Homoeopathy is an alternative medical system proposed by Samuel Hahnemann in the eighteenth century. It uses highly diluted and agitated substances that derived from plants, minerals or animals, which have shown to be effective in human medicine, agronomy, veterinary, and as a novelty, in marine aquaculture. Aquacultural homoeopathy has developed rapidly in recent years, partially motivated by the misuse of powerful drugs (hormones, antibiotics, disinfectants) that when solving a problem generate undesirable side effects. In the last 10 years, scientific articles have been published on its application in freshwater fish native to Brazil, obtaining beneficial effects on growth, survival, hepatosomatic index, development of muscle fibres and lipid content in muscle. At Centro de Investigaciones Biológicas del Noroeste (CIBNOR, Mexico: www.cibnor.mx), we have studied the effects of homoeopathy to improve the culture of economically important marine species of molluscs, fish and shrimp. In this chapter, we show a selection of different research with preliminary or advanced results, related to the use of homoeopathy and its impact on zootechnic, biochemical, genomic and transcriptomic parameters in marine molluscs, fish and crustaceans. The results obtained suggest that homoeopathy is an eco-friendly alternative applicable in aquaculture industry to improve various productive and health aspects.
Part of the book: Aquaculture
At present, agricultural homoeopathy is being increasingly implemented worldwide to mitigate the negative effects caused by the indiscriminate use of chemical products in conventional agricultural practices. It is a viable alternative to improve organic agriculture, since homoeopathic medicines are innocuous substances with a capability to activate measurable response mechanisms when used in plants, animals and humans. Experimental research results allow us to conclude in this chapter that agricultural homoeopathy is able to stimulate favourable biological and even genetic responses in plants (basil Ocimum basilicum L., bean Phaseolus vulgaris L., cucumber Cucumis sativus L., tomato Solanum lycopersicum L.), which shows a novelty insight for organic agriculture.
Part of the book: Multifunctionality and Impacts of Organic and Conventional Agriculture