This study was initiated to blend the biodiesel produced from waste frying oil (WFO) with petroleum diesel in three different proportions (B20, B50 and B80), and the dual fuels were tested on compression ignition engine to evaluate their emission characteristics. The biodiesel produced from WFO was achieved via heterogeneous catalyzed transesterification using anthill-eggshell-Ni-Co mixed oxide composite catalyst at reaction temperature of 70°C, reaction time of 2 h, catalyst loading of 3 wt% and methanol to oil molar ratio of 12:1. Various analyses carried out on the prepared WFO-based biodiesel confirmed that it is of good quality and also meet the ASTM standard. The blended fuel containing 20% by volume biodiesel content (B20) emitted 1050 and 14,000 ppm of CO and CO2, respectively, which were lower than those emitted by B0, B50 and B80. It can be concluded that blending the diesel with appropriate volume of biodiesel not only improves its quality but also lowers greenhouse gases emission.
Part of the book: Petroleum Chemicals
Surfactant flooding is an enhanced oil recovery (EOR) method that recovers residual and capillary trapped oil by improving pore scale displacement efficiency. Due to toxicity and high cost of conventional surfactant, recent trend involves the use of natural surfactant for EOR. Natural surfactants are benign and biodegradable as they are derived from plant leaves and oil extracts. Herein, a synopsis of recent trend in the incorporation of newly devised natural surfactant for EOR was reviewed. Experimental results show that the surfactants exhibited sterling properties desired for EOR such as lower adsorption, interfacial tension (IFT) reduction, stable emulsion, and wettability alteration of sandstone and carbonate rocks. Overall, natural surfactants are suitable replacement for conventional surfactant. Nonetheless, an accurate modeling and pilot scale studies of natural surfactants remain obscure in literature.
Part of the book: Enhanced Oil Recovery