Semi-supervised learning (SSL) that can make use of a small number of labeled data with a large number of unlabeled data to produce significant improvement in learning performance has been received considerable attention. Manifold regularization is one of the most popular works that exploits the geometry of the probability distribution that generates the data and incorporates them as regularization terms. There are many representative works of manifold regularization including Laplacian regularization (LapR), Hessian regularization (HesR) and p-Laplacian regularization (pLapR). Based on the manifold regularization framework, many extensions and applications have been reported. In the chapter, we review the LapR and HesR, and we introduce an approximation algorithm of graph p-Laplacian. We study several extensions of this framework for pairwise constraint, p-Laplacian learning, hypergraph learning, etc.
Part of the book: Manifolds II