:"henrique-p.-neiva",fullName:"Henrique P. Neiva",profilePictureURL:"https://mts.intechopen.com/storage/users/213786/images/system/213786.png",institutionString:null,institution:{name:"University of Beira Interior",institutionURL:null,country:{name:"Portugal"}}},{id:"39275",title:"Prof.",name:"Herbert Ryan",middleName:null,surname:"Marini",slug:"herbert-ryan-marini",fullName:"Herbert Ryan Marini",profilePictureURL:"https://mts.intechopen.com/storage/users/39275/images/9459_n.jpg",institutionString:null,institution:{name:"University of Messina",institutionURL:null,country:{name:"Italy"}}},{id:"196218",title:"Dr.",name:"Pasquale",middleName:null,surname:"Cianci",slug:"pasquale-cianci",fullName:"Pasquale Cianci",profilePictureURL:"https://mts.intechopen.com/storage/users/196218/images/system/196218.png",institutionString:null,institution:{name:"University of Foggia",institutionURL:null,country:{name:"Italy"}}}]},onlineFirstChapters:{paginationCount:17,paginationItems:[{id:"81647",title:"Diabetes and Epigenetics",doi:"10.5772/intechopen.104653",signatures:"Rasha A. Alhazzaa, Thomas Heinbockel and Antonei B. Csoka",slug:"diabetes-and-epigenetics",totalDownloads:12,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"81099",title:"SK Channels and Heart Disease",doi:"10.5772/intechopen.104115",signatures:"Katherine Zhong, Shawn Kant, Frank Sellke and Jun Feng",slug:"sk-channels-and-heart-disease",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80967",title:"Hot on the Trail of Skin Inflammation: Focus on TRPV1/TRPV3 Channels in Psoriasis",doi:"10.5772/intechopen.103792",signatures:"Lisa S. Martin, Emma Fraillon, Fabien P. Chevalier and Bérengère Fromy",slug:"hot-on-the-trail-of-skin-inflammation-focus-on-trpv1-trpv3-channels-in-psoriasis",totalDownloads:26,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80952",title:"TRPV Family Ion Channels in the Mammary Epithelium: Role in Normal Tissue Homeostasis and along Breast Cancer Progression",doi:"10.5772/intechopen.103665",signatures:"Sari Susanna Tojkander",slug:"trpv-family-ion-channels-in-the-mammary-epithelium-role-in-normal-tissue-homeostasis-and-along-breas",totalDownloads:17,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80484",title:"The Use of Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) to Study Ivermectin-Mediated Molecular Pathway Changes in Human Ovarian Cancer Cells",doi:"10.5772/intechopen.102092",signatures:"Na Li and Xianquan Zhan",slug:"the-use-of-stable-isotope-labeling-with-amino-acids-in-cell-culture-silac-to-study-ivermectin-mediat",totalDownloads:84,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"80157",title:"Structural Determinants for Ligand Accommodation in Voltage Sensors",doi:"10.5772/intechopen.102094",signatures:"Abigail García-Morales, Aylin López-Palestino and Daniel Balleza",slug:"structural-determinants-for-ligand-accommodation-in-voltage-sensors",totalDownloads:89,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79690",title:"Mitochondrial Channels and their Role in Cardioprotection",doi:"10.5772/intechopen.101127",signatures:"Keerti Mishra and Min Luo",slug:"mitochondrial-channels-and-their-role-in-cardioprotection",totalDownloads:87,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Ion Channels - From Basic Properties to Medical Treatment",coverURL:"https://cdn.intechopen.com/books/images_new/10838.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"79031",title:"Isolation and Expansion of Mesenchymal Stem/Stromal Cells, Functional Assays and Long-Term Culture Associated Alterations of Cellular Properties",doi:"10.5772/intechopen.100286",signatures:"Chenghai Li",slug:"isolation-and-expansion-of-mesenchymal-stem-stromal-cells-functional-assays-and-long-term-culture-as",totalDownloads:80,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78960",title:"Two-Dimensional and Three-Dimensional Cell Culture and Their Applications",doi:"10.5772/intechopen.100382",signatures:"Sangeeta Ballav, Ankita Jaywant Deshmukh, Shafina Siddiqui, Jyotirmoi Aich and Soumya Basu",slug:"two-dimensional-and-three-dimensional-cell-culture-and-their-applications",totalDownloads:257,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78812",title:"Nanotechnology Application and Intellectual Property Right Prospects of Mammalian Cell Culture",doi:"10.5772/intechopen.99146",signatures:"Harikrishnareddy Rachamalla, Anubhab Mukherjee and Manash K. Paul",slug:"nanotechnology-application-and-intellectual-property-right-prospects-of-mammalian-cell-culture",totalDownloads:124,totalCrossrefCites:1,totalDimensionsCites:1,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78274",title:"A Brief Concept of Cell Culture: Challenges, Prospects and Applications",doi:"10.5772/intechopen.99387",signatures:"Md. Salauddin",slug:"a-brief-concept-of-cell-culture-challenges-prospects-and-applications",totalDownloads:179,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Cell Culture - Advanced Technology and Applications in Medical and Life Sciences",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"78415",title:"Epigenetic",doi:"10.5772/intechopen.99964",signatures:"Mehmet Ünal",slug:"epigenetic",totalDownloads:137,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"77443",title:"Cyanobacterial Phytochromes in Optogenetics",doi:"10.5772/intechopen.97522",signatures:"Sivasankari Sivaprakasam, Vinoth Mani, Nagalakshmi Balasubramaniyan and David Ravindran Abraham",slug:"cyanobacterial-phytochromes-in-optogenetics",totalDownloads:187,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"75979",title:"Spatiotemporal Regulation of Cell–Cell Adhesions",doi:"10.5772/intechopen.97009",signatures:"Brent M. Bijonowski",slug:"spatiotemporal-regulation-of-cell-cell-adhesions",totalDownloads:172,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76646",title:"Functional Mechanism of Proton Pump-Type Rhodopsins Found in Various Microorganisms as a Potential Effective Tool in Optogenetics",doi:"10.5772/intechopen.97589",signatures:"Jun Tamogami and Takashi Kikukawa",slug:"functional-mechanism-of-proton-pump-type-rhodopsins-found-in-various-microorganisms-as-a-potential-e",totalDownloads:200,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}},{id:"76510",title:"Evolution of Epigenome as the Blueprint for Carcinogenesis",doi:"10.5772/intechopen.97379",signatures:"Zeenat Farooq, Ambreen Shah, Mohammad Tauseef, Riyaz A. Rather and Mumtaz Anwar",slug:"evolution-of-epigenome-as-the-blueprint-for-carcinogenesis",totalDownloads:190,totalCrossrefCites:0,totalDimensionsCites:0,authors:null,book:{title:"Epigenetics to Optogenetics - A New Paradigm in the Study of Biology",coverURL:"https://cdn.intechopen.com/books/images_new/9672.jpg",subseries:{id:"14",title:"Cell and Molecular Biology"}}}]},publishedBooks:{paginationCount:7,paginationItems:[{type:"book",id:"7102",title:"Pneumonia",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7102.jpg",slug:"pneumonia",publishedDate:"May 11th 2022",editedByType:"Edited by",bookSignature:"Nima Rezaei",hash:"9fd70142814192dcec58a176749f1b60",volumeInSeries:13,fullTitle:"Pneumonia",editors:[{id:"116250",title:"Dr.",name:"Nima",middleName:null,surname:"Rezaei",slug:"nima-rezaei",fullName:"Nima Rezaei",profilePictureURL:"https://mts.intechopen.com/storage/users/116250/images/system/116250.jpg",institutionString:"Tehran University of Medical Sciences",institution:{name:"Tehran University of Medical Sciences",institutionURL:null,country:{name:"Iran"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9615",title:"Chikungunya Virus",subtitle:"A Growing Global Public Health Threat",coverURL:"https://cdn.intechopen.com/books/images_new/9615.jpg",slug:"chikungunya-virus-a-growing-global-public-health-threat",publishedDate:"February 9th 2022",editedByType:"Edited by",bookSignature:"Jean Engohang-Ndong",hash:"c960d94a63867dd12a8ab15176a3ff06",volumeInSeries:12,fullTitle:"Chikungunya Virus - A Growing Global Public Health Threat",editors:[{id:"180733",title:"Dr.",name:"Jean",middleName:null,surname:"Engohang-Ndong",slug:"jean-engohang-ndong",fullName:"Jean Engohang-Ndong",profilePictureURL:"https://mts.intechopen.com/storage/users/180733/images/system/180733.png",institutionString:"Kent State University",institution:{name:"Kent State University",institutionURL:null,country:{name:"United States of America"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9619",title:"Epstein-Barr Virus",subtitle:"New Trends",coverURL:"https://cdn.intechopen.com/books/images_new/9619.jpg",slug:"epstein-barr-virus-new-trends",publishedDate:"December 22nd 2021",editedByType:"Edited by",bookSignature:"Emmanuel Drouet",hash:"a2128c53becb6064589570cbe8d976f8",volumeInSeries:11,fullTitle:"Epstein-Barr Virus - New Trends",editors:[{id:"188773",title:"Prof.",name:"Emmanuel",middleName:null,surname:"Drouet",slug:"emmanuel-drouet",fullName:"Emmanuel Drouet",profilePictureURL:"https://mts.intechopen.com/storage/users/188773/images/system/188773.png",institutionString:null,institution:{name:"Grenoble Alpes University",institutionURL:null,country:{name:"France"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"9613",title:"Dengue Fever in a One Health Perspective",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/9613.jpg",slug:"dengue-fever-in-a-one-health-perspective",publishedDate:"October 28th 2020",editedByType:"Edited by",bookSignature:"Márcia Aparecida Sperança",hash:"77ecce8195c11092230b4156df6d83ff",volumeInSeries:7,fullTitle:"Dengue Fever in a One Health Perspective",editors:[{id:"176579",title:"Ph.D.",name:"Márcia Aparecida",middleName:null,surname:"Sperança",slug:"marcia-aparecida-speranca",fullName:"Márcia Aparecida Sperança",profilePictureURL:"https://mts.intechopen.com/storage/users/176579/images/system/176579.jpg",institutionString:"Federal University of ABC",institution:{name:"Universidade Federal do ABC",institutionURL:null,country:{name:"Brazil"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7887",title:"Hepatitis B and C",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7887.jpg",slug:"hepatitis-b-and-c",publishedDate:"April 8th 2020",editedByType:"Edited by",bookSignature:"Luis Rodrigo",hash:"8dd6dab483cf505d83caddaeaf497f2c",volumeInSeries:5,fullTitle:"Hepatitis B and C",editors:[{id:"73208",title:"Prof.",name:"Luis",middleName:null,surname:"Rodrigo",slug:"luis-rodrigo",fullName:"Luis Rodrigo",profilePictureURL:"https://mts.intechopen.com/storage/users/73208/images/system/73208.jpg",institutionString:"University of Oviedo",institution:{name:"University of Oviedo",institutionURL:null,country:{name:"Spain"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"7064",title:"Current Perspectives in Human Papillomavirus",subtitle:null,coverURL:"https://cdn.intechopen.com/books/images_new/7064.jpg",slug:"current-perspectives-in-human-papillomavirus",publishedDate:"May 2nd 2019",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"d92a4085627bab25ddc7942fbf44cf05",volumeInSeries:2,fullTitle:"Current Perspectives in Human Papillomavirus",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null},{type:"book",id:"6667",title:"Influenza",subtitle:"Therapeutics and Challenges",coverURL:"https://cdn.intechopen.com/books/images_new/6667.jpg",slug:"influenza-therapeutics-and-challenges",publishedDate:"September 19th 2018",editedByType:"Edited by",bookSignature:"Shailendra K. Saxena",hash:"105e347b2d5dbbe6b593aceffa051efa",volumeInSeries:1,fullTitle:"Influenza - Therapeutics and Challenges",editors:[{id:"158026",title:"Prof.",name:"Shailendra K.",middleName:null,surname:"Saxena",slug:"shailendra-k.-saxena",fullName:"Shailendra K. Saxena",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRET3QAO/Profile_Picture_2022-05-10T10:10:26.jpeg",institutionString:"King George's Medical University",institution:{name:"King George's Medical University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null}]},testimonialsList:[{id:"27",text:"The opportunity to work with a prestigious publisher allows for the possibility to collaborate with more research groups interested in animal nutrition, leading to the development of new feeding strategies and food valuation while being more sustainable with the environment, allowing more readers to learn about the subject.",author:{id:"175967",name:"Manuel",surname:"Gonzalez Ronquillo",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/175967/images/system/175967.png",slug:"manuel-gonzalez-ronquillo",institution:{id:"6221",name:"Universidad Autónoma del Estado de México",country:{id:null,name:"Mexico"}}}},{id:"8",text:"I work with IntechOpen for a number of reasons: their professionalism, their mission in support of Open Access publishing, and the quality of their peer-reviewed publications, but also because they believe in equality.",author:{id:"202192",name:"Catrin",surname:"Rutland",institutionString:null,profilePictureURL:"https://mts.intechopen.com/storage/users/202192/images/system/202192.png",slug:"catrin-rutland",institution:{id:"134",name:"University of Nottingham",country:{id:null,name:"United Kingdom"}}}},{id:"18",text:"It was great publishing with IntechOpen, the process was straightforward and I had support all along.",author:{id:"71579",name:"Berend",surname:"Olivier",institutionString:"Utrecht University",profilePictureURL:"https://mts.intechopen.com/storage/users/71579/images/system/71579.png",slug:"berend-olivier",institution:{id:"253",name:"Utrecht University",country:{id:null,name:"Netherlands"}}}}]},submityourwork:{pteSeriesList:[{id:"14",title:"Artificial Intelligence",numberOfPublishedBooks:9,numberOfPublishedChapters:87,numberOfOpenTopics:6,numberOfUpcomingTopics:0,issn:"2633-1403",doi:"10.5772/intechopen.79920",isOpenForSubmission:!0},{id:"7",title:"Biomedical Engineering",numberOfPublishedBooks:12,numberOfPublishedChapters:99,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2631-5343",doi:"10.5772/intechopen.71985",isOpenForSubmission:!0}],lsSeriesList:[{id:"11",title:"Biochemistry",numberOfPublishedBooks:27,numberOfPublishedChapters:290,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2632-0983",doi:"10.5772/intechopen.72877",isOpenForSubmission:!0},{id:"25",title:"Environmental Sciences",numberOfPublishedBooks:1,numberOfPublishedChapters:9,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2754-6713",doi:"10.5772/intechopen.100362",isOpenForSubmission:!0},{id:"10",title:"Physiology",numberOfPublishedBooks:11,numberOfPublishedChapters:139,numberOfOpenTopics:4,numberOfUpcomingTopics:0,issn:"2631-8261",doi:"10.5772/intechopen.72796",isOpenForSubmission:!0}],hsSeriesList:[{id:"3",title:"Dentistry",numberOfPublishedBooks:8,numberOfPublishedChapters:129,numberOfOpenTopics:0,numberOfUpcomingTopics:2,issn:"2631-6218",doi:"10.5772/intechopen.71199",isOpenForSubmission:!1},{id:"6",title:"Infectious Diseases",numberOfPublishedBooks:13,numberOfPublishedChapters:108,numberOfOpenTopics:3,numberOfUpcomingTopics:1,issn:"2631-6188",doi:"10.5772/intechopen.71852",isOpenForSubmission:!0},{id:"13",title:"Veterinary Medicine and Science",numberOfPublishedBooks:11,numberOfPublishedChapters:104,numberOfOpenTopics:3,numberOfUpcomingTopics:0,issn:"2632-0517",doi:"10.5772/intechopen.73681",isOpenForSubmission:!0}],sshSeriesList:[{id:"22",title:"Business, Management and Economics",numberOfPublishedBooks:1,numberOfPublishedChapters:12,numberOfOpenTopics:2,numberOfUpcomingTopics:1,issn:"2753-894X",doi:"10.5772/intechopen.100359",isOpenForSubmission:!0},{id:"23",title:"Education and Human Development",numberOfPublishedBooks:0,numberOfPublishedChapters:0,numberOfOpenTopics:2,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100360",isOpenForSubmission:!1},{id:"24",title:"Sustainable Development",numberOfPublishedBooks:0,numberOfPublishedChapters:12,numberOfOpenTopics:5,numberOfUpcomingTopics:0,issn:null,doi:"10.5772/intechopen.100361",isOpenForSubmission:!0}],subseriesList:[{id:"22",title:"Applied Intelligence",scope:"This field is the key in the current industrial revolution (Industry 4.0), where the new models and developments are based on the knowledge generation on applied intelligence. The motor of the society is the industry and the research of this topic has to be empowered in order to increase and improve the quality of our lives.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/22.jpg",keywords:"Machine Learning, Intelligence Algorithms, Data Science, Artificial Intelligence, Applications on Applied Intelligence"},{id:"23",title:"Computational Neuroscience",scope:"Computational neuroscience focuses on biologically realistic abstractions and models validated and solved through computational simulations to understand principles for the development, structure, physiology, and ability of the nervous system. This topic is dedicated to biologically plausible descriptions and computational models - at various abstraction levels - of neurons and neural systems. This includes, but is not limited to: single-neuron modeling, sensory processing, motor control, memory, and synaptic plasticity, attention, identification, categorization, discrimination, learning, development, axonal patterning, guidance, neural architecture, behaviors, and dynamics of networks, cognition and the neuroscientific basis of consciousness. Particularly interesting are models of various types of more compound functions and abilities, various and more general fundamental principles (e.g., regarding architecture, organization, learning, development, etc.) found at various spatial and temporal levels.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/23.jpg",keywords:"Single-Neuron Modeling, Sensory Processing, Motor Control, Memory and Synaptic Pasticity, Attention, Identification, Categorization, Discrimination, Learning, Development, Axonal Patterning and Guidance, Neural Architecture, Behaviours and Dynamics of Networks, Cognition and the Neuroscientific Basis of Consciousness"},{id:"24",title:"Computer Vision",scope:"The scope of this topic is to disseminate the recent advances in the rapidly growing field of computer vision from both the theoretical and practical points of view. Novel computational algorithms for image analysis, scene understanding, biometrics, deep learning and their software or hardware implementations for natural and medical images, robotics, VR/AR, applications are some research directions relevant to this topic.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/24.jpg",keywords:"Image Analysis, Scene Understanding, Biometrics, Deep Learning, Software Implementation, Hardware Implementation, Natural Images, Medical Images, Robotics, VR/AR"},{id:"25",title:"Evolutionary Computation",scope:"Evolutionary computing is a paradigm that has grown dramatically in recent years. This group of bio-inspired metaheuristics solves multiple optimization problems by applying the metaphor of natural selection. It so far has solved problems such as resource allocation, routing, schedule planning, and engineering design. Moreover, in the field of machine learning, evolutionary computation has carved out a significant niche both in the generation of learning models and in the automatic design and optimization of hyperparameters in deep learning models. This collection aims to include quality volumes on various topics related to evolutionary algorithms and, alternatively, other metaheuristics of interest inspired by nature. For example, some of the issues of interest could be the following: Advances in evolutionary computation (Genetic algorithms, Genetic programming, Bio-inspired metaheuristics, Hybrid metaheuristics, Parallel ECs); Applications of evolutionary algorithms (Machine learning and Data Mining with EAs, Search-Based Software Engineering, Scheduling, and Planning Applications, Smart Transport Applications, Applications to Games, Image Analysis, Signal Processing and Pattern Recognition, Applications to Sustainability).",coverUrl:"https://cdn.intechopen.com/series_topics/covers/25.jpg",keywords:"Genetic Algorithms, Genetic Programming, Evolutionary Programming, Evolution Strategies, Hybrid Algorithms, Bioinspired Metaheuristics, Ant Colony Optimization, Evolutionary Learning, Hyperparameter Optimization"},{id:"26",title:"Machine Learning and Data Mining",scope:"The scope of machine learning and data mining is immense and is growing every day. It has become a massive part of our daily lives, making predictions based on experience, making this a fascinating area that solves problems that otherwise would not be possible or easy to solve. This topic aims to encompass algorithms that learn from experience (supervised and unsupervised), improve their performance over time and enable machines to make data-driven decisions. It is not limited to any particular applications, but contributions are encouraged from all disciplines.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/26.jpg",keywords:"Intelligent Systems, Machine Learning, Data Science, Data Mining, Artificial Intelligence"},{id:"27",title:"Multi-Agent Systems",scope:"Multi-agent systems are recognised as a state of the art field in Artificial Intelligence studies, which is popular due to the usefulness in facilitation capabilities to handle real-world problem-solving in a distributed fashion. The area covers many techniques that offer solutions to emerging problems in robotics and enterprise-level software systems. Collaborative intelligence is highly and effectively achieved with multi-agent systems. Areas of application include swarms of robots, flocks of UAVs, collaborative software management. Given the level of technological enhancements, the popularity of machine learning in use has opened a new chapter in multi-agent studies alongside the practical challenges and long-lasting collaboration issues in the field. It has increased the urgency and the need for further studies in this field. We welcome chapters presenting research on the many applications of multi-agent studies including, but not limited to, the following key areas: machine learning for multi-agent systems; modeling swarms robots and flocks of UAVs with multi-agent systems; decision science and multi-agent systems; software engineering for and with multi-agent systems; tools and technologies of multi-agent systems.",coverUrl:"https://cdn.intechopen.com/series_topics/covers/27.jpg",keywords:"Collaborative Intelligence, Learning, Distributed Control System, Swarm Robotics, Decision Science, Software Engineering"}],annualVolumeBook:{},thematicCollection:[],selectedSeries:null,selectedSubseries:null},seriesLanding:{item:{id:"25",title:"Environmental Sciences",doi:"10.5772/intechopen.100362",issn:"2754-6713",scope:"\r\n\tScientists have long researched to understand the environment and man’s place in it. The search for this knowledge grows in importance as rapid increases in population and economic development intensify humans’ stresses on ecosystems. Fortunately, rapid increases in multiple scientific areas are advancing our understanding of environmental sciences. Breakthroughs in computing, molecular biology, ecology, and sustainability science are enhancing our ability to utilize environmental sciences to address real-world problems.
\r\n\tThe four topics of this book series - Pollution; Environmental Resilience and Management; Ecosystems and Biodiversity; and Water Science - will address important areas of advancement in the environmental sciences. They will represent an excellent initial grouping of published works on these critical topics.
\r\n\tPollution is caused by a wide variety of human activities and occurs in diverse forms, for example biological, chemical, et cetera. In recent years, significant efforts have been made to ensure that the environment is clean, that rigorous rules are implemented, and old laws are updated to reduce the risks towards humans and ecosystems. However, rapid industrialization and the need for more cultivable sources or habitable lands, for an increasing population, as well as fewer alternatives for waste disposal, make the pollution control tasks more challenging. Therefore, this topic will focus on assessing and managing environmental pollution. It will cover various subjects, including risk assessment due to the pollution of ecosystems, transport and fate of pollutants, restoration or remediation of polluted matrices, and efforts towards sustainable solutions to minimize environmental pollution.
",annualVolume:11966,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/38.jpg",editor:{id:"110740",title:"Dr.",name:"Ismail M.M.",middleName:null,surname:"Rahman",fullName:"Ismail M.M. Rahman",profilePictureURL:"https://mts.intechopen.com/storage/users/110740/images/2319_n.jpg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorTwo:{id:"201020",title:"Dr.",name:"Zinnat Ara",middleName:null,surname:"Begum",fullName:"Zinnat Ara Begum",profilePictureURL:"https://mts.intechopen.com/storage/users/201020/images/system/201020.jpeg",institutionString:null,institution:{name:"Fukushima University",institutionURL:null,country:{name:"Japan"}}},editorThree:null,editorialBoard:[{id:"252368",title:"Dr.",name:"Meng-Chuan",middleName:null,surname:"Ong",fullName:"Meng-Chuan Ong",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRVotQAG/Profile_Picture_2022-05-20T12:04:28.jpg",institutionString:null,institution:{name:"Universiti Malaysia Terengganu",institutionURL:null,country:{name:"Malaysia"}}},{id:"63465",title:"Prof.",name:"Mohamed Nageeb",middleName:null,surname:"Rashed",fullName:"Mohamed Nageeb Rashed",profilePictureURL:"https://mts.intechopen.com/storage/users/63465/images/system/63465.gif",institutionString:null,institution:{name:"Aswan University",institutionURL:null,country:{name:"Egypt"}}},{id:"187907",title:"Dr.",name:"Olga",middleName:null,surname:"Anne",fullName:"Olga Anne",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bSBE5QAO/Profile_Picture_2022-04-07T09:42:13.png",institutionString:null,institution:{name:"Klaipeda State University of Applied Sciences",institutionURL:null,country:{name:"Lithuania"}}}]},{id:"39",title:"Environmental Resilience and Management",keywords:"Anthropic effects, Overexploitation, Biodiversity loss, Degradation, Inadequate Management, SDGs adequate practices",scope:"\r\n\tThe environment is subject to severe anthropic effects. Among them are those associated with pollution, resource extraction and overexploitation, loss of biodiversity, soil degradation, disorderly land occupation and planning, and many others. These anthropic effects could potentially be caused by any inadequate management of the environment. However, ecosystems have a resilience that makes them react to disturbances which mitigate the negative effects. It is critical to understand how ecosystems, natural and anthropized, including urban environments, respond to actions that have a negative influence and how they are managed. It is also important to establish when the limits marked by the resilience and the breaking point are achieved and when no return is possible. The main focus for the chapters is to cover the subjects such as understanding how the environment resilience works, the mechanisms involved, and how to manage them in order to improve our interactions with the environment and promote the use of adequate management practices such as those outlined in the United Nations’ Sustainable Development Goals.
",annualVolume:11967,isOpenForSubmission:!0,coverUrl:"https://cdn.intechopen.com/series_topics/covers/39.jpg",editor:{id:"137040",title:"Prof.",name:"Jose",middleName:null,surname:"Navarro-Pedreño",fullName:"Jose Navarro-Pedreño",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRAXrQAO/Profile_Picture_2022-03-09T15:50:19.jpg",institutionString:"Miguel Hernández University of Elche, Spain",institution:null},editorTwo:null,editorThree:null,editorialBoard:[{id:"177015",title:"Prof.",name:"Elke Jurandy",middleName:null,surname:"Bran Nogueira Cardoso",fullName:"Elke Jurandy Bran Nogueira Cardoso",profilePictureURL:"https://s3.us-east-1.amazonaws.com/intech-files/0030O00002bRGxzQAG/Profile_Picture_2022-03-25T08:32:33.jpg",institutionString:"Universidade de São Paulo, Brazil",institution:null},{id:"211260",title:"Dr.",name:"Sandra",middleName:null,surname:"Ricart",fullName:"Sandra Ricart",profilePictureURL:"https://mts.intechopen.com/storage/users/211260/images/system/211260.jpeg",institutionString:null,institution:{name:"University of Alicante",institutionURL:null,country:{name:"Spain"}}}]},{id:"40",title:"Ecosystems and Biodiversity",keywords:"Ecosystems, Biodiversity, Fauna, Taxonomy, Invasive species, Destruction of habitats, Overexploitation of natural resources, Pollution, Global warming, Conservation of natural spaces, Bioremediation",scope:"