In this work, we study the wetting properties of silk fabrics by deposition of plasma-polymerized (PP) hexamethyldisiloxane (HMDSO) using low-pressure plasma-enhanced chemical vapor deposition (PECVD). Recently hydrophobic properties are under active research in textile industry. The effect of exposure time and power on the HMDSO-coated silk fabrics has been investigated. Water contact angle of PP-HMDSO-coated silk fabric surface has been measured as the function of power and coating time. Fabric surface has shown enhancement in hydrophobicity after coating. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) reveals the surface chemistry, and scanning electron microscopy (SEM) shows the surface morphology of the untreated and HMDSO-coated fabrics, respectively. In the case of untreated fabric, water droplet absorbs swiftly, whereas, in the case of HMDSO-coated fabric, water droplet remains on the fabric surface with a maximum contact angle of 140°. The HMDSO-deposited silk surface is found to be durable after detergent washing. Common stains like ink, tea, milk, turmeric, and orange juice are tested on the surface of both fabrics. In HMDSO-coated fabrics, all the stains are bedded like ball droplet. The fabric is tilted to 45° angle; stain droplets easily roll off from the fabric.
Part of the book: Superhydrophobic Surfaces