This chapter studies the ordinal content of supermodularity on lattices. This chapter is a generalization of the famous study of binary relations over finite Boolean algebras obtained by Wong, Yao and Lingras. We study the implications of various types of supermodularity for preferences over finite lattices. We prove that preferences on a finite lattice merely respecting the lattice order cannot disentangle these usual economic assumptions of supermodularity and infinite supermodularity. More precisely, the existence of a supermodular representation is equivalent to the existence of an infinitely supermodular representation. In addition, the strict increasingness of a complete preorder on a finite lattice is equivalent to the existence of a strictly increasing and infinitely supermodular representation. For wide classes of binary relations, the ordinal contents of quasisupermodularity, supermodularity and infinite supermodularity are exactly the same. In the end, we extend our results from finite lattices to infinite lattices.
Part of the book: Game Theory